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Abstract

Machine learning models increasingly map biological sequence-fitness landscapes
to predict mutational effects. Effective performance evaluation of these models
demands comprehensive benchmarks curated from empirical data. Despite their
impressive scale, existing benchmarks lack topographical information regarding
the underlying fitness landscapes, which hampers interpretation and comparison
of model performance beyond simple averaged scores. To address this, here
we present GraphFLA, a Python framework that constructs and analyzes fitness
landscapes from mutagenesis data in diverse sequence modalities (e.g., DNA,
RNA, protein and beyond) with up to millions of mutants. GraphFLA calculates
a holistic set of 20 biologically relevant features that characterize 4 fundamental
aspects of landscape topography: ruggedness, epistasis, navigability and neutrality.
By applying GraphFLA to over 5,300 empirical landscapes from ProteinGym,
RNAGym, and CIS-BP, we demonstrate its utility in interpreting and comparing the
performance of dozens of fitness prediction models, highlighting factors influencing
model accuracy and respective advantages of different models. All the resources
are available at https://github.com/COLA-Laboratory/GraphFLA.

1 Introduction

The fitness landscape is a nearly century-old foundational concept rooted in evolutionary biology [1]
with profound implications on the understanding of biological principles in all 3 modalities of the
central dogma (DNA, RNA, protein)—from drug resistance [2, 3], enzyme activity [4–8], protein
stability and expression [9–11], RNA folding and function [12–16], to transcription factor binding [17,
18]. Efficiently and accurately mapping these fitness landscape surfaces is critical to enable various
downstream tasks [19–23], and has been recently advanced by machine learning (ML) models that
can capture complex and high-dimensional patterns of the sequence-fitness map [24–30].

A critical step in developing models is their proper performance evaluation to understand limitations
and enable comparisons with existing ones. For this purpose, large-scale benchmarks have been
established across different modalities. For example, ProteinGym [31] offers more than 250 tasks
curated from deep mutational scanning (DMS) assays for proteins, while RNAGym [32] incorporates
over 30 standardized RNA DMS assays. Considering their impressive scales and the famous “no free
lunch” theorem [33], it is often unrealistic to expect one single model to dominate on all tasks. For
instance, although the VenusREM model [24] yields the highest average score across all 217 DMS
substitution tasks in ProteinGym, it leads in only 14 (6.5%) individual tasks. Meanwhile, 44 out of
the evaluated 89 models leads in at least one task. This reality prompts critical questions: Q1: “Why
did one model perform well on one set of tasks but poorly on another?”, Q2: “why did one model
outperform baseline on one task, but not on the other?”
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Figure 1: Overview of how GraphFLA contributes to the performance benchmarking of fitness prediction
models. Existing biological fitness prediction benchmarks (b) are often curated from empirical fitness landscape
datasets without interrogating landscape topography (a). GraphFLA constructs these landscapes and offers a
comprehensive suite of features characterizing their topography (c). Such landscape features can then augment
existing benchmarks (d) and thus assist performance interpretation (e, upper) and comparison (e, lower).

Answering these questions necessitates informative features that characterize each task. Unfortunately,
existing benchmarks typically provide only basic labels (e.g., taxon) or statistics (e.g., sequence
length), which are insufficient to fully elucidate the 2 questions above. Consequently, users often rely
on average scores for decision-making and comparison, which can lead to biased conclusions.

For decades, evolutionary biologists have developed various features to quantitatively characterize
topographical aspects of fitness landscapes, including ruggedness [4, 34, 35, 18], navigability [18,
4, 34, 17, 36], epistasis [37–42], and neutrality [43–45, 22]. These features have been extensively
applied to unveil fundamental principles governing evolutionary dynamics [2–18]. As biological
sequence models essentially aim to learn these landscape surfaces, we hypothesize that these same
features can explain why models perform differently across tasks and address the previous 2 questions.

Yet, despite decades of study, landscape analysis remains a highly specialized biological field. As
a result, standard open-source implementations for calculating many landscape features are rarely
available. Also, existing research often targets specific landscape aspects, leaving no consensus on a
comprehensive feature set. In addition, empirical landscapes span diverse biological modalities and
scales, further complicating the development of unified analysis tools. The rapid growth in empirical
data also demands highly scalable methods. Consequently, researchers currently lack accessible,
broadly applicable tools for characterizing fitness landscape features in common benchmarking tasks.

To address this lack of analysis tooling, we present GraphFLA, a versatile, comprehensive, scalable
and end-to-end Python framework for streamlining fitness landscape analysis. GraphFLA constructs
fitness landscapes from biological sequence-fitness data in diverse modalities (including, but not
limited to DNA, RNA, and protein) and is heavily optimized to scale to datasets with even millions
of mutants. It is interoperable with established fitness prediction benchmarks by using an API and
data format similar to that used for model training, and is essentially applicable to empirical data in
other databases and in the literature. Once a landscape is constructed, GraphFLA offers a rich suite of
20 features compiled from thousands of papers characterizing 4 fundamental aspects of landscape
topography: ruggedness, navigability, epistasis, and neutrality, which can then serve as biologically
meaningful meta-features for each benchmark task to better interpret model performance.

We extensively compared GraphFLA’s scalability to existing tools and validated its reliability via a
large-scale replication study using 155 combinatorially complete empirical landscapes collected from
61 works (Section 4.1), which are released as part of GraphFLA. We then demonstrated GraphFLA’s
robustness to data missing, biased sampling, as well as noise in Section 4.2 with synthetic landscapes.
To further demonstrate its versatility, we applied GraphFLA to analyze 5,300+ empirical landscapes
from ProteinGym, RNAGym, and the CIS-BP database [46]. By employing landscape features from
GraphFLA to interpret the performance of dozens of established models on these landscapes, we
illustrate that: ▶ Model performance strongly depends on landscape topography; landscapes that are
more rugged, epistatic, neutral, while less navigable, are harder for models to predict accurately (Q1;
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Section 4.3); ▶ Different models, even with similar overall performance, can excel at different types
of landscapes; performance gaps between them can change with specific landscape characteristics
(Q2; Section 4.4). Finally, we showcase the wider utility of GraphFLA by applying it to analyze
results of ML-guided directed evolution (MLDE) and phenotype landscapes in Section 4.5.

2 Background and Related Work

Fitness landscapes. In his pioneering work in 1932, Wright first described the concept of a fitness
landscape by analogy to a physical landscape, where each spatial location represents a genotype, and
the elevation indicates its fitness. Though this landscape metaphor is initially used to describe the
genotype-fitness map, its influence quickly extended to other biological modalities and scales, e.g.,
molecules like RNA [12–16], proteins [47, 10, 11], genes [48, 49], and even communities [50–54].

Landscape topography. Since adaptation can be viewed as navigating fitness landscapes towards
their highest peaks, their topography is essential for understanding the course of evolution. The most
intuitive and widely studied aspect is ruggedness [4, 34, 35, 18], often characterized by the presence
of multiple local optima (peaks). A necessary condition for landscape ruggedness is epistasis [38–42],
which occurs when one or more mutations interact. In contrast, a purely additive landscape, where
mutational effects are independent, would be fairly smooth with a single global optimum. Ruggedness
along with pervasive epistasis can pose a fundamental challenge to an evolving population’s ability to
find the highest peak, thus reducing the landscape’s navigability [18, 4, 34, 17, 36], another important
topography aspect. Finally, many studies also interrogate neutrality [43–45, 22], which describes
the presence of “plateaus” consisting of genotypes sharing the same fitness.

Software packages for landscape analysis. The only biological landscape analysis package known
to us, MAGALLEN [55], offers several quantitative metrics but is limited in scope. In contrast, GraphFLA
offers a holistic suite of 20 features covering all 4 fundamental aspects above. Also, while MAGALLEN
is written in C, it can only rapidly handle landscapes at the scale of 105 variants. GraphFLA, however,
easily scales to landscapes of 107. Furthermore, MAGALLEN’s pure-C implementation also hinders
interoperability with modern ML ecosystems, unlike GraphFLA’s native Python API.

Empirical fitness landscapes. While early studies of landscape topography often relied on theoretical
models (e.g., the NK model [56]), advancements in experimental methodologies have enabled the
empirical assessment of increasingly large fitness landscapes [31, 57, 58]. These empirical landscapes
are usually constructed by either ▶ randomly sampling a vast number of single- or multi-mutants for
a wild-type (WT) sequence (e.g., [10–12]), or ▶ systematically assaying all possible sequences in a
predefined space (e.g., [4, 7, 42, 59]). The first approach probes a fairly large area of the sequence
space, but the resulting landscape is of narrow depth by containing only immediate neighbors of the
WT. In contrast, the second approach generates combinatorially complete landscapes that allow exact
analysis of topography and enable testing of model predictions on combined effects of mutations.

Fitness prediction benchmarks. Apart from driving biological insights, empirical landscape data
also give rise to the wealth of benchmarking tasks for fitness prediction in different modalities [31, 32,
58, 60–64]. While earlier benchmarks like FLIP [58], [62] and [63] comprise only a handful of tasks,
recent ones like ProteinGym [31] and RNAGym [32] now offer dozens to hundreds of tasks to enable
more robust evaluation. Yet this scale also makes it harder to interpret the results, and users often
abandon task-level scores and resort to averages [30, 63]. Though grouping scores based on basic
task features (e.g., mutational type, taxon) or analyzing performance distribution can offer additional
information [31, 32], they are not sufficient to fully address Q1 and Q2 that we previously posed.
As a result, these benchmarks have not yet been fully leveraged. GraphFLA contributes augmenting
them with fitness landscape features that enable biologically meaningful task-level analysis.

Landscape analysis in other domains. Landscape features have also been widely used to describe
problem characteristics in black-box optimization (BBO). For example, the classic 24 BBO bench-
marking functions included the COCO platform [65] are classified into 5 groups (from easy to hard)
based on features like separability, modality, etc. Another R-package, flacco [66], offers 17 sets of
features describing diverse characteristics of the optimization landscape. Similar features also exist
for multi-objective optimization problems [67], and they can enable more informed algorithm testing,
comparison, selection [68], and configuration [69]. Yet, all these features are designed for general
continuous BBO problems. In contrast, GraphFLA is rooted in evolutionary biology for analyzing
sequence-fitness landscapes, and goes beyond simple statistics to biologically meaningful ones.
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Table 1: Collection of 20 essential landscapes features in GraphFLA
Class Index Feature Range Higher value indicates

Ruggedness

F1 Fraction of local optima [0, 1] ↑ more peaks
F2 Roughness-slope ratio [0,∞) ↑ ruggedness
F3 Autocorrelation [−1, 1] ↓ ruggedness
F4 Gamma statistic [−1, 1] ↑ ruggedness
F5 Neighbor-fitness correlation [−1, 1] ↓ ruggedness

Epistasis

F6 Magnitude epistasis [0, 1) ↓ evolutionary constraints
F7 Sign epistasis [0, 1] ↑ evolutionary constraints
F8 Reciprocal sign epistasis [0, 1] ↑ evolutionary constraints
F9 Positive epistasis [0, 1] ↑ synergistic effects
F10 Negative epistasis [0, 1] ↑ antagonistic effects
F11 Global idiosyncratic index [0, 1] ↑ specific interactions
F12 Diminishing return epistasis [0, 1] ↑ flat peaks
F13 Increasing cost epistasis [0, 1] ↑ steep descents
F14 Pairwise epistasis [0, 1] ↓ higher-order interactions

Navigability

F15 Fitness-distance correlation [−1, 1] ↑ navigation
F16 Glocal optima accessibility [0, 1] ↑ access to global peaks
F17 Basin-fitness corr. (accessible) [−1, 1] ↑ access to fitter peaks
F18 Basin-fitness corr. (greedy) [−1, 1] ↑ access to fitter peaks
F19 Evol-enhancing mutation [0, 1] ↑ evolvability

Neutrality F20 Neutrality [0, 1] ↑ neutrality

3 GraphFLA: A Framework for Fitness Landscape Analysis

The GraphFLA framework mainly consists of 3 parts (Fig. 1c): (1) data preprocessing, (2) landscape
construction, and (3) landscape analysis. We purpose-built it to meet 4 key desiderata: ▶ Applicabil-
ity across empirical landscapes from diverse biological modalities and scales. ▶ Interoperability
with existing ML-ready data. ▶ Scalability to efficiently handle landscapes containing millions of
genetic variants. ▶ Extendability to include new analysis methods via an unified API.

Data input. To ensure compatibility with existing fitness prediction benchmarks, GraphFLA’s API
accepts the standard inputs used by typical ML frameworks. It takes a list of biological sequences (X)
and their corresponding fitness values (f), which can be obtained from either random, site-saturation,
or combinatorial mutagenesis, or other analogous design. GraphFLA supports sequences of length n
where each locus i ∈ {1, . . . , n} can take distinct values from a predefined set Ai (|Ai| ≥ 2; e.g.,
for DNA sequences, Ai = {A, C, G, T}). This general input form allows GraphFLA to handle data
from diverse biological modalities, such as DNA, RNA and protein sequences, or single-cell profiles.
We also include built-in classes optimized for common sequence types (DNA, RNA, proteins, and
binary data) to enhance performance. Additionally, GraphFLA’s preprocessing pipeline automatically
detects the composition of the sequence space, standardizes the input data, and identifies duplicates
or missing values. This preprocessing ensures robust results in subsequent analyses.

Neighborhood identification. Next, GraphFLA determines a neighborhood structure, which specifies
which input variants are genetically adjacent in the sequence space. To this end, traditional methods
calculate genetic distances between all possible pairs of variants to find one-mutant neighbors [4, 55].
However, this pairwise calculation quickly becomes impractical because it requires quadratic time and
memory resources. To overcome this scalability issue, GraphFLA employs a more efficient approach:
instead of comparing every pair, it directly generates all potential single-mutation neighbors for each
variant. This new strategy achieves nearly linear complexity and significantly outperforms existing
implementations in both runtime and memory efficiency (Section 4.1).

Landscape as a variant network. Once the neighborhood is identified, GraphFLA constructs the
fitness landscape as a directed, attributed graph (Fig. 1c), where each node represents a variant and
is associated with its fitness; any two variants that are neighbors to each other are connected by an
directed edge, which represents a single mutational step towards higher fitness. This graph represen-
tation, backend by the igraph package in C, allows many landscape analysis to be implemented via
efficient graph mining algorithms for significant speed up. For example, locating local optima can be
done by finding all sinks in this graph, while classifying different types of epistasis is equivalent to
finding specific types of 4-node motifs (Appendix C).
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Table 2: Summary of combinatorially complete datasets in GraphFLA
Modality Space No. of Datasets No. of Mutants
DNA Genomic sequence 55 724k
Protein Transcript sequence 63 1.1M
RNA Amino acid sequence 37 348k
Total 155 2.2M

Landscape analysis. For each constructed landscape, GraphFLA offers a comprehensive suite of 20
features characterizing their 4 fundamental topographical aspects: ruggedness, navigability, epistasis,
and neutrality (Table 1). In selection of these features, we conducted an large language model-assisted,
data-driven survey of 1, 673 papers on landscape analysis and evolutionary biology (Appendix B),
which aims to identify all prevalemt quantitative indicators of landscape topography in literature.
From more than 100 initial candidates, we compiled this final collection of 20 essential features based
on their (1) frequency of appearance in literature, (2) biological significance, (3) coverage across
different aspects, (4) computational feasibility, and (5) compatibility with data modalities, sizes, and
structures (see details in Appendix B). A full introduction to these features is available in Appendix C

Empirical and theoretical landscapes. Beyond the main modules depicted in Fig. 1c, GraphFLA
provides a data module featuring 155 empirical fitness landscapes that are combinatorially complete,
covering more than 2.2M total sequence variants (Table 2; Table A3). These landscapes, gathered
via another extensive literature survey (Appendix B), span multiple modalities (DNA, RNA, protein)
and taxa with diverse fitness metrics. The comprehensive combinatorial nature of this collection
distinguishes it from current benchmarks, which mainly consist of randomly generated mutagenesis
libraries. This structure enables systematic evaluation of model predictions on combined mutations
of varying orders and aids in interpreting results through landscape topography. In addition to these
empirical landscapes, GraphFLA provides 5 theoretical models for generating synthetic landscapes
with tunable characteristics (e.g., dimension, ruggedness; Appendix D).

4 Results

4.1 GraphFLA Enables Efficient and Accurate Landscape Analysis Across Modalities

Runtime and memory scalability. To evaluate the performance of GraphFLA, we generated synthetic
fitness landscapes of varying sizes using the NK model by Kauffman. We then compared the scalability
of landscape construction with that of the MAGELLAN package and the community implementation
used in [4]. The benchmarks were conducted using a single core of an Intel Xeon Platinum 8260 CPU
with 256GB RAM. Our findings in Fig. 2a show that GraphFLA is significantly faster in landscape
construction compared to existing implementations. For example, the two baselines took more than
5h and 3h respectively to construct the landscape at the scale of 1 million mutants, whereas GraphFLA
used only 20s. Regarding memory efficiency, GraphFLA stood out by requiring only 2GB memory to
process 1 million mutants. In contrast, the community implementation encountered out-of-memory
errors when handling over 100,000 mutants. In sum, GraphFLA scales almost linearly with landscape
size, allowing it to process even the largest empirical fitness landscapes with millions of mutants.

Application to diverse real-world data. To demonstrate the versatility of GraphFLA in processing
real-world data for fitness predictions, we applied it to 4 large-scale benchmarks and databases to
construct 5,300+ landscapes in different modalities and sizes for different species. We then calculated
the 20 landscape features introduced in Table 1 for each of them (Table A3, Table A4, Table A5).

• ProteinGym. We used its 217 DMS substitution tasks. Since the data is highly curated, GraphFLA
can directly construct landscape for each task using the “sequences” and “DMS_score” columns,
with the only preprocessing being removing the common genetic backgrounds. This results in
217 landscapes (2.2M total mutants) describing protein activity, binding, expression, stability,
etc. We note that 168 of these landscapes only contain single mutants, and were excluded from
subsequent analysis as there is little information beyond the local neighborhood of the WT.

• RNAGym. We used the 33 fitness prediction tasks from it, following the same procedure above.
This leads to 31 landscapes (358k total mutants) for mRNAs, tRNAs, aptamers, and ribozymes.

• Combinatorially complete landscapes. We constructed 155 combinatorially complete using the
datasets introduced in Table 2, which contain a mixture of DNA, RNA, and protein landscapes.
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Figure 2: GraphFLA scales efficiently and captures influential landscape features for model performance.
(a) Runtime (left) and peak memory usage (right) during fitness landscape construction for GraphFLA, MAGELLAN,
and a community implementation [4], as a function of landscape size. Landscapes were generated using the NK
model [70] by varying the number of loci N from 5 to 20 (→ landscape sizes from 25 to 220). Results shown are
averages across 10 replicates. (b) Distribution of 3 representative landscape features across 155 combinatorially
complete landscapes collected in GraphFLA. (c) Distribution of model performance, measured by Spearman’s ρ,
for Evo2 predictions across the same 155 landscapes. (d) Correlation matrix showing Spearman’s ρ between 20
landscape features derived from GraphFLA and Evo2 performance across all 155 combinatorial landscapes.

• CIS-BP database. It harbors protein-binding microarray (PBM) data for 5,016 TFs of 329
eukaryotic species and 162 DNA-binding domain structural classes from 78 studies [46]. For each
TF, the fitness is its binding affinity to all 32,896 possible 8-nucleotide, double-stranded DNA
sequences. GraphFLA constructed these 5,016 TF binding landscapes with 174M total mutants.

Validation with existing literature. We proceeded to assess the precision of GraphFLA’s landscape
analysis by performing a large-scale replication study across the 61 papers from which our 155 com-
binatorially complete datasets originate. For each publication, we identified its reported qualitative
(e.g., “highly navigable” [4]) and quantitative (e.g., “514 peaks” [4]) landscape characteristics. We
then utilized the relevant metrics within GraphFLA to re-analyze these landscapes, and compared our
outputs against the original findings. GraphFLA successfully replicated the qualitative conclusions
from all 61 studies (full results in Table A3). Notably, for features with unique definitions such as
ϕlo and ϵreci, GraphFLA precisely reproduced the published values if data processing details were
sufficiently described. For features with more generalized definitions for which implementations can
vary (e.g., ϵDR), GraphFLA’s analysis consistently supported the conclusions drawn in the original
studies. These results demonstrated that GraphFLA is a reliable framework for landscape analysis.

4.2 GraphFLA is Robust to Incomplete, Noisy, and Biasedly Sampled Data

A crucial validation for any analysis framework is quantifying its robustness to imperfect data. Real-
world empirical landscapes often suffer from (a) missing variants, (b) noise in fitness measurement,
or (c) biased sampling in generating the mutant library. In order to validate GraphFLA’s rosbutness to
these, we conducted experiments on a complete NK landscape with moderate size (n = 15, thus 215
total variants) and ruggedness (k = 7), which serves as a reference for the most ideal data.

Robustness to incomplete data. We created incomplete landscapes by randomly removing a fraction
α = {10%, 20%, 50%} variants from the reference landscape. We then calculated four representative
landscape features for these and the reference landscape in Table 3. The results shows that most key
features are highly robust to data incompleteness. The one exception is global optima accessibility,
which, as expected, decreases as more data is removed, since this will destroy paths leading to the
global optima regardless of their evolutionary accessibility. Yet, this effect is predictable and can be
partially corrected by scaling the measured accessibility by the fraction of remaining data (1− α).
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Table 3: Essential landscape metrics for reference, incomplete, noisy, and biased NK landscapes.
Setting Reciprocal sign epistasis Global optima accessibility Autocorrelation FDC
reference (complete) 0.1885 0.6729 0.1151 -0.0313
incomplete (10%) 0.1883 0.6103 0.0927 -0.0420
incomplete (20%) 0.1884 0.5276 0.0771 -0.0337
incomplete (50%) 0.1774 0.3223 0.0553 -0.0313
noisy (0.01σ) 0.1889 0.6492 0.0965 -0.0314
noisy (0.05σ) 0.1896 0.6542 0.0927 -0.0317
noisy (0.1σ) 0.1921 0.6362 0.0966 -0.0319
noisy (0.2σ) 0.1984 0.6339 0.0867 -0.0414
biased (random mutagenesis) 0.1823 0.7246 0.1208 -0.0837

Robustness to noisy data. To simulate experimental noise, we added random noise drawn from a
Gaussian distribution N (0, (βσ)2) to the variant fitness in the reference landscape, where σ is the
standard deviation of the original fitness values and the noise level β was set to {0.01, 0.05, 0.1, 02}.
The results in Table 3 demonstrate that all four landscape features remain remarkably stable. Even
with noise equivalent to 0.2σ, the calculated values are consistent with the reference. This highlights
that GraphFLA’s feature calculations are resilient to typical levels of experimental noise.

Robustness to biased sampling. We then simulated a more realistic scenario of random mutagenesis,
which often creates a library that is densely sampled near a wild-type sequence but sparse elsewhere.
We created a sparse, biased library of 1,804 variants (from 32,768 total) by applying a 10% per-site
mutation rate to the global optimum. As shown in Table 3, the key landscape features remain highly
consistent with the reference landscape, even when calculated on this much smaller, non-uniform
subset. This implies that GraphFLA can still provide reliable approximation of the overall landscape
topography even with only biasedly and sparsly sampled data.

4.3 GraphFLA Identifies Key Influence Factors and Bottlenecks in Fitness Prediction

The 5, 300 empirical landscapes we constructed in Section 4.1 exhibit significant variation in their
topography. For instance, across the 155 combinatorially complete landscapes, the percentage of local
optima ranges from around 0% to 5% (Fig. 2b). While the lower bound corresponds to a fairly smooth,
unimodal landscape, the upper bound is on par with that of the most rugged NK landscapes [71].
Similar observations can be made for other landscape features (Fig. 2b; Fig. A1) and for ProteinGym
(Fig. A2) as well as RNAGym (Fig. A3). From a performance benchmarking perspective, this is a
good sign since it implies that the included tasks are diverse enough to “stress-test” models [72].

To illustrate how landscape features can shed light on fitness prediction performance, and thus our Q1
in Section 1: “Why did one model perform well on one set of tasks but poorly on another?”, we used
Evo2-7b [27], the successor of Evo [63], as an example. It is trained on 9.3 trillion DNA base pairs
and applicable to diverse modalities including DNA, RNA, and protein. We applied Evo2 to each of
our 155 combinatorial landscapes, and assessed its performance in fitness prediction using Spearman’s
ρ as in prior works [73, 60, 74, 61, 75]. We found that Evo2’s performance varies significantly across
landscapes (Fig. 2c), and is highly dependent on landscape features (Fig. 2d). Specifically, half
of the landscape features yielded Spearman’s |ρ| higher than 0.6 with Evo2’s performance, and 6
revealed moderate correlation (0.3 < |ρ| < 0.6). Similar results can be obtained by considering
partial correlations controlling for landscape size. By taking a closer look at how Evo2’s performance
varies with landscape features Fig. 3a, we found that it struggles on landscapes that are:

• More rugged and more epistatic. In such landscapes, fitness values often fluctuate dramatically
even in local regions within a small genetic distance (low ρa and NFC). Extrapolation of such
landscapes, even across only a single mutation, may fail due to the existence of local epistatic
hotspots (often local optima) resulting from high-order (indicated by low ϵ(2)), non-magnitude
epistasis (indicated by high ϵreci) between sites that are unique to the current landscape.

• Less navigable. Benign landscapes that are easy to navigate and predict have strongly negative
fitness distance correlation (FDC)—variants closer to the global peak in genetic distance tend to
have higher fitness. In contrast, when FDC becomes closer to zero or positive, this information
diminishes and even becomes “deceptive” (e.g., fitness declines as approaching global peak).
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Figure 3: GraphFLA identifies influencing factors for model performance. For (a) our 155 combinatorial
landscapes, (b) ProteinGym, and (c) RNAGym, we plot the distribution of model (name specified in each plot)
performance (y-axis; measured as Spearman’s ρ) against landscape features (x-axis). Straight lines show a fit of
the linear regression model, and shaded regions depict the 95% confidence intervals. Dashed horizontal lines
indicate the average performance across all landscapes.

Figure 4: Visualizing the distribution of model performance in landscape feature space. We map each
of the 5, 016 landscapes constructed from the CIS-BP data in the space composed of landscape features and
color-coded with the performance (Spearman’s ρ) of Evo2-7b to visualize its distribution in the feature space.

• Highly neutral. These landscapes feature abundant “plateau” regions where mutations have zero
fitness effects (i.e., neutral), which can hardly be predicted by models trained on non-neutral data.

While such findings were drawn from landscapes with heterogeneous modalities and a general model,
similar patterns can be observed in more specific settings. For example, current leading zero-shot
models on ProteinGym’s 217 DMS substitution tasks, VenusREM [24], ProSST (k = 2, 048) [25],
and the leading supervised model, Kermut [26], tend to excel at fitness prediction for benign protein
landscapes with FDC < −0.5 and ϵreci < 0.1, yet still struggles for more complex ones (Fig. 3b;
more models and features in Fig. A8, Fig. A9). Established models for RNA fitness prediction like
RNA-FM [28] and RNAErine [29] exhibited the same behavior (Fig. 3c; more in Fig. A10, Fig. A11).

To see this at a larger scale, we evaluated the performance of Evo2-7b on the 5, 016 CIS-BP TF
binding landscapes described in Section 4.1. We plotted each landscape instance in the feature space
shown in Fig. 4, and mapped Evo2’s performance to this space. From the results, we can observe
a clear trend that landscapes located in certain regions of the feature space are in general harder
to predict. For example, in the first panel, Quadrant II is occupied by landscapes featuring both a
large number of local optima (ϕlo) and abundant non-magnitude epistasis (ϵreci), and Evo2 can hardly
identify the true fitness rank in them despite extensive pre-training. On the other hand, landscapes
belonging to Quadrant IV are much more benign with low ϕlo and ϵreci. For such landscapes, Evo2
typically achieved Spearman’s ρ > 0.5. As for Quadrant I and III, landscapes in these regions contain
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Figure 5: GraphFLA facilitates landscape-aware model comparison. Difference in performance (y-axis)
between 5 pairs of baselines in ProteinGym (a, b, c) and RNAGym (d, e) is plotted against landscape features on
the x-axis. Line regression fit lines and 95% confidence intervals are depicted.

a combination of complex and benign landscapes, which gave rise to mixed performance outcomes.
The same trend can be observed for other combinations of features in other panels of Fig. 4.

4.4 GraphFLA Facilitates Landscape-aware Model Comparison

Another important question we asked is Q2: “why does one model outperform the baseline on one
task, but not on the other?” For example, though VenusREM and ProSST (k = 2, 048) have similar
(Spearman’s ρ: 0.518 vs 0.507) zero-shot performance on ProteinGym, they lead on 53% and 47%
of tasks, respectively. Without further information on each task it is hard to strictly distinguish them.

Here we demonstrate that GraphFLA’s landscape features can shed light on their respective advantages.
Fig. 5a plots the ∆performance between VenusREM and ProSST on each task against the ϵreci of the
corresponding landscape. We found that on benign landscapes with little reciprocal sign epistasis
(ϵreci < 0.1), ProSST tends to outperform VenusREM (Wilcoxon signed-rank test, w = 123, p =
0.003). Yet this advantage diminishes as ϵreci increases, as indicated by a positive slope of the linear
regression line in Fig. 5a. Eventually, for landscapes with ϵreci > 0.15, VenusREM consistently
outperforms ProSST, which implies it is better at capturing complex epistatic interactions.

More intriguingly, both these zero-shot models can only outperform Kermut, the leading supervised
baseline, on highly navigable landscapes (FDC ≈ −0.7; Fig. 5b, c). As landscapes become less
navigable (i.e., FDC increases), the performance gap between VenusREM (or ProSST) and Kermut
increases drastically (Fig. 5b, c). Notably, for the ODP2 landscape from [76], which has an FDC =
0.23, Kermut outperforms VenusREM by a Spearman’s ρ of 0.53. The same pattern can be observed if
we replace Kermut with other supervised baselines like ProteinNPT [77] (Fig. A12). These highlight
that supervised training is still necessary to better extrapolate on complex landscapes.

As for RNAGym, though Evo2 and RNA-FM achieved comparable prediction performance across all
analyzed landscapes (Fig. 3c), the former falls short on landscapes with high incidence of reciprocal
sign epistasis (ϵreci > 0.2; Fig. 5d). Also, the performance gap between RNA-FM and RNAErine
increases as the landscape becomes more epistatic (ϵreci increases; Fig. 5e). These results shed new
light on the respective of different models beyond simple averaged scores.

4.5 GraphFLA is Applicable to a Broader Range of Tasks and Data

Application to directed evolution. Beyond fitness prediction, GraphFLA can also be employed to
shed light on other tasks related to fitness landscapes. For example, as directed evolution (DE) [78–
81], a central technique in protein engineering, is essentially an adaptive walk on the protein fitness
landscape to find high fitness variants, landscape topography can have fundamental impact on its suc-
cess. For instance, DE on rugged landscapes is notoriously difficult [82]. However, a comprehensive
understanding of the impact of ruggedness, and other landscape features, on DE, has been missing
due to the lack of (1) holistic landscape analysis frameworks like GraphFLA, and (2) large collection
of combinatorially complete empirical landscapes like in Table 2.

To demonstrate how GraphFLA can provide insights into DE, we used 20 protein landscapes from our
combinatorial library that are 3- or 4-site-saturated (i.e., total variants being 203 or 204). For each of
them, we evaluated the performance of 5 DE classic approaches: (1) the simplest DE, implemented
as a greedy adaptive walk; (2) ML-guided DE (MLDE) [82, 83]; (3) MLDE warm-started with a zero
short model [80]; (4) Active learning-guided directed evolution (ALDE) [84, 85]; (5) ALDE with
zero-shot warm start. Detailed implementations are available in Appendix F. For each approach, we
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Figure 6: GraphFLA can be employed to interpret directed evolution (DE) outcomes. (a) The maximum
fitness achieved (in percentile) by DE on each selected landscape against landscape features. (b) We fixed the
x-axis to be reciprocal sign epistasis and replaced DE with 5 other ML-guided methods. Dashed horizontal lines
indicate the average performance across all landscapes.

measured performance using the fitness percentile (where 1 indicates finding the global optimum) of
the best variant it found, and aggregated across 100 randomly initialized runs. For the two ALDE
methods, we additionally set the number of iterations to 3 or 5 rounds.

From Fig. 6a, we can see that while the basic DE method can easily find variants with fitness close to
the global optimum on benign landscapes, it struggles on ones that are more rugged and epistatic, and
less navigable. The 5 ML- or active learning-guided approaches are also susceptible to the incidence
of epistasis, but more advanced approaches—such as MLDE with a zero-shot warm start and the
ALDE variants—demonstrated greater robustness and are less adversely affected (Fig. 6b).

Application to other data. Beyond molecular sequences such as DNA, RNA, and proteins, GraphFLA
can be applied to fitness landscapes at various other biological scales. For instance, it can be utilized
to analyze evolutionary landscapes of gene regulatory networks [48, 49] or metabolic landscapes [86]
at the cellular level. It can also analyze how alterations in community composition impact collective
functions [50–54]. As a demo, we analyzed 6 microbial community-function landscapes in Table A2.
In addition to traditional fitness landscapes, GraphFLA can be adapted to study a broad array of
phenotype landscapes, a.k.a, genotype-phenotype (GP) maps, for RNA secondary structure [87],
protein tertiary structure [88, 89], and protein complexes [90], etc. We provide demonstrations for
these using computational models and 3 phenotype landscape features in Appendix E.

5 Conclusion

GraphFLA addresses the critical lack of meaningful features for interpreting performance benchmark-
ing results in sequence fitness prediction. Using its comprehensive suite of 20 features describing the
underlying landscape topography, we are now able to answer questions like “why model performance
varies across tasks?”, “when and why will a model outperform the other?”. In this way, GraphFLA
augments current benchmarks like ProteinGym and RNAGym to fully take advantage of their im-
pressive scales, and assists in obtaining granular understanding of the capabilities and limitations
of existing genomic models that were previously impossible. In addition, since GraphFLA itself is
designed for arbitrary combinatorial landscapes, we expect it will be a useful resource for advancing
our understanding on a broader range of tasks and data that is related to combinatorial optimization.

Future work could be done to see how landscape features can enable more principled selection or
development of models, or how they may enable insights regarding other intriguing aspects that are
unexplored in this paper (e.g., model scaling [91]).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As stated in the abstract and introduction, the main scope of this paper is
biological fitness prediction, in particular the benchmark of methods for this topic. The
main contribution of this paper is the development of the GraphFLA framework to make
performance benchmarks more interpretable and insightful by considering fitness landscape
features. This paper also contributes to the collection of a new set of 155 combinatorially
complete fitness landscapes across DNA, RNA, and protein.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitations of GraphFLA in Appendix A.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include any theoretical results.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental setups are clearly described in either Section 4 or in corre-
sponding Appendix sections.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the artifacts needed to reproduce the experiments, including code for
GraphFLA and the 155 combinatorially complete fitness landscapes data, are available
in https://github.com/COLA-Laboratory/GraphFLA. We also used previously pub-
lished benchmark results from ProteinGym, which is available at https://proteingym.
org/. We are currently unable to share the RNAGym data and benchmark scores without
permission from the original authors.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Relevant information are available in Section 4 and Appendix F.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The experimental results are accompanied by confidence intervals and statisti-
cal significance tests.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4.1 provides sufficient details regarding computation hardware used as
well as the runtime & memory scalability of GraphFLA.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have ensured that all aspects of the research adhere to the NeurIPS
Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: No negative social impact is related to this work.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly credits the creators of the assets and mentions the license
and terms of use.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All assets are available in https://github.com/COLA-Laboratory/
GraphFLA.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The authors declare the usage of LLMs in Section 3 and Appendix B.
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A Limitations

While GraphFLA provides extensive quantitative features for characterizing fitness landscapes, ef-
fectively visualizing their topography remains challenging due to the inherent high dimensionality
and associated curse of dimensionality [92]. Dimensionality reduction methods, such as PCA [93],
t-SNE [94], and UMAP [95], partially address this issue and have been effectively applied to diverse
biological data [96–99]. However, these methods risk generating misleading visualizations of fitness
landscapes. Specifically, compressing data into fewer dimensions inevitably leads to loss of informa-
tion, potentially distorting spatial relationships among variants. Although this might be acceptable for
general visualization purposes—where overall data trends remain intact—such distortions can result
in the incorrect identification of local optima that do not exist in the original high-dimensional space.
Consequently, despite the intuitive appeal of visualizing fitness landscape topography, GraphFLA,
along with much of the landscape analysis literature, emphasizes quantitative metrics that inherently
capture patterns within high-dimensional spaces.

Additionally, despite extensive optimization efforts, the scale of landscapes analyzable by GraphFLA
within practical computational times remains small compared to the entire genotype space. For
instance, the number of potential RNA sequences of length n = 100 is 4100, vastly exceeding
the number of atoms in the observable universe. Nonetheless, by efficiently handling landscapes
containing millions of variants, GraphFLA aligns well with current experimental capabilities, and can
comfortably accommodate even the largest empirically measured fitness landscapes.

B Data-driven Literature Survey on Landscape Analysis

Building on our prior success in leveraging data-driven methods and large language models (LLMs)
to enhance literature comprehension [100–102], we adopted a similar strategy in the development
of GraphFLA. This involved conducting an extensive literature survey designed to: (1) identify key
landscape features that characterize their topography, and (2) gather empirical data for combinatorially
complete fitness landscapes. The methodology encompassed several distinct stages:

B.1 Initial Literature Collection and Filtering

Search Query Formulation. The initial step involved crafting a targeted search query to retrieve
literature pertinent to fitness landscapes. This topic is central to research where landscape features
and combinatorially complete datasets are developed or utilized. The formulated query was:

((“fitness landscape*” OR “adaptive landscape*” OR “genotype network” OR
“genotype-phenotype map*”) OR (“epistasis” OR “diminishing return*” OR “in-
creasing cost*” OR “NK landscape*”))

This query is structured with two primary components:

1. The first component utilizes established terminology for fitness landscapes (e.g., “fitness land-
scape”, “adaptive landscape”) and associated concepts (e.g., “genotype network”, “genotype-
phenotype mapping”) to ensure a broad capture of relevant studies.

2. The second component augments the search by incorporating specific terms frequently used
in biological landscape analysis, such as “epistasis” and “NK landscape”.

While other relevant concepts exist (e.g., local optima, r/s ratio, see Appendix C), terms like “local
optima” are prevalent across diverse optimization fields, making them less specific. Similarly, terms
like “r/s ratio” can be challenging for effective textual matching. Consequently, these were excluded
from the initial query. This search strategy deliberately prioritized high recall, acknowledging that
it might retrieve studies from related domains (e.g., energy landscapes in physics/chemistry [103],
optimization landscapes in evolutionary computation [104]). Distinguishing these fields solely
through keywords is often infeasible due to their broad scopes; therefore, subsequent filtering steps
were planned to refine the selection for biological relevance.

Database Search. The formulated search query was executed on the Web of Science database1. This
platform was chosen for its comprehensive coverage of peer-reviewed literature and high-quality

1https://www.webofscience.com
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metadata. To enhance the precision of the initial retrieval and minimize noise from full-text searches
(such as incidental mentions of keywords), the search scope was restricted to the title, abstract, and
author keywords fields. These sections typically encapsulate the core subject matter of a publication.

LLM-based Filtering. This initial search yielded a substantial corpus of 31, 784 potentially relevant
publications. To manage this volume and efficiently identify studies most pertinent to our research
scope, we employed an LLM—specifically GPT-4o-mini—for automated initial screening. The title
and abstract of each publication were processed by the LLM, which was prompted to classify the
study based on two primary criteria:

1. Does the publication investigate fitness landscapes or closely related concepts specifically
within biological systems?

2. If the answer to the first criterion is affirmative, does the publication report on empirical
data, as opposed to being a purely theoretical analysis, in-silico simulation study, or review
article?

This LLM-driven filtering process significantly narrowed the candidate pool. After applying the
first criterion, the number of papers was reduced to 11, 098. The second criterion further refined
this set to 1, 673 publications. This curated collection of papers, focusing on analysis of empirically
measured fitness landscapes in biological systems, formed the basis for subsequent landscape feature
set construction and the collection of combinatorially complete landscape data.

B.2 Landscape Feature Set Construction

Following the identification of 1, 673 core publications relevant to empirical fitness landscape analysis,
we proceeded to construct a comprehensive and representative set of landscape features. The objective
was to distill a manageable yet informative collection of quantitative indicators that capture the
fundamental topographical aspects of fitness landscapes.

Initial Feature Candidate Identification. The full texts of the 1, 673 curated papers were system-
atically reviewed to identify all quantitative measures used to describe landscape topography. This
extensive survey, augmented by an LLM (GPT-4o) to scan for mentions and definitions of landscape
metrics, initially yielded a broad list of over 100 candidate features. These candidates encompassed a
wide range of mathematical formulations, statistical measures, and network-based properties that
researchers have employed to characterize landscapes.

LLM-assisted Feature Filtering and Selection. To refine this extensive list into a practical and
impactful feature set, we devised a set of carefully crafted criteria to guide selection:

1. Empirical prevalence in literature: How frequently is the feature used or discussed in the
surveyed 1, 673 papers? Features with high prevalence were prioritized as they represent
established and widely accepted indicators. The number of local optima is employed in 45%
of our analyzed literature.

2. Biological significance: Does the feature provide meaningful insights into evolutionary
processes or other biological phenomena? Features with clear connections to biological inter-
pretations were favored. For instance, features quantifying aspects like diminishing returns
epistasis can shed light on the rate of adaptation [38], while measures related to neutrality
can have great biological implications for understanding mutational robustness [43].

3. Coverage across different topographical aspects: Does the feature contribute to charac-
terizing one of the 4 fundamental topographical aspects: ruggedness, navigability, epistasis,
and neutrality? We aimed for a balanced set that provides a holistic view of the landscape.

4. Computational feasibility: Can the feature be computed efficiently for landscapes of
varying sizes and complexities, such as those included in GraphFLA? Features requiring
prohibitive computational resources for typical dataset sizes were deprioritized. For example,
while the Walsh-Hadamard transform [105] can be used to calculate a full spectrum of
epistatic interactions, its computational demand can be prohibitive for large landscapes.

5. Compatibility with data modalities, Sizes, and Structures: Is the feature applicable to
the types of data commonly found in empirical fitness landscapes? Is it robust to missing
data or variations in landscape size? Features with broad applicability and robustness were
preferred.
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Final feature set. By manually reviewing the initial set of features along with expert consultations,
we arrived at the final set of 20 essential landscape features presented in Table 1, which cover
all 4 fundamental aspects of landscape topography and are extensively used in landscape analysis
literature to offer different biological insights. They can also be efficiently computed for empirical
landscapes with different modalities and sizes, and are applicable to non-complete landscapes. A full
introduction to each of these 20 features, including their definitions, interpretations, and computational
considerations, is available in Appendix C.

B.3 Combinatorially Complete Landscape Collection

In GraphFLA, we focused on collecting combinatorially complete datasets derived from extensive
mutagenesis studies. Unlike datasets generated by randomly sampling mutants around a wild-type
sequence, combinatorially complete landscapes encompass measurements for all possible genotypes
within a defined genotype space. We identified and collected such datasets from our focused set of
1, 673 papers via manual scrutiny of the full-texts with the aid of GPT-4o. Specifically, for each paper,
we asked:

• Does the publication publish new empirical landscape data?
→ If yes, was the published data combinatorially complete? This criterion specifically

excludes datasets focusing only on evolutionary trajectories (i.e., monitoring changes
in population mean fitness and genotypic composition) or deep mutational scanning
data (i.e., sampling only mutants closely related to a wild-type sequence).

→ If no, did it mention or use combinatorially complete datasets from previous works?

After this final review, we arrived at a total of 155 datasets as listed in Table A3, sourced from more
than 67 studies. This number is much smaller compared to the initial corpus of over 30, 000 papers.
The main reason for this is such combinatorially complete landscapes are extremely costly to construct.
Consequently, they are regarded as extremely valuable resources and are extensively utilized in
subsequent works for both deriving biological insights [106, 107] and testing ML systems [85, 108,
58].

B.4 Datasets Processing.

Here we describe a few standards we applied when preparing these data.

Naming convention. We established a systematic naming convention to uniquely and informatively
identify each dataset within the collection, following these guidelines:

• Base identifier: The core of the name typically consists of the first author’s last name
concatenated with the four-digit publication year (e.g., “Papkou2024”).

• Common name suffix: If a dataset is widely recognized by a common identifier, often
related to the specific biological system or molecule studied, this identifier may be appended
as a suffix for easier recognition. For instance, the study by Wu et al. [59] investigated the
fitness landscape across 204 = 160, 000 variants at four sites (V39, D40, G41, V54) within
protein G domain B1 (GB1). This landscape is commonly referred to as “GB1,” and thus
the dataset might be named incorporating this suffix (e.g., “Wu2016_GB1”).

• Disambiguation suffixes: Additional suffixes are employed when a single publication or
study system yields multiple distinct datasets. These suffixes serve to differentiate datasets
based on key experimental variables, such as:

– Different subjects and fitness measures (e.g., Phillips et al. [109] studied binding
affinities of different variants of antibodies CR9114 and CR6261 against various
influenza HA antigens like H1, H3, etc., which results in separate datasets per antibody-
antigen pair).

– Variations in experimental conditions or environments (e.g., Soo et al. [110] measured
the self-splicing activity of 48 = 65, 536 Tetrahymena intron variants at two different
temperatures, 30°C and 37°C, leading to two distinct datasets).

– Exploration of different mutation sites or regions (e.g., Johnston et al. [7] generated
the “TrpB3D” landscape from 203 = 8, 000 variants at sites {T117, A118, A119}
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of the thermostable tryptophan synthase β-subunit (TrpB), and the distinct “TrpB3E”
landscape based on sites {F184, G185, S186}).

– A combination of the above factors.
These distinguishing characteristics are systematically incorporated into the dataset name as
further suffixes to ensure clarity and uniqueness.

Search space representation. Genotypes within each dataset are presented using two formats: a
sequence-based representation (e.g., “ATTA”) and a vector explicitly listing the allele at each locus
(e.g., [“A”, “T”, “T”, “A”]). The combinatorial nature of these representations leads to vast theoretical
search spaces. For a sequence of length L, the total number of possible genotypes is 4L for DNA or
RNA, 20L for proteins, or 2L for binary representations. Binary representations typically indicate
the presence or absence of specific mutations and can be applied to DNA, RNA, proteins, or other
biological systems, such as microbial communities [52, 111]. Although the theoretical search spaces
for our collected landscapes are combinatorially complete by design, the experimentally generated
data often exhibit incomplete coverage due to experimental constraints or subsequent filtering steps.
For example, the DHFR landscape from Papkou et al. [4] measured fitness for 261, 382 variants,
which constitutes 99.7% of the total 49 = 262, 144 possible genotypes. Similarly, the GB1 protein
landscape reported by Wu et al. [59] includes 149, 361 variants, covering 93.4% of the theoretical
space of 204 = 160, 000 sequences.

Fitness measure. Following our naming convention, each of the 155 dataset listed in Table A3
focuses on a single fitness measure under a given condition (e.g., environment). To ensure the
potential for accurate landscape reconstruction and the replication of published analysis results, we
have retained the original fitness values as reported in the source publications. No transformations
were applied to these values unless such transformations were already part of the published dataset.
For datasets where fitness variance across replications is available, this is amended as an additional
column.

C Fitness Landscape Features

Core Definitions

We begin by defining fundamental concepts used throughout the fitness landscape analysis.
Definition C.1 (Alleles and Loci). Let n be the number of polymorphic loci under consideration. For
each locus i ∈ {1, 2, . . . , n}, let Ai denote the set of distinct alleles present. The number of alleles at
locus i is mi = |Ai| ≥ 2.
Example 1. For example, in complete DNA or RNA landscapes, Ai typically contains four nucleotide
bases ({A,C,G, T} for DNA, {A,C,G,U} for RNA), thus mi = |Ai| = 4. For proteins, where
loci usually represent amino acid positions, Ai comprises the 20 standard amino acids, resulting in
mi = |Ai| = 20.
Definition C.2 (Genotype Space). A genotype g is a specific combination of alleles across all n
loci, represented as a sequence (a1, a2, . . . , an) where ai ∈ Ai for each i. The set of all possible
genotypes constitutes the genotype space G. The total number of genotypes is |G| =

∏n
i=1 mi.

Definition C.3 (Hamming Distance). The Hamming (genetic) distance dH(g, g′) between two
genotypes g = (a1, . . . , an) and g′ = (a′1, . . . , a

′
n) is the number of loci at which their alleles differ:

dH(g, g′) =

n∑
i=1

I(ai ̸= a′i),

where I(·) is the indicator function (I(condition) = 1 if the condition is true, 0 otherwise).
Definition C.4 (Mutational Neighborhood). The neighborhood N (g) of a genotype g ∈ G is the set
of all genotypes reachable from g by a single point mutation, i.e., genotypes g′ differing from g at
exactly one locus:

N (g) = {g′ ∈ G | dH(g, g′) = 1}.
The size of the neighborhood is |N (g)| =

∑n
i=1(mi − 1).

Definition C.5 (Fitness Function). The fitness function f : G → R assigns a scalar fitness value f(g)
to each genotype g ∈ G.
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Definition C.6 (Mutant Genotype Notation). Let g = (a1, . . . , aj , . . . , an). We denote the specific
single-mutant neighbor resulting from changing the allele aj at locus j to a different allele a′j ∈
Aj \ {aj} as g[j←a′

j ]
. When the specific mutated allele a′j is not critical or is clear from context (e.g.,

in biallelic systems where the alternative allele is unique), we may use the shorthand g[j] to denote
any single mutant differing from g only at locus j.

Definition C.7 (Selection Coefficient). Let g be a genotype with allele aj at locus j. The selection
coefficient sj,aj→a′

j
(g) measures the fitness effect of mutating allele aj to a′j (where a′j ∈ Aj \ {aj})

at locus j within the genetic background of g:

sj,aj→a′
j
(g) = f(g[j←a′

j ]
)− f(g).

When the specific mutation aj → a′j is unambiguous or when referring generally to the effect of a
mutation at locus j, we may use the simpler notation sj(g) = f(g[j])− f(g).

C.1 Ruggedness

C.1.1 Number of Local Optima

Definition C.8 (Local and Global Optima). A genotype gℓ ∈ G is a local optimum if its fitness is
greater than or equal to that of all its neighbors: f(gℓ) ≥ f(g′) for all g′ ∈ N (gℓ). A global optimum
g∗ is a genotype with the maximum fitness across the entire landscape: g∗ ∈ argmaxg∈G f(g). We
generally assume a unique global optimum for simplicity, although the concepts readily extend to
scenarios with multiple global optima.

The number of local optima, nlo, serves as a primary indicator of landscape ruggedness [4]. A smooth
landscape possesses only a single local optimum, which coincides with the global optimum. In
contrast, highly rugged landscapes, such as Kauffman’s NK model [112] with k = n−1 interactions,
can feature a large number of local optima, potentially scaling exponentially with system size (e.g.,
approximately 2n

n+1 local optima for certain NK parameters [71]).

In the graph-based representation employed by GraphFLA, where directed edges implicitly encode
fitness comparisons between neighboring genotypes, local optima correspond directly to sink nodes
(i.e., nodes with no outgoing edges). These sinks can be efficiently identified using standard graph
algorithms (e.g., via the igraph library). To facilitate comparisons between landscapes of varying
sizes, the absolute number of local optima is often normalized by the total number of genotypes,
|G| =

∏n
i=1 mi. This yields the dimensionless quantity fraction of local optima.

C.1.2 Autocorrelation

Autocorrelation assesses the smoothness or ruggedness of a fitness landscape by measuring the
correlation between the fitness values of genotypes encountered along random walks [113, 114].
Specifically, consider a random walk g0, g1, . . . , gL of length L through the genotype space G,
where each step gt+1 is typically chosen uniformly at random from the neighbors N (gt). The lag-k
autocorrelation ρa(k) is defined as:

ρa(k) =
E[(f(gt)− ⟨f⟩)(f(gt+k)− ⟨f⟩)]

Var[f(gt)]
(A1)

where the expectation E[·] and variance Var[·] are taken over all valid time steps t (and potentially
multiple walks), and ⟨f⟩ represents the average fitness value across all considered steps gt.

The primary focus is often on the lag-1 autocorrelation, ρa(1) (simplified as ρa), which measures the
fitness correlation between genotypes separated by a single mutation (Hamming distance 1).

In practice, GraphFLA estimates ρa by simulating a large number (Nwalks, e.g., 1, 000) of indepen-
dent random walks, each of length L. A common choice for the walk length is L = n, where n is
the number of loci. The covariance term (numerator) and variance term (denominator) in Eq. A1 are
estimated by averaging over all adjacent pairs (gt, gt+1) across all simulated walks. Averaging over
multiple walks provides a robust estimate.
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A value of ρa close to 1 indicates a smooth landscape where fitness changes gradually between
neighboring genotypes. Conversely, ρa values close to 0 suggest a rugged landscape where the fitness
of neighbors is largely uncorrelated, implying rapid and unpredictable fitness changes.

C.1.3 Neighbor Fitness Correlation (NFC)

Another intuitive measure of landscape ruggedness assesses the relationship between a genotype’s
fitness and the average fitness of its mutational neighbors. This evaluates the tendency for high-fitness
genotypes to be surrounded by neighbors that also have high fitness, and conversely for low-fitness
genotypes.

Specifically, we compute the Pearson correlation coefficient, denoted ρf,⟨f⟩N , between the fitness
f(g) of each genotype g ∈ G and the average fitness of its neighborhood ⟨f⟩N (g):

NFC = Cor
[
f(g), ⟨f⟩N (g)

]
, (A2)

where ⟨f⟩N (g) is the mean fitness over all single-mutant neighbors of g:

⟨f⟩N (g) =
1

|N (g)|
∑

g′∈N (g)

f(g′). (A3)

The correlation in Eq. (A2) is calculated across all genotypes g ∈ G in the landscape.

This neighbor fitness correlation provides insight into the local smoothness or ruggedness of the
landscape structure:

• A value of NFC ≈ 1 indicates a relatively smooth landscape where fitness changes tend to
be gradual; high-fitness genotypes are typically surrounded by other high-fitness genotypes.

• A value of NFC ≈ 0 suggests a rugged landscape where a genotype’s fitness provides little
predictive power for its neighbors’ fitness, indicating abrupt changes.

• A value of NFC ≈ −1, though less common, would imply an anticorrelated or oscillatory
landscape structure where high-fitness genotypes are predominantly surrounded by low-
fitness neighbors, and vice versa.

This measure focuses specifically on the fitness relationship between immediate neighbors, and
complements measures like autocorrelation (C.1.2) which consider correlations along walks.

C.1.4 Roughness-Slope Ratio (r/s)

The roughness-slope ratio (r/s) quantifies the deviation of a fitness landscape from a purely additive
model, thereby measuring the relative contribution of epistasis to the landscape structure [115, 116].
It is defined as the ratio of the landscape’s ’roughness’ (r), representing the magnitude of non-additive
effects (residuals from an additive fit), to its ’slope’ (s), representing the average magnitude of
additive effects. A higher r/s value indicates greater ruggedness and stronger relative epistasis, while
r/s = 0 corresponds to a perfectly additive (non-epistatic) landscape.

To compute r/s, an additive fitness model fadd(g) is fitted to the observed fitness data f(g) using
ordinary least squares (OLS) regression. For multi-allelic landscapes, genotypes are typically
represented using one-hot encoding. The additive model is generally specified as:

fadd(g) = β0 +

n∑
i=1

∑
a∈A′

i

βi,aXi,a(g), (A4)

where Xi,a(g) is a binary indicator variable (1 if genotype g has allele a at locus i, 0 otherwise), β0

is the intercept, and βi,a are the fitted coefficients representing the additive effect of allele a at locus i
relative to a reference allele. The inner sum

∑
a∈A′

i
typically runs over mi − 1 alleles for each locus

i (excluding one reference allele per locus, denoted implicitly by A′i) to ensure model identifiability.
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The roughness r is defined as the root-mean-square error (RMSE) between the true fitness values
f(g) and the fitness predicted by the additive model fadd(g):

r =

√
1

|G|
∑
g∈G

(f(g)− fadd(g))2. (A5)

The slope s is calculated as the average absolute value of the estimated additive coefficients (excluding
the intercept and reference allele coefficients, which are implicitly zero or absorbed):

s =
1∑n

k=1(mk − 1)

n∑
i=1

∑
a∈A′

i

|βi,a|. (A6)

Here, the denominator
∑n

k=1(mk−1) represents the total number of independent additive coefficients
fitted in the model (one for each non-reference allele across all loci), and the summation

∑
a∈A′

i

covers these specific fitted coefficients for locus i.

The r/s ratio thus provides a scale-independent measure comparing the magnitude of epistatic
deviations to the average strength of individual additive allelic effects.

C.1.5 Gamma statistic.

This measure is initially introduced in [117] for di-allelic data (i.e., mi = 2, e.g., genotypes encoded
with “0”s and “1”s as is common in mutation data) and is extended to multi-allelic data (i.e., mi ≥ 3,
DNA sequences) in [106]. It is defined as the single-step correlation of fitness effects for mutations
between neighboring genotypes. It quantifies how the fitness effect of a focal mutation is altered
when it occurs in a different genetic background, averaged over all genotypes of the fitness landscape.
Geometrically, γ measures the correlation between “slopes” (i.e., direction and magnitude) of the
same mutation put into different genetic backgrounds. Thus, if the fitness effect of a mutation is
independent of its genetic background (i.e., if there is no epistasis), the correlation in slopes will be
perfect (γ = 1), whereas it will be zero if the fitness slopes of each genotype are independent of the
fitnesses of other genotypes. Depending on the scale γ can either be used to quantify the strength of
gene×gene interactions between specific mutations or as an overall measure for the entire landscape.

Then the matrix of epistatic effects between loci i and j carrying alleles ai, bi ∈ Ai and Aj , Bj ∈ Aj

is given by

γ(ai,bi)→(Aj ,Bj) = Cor
[
s(Aj ,Bj)(g), s(Aj ,Bj)

(
g[(ai,bi)]

)]
=

∑
g sj(g)sj(g[i])∑

g(sj(g))
2

. (A7)

where g := {x ∈ G|xi = ai or xi = bi and xj = Aj or xj = Bj} ⊆ G such that the sum is only
calculated over the subset of genotypes carrying one of the two focal alleles at each focal locus. Thus,
γ(ai,bi)→(Aj ,Bj) is a quadratic matrix of dimension (

∑n
i=1

|Ai|(|Ai|−1)
2 ).

Likewise, the epistatic effect of a mutation in locus i with alleles (ai, bi) on other loci (and pairs of
alleles) can be calculated as

γ(ai,bi)→ = Cor
[
s(g), s

(
g[(ai,bi)]

)]
=

∑
j ̸=i

∑
aj

∑
g sj(g)sj(g[i])∑

j ̸=i

∑
aj

∑
g(sj(g))

2
, (A8)

where the summation index aj = {(Aj , Bj) | Aj , Bj ∈ Aj and Aj ̸= Bj} is over the set of subsets
of size two that can be constructed from all alleles found at locus j. Note that the third summation
index g changes depending on aj .

An additional summation allows calculation of the epistatic effect of a mutation in locus i carrying
allele (ai) on other loci (and pairs of alleles) can be calculated as:

30



γai→ = Cor[s(g), s(g[ai])] =

∑
j ̸=i

∑
fi

∑
aj

∑
g sj(g)sj(g[i])∑

j ̸=i

∑
fi

∑
aj

∑
g(sj(g))

2
, (A9)

where fi = {(ai, bi) | bi ∈ Ai and ai ̸= bi} such that the sum is only calculated over the elements
of the set of subsets of size two that can be constructed from all alleles found at locus i that contain
allele ai.

Then, summing over li = {(ai, bi) | ai, bi ∈ Ai and ai ̸= bi}, i.e., the elements of the set of subsets
of size two that can be constructed from all alleles found at locus i, gives the epistatic effect of a
mutation in locus i:

γi→ = Cor[s(g), s(g[i])] =

∑
j ̸=i

∑
li

∑
aj

∑
g sj(g)sj(g[i])∑

j ̸=i

∑
li

∑
aj

∑
g(sj(g))

2
. (A10)

Similarly, the epistatic effect of other mutations (again considering pairs of alleles first) on locus j
with alleles (ai, bi) can be calculated as

γ→(Aj ,Bj) = Cor
[
s(Aj ,Bj)(g), s(Aj ,Bj)(g1)

]
=

∑
i ̸=j

∑
ai

∑
g sj(g)sj(g[i])∑

i ̸=j

∑
ai

∑
g(sj(g))

2
, (A11)

the epistatic effect of other mutations on locus j carrying allele Aj is given by

γ→Aj
= Cor

[
s(Aj)(g), s(Aj)(g1)

]
=

∑
i ̸=j

∑
fj

∑
ai

∑
g sj(g)sj(g[i])∑

i ̸=j

∑
fj

∑
ai

∑
g(sj(g))

2
, (A12)

and the epistatic effect of other mutations on locus j becomes

γ→j = Cor[sj(g), sj(g1)] =

∑
i ̸=j

∑
lj

∑
ai

∑
g sj(g)sj(g[i])∑

i ̸=j

∑
lj

∑
ai

∑
g(sj(g))

2
, (A13)

Finally, γd, that is the decay of correlation of fitness effects with Hamming distance d (i.e., the
cumulative epistatic effect of d mutations averaged over the entire fitness landscape) is calculated as

γd = Cor[s(g), sj(gd)] =

∑
g

∑
gd

∑
j ̸=i1,i2,...,id

∑
Aj\{Aj} sj(g)sj(g[i1i2...id])∑

g

∑
Aj\{Aj}(sj(g))

2
, (A14)

where the last summation is over all different alleles present at locus j except the one carried by
genotype g at locus j. We provide implementation of γ1 in GraphFLA since increasing d would
significantly increase the amount of calculations required (e.g., γd would require

(
n
d

)
times more

calculations compared to γ1). In doing this, we utilize vector operation from pandas and numpy
whenever possible to avoid nested loops as would appear with a brute-force implementation of (A14).

C.2 Navigability

Navigability refers to the ease with which an evolving population can traverse the fitness landscape,
typically towards genotypes of higher fitness, under the influence of mutation and natural selection.
A highly navigable landscape allows populations to readily find high-fitness peaks, potentially the
global optimum, through series of fitness-increasing mutations. Conversely, low navigability implies
that evolutionary trajectories might be hindered, often getting trapped on suboptimal peaks due to
fitness valleys or complex landscape structures [18, 4, 34].

31



C.2.1 Global Optima Accessibility

Definition C.9 (Adaptive Walk). An adaptive walk is a sequence of genotypes g0, g1, . . . , gk
such that each genotype gt+1 is a neighbor of gt (gt+1 ∈ N (gt)) and has strictly higher fitness
(f(gt+1) > f(gt)) for all steps t ∈ {0, . . . , k − 1}. The walk terminates at step k when gk is a local
optimum (Definition C.8). Under the strong selection weak mutation (SSWM) regime [118], evolution
often proceeds along such paths, as natural selection favors higher-fitness genotypes and prevents
populations from crossing fitness valleys.
Definition C.10 (Evolutionary Accessibility). A target genotype gT ∈ G is considered accessible
from a starting genotype gS ∈ G if there exists at least one adaptive walk (Definition C.9) connecting
gS to gT . Specifically, a sequence of single mutations gS = g0, g1, . . . , gk = gT exists such that
gt+1 ∈ N (gt) and f(gt+1) > f(gt) for all t ∈ {0, . . . , k − 1}.

Global optimum accessibility quantifies the extent to which the global optimum (g∗) is accessible
(Definition C.10) from other genotypes in the landscape via adaptive walks (Definition C.9). Fitness
landscape theory posits that rugged landscapes can hinder adaptation by trapping evolving populations
on suboptimal local optima, thereby limiting access to the global optimum [114, 56].

Following [4], we measure global optimum accessibility as the fraction of genotypes residing within
the basin of attraction of g∗, denoted B(g∗) (Definition C.11). This fraction represents the probability
that an adaptive walk initiated from a random genotype will eventually reach g∗:

αgo =
|B(g∗)|
|G|

=
|B(g∗)|∏n
i=1 mi

. (A15)

An accessibility value αgo ≈ 1 suggests a highly navigable landscape where the global optimum
is readily reachable via simple hill-climbing dynamics from most starting points. Conversely, a
low αgo indicates that reaching the global optimum through adaptive walks alone is improbable for
populations starting from random initial genotypes, suggesting they are likely to become trapped on
local optima.

It is noteworthy that recent findings suggest some rugged landscapes can still be highly navigable,
with the global optimum accessible from a large fraction of genotypes [4]. Furthermore, even
if g∗ is inaccessible via adaptive walks from certain regions, this does not necessarily prevent
its discovery through methods used in directed evolution. Many computational optimizers (e.g.,
simulated annealing [119], machine learning-guided directed evolution) employ mechanisms to
traverse fitness valleys and escape local optima. Nevertheless, highly rugged landscape topographies
generally pose greater challenges for locating global fitness peaks [18, 34].

C.2.2 Basin of Attraction and BFC

Definition C.11 (Basin of Attraction). The basin of attraction B(gℓ) of a local optimum gℓ is the set
of all genotypes g ∈ G from which at least one adaptive walk starting at g can reach gℓ:

B(gℓ) = {g ∈ G | ∃ an adaptive walk g0 = g, . . . , gk = gℓ}.

The size of the basin, |B(gℓ)|, reflects the accessibility of the local optimum gℓ within the genotype
space. Larger basins are often associated with higher-fitness local optima [4]. We use the basin
size-fitness correlation to quantify this relationship.

GraphFLA estimates basin sizes by analyzing adaptive walks. It supports two distinct methods,
yielding different definitions and computational properties for basin size:

• Stochastic adaptive walks: Also known as first-improvement hill climbing [120]. At
each step, one neighbor g′ ∈ N (g) with f(g′) > f(g) is chosen uniformly at random
from all such improving neighbors. Because of this stochasticity, walks from the same
starting genotype can terminate at different local optima, leading to overlapping basins [4].
GraphFLA calculates the basin size deterministically by identifying the set of all genotypes
from which at least one such adaptive walk can reach the local optimum gℓ. In the graph
representation, this corresponds to finding all ancestors of the node gℓ reachable via directed
paths representing fitness increases, typically using functions like those available in igraph.
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This computation can be expensive for large landscapes (e.g., > 300, 000 genotypes) with
numerous local optima.

• Greedy adaptive walks: Also known as best-improvement hill climbing. At each step, this
walk deterministically selects a neighbor g′ ∈ N (g) that maximizes the fitness increase,
∆f = f(g′) − f(g). If multiple neighbors offer the same maximal increase, a consistent
tie-breaking rule (e.g., random choice implemented once or lexicographical order) ensures
determinism. The path from any starting genotype g is unique, meaning each genotype
belongs to the basin of exactly one local optimum. Consequently, these basins partition the
genotype space G, and their sizes sum to |G| =

∏n
i=1 mi. GraphFLA calculates these basin

sizes by simulating a greedy walk starting from every genotype g ∈ G and recording the
local optimum reached.

Using these two measures of basin size, GraphFLA provides two features, BFCacc and BFCgreedy that
assess whether local optima with higher fitness tend to have larger basin of attraction:

BFCacc = Cor
[
f(gℓ), |Bacc(g

ℓ)|
]

(A16)

BFCgreedy = Cor
[
f(gℓ), |Bgreedy(g

ℓ)|
]

(A17)

A higher value of BFC indicates that fitter local optima would have larger basin of attraction compared
to those have lower fitness, which results in their higher evolutionary accessibility and increased
navigability of the whole landscape [4].

C.2.3 Fitness Distance Correlation (FDC)

Fitness Distance Correlation (FDC) is a measure used to assess the global structure of a fitness
landscape and its potential navigability by an evolutionary process [121]. Specifically, it quantifies
the relationship between the fitness of genotypes and their distance to a known global optimum
g∗. In biological fitness landscapes, this distance is typically the Hamming distance dH(g, g∗)
(Definition C.3) between a genotype g ∈ G and the global optimum g∗ ∈ G (Definition C.8).

The FDC is calculated as the Pearson correlation coefficient between the fitness values f(g) of all
genotypes in the landscape (or a representative sample) and their respective Hamming distances to
the global optimum g∗:

FDC = Cor [f(g), dH(g, g∗)] , (A18)

The interpretation of the FDC value provides insights into the navigability of the fitness landscape:

• FDC ≈ −1: A strong negative correlation indicates that genotypes with higher fitness tend
to be closer (i.e., have a smaller Hamming distance) to the global optimum g∗. This signifies
a relatively smooth, “funnel-like” landscape structure where fitness gradients consistently
guide an evolutionary search towards g∗. Such landscapes are considered highly navigable
by processes like adaptive walks (Definition C.9), as selection for increased fitness generally
directs the population towards the global peak.

• FDC ≈ 0: A correlation close to zero suggests that there is no clear relationship between a
genotype’s fitness and its distance to the global optimum. This is characteristic of rugged or
random landscapes, where fitness values can change erratically and provide little information
about the direction towards g∗. In such landscapes, navigability is low, and evolutionary
processes are more likely to become trapped on local optima (Definition C.8) far from g∗.

• FDC ≈ +1: A strong positive correlation implies that genotypes with higher fitness tend to
be further away from the global optimum g∗. This indicates a “deceptive” landscape, where
selection for immediate fitness gains would systematically lead an evolving population away
from the global optimum. Such landscapes are exceptionally difficult to navigate towards g∗
using simple hill-climbing strategies.
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C.2.4 Evolvability-Enhancing Mutations

Evolvability [122] refers to the capacity of a biological system to generate adaptive heritable variation.
Unlike measures focusing solely on the direct fitness impact of a mutation (first-order selection),
evolvability emphasizes the potential for future adaptive change (second-order selection) [122]. On
top of this, Wagner introduced the concept of an evolvability-enhancing (EE) mutation, defined as
one that modifies the genetic background such that subsequent mutations at other loci tend to be, on
average, more beneficial or less deleterious, irrespective of the initial mutation’s own fitness effect.
Definition C.12 (Evolvability-Enhancing (EE) Mutation). Consider a mutation at locus j that
converts genotype g to g[j]. Let N−j(g) denote the set of single-mutant neighbors of g resulting
from mutations at any locus k ̸= j. The size of this set is |N−j(g)| =

∑n
k ̸=j,k=1(mk − 1). Let

⟨f⟩N−j(g) be the average fitness over the genotypes in N−j(g). Similarly, let N−j(g[j]) be the set of
single-mutant neighbors of g[j] resulting from mutations at loci k ̸= j, and let ⟨f⟩N−j(g[j]) be their
average fitness.

The mutation g → g[j] is defined as evolvability-enhancing (EE) if:

• It is σ-neutral (|sj(g)| < σ, see Def. C.14) and increases the average fitness of subsequent
mutants:

⟨f⟩N−j(g[j]) − ⟨f⟩N−j(g) > 0. (A19)

• It is beneficial (sj(g) > 0) and enhances the fitness prospects of subsequent mutations
beyond its own additive contribution:

⟨f⟩N−j(g[j]) − ⟨f⟩N−j(g) > sj(g). (A20)

This condition is equivalent to requiring that the average fitness effect of subsequent muta-
tions (relative to the background they arise in) is greater in the g[j] background than in the g
background: (

⟨f⟩N−j(g[j]) − f(g[j])
)
>

(
⟨f⟩N−j(g) − f(g)

)
. (A21)

This definition implies that an EE mutation at locus j exhibits, on average, positive epistasis with
mutations occurring at other loci k ̸= j [107]. Following [107], we primarily consider beneficial
EE mutations. Such mutations can spread through populations via direct (first-order) selection
due to their immediate fitness advantage, potentially increasing future evolvability as a byproduct
without needing selection to act directly on evolvability itself (second-order selection). Beneficial
EE mutations are expected to shift the distribution of fitness effects (DFE) of subsequent mutations
favourably, for instance, by reducing the impact of deleterious mutations or increasing the frequency
and/or magnitude of beneficial ones.

C.2.5 Mean Accessible Path Length

The minimum number of single mutations required to transition between a genotype g and the global
optimum g∗ is their Hamming distance, dH(g, g∗) (Definition C.3). However, not all paths realizing
this minimum distance are necessarily evolutionarily accessible; that is, they may not consist solely
of fitness-increasing steps (Section C.2.1). Consequently, the shortest accessible path, composed
entirely of fitness-increasing mutations (an adaptive walk, Definition C.9), can be longer than the
Hamming distance, potentially requiring detours to navigate around fitness valleys [59, 123].

We measure the typical length of such paths using the mean shortest accessible path length to the
global optimum, averaged over all genotypes from which g∗ is reachable.
Definition C.13 (Shortest Accessible Path Length). For a genotype g within the basin of attraction
of the global optimum g∗ (i.e., g ∈ B(g∗)), the shortest accessible path length, dacc(g, g

∗), is the
minimum number of steps k in an adaptive walk g0 = g, . . . , gk = g∗ terminating at g∗. If g is not in
the basin of g∗ (g /∈ B(g∗)), then by definition dacc(g, g

∗) = ∞.

The mean accessible path length to the global optimum, ⟨dacc⟩g∗ , is calculated as:

⟨dacc⟩g∗ =
1

|B(g∗)|
∑

g∈B(g∗)

dacc(g, g
∗).
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The average is taken over all genotypes g belonging to the basin of attraction B(g∗) of the global
optimum (Definition C.11).

In GraphFLA, dacc(g, g
∗) is computed for all g ∈ B(g∗) using shortest path algorithms on the

subgraph containing only fitness-increasing transitions, implemented via igraph’s distances
targeting g∗. While the absolute value of ⟨dacc⟩g∗ is context-dependent (influenced by landscape
size and dimensionality), comparing it to the mean Hamming distance between genotypes in the
basin and the optimum, ⟨dH(g, g∗)⟩g∈B(g∗), can provide valuable insights into landscape navigability.
In a perfectly smooth landscape with a single peak, dacc(g, g

∗) = dH(g, g∗) for all g. In rugged
landscapes, accessible paths often meander, leading to ⟨dacc⟩g∗ > ⟨dH(g, g∗)⟩g∈B(g∗) [4, 36]. A
larger difference signifies greater path indirectness imposed by the landscape’s rugged structure.

C.3 Epistasis

C.3.1 Classification of Epistasis

This section defines different types of pairwise epistatic interactions between mutations at two distinct
loci, say i and j. Epistasis occurs when the fitness effect of a mutation at one locus depends on the
allele present at the other locus. We classify epistasis based on how the fitness effects change across
genetic backgrounds. Consider a reference genotype g, the single mutants g[i] and g[j], and the double
mutant g[ij] (assuming specific mutations ai → a′i at locus i and aj → a′j at locus j are implied or
defined). The interaction epistasis term ϵij measures the deviation from additivity:

ϵij = f(g[ij])− f(g)− [f(g[i])− f(g)]− [f(g[j])− f(g)] (A22)

= f(g[ij])− f(g[i])− f(g[j]) + f(g) (A23)

Using the selection coefficient notation from Definition C.7, where si(g) = f(g[i]) − f(g) is the
effect of the mutation at locus i in the background g, and si(g[j]) = f(g[ij])− f(g[j]) is the effect of
the same mutation at locus i but in the background g[j], the epistasis term can be equivalently written
as:

ϵij = si(g[j])− si(g) = sj(g[i])− sj(g)

Based on the sign and magnitude of the selection coefficients involved, we can classify the interaction:

• No epistasis (ϵij = 0): The effects of the mutations are additive. The effect of mutation i is
the same regardless of the allele at locus j, i.e., si(g[j]) = si(g).

• Magnitude epistasis (ϵij ̸= 0, no sign changes): The fitness effects are non-additive
(ϵij ̸= 0), but the sign of each mutation’s effect remains consistent across the backgrounds
considered. That is, si(g) and si(g[j]) have the same sign (or zero), and sj(g) and sj(g[i])
also have the same sign (or zero). This occurs when the combined effect deviates from the
sum of individual effects.

– Positive epistasis (ϵij > 0): The combined effect is greater than expected from
additivity (f(g[ij]) − f(g) > si(g) + sj(g)). This includes synergistic interactions
where, for example, two beneficial mutations together yield a larger benefit than their
sum, or two deleterious mutations are less harmful together than expected (antagonistic
interaction between deleterious mutations).

– Negative epistasis (ϵij < 0): The combined effect is less than expected from additivity
(f(g[ij])− f(g) < si(g) + sj(g)). This includes antagonistic interactions like dimin-
ishing returns, where two beneficial mutations yield a smaller benefit together than
their sum [38] (see Section C.3.2), or synergistic interactions where two deleterious
mutations are more harmful together than expected. Negative epistasis can decelerate
adaptation [41, 38, 124], create concave fitness peaks [17], and increase mutational
robustness near peaks [17, 11].

• Sign epistasis (ϵij ̸= 0, one sign change): The sign of the fitness effect of one mutation (e.g.,
beneficial vs. deleterious) flips depending on the background provided by the other mutation,
while the second mutation’s sign remains consistent. For instance, mutation i might be
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beneficial in background g (si(g) > 0) but deleterious in background g[j] (si(g[j]) < 0),
while mutation j’s sign remains the same (sj(g) and sj(g[i]) have the same sign). Sign
epistasis restricts accessible mutational trajectories [5, 36, 18] and contributes to landscape
ruggedness [37, 125].

• Reciprocal sign epistasis (ϵij ̸= 0, two sign changes): A symmetric form where the sign
of the effect of both mutations changes depending on the background provided by the other.
For example, both single mutations might be deleterious (si(g) < 0, sj(g) < 0), but each
becomes beneficial in the background containing the other mutation (si(g[j]) > 0, sj(g[i]) >
0), often leading to a beneficial double mutant (f(g[ij]) > f(g)).

Formally, the type of epistatic interaction e(g, i, j) between specific mutations at loci i and j relative
to a reference genotype g can be classified based on the selection coefficients:

e(g, i, j) =


None if ϵij = 0

Magnitude if ϵij ̸= 0 and [si(g) · si(g[j]) ≥ 0 and sj(g) · sj(g[i]) ≥ 0]

Reciprocal Sign if si(g) · si(g[j]) < 0 and sj(g) · sj(g[i]) < 0

Sign otherwise (i.e., if ϵij ̸= 0 and exactly one sign product is negative)
(A24)

where the condition ϵij = si(g[j])− si(g) = 0 defines the non-epistatic case. The product conditions
check for sign changes (a negative product indicates a sign change, assuming neither term is zero).

The prevalence of each epistasis type across the entire landscape can be estimated by enumerating
all pairs of single mutations originating from all possible reference genotypes g. Computationally,
this involves analyzing local structures corresponding to double mutants relative to a reference
genotype. For graph-based representations, these structures correspond to specific 4-node motifs.
As noted by [4], specific non-isomorphic directed motifs identifiable using graph libraries like
igraph correspond to these epistasis types (e.g., motifs 66, 52, and 19 were identified as potentially
representing magnitude, sign, and reciprocal sign epistasis, respectively).

C.3.2 Global epistasis.

Global epistasis refers to systematic trends where the fitness effect of a mutation exhibits a predictable
relationship with the overall fitness of the genetic background it occurs in [39, 124, 41]. Global
epistasis often manifests in two particular forms:

• Diminishing returns epistasis: This pattern describes scenarios where the fitness benefit
(f(g′) − f(g) > 0) conferred by a beneficial mutation decreases as the fitness of the
genetic background, f(g), increases. In other words, the positive impact of a beneficial
mutation diminishes in already fit genotypes [38]. To quantify this, we identify all beneficial
single-step mutations (where the selection coefficient f(g′)− f(g) is positive) across the
landscape. Diminishing returns is then measured by calculating the Pearson correlation
coefficient between the fitness of the background genotype, f(g), and the corresponding
positive selection coefficient, s(g → g′), across all such beneficial mutations. A negative
correlation value indicates the presence of diminishing returns epistasis.

• Increasing costs epistasis: This describes a pattern where the fitness cost (negative effect)
of a deleterious mutation (f(g′)− f(g) < 0) becomes larger (more negative) as the fitness
of the genetic background, f(g), increases. This implies that fitter genotypes are less
tolerant to deleterious mutations [126]. To quantify this, we identify all deleterious single-
step mutations (where the selection coefficient s(g → g′) is negative). Increasing costs
epistasis is measured by calculating the Pearson correlation coefficient between the fitness
of the background genotype, f(g), and the magnitude (absolute value) of the corresponding
negative selection coefficient, |s(g → g′)|, across all such deleterious mutations. A positive
correlation value indicates the presence of increasing costs epistasis, meaning the fitness
cost tends to be larger in higher-fitness backgrounds.

These global epistatic trends suggest a general "coupling" of mutations through overall fitness,
potentially leading to predictable macro-evolutionary dynamics like decelerating rates of adapta-
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tion [41, 124]. This contrasts with idiosyncratic epistasis (see the next section), where interactions
depend more specifically on the identities and combination of the mutations involved [39].

C.3.3 Idiosyncratic Epistasis

Idiosyncratic epistasis describes genetic interactions where the fitness effect of a mutation depends
strongly and often unpredictably on the specific genetic background [127, 39, 128]. The term
"idiosyncratic" highlights that these interactions are specific to the identities of the involved loci and
alleles, resulting in context-dependent effects that can vary significantly even across similar genetic
backgrounds. This contrasts with global epistasis models in the previous section (e.g., diminishing
returns, increasing costs), where a mutation’s effect is predicted to vary systematically based mainly
on the background genotype’s fitness.

To quantify the extent of idiosyncratic epistasis in a landscape, we measure the variability of individual
mutation effects across different genetic backgrounds. Following Lyons et al., an idiosyncrasy index
can be calculated for each specific mutational transition.

Consider a specific mutation at locus i changing allele ai ∈ Ai to allele bi ∈ Ai (ai ̸= bi). Let
Gi,ai

= {g ∈ G | allele at locus i in g is ai} denote the set of all genotypes (backgrounds) carrying
allele ai at locus i. The selection coefficient for this specific mutation ai → bi occurring in a
background g ∈ Gi,ai

is defined according to Definition C.7:

si,ai→bi(g) = f(g[i←bi])− f(g), (A25)

where g[i←bi] is the genotype identical to g but with allele bi at locus i.

The variability of this specific mutation’s effect across all possible backgrounds is captured by its
variance:

Vi,ai→bi = Varg∈Gi,ai
[si,ai→bi(g)] =

1

|Gi,ai
|

∑
g∈Gi,ai

(si,ai→bi(g)− s̄i,ai→bi)
2
, (A26)

where s̄i,ai→bi is the mean selection coefficient of the mutation ai → bi averaged over all backgrounds
g ∈ Gi,ai

.

To normalize this measure, the variability is compared to the overall variability of selection coeffi-
cients across the entire landscape. Let S represent the set of all possible single-mutation selection
coefficients:

S = {sk,Ck→Dk
(h) | k ∈ {1, . . . , n}, Ck, Dk ∈ Ak, Ck ̸= Dk, h ∈ Gk,Ck

}. (A27)

The total variance of selection coefficients across the landscape is:

Vs = Var[s ∈ S] = 1

|S|
∑
s∈S

(s− s̄)2, (A28)

where s̄ is the global mean selection coefficient averaged over all single mutations in all backgrounds.

The idiosyncrasy index for the specific mutation ai → bi is the ratio of the standard deviation of its
effect across backgrounds to the standard deviation of all selection coefficients in the landscape:

Iid(i, ai → bi) =

√
Vi,ai→bi√

Vs

. (A29)

An index value Iid(i, ai → bi) ≈ 1 signifies high idiosyncrasy, implying that the effect of this
mutation is highly context-dependent, varying across backgrounds almost as much as selection
coefficients vary globally. Conversely, Iid(i, ai → bi) ≈ 0 indicates low idiosyncrasy, suggesting the
mutation has a relatively consistent effect regardless of the genetic background.
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To derive a single measure representing the overall level of idiosyncrasy for the entire landscape,
we average the index across all possible single mutations. Let M be the set of all possible directed
single mutations, M = {(i, ai → bi) | i ∈ {1, . . . , n}, ai, bi ∈ Ai, ai ̸= bi}. The total number of
such mutations is |M| =

∑n
k=1 mk(mk − 1). The average idiosyncrasy index for the landscape is:

Iid =
1

|M|
∑

(i,ai→bi)∈M

Iid(i, ai → bi). (A30)

A high average idiosyncrasy Iid suggests that, overall, predicting a mutation’s fitness effect requires
detailed knowledge of the specific genetic background, and highlights the prevalence of complex,
context-specific interactions within the landscape.

C.3.4 Pairwise and Higher-order Epistasis

Epistatic interactions can occur between pairs of mutations (pairwise epistasis) or among multiple
ones (high-order epistasis). Ideally, to exactly determine the fraction of each pair of epistasis would
require decomposing the landscape into products of the single-locus variables according to the
following expansion [129, 130]:

f(g) = a(0) +
∑
i

a
(1)
i ai +

∑
ij

a
(2)
ij aiaj +

∑
ijk

a
(3)
ijkaiajak + . . .+ a

(n)
12...na1a2 · · · an (A31)

There are
(
n
k

)
coefficients of type a(k) in this expansion, one for each subset of k of n loci. According

to the binomial theorem, the total number of coefficients equals 2n, which makes it evident that the
mapping between fitness values and expansion coefficients is one-to-one. The first-order coefficient
a(1) describes the linear, non-epistatic effects, the second-order coefficient a(2) denotes pairwise
epistatic interactions and so on.

However, such expansion is often computationally prohibitive because of the exponential growth
in epistasis terms. As an alternative, researchers often specifically distinguish between pairwise
and higher-order epistasis because the latter describes complex dependencies that are not reducible
to combinations of pairwise interactions and can have profound consequences for the fitness land-
scape [130]. For example, higher-order epistasis can cause the effects of mutations, and even the
nature of pairwise interactions, to change depending on the broader genetic background, sometimes
leading to mutations switching between being beneficial and detrimental—outcomes that cannot be
predicted by considering only pairwise effects [42].

To measure the prevalence of higher-order epistasis in the landscape, GraphFLA provides a measure,
ϵ(2), which assesses how much variance in fitness distributions can be explained by pairwise epistasis
alone. This is performed by fitting a polynomial linear regression model with interaction terms up to
the second order. ϵ(2) is then derived as the R2 score of this model in fitting the data.

C.4 Neutrality

C.4.1 Neutrality

Mutational robustness [43, 44, 131] measures the extent to which a genotype’s fitness remains
unchanged by mutations, reflecting its ability to buffer genetic perturbations. Related is the concept
of neutral mutations, which cause little to no change in fitness. Neutral mutations allow populations
to explore the genotype space without incurring significant fitness costs. Sets of genotypes connected
by neutral mutations and sharing approximately the same fitness level form neutral networks [17, 16,
43, 13].

Definition C.14 (Neutral Mutation and Neighbors). A mutation converting genotype g into a neighbor
g′ ∈ N (g) is considered σ-neutral if the absolute fitness change is below a predefined tolerance
σ ≥ 0: |f(g′)− f(g)| < σ. The set of σ-neutral neighbors of g is:

Nσ(g) = {g′ ∈ N (g) | |f(g′)− f(g)| < σ}.
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Empirically, σ is often set based on the variance in the measured fitness across replications and act
as a noise threshold. With the above definition, we can now define the mutational robustness for a
specific genotype:

Definition C.15 (Mutational Robustness). The mutational robustness R(g) of a genotype g is the
fraction of its neighbors that are σ-neutral [131, 122]:

R(g) =
|Nσ(g)|
|N (g)|

.

To characterize the neutrality of the entire fitness landscape, we average the mutational robustness
across all genotypes:

η =
1

|G|
∑
g∈G

R(g). (A32)

This quantity, referred to as landscape neutrality, measures the overall prevalence of neutrality. A
high landscape neutrality (⟨R⟩G) indicates the presence of extensive neutral networks [17, 16, 43, 13].
These networks can facilitate exploration of the genotype space via neutral drift without much fitness
costs, which could potentially enhance evolvability [122], as discussed in the following section
(C.2.4).

D Landscape Models

In the following, we briefly introduce the various fitness landscape models implemented in GraphFLA.
For an excellent general overview, we refer the reader to a review by Szendro et al..

The additive model. In the additive model, the fitness of each genotype is given by the sum/product
over the individual per locus fitness effects. Thus, the fitness effect of a specific allele, drawn from
a Normal distribution with mean µa and variance σ2

a [117] (see also [132]), is independent of its
genetic background (i.e., it is constant across all genetic backgrounds), such that all mutations are
non-interacting (i.e., there is no epistasis) and the resulting unimodal fitness landscape is (maximally)
smooth. In particular, the roughness-to-slope ratio is 0 and E[γd] = 1 for the entire range of
mutational distances d. Note that when fitnesses are given by the product over the individual fitness
effects, this model is also referred to as the multiplicative model.

The House-of-cards model. On the other extreme, in the House-of-cards (HoC) model [133] the
fitness of each genotype is an i.i.d. normally distributed random variable with zero mean and variance
σ2
HoC resulting in an uncorrelated, maximally rugged fitness landscape that is characterized by

multiple local optima [56, 70]. In particular, the fitness effect of an allele entirely depends on its
genetic background such that there is complete interaction between all loci (i.e., full epistasis) which
is also reflected in the roughness-to-slope ratio and E[γd] that become infinity and zero (for d > 0),
respectively.

The Rough Mount Fuji model. Introduced by [134], the Rough-Mount-Fuji (RMF) model, named
after the eponymous mountain in Japan, which was initially formulated in the context of protein
evolution [see also [132], for a simplified version], interpolates between the former two extremes.
The fitness of a genotype is composed by an additive component (parametrized by µa and σ2

a; see
above) and a HoC component (parametrized by σ2

HoC) such that the extent of epistatic interactions
ranges between none (additive model) to complete (HoC model) depending on the relative sizes of
these three parameters. In particular, when σ2

HoC ≪ µ2
a + σ2

a the RMF model becomes an additive
model whereas for σ2

HoC ≫ µ2
a, σ

2
a it essentially behaves like a HoC model [117]. Accordingly,

0 ≤ E[γd] = const ≤ 1 for d > 0 and the roughness-to-slope ratio ranges from zero to infinity.

The Kauffman NK model. Another frequently used fitness landscape model that, as the RMF model,
also interpolates between the additive and the HoC model [56, 70] is the Kauffman NK model, where
N di-allelic loci interact with K ∈ {0, 1, . . . , L − 1} randomly assigned other loci. In particular,
for K = 0 the NK model collapses to an additive model whereas for K = L− 1 it approaches the
HoC model. Although there are different ways how groups of interacting loci can be chosen [135],
properties such as the mean number and height of local optima tend only to be weakly dependent on
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the exact choice being made. For the NK model, E[γd] is a non-negative monotonically decreasing
function in d, and the roughness-to-slope ratio can again range from zero to infinity.

The eggbox model. Introduced by [117], the eggbox model is a maximally epistatic, anticorrelated
fitness landscape model (i.e., all loci interact with each other up to interactions of order L), in which
the fitness effect of an allele switches from the highest to lowest value (or vice versa) between genetic
backgrounds one step apart. Accordingly, depending on whether two genotypes are separated by
an odd or even Hamming distance, their absolute fitness difference is either twice the mean allelic
fitness effect or zero. Thus, this model generates an extreme case of reciprocal sign epistasis in which
each mutation is either deleterious or compensatory, multiple local optima exist, and γd accordingly
oscillates between -1 and 1.

E Analysis for Phenotype Landscapes

E.1 Phenotype Landscape Models

To demonstrate the applicability of GraphFLA to analyzing phenotype landscapes, we consider several
well-known systems, including ▶ the RNA secondary structure phenotype landscape for lengths
n = 12 and n = 15 (RNA12, RNA15) representing the RNA sequence’s minimum free energy
folded secondary structure [136, 87, 137], ▶ the Polyomino lattice self-assembly maps (S2,8 and
S3,8) modelling the topology of protein quaternary structure assembled from interacting constituent
tiles [138, 90, 139], and ▶ several hydrophobic-polar (HP) lattice protein models for folding of a
sequence into a tertiary structure (two compact models, HP5x5 and HP3x3x3, and two non-compact
ones, HP20 and HP25) [88, 140, 141]. These phenotype landscapes have been thoroughly studied and
compared in [138, 13]

RNA secondary structure: The search space G is made of RNA sequences g where each position
can take 4 RNA nucleotide bases (Ai = {A,C,G,U}). Phenotypes P are the secondary structure
bonding pattern of the minimum free energy fold of the genotype, represented with the dot-bracket
notation [87]. We use the Vienna package [87] with default parameters to convert RNA sequences
g ∈ G to dot-bracket secondary structures p ∈ P . Phenotype landscapes is the mapping from the
sequence space G to their phenotypes P , and are represented as RNA-n with sequences of length n.
As illustration, we consider n = 12, 15, resulting in the RNA12 and RNA15 phenotype landscapes.

HP lattice model: In this model, genotypes G comprise sequences of hydrophobic (H) or polar (P)
amino acids (alphabet Ai = {H,P}) [88, 89]. Phenotypes P correspond to the unique minimum
energy conformation of a genotype when folded onto a 2D (square) or 3D (cubic) lattice. Folds are
represented as strings of directional moves (2D: “Up”, “Down”, “Left”, “Right”; 3D additionally
“Forward”, “Back”). Following [140, 141], only non-adjacent H-H pairs contribute to energy (EHH =
−1), while EHP = EPP = 0. Sequences lacking a unique minimum energy structure are considered
undefined. We investigate both non-compact (HPL) and compact phenotype landscapes. In HPL, the
phenotype is the minimum energy fold among all possible folds of a specific length. In compact
maps (e.g., 2D HPlxw like HP5x5; 3D HPlxwxh like HP3x3x3), folds are confined to a prescribed grid.
These compact models aim to better emulate the globular nature of native proteins [142], significantly
reducing the conformational space while enhancing fidelity to observed protein topologies. We
analyzed compact (HP3x3x3 and HP5x5) and non-compact (HP20 and HP25) landscapes for illustration.

Polyomino model: This model represents protein quaternary structure on a 2D square lattice using an
assembly kit of tiles. Genotypes g ∈ G define this kit of nt tiles, where each tile edge has one of nc

colors (interface types) denoted by integers. We follow [138, 90], focusing on phenotype landscapes
Snt,nc

, specifically S2,8. We use nc = 8 colors; tile edges are assigned bases from the alphabet
Ai = {0, 1, 2, 3, 4, 6, 7}. Interactions are restricted to 1 ↔ 2, 3 ↔ 4, and 5 ↔ 6, while colors 0 and
7 are neutral. The genotype sequence, consisting of bases from A, is encoded clockwise onto the
four edges of each tile in the kit. Phenotype construction begins by “seeding” the lattice with the first
tile. Subsequent tiles from the kit are stochastically placed at complementary interaction sites on the
lattice. Assembly halts if no further placements are possible or if the structure grows unboundedly.
This assembly process is repeated k = 200 times. The phenotype is the unique, rotationally invariant,
bounded polyomino shape observed across the ensemble of assemblies.
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E.2 Phenotype Landscape Features

Following [138], we consider the following 3 landscape features that are dedicated to characterizing
phenotype landscape topography. The analysis results for the previously described landscapes are
summarized in Table A1 below.

Table A1: Features of different phenotype landscapes analyzed
Phenotype landscape |A| n |G| |P| ϕdel log10 R ηp
RNA12 4 12 412 58 0.854 4.6 0.465
RNA15 4 15 415 432 0.650 5.9 0.482
S2,8 8 8 88 14 0.537 5.8 0.487
HP5x5 2 25 225 550 0.816 4.1 0.285
HP3x3x3 2 27 227 49,808 0.939 2.2 0.115
HP20 2 20 220 5,311 0.976 0.7 0.102
HP25 2 25 225 107,337 0.977 0.9 0.099

Redundancy. Denoted by R, it is defined as the average number of distinct genotypes g ∈ G that
map to each non-deleterious phenotype p ∈ P . Redundancy is intrinsically linked to the average size
of phenotypically neutral networks, which consist of sets of genotypes that share the same phenotype
and are often connected by single mutations.

Deleterious frequency. Denoted as ϕdel, this metric represents the fraction of the entire genotype
space G that is occupied by genotypes failing to map to a well-defined, functional phenotype. The
nature of a deleterious phenotype is model-specific:

• In RNA secondary structure landscapes, such as RNA12 and RNA15, a deleterious pheno-
type corresponds to an unfolded RNA sequence that lacks any defined secondary structure.

• For Hydrophobic-Polar (HP) lattice protein models, like HP5x5 (a compact 2D model) or
HP20 (a non-compact model), a deleterious outcome signifies an amino acid sequence that
does not fold into a unique minimum energy conformation.

• In the context of Polyomino lattice self-assembly models, for example S2,8 or S3,8 which
model protein quaternary structure, a deleterious genotype is one that results in an unbounded
or non-deterministic assembly process.

Phenotypic neutrality. Denoted as ηp, it is the average proportion of mutational neighbors of
a genotype g (i.e., genotypes g′ ∈ N (g)) that exhibit the same phenotype as g. This average is
computed over all genotypes in G that correspond to non-deleterious phenotypes. The value of ηp
provides a measure of local neutral connectivity within the phenotypic landscape, indicating the
extent to which mutations can occur without altering the observable phenotype. This concept of
phenotypic neutrality is distinct from fitness-based neutrality (η) defined in C.15, as it specifically
pertains to the preservation of phenotype rather than fitness.

F Directed Evolution

This section provides details regarding how each directed evolution (DE) approach in Section 4.5 is
implemented. Specifically, we considered 5 DE variants. For each approach, the results are evaluated
by the highest fitness variant they identified. To enable comparison across tasks, this is reported as
percentiles from 0 to 1, where 1 represents the fitness of the global optimum. Each approach is run
with random initialization for 100 repetitions, and we report the average in Section 4.5.

Basic DE. In this simplest form, DE is implemented via a greedy adaptive walk algorithm starting
from a random variant g ∈ G. For each step, it exhaustively searches within its neighborhood for the
single-point mutation g → g′, (g′ ∈ N (g)) that yields the highest fitness increase (i.e, ∆f ), until a
local optimum is reached.

MLDE. In this paradigm, a supervised ML model (TabPFN [27])2 is trained on a set of N randomly
sampled protein variants from G along with their fitness. Following [144, 145, 85], we set N = 384

2We also experimented with other common models including XGBoost [143] and a convolutional neural
network (CNN) [108]. We report results for TabPFN in Section 4.5 as it yielded the highest performance.
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Figure A1: Distribution of landscape features across our combinatorially complete datasets.

as performance typically plateaus at this value. Increasing the sample size beyond this point yields
only marginal gains while incurring higher costs. During training, protein sequences were represented
using one-hot encoding flattened over the mutated sites. The trained model was then employed to
predict fitness values for the entire library, with the top 96 predicted variants selected for evaluation.

MLDE with zero-shot warm start. Instead of randomly selecting the training set from the entire
search space G, this approach first uses a zero-shot predictor (ESM [146] here) to identify prominent
regions composed of the top ranked 10% variants. The initial training samples are then sampled from
these regions to bias the learning towards them. The subsequent steps are the same as in MLDE.

ALDE. This active learning-assisted DE implements an iterative learning strategy with 3 or 5 rounds.
In each round, the ML model (TabPFN) is trained on all data acquired up to that point. The initial
round involves the same random sampling as in MLDE with N = 96. For subsequent rounds, the ML
model serves as an acquisition function to rank all variants in the library, thus guiding the selection
of the next batch of variants for fitness evaluation. After the final round, the trained model predicts
fitness values, and the top 96 variants are selected for analysis for evaluation.

ALDE with zero-shot warm start. This approach is almost identical to ALDE, except that instead
of randomly sampling the initial 96 variants, it employs the same zero-shot ranking as in MLDE with
zero-shot warm start.

G Additional Results
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Figure A2: Distribution of landscape features across ProteinGym tasks.
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Figure A8: Influence of landscape features on protein fitness model performance on ProteinGym. We
plot the distribution of model (name specified in each plot) performance (y-axis; measured as Spearman’s ρ)
against landscape features (x-axis). Straight lines show a fit of the linear regression model, and shaded regions
depict the 95% confidence intervals. References: S3F-MSA [147], ESCOTT [148], PoET [149], ESM3 [150],
RSALOR [151], VespaG [152], SaProt [153], and TranceptEVE-L [154].
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Figure A9: Influence of landscape features on protein fitness model performance on ProteinGym. We plot
the distribution of model (name specified in each plot) performance (y-axis; measured as Spearman’s ρ) against
landscape features (x-axis). Straight lines show a fit of the linear regression model, and shaded regions depict
the 95% confidence intervals.
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Figure A10: Influence of landscape features on RNA fitness model performance on RNAGym. We plot the
distribution of model (name specified in each plot) performance (y-axis; measured as Spearman’s ρ) against
landscape features (x-axis). Straight lines show a fit of the linear regression model, and shaded regions depict
the 95% confidence intervals. References: GenSLM [155], NT [156], and Evo1 [63].

GenSLM GenSLMNT NTEvo1 Evo1

M
od

el
 p

er
f.

0

0.2

0.4

Magnitude Epistasis
0.4 0.5 0.6 0.7

Magnitude Epistasis
0.4 0.5 0.6 0.7

Magnitude Epistasis
0.4 0.5 0.6 0.7

φEE

0.4 0.6 0.8
φEE

0.4 0.6 0.8
φEE

0.4 0.6 0.8

Figure A11: Influence of landscape features on RNA fitness model performance on RNAGym. We plot the
distribution of model (name specified in each plot) performance (y-axis; measured as Spearman’s ρ) against
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the 95% confidence intervals.
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Figure A12: Difference in performance (y-axis) between 5 supervised baselines and VenusREM in ProteinGym
is plotted against landscape features on the x-axis. Straight lines show a fit of the linear regression model, and
shaded regions depict the 95% confidence intervals. References: VenusREM [24], ProteinNP [77], MSA [157],
and Tranception [158].

Table A2: Summary of landscape features for different microbial community-function landscapes.
Feature [159] [52] [54] [53] [50] [111]
n 63 54 279 614 21198 1561
ϕlo 0.032 0.074 0.075 0.040 0.158 0.584
r/s 0.944 0.863 1.417 1.778 3.087 2.294
ρa 0.528 0.491 0.556 0.490 0.559 0.196
γ 0.384 0.345 0.449 0.330 0.146 0.161
FDC -0.559 -0.780 -0.587 -0.161 -0.378 -0.487
αgo 0.984 0.944 0.888 0.853 0.003 0.003
BFCgreedy 1.000 0.800 0.861 0.724 0.502 0.156
BFCacc 1.000 1.000 0.861 0.950 0.409 0.025
NFC 0.919 0.902 0.873 0.820 0.790 0.635
ϕEE 0.683 0.709 0.644 0.625 0.535 0.402
Iid 0.398 0.395 0.539 0.639 0.552 0.605
ϵDR -0.741 -0.314 -0.603 -0.194 0.043 -0.319
ϵIC 0.648 0.871 0.574 0.728 0.816 0.583
ϵ(2) 0.861 0.869 0.633 0.361 0.547 0.675
η 0.038 0.000 0.527 0.183 0.000 0.000
ϵmag 0.489 0.543 0.496 0.447 0.404 0.457
ϵsign 0.431 0.413 0.396 0.375 0.395 0.354
ϵreci 0.080 0.043 0.108 0.178 0.201 0.189
ϵpos 0.764 0.768 0.742 0.840 0.841 0.774
ϵneg 0.236 0.232 0.258 0.160 0.159 0.226
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Table A3: Selected landscape features for combinatorially complete fitness land-
scapes

Author Ref. SubID Space Size ϕlo(%) ρa (%) NFC γ ϵreci ϵDR FDC ϕEE η

Kuo2020 [160] - Nucleotide 49 = 262, 144 0.012 0.573 0.917 0.454 0.206 0.391 -0.235 0.669 0.074
Papkou2023 [4] DHFR Nucleotide 49 = 262, 144 0.004 0.641 0.954 0.399 0.255 0.065 -0.140 0.553 0.076
PodgornaiaL15 [47] PhoQ Protein 204 = 160, 000 0.013 0.241 0.540 NaN 0.234 0.469 -0.196 0.609 0.282
Wu2016 [59] GB1 Protein 204 = 160, 000 0.001 0.406 0.872 0.440 0.221 0.499 -0.123 0.621 0.717
Jalal2020 [161] ParB Protein 204 = 160, 000 0.005 0.450 0.594 0.120 0.284 -0.107 -0.310 0.519 0.002
Jalal2020 [161] Noc Protein 204 = 160, 000 0.004 0.346 0.388 0.131 0.331 -0.164 -0.313 0.426 0.003
Tu2022 [162] TEV Protein 204 = 160, 000 0.007 0.053 0.242 0.031 0.309 -0.655 0.008 0.510 0.141
Tu2022 [162] T7 Protein 203 = 8, 000 0.018 -0.025 -0.172 NaN 0.341 -0.855 0.036 0.380 0.018
Johnston2024 [7] TrpB4 Protein 204 = 160, 000 0.005 0.399 0.831 0.195 0.294 0.393 -0.112 0.562 0.343
Johnston2024 [7] TrpB3A Protein 203 = 8, 000 0.008 0.161 0.485 0.036 0.256 -0.239 -0.178 0.621 0.167
Johnston2024 [7] TrpB3B Protein 203 = 8, 000 0.009 0.074 0.306 0.025 0.295 -0.326 -0.021 0.555 0.205
Johnston2024 [7] TrpB3C Protein 203 = 8, 000 0.008 0.115 0.395 0.020 0.284 -0.585 -0.065 0.572 0.089
Johnston2024 [7] TrpB3D Protein 203 = 8, 000 0.006 0.251 0.676 0.145 0.264 0.325 -0.125 0.611 0.175
Johnston2024 [7] TrpB3E Protein 203 = 8, 000 0.012 0.113 0.498 0.030 0.316 0.153 -0.036 0.500 0.339
Johnston2024 [7] TrpB3F Protein 203 = 8, 000 0.011 0.105 0.390 0.026 0.309 -0.236 -0.197 0.500 0.179
Johnston2024 [7] TrpB3G Protein 203 = 8, 000 0.010 0.162 0.543 0.043 0.305 0.184 -0.176 0.514 0.313
Johnston2024 [7] TrpB3H Protein 203 = 8, 000 0.015 0.046 0.253 0.011 0.322 0.110 -0.012 0.475 0.346
Johnston2024 [7] TrpB3I Protein 203 = 8, 000 0.002 0.433 0.856 0.275 0.171 0.373 -0.240 0.726 0.145
Domingo2018 [42] - Nucleotide 26 × 34 = 5, 184 0.021 0.517 0.777 0.114 0.182 -0.757 -0.506 0.681 0.076
Phillips2021 [109] CR6261-h1 Mutation 211 = 2, 048 0.011 0.561 0.820 0.538 0.044 -0.956 -0.379 0.794 0.075
Phillips2021 [109] CR6261-h9 Mutation 211 = 2, 048 0.019 0.547 0.794 0.420 0.026 -0.901 -0.575 0.794 0.037
Phillips2021 [109] CR9114-h1 Mutation 216 = 65, 536 0.013 0.765 0.956 0.391 0.118 -0.945 -0.219 0.673 0.093
Phillips2021 [109] CR9114-h3 Mutation 216 = 65, 536 0.563 0.411 0.198 NaN 0.071 -0.400 -0.354 0.586 0.019
Phillips2021 [109] CR9114-flueB Mutation 216 = 65, 536 0.972 -0.062 -0.162 NaN 0.118 -0.304 -0.089 0.278 0.018
Phillips2023 [163] CH65-SI06 Mutation 216 = 65, 536 0.481 0.655 0.741 0.442 0.082 -0.474 -0.498 0.672 0.026
Phillips2023 [163] CH65-MA90 Mutation 216 = 65, 536 0.000 0.831 0.991 0.481 0.078 -0.320 -0.534 0.798 0.070
Phillips2023 [163] CH65-G189E Mutation 216 = 65, 536 0.144 0.664 0.860 0.408 0.072 0.569 -0.554 0.763 0.034
Westmann24 [34] - Nucleotide 48 = 65, 536 0.118 0.202 0.362 0.072 0.305 -0.170 -0.111 0.457 0.053
Soo2021 [110] 30C Nucleotide 48 = 65, 536 0.015 0.445 0.773 0.219 0.231 -0.743 -0.260 0.648 0.007
Soo2021 [110] 37C Nucleotide 48 = 65, 536 0.021 0.419 0.748 0.196 0.240 -0.785 -0.004 0.639 0.008
Wong2018 [164] BRCA2 Nucleotide 32, 768 0.022 0.535 0.897 0.444 0.290 0.247 0.019 0.529 0.143

Continued on next page
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Table A3 – continued from previous page
Author Ref. SubID Space Size ϕlo ρa NFC γ ϵreci ϵDR FDC ϕEE η

Wong2018 [164] SMN1 Nucleotide 32, 768 0.009 0.502 0.861 0.421 0.183 0.290 0.011 0.668 0.096
Wong2018 [164] IKBKAP Nucleotide 32, 768 0.036 0.392 0.808 0.380 0.375 0.216 0.004 0.372 0.102
Moulana2022 [165] ACE Mutation 215 = 32, 768 0.001 0.833 0.993 0.536 0.058 -0.875 -0.485 0.848 0.050
Moulana2023 [166] CB6 Mutation 215 = 32, 768 0.006 0.811 0.965 0.368 0.107 -0.593 -0.394 0.774 0.040
Moulana2023 [166] CoV555 Mutation 215 = 32, 768 0.020 0.770 0.957 0.180 0.201 -0.707 -0.150 0.598 0.040
Moulana2023 [166] REGN10987 Mutation 215 = 32, 768 0.007 0.716 0.924 0.222 0.160 -0.817 -0.449 0.680 0.055
Moulana2023 [166] S309 Mutation 215 = 32, 768 0.006 0.775 0.962 0.348 0.115 -0.535 -0.339 0.696 0.071
Bendixsen2019 [167] HDV Mutation 214 = 16, 384 0.071 0.239 0.240 0.218 0.410 0.192 0.140 0.271 0.232
Bendixsen2019 [167] Ligase Mutation 214 = 16, 384 0.004 0.347 0.803 0.510 0.137 0.418 -0.437 0.705 0.810
Poelwijk2019 [168] eqFP611 Mutation 213 = 8, 192 0.009 0.675 0.979 0.452 0.187 -0.281 0.077 0.623 0.146
Lite2020 [169] ParD2 Protein 203 = 8, 000 0.001 0.577 0.960 0.319 0.113 -0.348 -0.302 0.796 0.058
Lite2020 [169] ParD3 Protein 203 = 8, 000 0.001 0.579 0.957 0.287 0.068 -0.560 -0.245 0.851 0.052
Centurion2019 [170] - Mutation 210 × 3 = 3, 072 0.032 0.657 0.919 0.366 0.155 -0.850 -0.050 0.751 0.053
Schulz2025 [171] - Mutation 210 = 1, 024 0.036 0.653 0.911 0.215 0.153 -0.820 -0.223 0.689 0.016
Bakerlee2022 [39] hap-4NQ0 Mutation 210 = 1, 024 0.479 0.029 0.025 0.175 0.273 -0.536 -0.037 0.351 0.953
Bakerlee2022 [39] hap-37C Mutation 210 = 1, 024 0.630 0.013 0.039 0.081 0.422 0.044 0.043 0.278 0.977
Bakerlee2022 [39] hap-gu Mutation 210 = 1, 024 0.681 -0.009 -0.004 -0.039 0.377 -0.377 0.034 0.205 0.964
Bakerlee2022 [39] hap-salt Mutation 210 = 1, 024 0.774 -0.101 0.045 0.299 0.282 0.408 0.015 0.245 0.959
Bakerlee2022 [39] hap-suloc Mutation 210 = 1, 024 0.510 -0.024 -0.013 -0.036 0.434 0.114 -0.046 0.224 0.992
Bakerlee2022 [39] hap-YPDA Mutation 210 = 1, 024 0.633 0.007 0.012 0.083 0.378 -0.943 0.039 0.271 0.972
Bakerlee2022 [39] hom-4NQO Mutation 210 = 1, 024 0.570 0.065 0.048 0.185 0.305 -0.417 -0.033 0.326 0.936
Bakerlee2022 [39] hom-37C Mutation 210 = 1, 024 0.535 0.022 0.024 0.052 0.412 -0.163 -0.015 0.235 0.992
Bakerlee2022 [39] hom-gu Mutation 210 = 1, 024 0.740 -0.043 0.012 0.086 0.357 -0.452 0.000 0.209 0.925
Bakerlee2022 [39] hom-salt Mutation 210 = 1, 024 0.770 -0.129 0.027 0.190 0.250 -0.005 -0.032 0.277 0.881
Bakerlee2022 [39] hom-suloc Mutation 210 = 1, 024 0.549 0.005 -0.004 0.001 0.320 -1.000 0.026 0.325 0.982
Bakerlee2022 [39] hom-YPDA Mutation 210 = 1, 024 0.569 0.031 0.020 0.103 0.355 -0.707 -0.051 0.268 0.958
Bank2016 [106] - Mutation 640 0.027 0.476 0.807 0.210 0.117 0.190 -0.411 0.780 0.000
Bank2016 [106] - Mutation 26 = 64 0.062 0.403 0.886 0.606 0.125 -0.965 -0.126 0.719 0.250
Wu2020 [172] Bei89 Mutation 576 0.005 0.651 0.980 0.475 0.024 -0.556 -0.428 0.916 0.008
Wu2020 [172] Bk79 Mutation 576 0.002 0.627 0.967 0.475 0.055 -0.354 -0.519 0.856 0.006
Wu2020 [172] Bris07L194 Mutation 576 0.007 0.680 0.951 0.466 0.141 -0.087 -0.463 0.726 0.009
Wu2020 [172] Bris07P194 Mutation 576 0.052 0.359 0.719 0.191 0.272 0.288 -0.405 0.540 0.006
Wu2020 [172] HK68 Mutation 576 0.016 0.595 0.946 0.522 0.070 -0.711 -0.260 0.846 0.007

Continued on next page
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Table A3 – continued from previous page
Author Ref. SubID Space Size ϕlo ρa NFC γ ϵreci ϵDR FDC ϕEE η

Wu2020 [172] Mos99 Mutation 576 0.012 0.632 0.941 0.399 0.089 -0.621 -0.498 0.809 0.006
Wu2020 [172] NDako16 Mutation 576 0.003 0.700 0.971 0.523 0.040 -0.251 -0.644 0.875 0.011
Lunzer2005 [6] fitness Protein 512 0.002 0.496 0.918 0.639 0.019 -0.978 -0.586 0.939 0.003
Lunzer2005 [6] NAD Protein 512 0.002 0.561 0.953 -0.024 0.000 -0.762 -0.503 1.000 0.036
Lunzer2005 [6] NADP Protein 512 0.002 0.685 0.972 -0.004 0.000 -0.671 -0.665 1.000 0.000
Doud2024 [173] base Mutation 29 = 512 0.016 0.568 0.921 0.549 0.105 -0.462 -0.346 0.740 0.005
Doud2024 [173] LamB Mutation 29 = 512 0.012 0.625 0.939 0.511 0.133 -0.057 -0.548 0.729 0.011
Doud2024 [173] Lspec Mutation 29 = 512 0.026 0.586 0.932 0.628 0.107 -0.594 -0.270 0.722 0.008
Doud2024 [173] OmpF Mutation 29 = 512 0.040 0.558 0.901 0.538 0.124 -0.460 -0.265 0.681 0.009
Doud2024 [173] Ospec Mutation 29 = 512 0.020 0.541 0.931 0.619 0.097 -0.859 -0.108 0.753 0.011
Colunga2024 [51] colorants Mutation 28 = 256 0.004 0.730 0.996 0.162 0.001 -0.507 -0.854 0.981 0.015
Colunga2024 [51] pseudo Mutation 28 = 256 0.035 0.396 0.782 0.290 0.198 -0.838 -0.306 0.615 0.055
Hall2020 [174] NfsA-2039 Mutation 27 = 128 0.016 0.586 0.945 0.404 0.074 -0.461 -0.363 0.738 0.518
Hall2020 [174] NfsA-3637 Mutation 27 = 128 0.031 0.601 0.946 0.392 0.071 -0.496 -0.509 0.770 0.107
Frohlich2021 [175] CAZtraj1 Mutation 24 = 16 0.062 0.228 0.867 0.322 0.083 -0.333 -0.714 0.719 0.156
Frohlich2021 [175] CAZtraj2 Mutation 26 = 64 0.031 0.523 0.942 0.600 0.026 -0.149 -0.446 0.880 0.047
Frohlich2021 [175] CAZtraj3 Mutation 26 = 64 0.016 0.513 0.962 0.320 0.100 -0.367 -0.433 0.647 0.258
Frohlich2021 [175] PIPtraj1 Mutation 24 = 16 0.125 0.182 0.745 0.044 0.125 -0.621 0.000 0.625 0.688
Frohlich2021 [175] PIPtraj2 Mutation 26 = 64 0.016 0.418 0.862 0.423 0.106 -0.171 -0.373 0.649 0.455
Frohlich2021 [175] PIPtraj3 Mutation 26 = 64 0.062 0.581 0.958 0.030 0.151 -0.719 -0.441 0.587 0.032
Hall2010 [176] Haploid Mutation 26 = 64 0.141 0.239 0.483 -0.150 0.292 -0.814 -0.263 0.469 0.245
Hall2010 [176] Diploid Mutation 26 = 64 0.125 0.214 0.451 -0.235 0.342 -0.746 -0.316 0.443 0.130
Tamer2019 [177] kcat-trajr Mutation 25 = 32 0.125 0.222 0.706 0.253 0.163 -0.941 -0.214 0.575 0.163
Tamer2019 [177] kcat-trajg Mutation 25 = 32 0.125 0.256 0.800 0.480 0.150 -0.961 -0.357 0.662 0.075
Tamer2019 [177] ki-trajr Mutation 25 = 32 0.031 0.471 0.966 0.192 0.000 -0.066 -0.952 1.000 0.000
Tamer2019 [177] ki-trajg Mutation 25 = 32 0.031 0.472 0.971 0.510 0.000 0.333 -0.959 1.000 0.000
Lozovsky2021 [178] ic50-c57 Mutation 24 = 16 0.125 0.006 0.320 -0.059 0.133 -0.271 -0.594 0.414 0.000
Lozovsky2021 [178] ic50-c58 Mutation 24 = 16 0.188 0.034 0.342 -0.330 0.125 -0.233 -0.539 0.483 0.000
Lozovsky2021 [178] ic50-c59 Mutation 24 = 16 0.125 -0.039 0.132 -0.169 0.167 0.594 -0.606 0.407 0.000
Lozovsky2021 [178] ic50-c60 Mutation 24 = 16 0.250 -0.167 -0.064 -0.232 0.222 -0.477 -0.184 0.400 0.240
Lozovsky2021 [178] ic50-c61 Mutation 24 = 16 0.312 -0.139 -0.010 0.015 0.167 -0.394 -0.536 0.273 0.000
Hall2019 [179] Acetate Mutation 25 = 32 0.094 0.171 0.494 -0.060 0.200 -0.757 -0.250 0.500 0.100
Hall2019 [179] Beef Mutation 25 = 32 0.062 0.365 0.878 0.558 0.125 -0.477 -0.561 0.738 0.075
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Hall2019 [179] Casamino Mutation 25 = 32 0.062 0.303 0.774 0.309 0.125 -0.735 -0.493 0.625 0.050
Hall2019 [179] Glucose Mutation 25 = 32 0.031 0.421 0.904 0.162 0.050 -0.775 -0.843 0.850 0.050
Hall2019 [179] Milk Mutation 25 = 32 0.062 0.392 0.876 0.276 0.050 0.089 -0.625 0.775 0.062
Hall2019 [179] NAG Mutation 25 = 32 0.062 0.411 0.911 0.420 0.075 -0.742 -0.601 0.713 0.100
Hall2019 [179] Rhamnose Mutation 25 = 32 0.062 0.329 0.858 0.461 0.087 -0.303 -0.779 0.800 0.037
Hall2019 [179] Trypsin Mutation 25 = 32 0.094 0.261 0.753 0.432 0.163 -0.785 -0.640 0.650 0.113
Whitlock2000 [180] - Mutation 25 = 32 0.094 0.267 0.734 0.391 0.138 -0.897 -0.739 0.750 0.000
deVisser2009 [181] - Mutation 25 = 32 0.156 0.156 0.416 -0.401 0.300 -0.617 -0.568 0.388 0.200
daSilva2010 [182] CCR5 Mutation 25 = 32 0.094 0.240 0.680 0.336 0.200 -0.615 -0.569 0.636 0.013
daSilva2010 [182] CXCR5 Mutation 25 = 32 0.094 0.137 0.469 0.215 0.197 -0.476 0.112 0.544 0.000
Sunden2015 [183] AP Mutation 25 = 32 0.031 0.456 0.960 0.529 0.037 -0.242 -0.714 0.863 0.000
Anderson2021 [184] MPH-CaPTM Mutation 25 = 32 0.036 0.269 0.844 0.710 0.038 -0.511 -0.507 0.810 0.016
Anderson2021 [184] MPH-CdPTM Mutation 25 = 32 0.031 0.407 0.905 0.538 0.075 -0.464 -0.470 0.738 0.025
Anderson2021 [184] MPH-CoPTM Mutation 25 = 32 0.031 0.373 0.887 0.494 0.025 -0.273 -0.445 0.887 0.000
Anderson2021 [184] MPH-CuPTM Mutation 25 = 32 0.031 0.326 0.834 0.441 0.087 -0.204 -0.476 0.750 0.013
Anderson2021 [184] MPH-MgPTM Mutation 25 = 32 0.062 0.362 0.893 0.770 0.050 -0.376 -0.465 0.863 0.000
Anderson2021 [184] MPH-MnPTM Mutation 25 = 32 0.062 0.411 0.931 0.831 0.037 -0.548 -0.440 0.863 0.025
Mira2015 [185] TEM-AMP Mutation 24 = 16 0.688 -0.672 -0.723 -0.222 1.000 -1.000 -0.368 0.067 0.200
Mira2015 [185] TEM-AM Mutation 24 = 16 0.125 -0.008 0.382 0.351 0.083 -0.989 -0.169 0.594 0.719
Mira2015 [185] TEM-CEC Mutation 24 = 16 0.188 0.065 0.407 0.259 0.333 -0.848 0.038 0.406 0.000
Mira2015 [185] TEM-CTX Mutation 24 = 16 0.250 0.002 0.271 -0.260 0.375 -0.544 -0.184 0.312 0.000
Mira2015 [185] TEM-ZOX Mutation 24 = 16 0.125 0.015 0.313 -0.401 0.333 -0.715 -0.614 0.344 0.344
Mira2015 [185] TEM-CXM Mutation 24 = 16 0.125 0.090 0.537 0.304 0.167 -0.721 -0.683 0.594 0.000
Mira2015 [185] TEM-CRO Mutation 24 = 16 0.250 -0.015 0.192 -0.306 0.250 -0.599 -0.161 0.406 0.031
Mira2015 [185] TEM-AMC Mutation 24 = 16 0.875 -0.938 -1.000 NaN 0.000 NaN -0.214 0.000 0.000
Mira2015 [185] TEM-CAZ Mutation 24 = 16 0.688 -0.743 -0.953 NaN 1.000 0.408 -0.160 0.000 0.143
Mira2015 [185] TEM-CTT Mutation 24 = 16 0.312 -0.142 -0.212 0.228 0.375 -0.949 -0.107 0.250 0.000
Mira2015 [185] TEM-SAM Mutation 24 = 16 0.062 0.101 0.701 0.292 0.048 -0.953 -0.430 0.677 0.645
Mira2015 [185] TEM-CPR Mutation 24 = 16 0.188 0.018 0.259 -0.242 0.292 -0.875 -0.268 0.375 0.000
Mira2015 [185] TEM-CPD Mutation 24 = 16 0.125 0.116 0.515 -0.245 0.125 -0.617 -0.445 0.562 0.000
Mira2015 [185] TEM-TZP Mutation 24 = 16 0.125 0.180 0.745 0.468 0.125 -0.903 -0.545 0.719 0.688
Mira2015 [185] TEM-FSP Mutation 24 = 16 0.250 -0.202 -0.437 -0.241 0.458 -0.963 -0.499 0.219 0.000
Meini2015 [186] - Mutation 24 = 16 0.062 0.209 0.798 0.501 0.000 -0.682 -0.627 0.741 0.000
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Table A3 – continued from previous page
Author Ref. SubID Space Size ϕlo ρa NFC γ ϵreci ϵDR FDC ϕEE η

Lozovsky2009 [187] P. falciparum Mutation 24 = 16 0.125 -0.009 0.111 -0.103 0.167 -0.875 -0.736 0.562 0.031
Jiang2013 [188] P. vivax Mutation 24 = 16 0.062 0.212 0.762 0.013 0.125 -0.927 -0.652 0.625 0.000
Ogbunugafor2022 [189] Pyrimethamine Mutation (24)× 12 0.200 -0.027 0.235 0.251 0.333 -0.884 -0.187 0.321 0.071
Ogbunugafor2022 [189] Cycloguanil Mutation (24)× 12 0.200 -0.022 0.235 0.250 0.333 -0.884 -0.187 0.321 0.071
Weinreich20016 [5] Cefotaxime Mutation 25 = 32 0.031 0.363 0.821 0.149 0.049 -0.484 -0.728 0.682 0.000
Khan2011 [41] DM25 Mutation 25 = 32 0.062 0.253 0.652 -0.057 0.087 -0.614 -0.724 0.700 0.287
Flynn2013 [190] DM25-EGTA Mutation 25 = 32 0.094 0.214 0.597 0.202 0.087 -0.156 -0.608 0.662 0.175
Flynn2013 [190] DM25-guanazole Mutation 25 = 32 0.094 0.212 0.597 0.202 0.087 -0.156 -0.608 0.662 0.175
Chou2011 [38] - Mutation 24 = 16 0.062 0.310 0.993 0.570 0.000 -0.742 -0.836 1.000 0.000
Malcolm1990 [191] Diploid Mutation 23 = 8 0.125 0.013 0.961 0.333 0.000 0.085 -0.951 0.917 0.000
Guerrero2019 [192] C-muri-GroEL Mutation 23 = 8 0.250 -0.062 0.571 0.333 0.167 -0.992 -0.676 0.583 0.750
Guerrero2019 [192] C-muri-LON Mutation 23 = 8 0.250 -0.227 -0.150 -0.333 0.333 -0.976 -0.025 0.333 0.500
Guerrero2019 [192] C-muri-WT Mutation 23 = 8 0.250 -0.373 -0.864 -0.333 0.333 -0.733 -0.150 0.250 0.083
Guerrero2019 [192] E.coli-GroEL Mutation 23 = 8 0.250 -0.266 -0.218 -0.333 0.333 -0.964 -0.401 0.333 0.250
Guerrero2019 [192] E.coli-LON Mutation 23 = 8 0.125 -0.180 -0.286 -0.333 0.000 -0.943 -0.476 0.417 0.333
Guerrero2019 [192] E.coli-WT Mutation 23 = 8 0.375 -0.358 -0.403 -1.000 0.667 -0.744 -0.175 0.083 0.250
Guerrero2019 [192] L-grayi-GroEL Mutation 23 = 8 0.250 -0.337 -0.505 -0.333 0.333 -0.978 -0.601 0.333 0.500
Guerrero2019 [192] L-grayi-LON Mutation 23 = 8 0.250 -0.263 -0.110 1.000 0.333 -0.999 -0.200 0.333 0.167
Guerrero2019 [192] L-grayi-WT Mutation 23 = 8 0.375 -0.281 -0.173 -1.000 0.667 -0.981 -0.300 0.083 0.833
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Table A4: Selected landscape features for ProteinGym tasks with mean mutation
depth > 1.

Dataset Size Avg. Mutation ϕlo ρa NFC Id ϵ_reci FDC ϕEE η

PIN1_HUMAN_Tsuboyama_2023_1I6C 802 1.145 0.050 -0.047 0.806 0.157 -0.664 -0.330 0.116 0.022
RAD_ANTMA_Tsuboyama_2023_2CJJ 912 1.151 0.064 -0.054 0.800 0.195 -0.595 -0.524 0.064 0.017
RCD1_ARATH_Tsuboyama_2023_5OAO 1261 1.216 0.048 -0.026 0.696 0.182 -0.777 -0.411 0.204 0.016
RD23A_HUMAN_Tsuboyama_2023_1IFY 1019 1.217 0.044 0.026 0.748 0.064 -0.806 -0.089 0.261 0.015
SRBS1_HUMAN_Tsuboyama_2023_2O2W 1556 1.222 0.042 0.038 0.849 0.033 -0.731 -0.532 0.357 0.016
PSAE_PICP2_Tsuboyama_2023_1PSE 1579 1.228 0.042 0.028 0.830 0.153 -0.514 0.515 0.303 0.022
RPC1_BP434_Tsuboyama_2023_1R69 1459 1.230 0.045 0.010 0.823 0.091 -0.697 -0.495 0.316 0.011
RL20_AQUAE_Tsuboyama_2023_1GYZ 1461 1.233 0.041 0.036 0.907 0.040 -0.871 -0.680 0.347 0.022
TNKS2_HUMAN_Tsuboyama_2023_5JRT 1479 1.244 0.041 0.050 0.778 0.049 -0.783 -0.226 0.371 0.015
UBR5_HUMAN_Tsuboyama_2023_1I2T 1453 1.247 0.039 0.051 0.786 0.053 -0.789 -0.374 0.367 0.018
NUSG_MYCTU_Tsuboyama_2023_2MI6 1380 1.262 0.040 0.063 0.773 0.045 -0.768 -0.157 0.409 0.015
RBP1_HUMAN_Tsuboyama_2023_2KWH 1332 1.268 0.041 0.052 0.725 0.071 -0.697 -0.200 0.395 0.015
RFAH_ECOLI_Tsuboyama_2023_2LCL 1326 1.269 0.041 0.045 0.650 0.102 -0.351 0.155 0.380 0.017
SPG2_STRSG_Tsuboyama_2023_5UBS 1451 1.291 0.040 0.049 0.823 0.042 -0.589 -0.566 0.404 0.013
CATR_CHLRE_Tsuboyama_2023_2AMI 1903 1.296 0.040 0.019 0.814 0.034 -0.765 -0.141 0.324 0.012
SAV1_MOUSE_Tsuboyama_2023_2YSB 965 1.296 0.048 -0.016 0.768 0.212 -0.659 -0.223 0.326 0.023
CBPA2_HUMAN_Tsuboyama_2023_1O6X 2068 1.344 0.036 0.090 0.890 0.043 -0.660 -0.681 0.455 0.015
FECA_ECOLI_Tsuboyama_2023_2D1U 1886 1.354 0.038 0.092 0.743 0.063 -0.476 -0.202 0.478 0.012
NUSA_ECOLI_Tsuboyama_2023_1WCL 2028 1.356 0.035 0.104 0.863 0.041 -0.474 -0.541 0.497 0.018
EPHB2_HUMAN_Tsuboyama_2023_1F0M 1960 1.368 0.035 0.086 0.894 0.064 -0.600 -0.651 0.485 0.012
CUE1_YEAST_Tsuboyama_2023_2MYX 1580 1.396 0.035 0.088 0.782 0.089 -0.641 0.118 0.478 0.013
ODP2_GEOSE_Tsuboyama_2023_1W4G 1134 1.410 0.043 0.096 0.782 0.084 -0.808 0.227 0.461 0.022
TCRG1_MOUSE_Tsuboyama_2023_1E0L 1058 1.413 0.036 0.069 0.879 0.155 -0.487 -0.646 0.441 0.021
PR40A_HUMAN_Tsuboyama_2023_1UZC 2033 1.428 0.032 0.132 0.904 0.142 -0.527 -0.713 0.443 0.021
BCHB_CHLTE_Tsuboyama_2023_2KRU 1572 1.434 0.033 0.120 0.794 0.038 -0.821 -0.395 0.586 0.012
SR43C_ARATH_Tsuboyama_2023_2N88 1583 1.438 0.031 0.127 0.865 0.037 -0.600 -0.522 0.572 0.011
MBD11_ARATH_Tsuboyama_2023_6ACV 2116 1.454 0.031 0.121 0.913 0.079 -0.517 -0.646 0.518 0.017
DNJA1_HUMAN_Tsuboyama_2023_2LO1 2264 1.463 0.029 0.149 0.916 0.057 -0.508 -0.714 0.571 0.015
MAFG_MOUSE_Tsuboyama_2023_1K1V 1429 1.467 0.030 0.102 0.838 0.100 -0.558 -0.593 0.536 0.019
RCRO_LAMBD_Tsuboyama_2023_1ORC 2278 1.475 0.028 0.150 0.876 0.054 -0.608 -0.481 0.586 0.019
BBC1_YEAST_Tsuboyama_2023_1TG0 2069 1.476 0.031 0.127 0.779 0.070 -0.510 -0.336 0.563 0.010

Continued on next page

53



Table A4 – continued from previous page
Dataset Size Avg. Mutation ϕlo ρa NFC Id ϵ_reci FDC ϕEE η

PITX2_HUMAN_Tsuboyama_2023_2L7M 1824 1.486 0.033 0.121 0.829 0.089 -0.654 -0.397 0.529 0.013
THO1_YEAST_Tsuboyama_2023_2WQG 1279 1.487 0.033 0.109 0.828 0.075 -0.513 -0.551 0.583 0.012
SPA_STAAU_Tsuboyama_2023_1LP1 2105 1.508 0.025 0.149 0.834 0.129 -0.343 -0.471 0.546 0.024
YAIA_ECOLI_Tsuboyama_2023_2KVT 1890 1.509 0.026 0.143 0.847 0.059 -0.739 -0.589 0.569 0.010
ISDH_STAAW_Tsuboyama_2023_2LHR 1944 1.516 0.030 0.153 0.772 0.053 -0.791 -0.292 0.614 0.014
VILI_CHICK_Tsuboyama_2023_1YU5 2568 1.532 0.028 0.222 0.904 0.047 -0.639 -0.621 0.616 0.017
NKX31_HUMAN_Tsuboyama_2023_2L9R 2482 1.537 0.029 0.153 0.826 0.145 -0.566 -0.506 0.541 0.025
DOCK1_MOUSE_Tsuboyama_2023_2M0Y 2915 1.584 0.027 0.149 0.802 0.143 -0.397 -0.333 0.549 0.017
CSN4_MOUSE_Tsuboyama_2023_1UFM 3295 1.589 0.022 0.234 0.833 0.027 -0.644 -0.398 0.673 0.014
CBX4_HUMAN_Tsuboyama_2023_2K28 2282 1.598 0.021 0.164 0.858 0.084 -0.633 -0.456 0.592 0.012
OBSCN_HUMAN_Tsuboyama_2023_1V1C 3197 1.621 0.023 0.194 0.891 0.070 -0.511 -0.561 0.654 0.013
SPTN1_CHICK_Tsuboyama_2023_1TUD 3201 1.672 0.018 0.286 0.868 0.035 -0.583 -0.482 0.698 0.011
YNZC_BACSU_Tsuboyama_2023_2JVD 2300 1.690 0.017 0.180 0.900 0.093 -0.442 -0.632 0.670 0.017
UBE4B_HUMAN_Tsuboyama_2023_3L1X 3622 1.691 0.022 0.177 0.795 0.073 -0.578 -0.170 0.646 0.012
SDA_BACSU_Tsuboyama_2023_1PV0 2770 1.699 0.016 0.266 0.922 0.045 -0.496 -0.658 0.717 0.015
MYO3_YEAST_Tsuboyama_2023_2BTT 3297 1.713 0.019 0.212 0.825 0.074 -0.374 -0.405 0.709 0.011
AMFR_HUMAN_Tsuboyama_2023_4G3O 2972 1.724 0.021 0.264 0.848 0.081 -0.665 -0.414 0.682 0.010
HECD1_HUMAN_Tsuboyama_2023_3DKM 5586 1.777 0.015 0.288 0.898 0.084 -0.427 -0.455 0.680 0.018
POLG_PESV_Tsuboyama_2023_2MXD 5130 1.806 0.011 0.352 0.905 0.044 -0.491 -0.488 0.775 0.016
DLG4_HUMAN_Faure_2021 6976 1.817 0.040 0.441 0.794 0.127 -0.637 -0.258 0.431 0.027
RASK_HUMAN_Weng_2022_binding-DARPin_K55 24873 1.876 0.023 0.646 0.903 0.061 -0.633 -0.299 0.460 0.054
RASK_HUMAN_Weng_2022_abundance 26012 1.882 0.027 0.487 0.774 0.107 -0.558 -0.123 0.441 0.028
A4_HUMAN_Seuma_2022 14811 1.946 0.032 0.365 0.785 0.106 -0.710 -0.206 0.562 0.005
YAP1_HUMAN_Araya_2012 10075 1.964 0.094 0.264 0.639 0.127 0.245 -0.242 0.598 0.017
PABP_YEAST_Melamed_2013 37708 1.969 0.038 0.446 0.856 0.106 -0.441 -0.145 0.631 0.059
GRB2_HUMAN_Faure_2021 63366 1.984 0.021 0.450 0.841 0.089 -0.354 -0.179 0.660 0.029
Q6WV12_9MAXI_Somermeyer_2022 31401 2.685 0.459 0.579 0.853 0.086 -0.727 -0.298 0.444 0.000
D7PM05_CLYGR_Somermeyer_2022 24515 3.038 0.547 0.437 0.705 0.058 -0.778 -0.476 0.350 0.002
Q8WTC7_9CNID_Somermeyer_2022 33510 3.055 0.499 0.540 0.818 0.098 -0.745 -0.241 0.458 0.000
F7YBW8_MESOW_Aakre_2015 9192 3.575 0.008 -0.214 0.925 0.241 0.376 -0.374 0.609 0.581
GFP_AEQVI_Sarkisyan_2016 51714 3.878 0.724 0.456 0.741 0.198 -0.879 -0.547 0.407 0.058
CAPSD_AAV2S_Sinai_2021 42328 4.728 0.439 0.269 0.862 0.189 -0.422 -0.223 0.539 0.005
F7YBW8_MESOW_Ding_2023 7922 5.426 0.783 -0.353 0.714 0.203 -0.204 -0.683 0.320 0.051
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Dataset Size Avg. Mutation ϕlo ρa NFC Id ϵ_reci FDC ϕEE η

GCN4_YEAST_Staller_2018 2638 17.068 0.966 -0.292 -0.083 0.295 -0.839 -0.146 0.304 0.031
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Table A5: Selected landscape features for RNAGym tasks with mean mutation
depth > 1.

Dataset RNA Type Size ϕlo (%) ρa (%) NFC Id ϵreci FDC ϕEE η

Andreasson2020 ribozyme 7343 0.078 0.080 0.404 2.748 0.043 -0.243 0.515 0.766
Beck2022 ribozyme 21321 0.022 0.498 0.917 0.335 0.123 0.081 0.522 0.092
Domingo2018 tRNA 4175 0.021 0.127 0.777 0.628 0.182 -0.506 0.681 0.076
Guy2014 tRNA 25491 0.393 0.106 0.484 2.434 0.191 -0.377 0.571 0.677
Janzen2022 ribozyme 1953 0.031 0.129 0.742 0.770 0.097 -0.285 0.627 0.004
Janzen2022 ribozyme 1953 0.048 0.182 0.823 0.666 0.065 -0.250 0.644 0.003
Janzen2022 ribozyme 1953 0.041 0.176 0.516 1.434 0.087 -0.017 0.617 0.001
Janzen2022 ribozyme 1953 0.032 0.177 0.529 1.107 0.075 -0.186 0.625 0.001
Janzen2022 ribozyme 1953 0.049 0.170 0.695 0.915 0.100 -0.226 0.609 0.002
Ke2017 mRNA 5533 0.078 0.292 0.906 0.394 0.150 -0.485 0.634 0.129
Kobori2015 ribozyme 255 0.008 -0.174 0.881 0.550 0.089 -0.317 0.800 0.135
Kobori2015 ribozyme 255 0.020 -0.194 0.805 0.582 0.117 -0.523 0.778 0.249
Kobori2015 ribozyme 1023 0.041 -0.239 0.407 0.895 0.339 -0.148 0.422 0.957
Kobori2016 ribozyme 10296 0.009 0.284 0.842 0.505 0.031 -0.003 0.519 0.053
Kobori2018 ribozyme 16383 0.016 -0.025 0.722 0.767 0.227 0.027 0.671 0.080
Li2016 tRNA 65536 0.356 0.051 0.357 0.707 0.095 -0.578 0.411 0.033
McRae2024 ribozyme 74942 0.758 0.195 0.754 0.512 0.055 -0.510 0.427 0.006
McRae2024 ribozyme 47503 0.439 0.363 0.750 0.304 0.107 -0.387 0.499 0.006
Peri2022 ribozyme 16383 0.001 0.113 0.955 0.472 0.066 -0.387 0.799 0.763
Roberts2023 ribozyme 33930 0.042 0.521 0.884 0.414 0.149 0.038 0.512 0.041
Roberts2023 ribozyme 21321 0.022 0.495 0.919 0.332 0.087 -0.242 0.521 0.077
Roberts2023 ribozyme 9045 0.035 0.391 0.852 0.455 0.122 -0.051 0.501 0.054
Roberts2023 ribozyme 22578 0.033 0.483 0.906 0.440 0.172 -0.172 0.520 0.065
Roberts2023 ribozyme 10296 0.016 0.344 0.876 0.436 0.079 -0.184 0.522 0.072
Soo2021 ribozyme 63430 0.021 0.039 0.752 0.725 0.238 -0.015 0.641 0.008
Tome2014 aptamer 417 0.317 0.011 0.421 0.060 0.500 0.294 0.402 0.005
Tome2014 aptamer 2652 0.049 0.392 0.831 0.236 0.078 -0.122 0.362 0.018
Zhang2020 ribozyme 111417 0.464 0.408 0.707 0.567 0.134 -0.441 0.546 0.009
Zhang2024 ribozyme 61393 0.492 0.461 0.656 0.612 0.239 -0.284 0.530 0.026
Zhang2024 ribozyme 69583 0.452 0.488 0.654 0.605 0.175 -0.219 0.538 0.012
Zhang2024 ribozyme 149710 0.450 0.222 0.387 0.885 0.143 -0.268 0.539 0.066
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