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Abstract

Large Language Models (LLMs) have achieved remarkable performance by capturing com-
plex interactions between input features. To identify these interactions, most existing ap-
proaches require enumerating all possible combinations of features up to a given order, caus-
ing them to scale poorly with the number of inputs n. Recently, Kang et al. (2025) proposed
SPEX, an information-theoretic approach that uses interaction sparsity to scale to n ≈ 103

features. SPEX greatly improves upon prior methods but requires tens of thousands of model
inferences, which can be prohibitive for large models. In this paper, we observe that LLM fea-
ture interactions are often hierarchical—higher-order interactions are accompanied by their
lower-order subsets—which enables more efficient discovery. To exploit this hierarchy, we
propose PROXYSPEX, an interaction attribution algorithm that first fits gradient boosted
trees to masked LLM outputs and then extracts the important interactions. Experiments
across four challenging high-dimensional datasets show that PROXYSPEX more faithfully
reconstructs LLM outputs by 20% over marginal attribution approaches while using 10×
fewer inferences than SPEX. By accounting for interactions, PROXYSPEX efficiently identi-
fies the most influential features, providing a scalable approximation of their Shapley values.
Further, we apply PROXYSPEX to two interpretability tasks. Data attribution, where we
identify interactions among CIFAR-10 training samples that influence test predictions, and
mechanistic interpretability, where we uncover interactions between attention heads, both
within and across layers, on a question-answering task. The PROXYSPEX algorithm is avail-
able at https://github.com/mmschlk/shapiq.

1 Introduction

Large language models (LLMs) have achieved great success in natural language processing by cap-
turing complex interactions among input features. Modeling interactions is not only crucial for
language, but also in domains such as computational biology, drug discovery and healthcare, which
require reasoning over high-dimensional data. In high-stakes contexts, responsible decision-making
based on model outputs requires interpretability. For example, in healthcare, a physician relying on
LLM diagnostic assistance must intelligibly be able to explain their decision to a patient.

Post-hoc feature explanation methods such as SHAP [1] and LIME [2] focus on marginal attribu-
tions and do not explicitly capture the effect of interactions. To address this limitation, recent work
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Figure 1: PROXYSPEX requires ∼10× fewer inferences to achieve equally faithful explanations
as SPEX for a sentiment classification and image-captioning task using a BERT and CLIP model
respectively. LASSO faithfulness plateaus indicating limits of marginal approaches.

has proposed interaction indices, such as Faith-Shap [3], that attribute all interactions up to a given
order d by exhaustively enumerating them. With n features, enumeratingO(nd) interactions quickly
becomes infeasible for even small n and d. Kang et al. [4] recently introduced SPEX, the first in-
teraction attribution method capable of scaling up to n = 1000 features. SPEX scales with n by
observing that LLM outputs are driven by a small number of interactions. It exploits this sparsity by
utilizing a sparse Fourier transform to efficiently search for influential interactions without enumer-
ation. For example, with n = 100 features, SPEX requires approximately 2× 104 model inferences
to learn order 5 interactions—a small fraction of all possible 1005 interactions. Nonetheless, 2×104

inferences is prohibitively expensive for large models. Hence, the question naturally arises: Can we
identify additional structural properties among interactions to improve inference-efficiency?

We show empirically that local (i.e., input specific) LLM feature interactions are often hierarchical:
for an order d interaction, an LLM includes lower-order interactions involving subsets of those d
features (see Figure 2). We use this to develop PROXYSPEX, an interaction attribution algorithm
that reduces the number of inferences compared to SPEX by 10× while achieving equally faithful
explanations. PROXYSPEX exploits this local hierarchical structure by first fitting gradient boosted
trees (GBTs) as a proxy model to predict the output of LLMs on masked input sequences. Then,
PROXYSPEX extracts important interactions from the fitted GBTs [5].

Evaluation overview. We compare PROXYSPEX to marginal feature attributions and SPEX across
four high-dimensional datasets with hundreds of features. Results are summarized below:

1. Faithfulness. PROXYSPEX learns more faithful representations of LLM outputs than marginal
approaches (≈15% to 25%) on average across datasets as we vary the number of inferences. Fig-
ure 1 compares explanation faithfulness of PROXYSPEX to marginal attributions and SPEX.
2. Feature identification. By accounting for interactions, PROXYSPEX identifies influential fea-
tures that impact model outputs more significantly than marginal approaches, and can approximate
Shapley values better than KernalSHAP in the low-inference regime.
3. Case study 1: Data attribution. Data Attribution is the problem of identifying training points
responsible for a given test prediction. On CIFAR-10 [6] PROXYSPEX identifies the interactions
between training samples that most significantly impact classification performance.
4. Case study 2: Model component attribution. We use PROXYSPEX to study interactions be-
tween attention heads, both within and across layers, on MMLU [7] for Llama-3.1-8B-Instruct
[8]. We observe that intra-layer interactions become more significant for deeper layers. PROX-
YSPEX identifies interactions that allow it to prune more heads than the LASSO.

2 Related work and applications

Feature and interaction attribution. SHAP [1] and LIME [2] are widely used for model-agnostic
feature attribution. SHAP uses the game-theoretic concept of Shapley values [9] for feature attri-
bution, while LIME fits a sparse linear model [10]. Cohen-Wang et al. [11] also consider fitting a
sparse linear model for feature attribution. Chen et al. [12] uses an information-theoretic approach
for feature attributions. Other methods [13, 14] study model structure to derive feature attributions.
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Sundararajan et al. [15] and Bordt and von Luxburg [16] define extensions to Shapley values that
consider interactions. Fumagalli et al. [17] provides a framework for computing several interaction
attribution scores, but their approach does not scale past n ≈ 20 features, which prevents them from
being applied to modern ML problems that often consist of hundreds of features. Note that some
feature attribution approaches such as LIME and Faith SHAP [3] are formulated explicitly as a func-
tion approximation, while others are defined axiomatically such as SHAP, though one can typically
construct equivalent function approximation objectives with a suitable distance metric.

Fourier transforms and deep learning explainability. Several works theoretically study the spec-
tral properties of transformers. Ren et al. [18] show transformers have sparse spectra and Hahn and
Rofin [19], Abbe et al. [20] establish that they are low degree. Abbe et al. [21, 22] study the bias
of networks learning interactions via a “staircase” property, i.e., using lower-order terms to learn
high-order interactions. Sparsity and low degree structure is also empirically studied in [23, 24].
Kang et al. [25] shows that under sparsity in the Möbius basis [26], a representation closely related
to Shapley values and the Fourier transform, interaction attributions can be computed efficiently.
Mohammadi et al. [27] also learn a sparse Möbius representation for computing Shapley values.
Kang et al. [4] use these insights to propose SPEX, the first robust interaction attribution algorithm
to scale to the order of n ≈ 1000 features. Gorji et al. [5] apply sparse Fourier transforms [28–31]
for computing Shapley values. They also provide an algorithm to extract the Fourier transform of
tree-based models using a single forward pass.

SPEX. We refer to the algorithm proposed in this manuscript as PROXYSPEX, in reference to
SPEX, since both works exploit a sparse interaction prior to reduce computational and sample bud-
get. SPEX uses an algebraic structured sampling scheme, coupled with error correction decoding
procedures to efficiently compute the interactions in the form of a Fourier transform. In contrast,
PROXYSPEX uses random samples to learn a proxy model that implicitly exploits the sparse inter-
action priors and our newly proposed hierarchical prior.

Mechanistic Interpretability (MI). MI seeks to uncover the underlying mechanisms of neural net-
works and transformers [32] in order to move past treating these models as black boxes. PROX-
YSPEX answers the question "what combinations of inputs matter?" which is a vital precursor and
complement to MI investigations that subsequently address "how does the model compute based on
those specific inputs?" Some closely related MI work attempts to recover circuits to explain under-
lying model behavior [33, 34]. Hsu et al. [35] use MI for interaction attribution. See Sharkey et al.
[36] for a review of open problems and recent progress in MI.

3 PROXYSPEX

In this section, we first empirically justify our premise that significant interactions affecting LLM
output are hierarchical—influential high-order interactions imply important lower-order ones. Next,
we introduce PROXYSPEX, which aims to identify feature interactions for a given input x while
minimizing the number of expensive calls to an LLM.

3.1 Preliminaries

Value function. Let x be the input to the LLM consisting of n features2. For S ⊆ [n], where
[n] = 1, . . . , n, denote xS as the masked input where we retain features indexed in S and replace
all others with the [MASK] token. For example, in the sentence x =“The sequel truly elevated the
original”, if S = {1, 2, 5, 6}, xS = “The sequel [MASK] [MASK] the original”. Masks can be more
generally applied to any type of input such as image patches in a vision-language model. For a
masked input xS and LLM f , let f(xS) ∈ R denote the output of the LLM under masking pattern
S. The value function f is problem dependent. For classification tasks, a common choice is the
logit of the predicted class for unmasked input, f(x). In generative tasks, f(xS) can represent the
perplexity of generating the original output for the unmasked input. Since we focus on providing
input-specific explanations, we suppress notation on x and denote f(xS) as f(S).

Fourier transform of value function. Let 2[n] be the powerset of the index set. The value function
f can be equivalently thought of as a set function from f : 2[n] 7→ R. Every such function admits a

2Features refer to inputs at a given granularity, e.g., tokens in an LLM or image patches in a vision model.
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Figure 2: We observe that LLM feature interactions are often hierarchicalhigher-order interactions
are accompanied by their lower-order subsets.

Fourier transform F : 2[n] 7→ R of f , related as follows:

Transform: F (T ) =
1

2n

∑
S⊆[n]

(−1)|S∩T |f(S), Inverse: f(S) =
∑

T⊆[n]

(−1)|T∩S|F (T ). (1)

The parameters F (T ) are known as Fourier coefficients and capture the importance of an interaction
of features in a subset T . Equation (1) represents an orthonormal transform onto a parity (XOR)
basis [37]. For the rest of the paper, we use the terms Fourier coefficient and interaction interchange-
ably. Further, we refer to the set of Fourier coefficients {(T, F (T )) : T ⊆ [n]} as the spectrum.

Interpretable approximation of value function. We aim to learn an interpretable approximate
function f̂ that satisfies the following:

1. Faithful representation. To characterize how well the surrogate function f̂ approximates the
true function, we define faithfulness [38]:

R2 = 1− ‖f̂ − f‖
2∥∥f − f̄∥∥2 , where ‖f‖2 =

∑
S⊆[n]

f(S)2, f̄ =
1

2n

∑
S⊆[n]

f(S). (2)

Faithfulness measures how well f̂ predicts model output. High faithfulness implies accurate
approximation of F (T ) (this follows from orthonormality of (1)).

2. Sparse representation. f̂ should be succinct. Previous works [4, 25, 39–41] have shown that
a sparse and low-degree f̂ can achieve high R2. That is, F (T ) ≈ 0 for most T (sparsity), and
|F (T )| is only large when |T | � n (low degree).

3. Efficient computation. Without any additional assumptions on the spectrum, learning f is ex-
ponentially hard since there are 2n possible subsets T . PROXYSPEX relies on the sparse, low
degree Fourier transform along with the hierarchy property to reduce LLM inferences.

A faithful and sparse f̂ allows straightforward computation of all popular feature or interaction
attribution scores defined in the literature, e.g., Shapley, Banzhaf, Influence Scores, Faith-Shapley.
Closed-form formulas for converting F to various attribution indices are provided in Appendix A.1.

3.2 Empirical evidence of spectral hierarchies

To quantify the degree of hierarchical structure in LLMs, we introduce the following definition
called Direct Subset Rate (DSR),3 defined for any value function f and integer k.

DSR(f, k) =
1

k

∑
S∈Fk

1

|S|
∑
i∈S

1 {S \ {i} ∈ Fk} , where Fk denotes the k largest
Fourier coefficients of f .

(3)

For the top k coefficients (i.e., interactions), DSR measures the average fraction of Fourier co-
efficients that exclude only one of the features F (S \ {i}). For example, an f with F4 =
{∅, {1}, {2}, {1, 3}} would have DSR of 1

4

(
1 + 1 + 1 + 1

2

)
= 7

8 . High DSR implies that sig-
nificant high-order interactions have corresponding significant lower-order Fourier coefficients, as
visualized in Figure 2. Next, we show that two LLM based value functions have high DSR.

We take 20 samples from a sentiment analysis task and an image captioning task [42]; see Section 4
for a detailed description and our choice of value function. We generate masks S and apply SPEX
until our learned value function has faithfulness (R2) more than 0.9. Figure 3 visualizes the DSR

3For S = ∅, we set 0
0
= 1.
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Figure 3: The top-k interactions in both a sentiment analysis and image captioning task have high
DSR indicating strong hierarchical structure.

for various values of k, i.e., number of top interactions. DSR is consistently larger than 80%, indi-
cating strong hierarchical structure. In Appendix B.2, we consider two additional metrics measuring
hierarchical structure, and demonstrate that the top-k interactions are faithful.

Using GBTs to capture hierarchical Interactions. Tan et al. [43] proved that decision trees learn
“staircase” functions, e.g., f = x1 + x1x2 + x1x2x3, effectively due to their greedy construction
procedure. We empirically confirm this by comparing the performance of various proxy models on
a synthetic hierarchical function (i.e., sum of staircase functions resembling Figure 2) as well as the
Sentiment dataset in Appendix Figure 13. Appendix B.4 details the simulation set-up. GBTs vastly
outperform other proxy models, indicating their natural ability to identify hierarchical interactions
with limited training data. Interestingly, GBTs outperform random forests as well. This is because
random forests are ineffective at learning hierarchical functions [44], i.e., sums of staircases, while
GBT-like algorithms disentangle sums effectively [45].
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Figure 4: (1) PROXYSPEX masks subsets of words and queries the LLM using this masked in-
put. (2) It then fits GBTs as a proxy model to learn the LLM’s hierarchical interactions. (3) An
interpretable sparse representation is extracted from the fitted GBT which captures the influential
interactions.

3.3 PROXYSPEX via Gradient Boosted Trees to fit hierarchies

The PROXYSPEX algorithm (see Figure 4):

Step 1 - Sampling and querying. Given LLM f and input instance x to explain, generate a dataset
D = (Si, f(Si))

ℓ
i=1 for training the proxy. The inputs Si represent the masks of x. Each mask Si is

sampled uniformly from the set [n]. The labels f(Si) are obtained by querying the LLM.
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Figure 6: Comparison of faithfulness of different attribution methods with α · n log2(n) training
masks for different inference multipliers α ∈ {2, 4, 6, 8}. While SPEX is only competitive with
LASSO for large α, the gap between PROXYSPEX and LASSO increases with α.
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Figure 5: Relative faithfulness as a function of
Fourier sparsity. Only ≈ 200 coefficients are re-
quired to achieve equivalent faithfulness. Spar-
sity for sentiment is higher since inputs have
larger n.

Step 2 - Proxy Training. Fit GBTs to D with
5-fold cross-validation (CV).

Step 3 - Fourier extraction. We use Gorji et al.
[5] to extract the Fourier representation of the
fitted GBTs in a single forward pass; see Ap-
pendix A.2. With T trees of depth d there are
at most O(T4d) non-zero Fourier coefficients [5].
To improve interpretability, we sparsify the ex-
tracted representation by keeping only the top k
Fourier coefficients. Fig. 5 shows that only≈ 200
Fourier coefficients are needed to achieve equiv-
alent faithfulness for a sentiment classification
and image captioning (MS-COCO) dataset. Ad-
ditional results regarding the sparsity of Fourier
spectra learned by GBTs are in Appendix B.3.

Step 4 (Optional): Coefficient refinement via
regression. As a final step, we optionally regress the extracted, top k Fourier coefficients on the
collected data D to improve the estimation. Empirically we observe this step is can sometimes
marginally improve performance, but seldom negatively impacts performance. This step is included
if it leads to lower CV error.

4 Results

Datasets and models

1. Sentiment is a classification task composed of the Large Movie Review Dataset [46] which con-
sists of positive and negative IMDb movie reviews. We use words as input features and restrict to
samples with n ∈ [256, 512]. We use the encoder-only fine-tuned DistilBERT model [47, 48],
and the logit of the positive class as the value function.

2. HotpotQA [49] is a generative question-answering task over Wikipedia articles. Sentences are
input features, and we restrict to samples with n ∈ [64, 128]. We use Llama-3.1-8B-Instruct,
and perplexity of the unmasked output as the value function.

6



3 4 5 6 7

# Features Removed (r)

0.8

0.9

1.0

1.1

1.2

∆
L

L
M

O
u

tp
u

t

Sentiment Analysis

3 4 5 6 7

# Features Removed (r)

4.5

5.0

5.5

6.0

6.5

7.0

∆
L

L
M

O
u

tp
u

t

DROP

3 4 5 6 7

# Features Removed (r)

0.05

0.10

0.15

0.20

0.25

∆
L

L
M

O
u

tp
u

t

HotpotQA

3 4 5 6 7

# Features Removed (r)

0.20

0.25

0.30

0.35

∆
L

L
M

O
u

tp
u

t

MS-COCO

LASSO ProxySPEX (Ours) SPEX

Figure 7: By accounting for interactions, PROXYSPEX identifies more influential features across
datasets than the LASSO. Apart from the sentiment analysis task (top left), SPEX does not collect
enough training masks to out-perform LASSO.

3. Discrete Reasoning Over Paragraphs (DROP) [50] is a paragraph level question-answering
task. We use words as input features and restrict to samples with n ∈ [256, 512]. We use
Llama-3-8B-Instruct and the perplexity of the unmasked output as the value function.

4. MS-COCO [42] contains images and corresponding text captions. Image patches and words are
the input features with n ∈ [60, 85]. We use CLIP-ViT-B/32, a joint vision-language encoder,
with the value function defined as the contrastive loss over all datapoints.

Baselines and hyperparameters. For marginal feature attributions, we use the LASSO. We use
the same datasets at [4] and add MS-COCO for an additional modality. It was shown in [4] that
popular marginal metrics such as SHAP are significantly less faithful than the LASSO, e.g., have
R2 < 0. We use the LASSO implementation from scikit-learn, and choose the l1 regulariza-
tion parameter via 5-fold CV. For interaction indices, we compare PROXYSPEX to SPEX. Due to
the scale of n in our experiments, we cannot compare methods for computing interaction indices
such as Faith-Shapley, Faith-Banzhaf, and Shapley-Taylor using SHAP-IQ [17], and SVARM-IQ
[51], because they enumerate all possible interactions, making them computationally infeasible. For
PROXYSPEX, a list of GBT hyper-parameters we tune over are in Appendix B.

4.1 Faithfulness

We compare attribution method faithfulness by varying the number of training masks. For each
sample with n features, we generate α · n log2(n) masks, varying α ∈ {2, 4, 6, 8}, to normalize
difficulty across inputs of varying lengths (some by over 100 tokens). This n log(n) type scaling
is heuristically guided by compressed sensing bounds [52]. These suggest the number of samples
required grows with sparsity (assumed ∝ n) and logarithmically with problem dimensionality (if
dimensionality for degree-d interactions is ≈ nd, this yields a log(nd) = d log(n) factor). Together,
these factors support an n log(n) scaling. While not directly applicable, these bounds offer a useful
heuristic for how sampling complexity scales with n.

Figure 6 shows average faithfulness over 1,000 test masks per sample. PROXYSPEX outperforms
LASSO with limited inferences and continues to improve where LASSO plateaus, indicating that it
is learning influential interactions. While SPEX is often faster for the same number of masks, SPEX
needs additional inference time to match R2, making PROXYSPEX faster overall. For the smaller
DistilBERT model under the sentiment analysis task, the wall clock speedup is ∼3×, while with
the bigger CLIP-ViT-B/32 model with MS-COCO we see ∼5× speedup (See Appendix B.6).
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Figure 8: Recall of the top ten Shapley values after α · n log2(n) inferences for multipliers α ∈
{0.25, 0.5, 0.75, 1.0}. For small α, PROXYSPEX is superior at recovering the most significant
features, while KernalSHAP outperforms as α increases. Error bands indicate the standard deviation
across ten different runs of the algorithms.

4.2 Feature Identification

We measure the ability of methods to identify the top r features influencing LLM outputs:

∆ LLM Output (r) =
|f([n])− f(S∗)|
|f([n])|

, S∗ = argmax
|S|=n−r

|f̂([n])− f̂(S)|. (4)

Solving Eq. 4 for an arbitrary f̂ presents a challenging combinatorial optimization problem. How-
ever, PROXYSPEX and SPEX represent f̂ as a sparse Fourier transform. This representation facil-
itates solving the optimization as a tractable linear integer program. The sparsity of the extracted
Fourier representation ensures that the time required to solve this program is negligible compared to
sampling the LLM and fitting the GBTs. Full details of the construction of this program are given
in Appendix A.3. Under LASSO, Eq. 4 is easily solved through selecting features by the size of
their coefficients. We measure the removal ability of different attribution methods when we collect
8n log2(n) training masks and plot the result in Figure 7. By accounting for interactions, PROX-
YSPEX identifies significantly more influential features than the LASSO. Apart from the sentiment
analysis task, SPEX does not collect enough training masks to outperform the LASSO.

4.3 Shapley Value Approximation

PROXYSPEX can be directly used to approximate Shapley values. Across all tasks, we first run
KernelSHAP with 10,000 test masks and treat these approximated Shapley values as ground truth.
We measure the recall of the top ten highest-magnitude Shapley values for KernelSHAP and PROX-
YSPEX under α·n log2(n) inferences with multipliers α ∈ {0.25, 0.5, 0.75, 1.0}. For this inference
budget, competing algorithms such as LeverageSHAP [53] and SVARM [54] struggle to provide ac-
curate approximations. We find PROXYSPEX initially provides a better coarse approximation than
KernelSHAP (Figure 14). However, since PROXYSPEX is optimized for faithfulness and does not
rely on the Shapley kernel, it is eventually surpassed by KernelSHAP with enough inferences. Ad-
ditional results under mean squared error are included in Appendix B.5.

5 Case studies

We now present two case studies of PROXYSPEX for two different interpretability problems: data
attribution [55] and model component attribution [56], a key problem in mechanistic interpretability.
We first show how both of these tasks can be reformulated as feature attribution tasks; recent work
has highlighted the connections between feature, data, and model component attribution [57].
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Figure 9: Synergistic interactions: data that together are more valuable together than the sum of their
parts and aid in classification. Redundant interactions: Data that may contain similar information,
their combined influence is less than the sum of the parts.

5.1 Data Attribution via Non-Linear Datamodels

Data attribution for classification is the problem of understanding how fitting a model gθ on a subset
S of training samples affects the prediction of a test point z of class c. This problem can be converted
into our framework by defining an appropriate value function f ,

f(S) ≜ (logit for c on z)− (highest incorrect logit on z), when gθ is trained on S. (5)

The value function f quantifies the impact of a subset S on the classification of z. Sampling f
is very expensive since it involves training a new model gθ for every subset S. As a result, most
data attribution approaches do not consider the impact of interactions. Notably, Ilyas et al. [55] use
LASSO to learn f when training a ResNet model on the CIFAR-10 dataset [6]. As a case study, we
apply PROXYSPEX to understand the impact of interactions between CIFAR-10 training samples.

Defining data interactions. Interactions between samples can be either redundant interactions
or synergistic interactions. Redundant interactions are when the influence of a subset S is not
additive. Redundancy typically occurs between highly correlated samples, e.g., semantic duplicates
[58]. Synergistic interactions occur when a subset S influences a prediction by shaping a decision
boundary that no individual sample in S could do so by itself. That is, the model needs the combined
effect of training samples in S to correctly classify z.

Results. We visualize interactions learned by PROXYSPEX in Figure 9 for randomly selected
CIFAR-10 test points. Experimental details are in Appendix C.1. PROXYSPEX identifies highly
similar training samples (redundancies) as well as synergistic interactions between samples of dif-
ferent classes. See Appendix C.1 for examples of other randomly selected test samples.

5.2 Model Component Attribution

We study the role of attention heads for a question-answering task using Llama-3.1-8B-Instruct
and MMLU (high-school-us-history), which is a multiple-choice dataset. We treat each attention
head as a feature and aim to identify interactions among heads using PROXYSPEX. Let L represent
the number of layers in an LLM and let L ⊆ [L] represent a subset of the layers. LetHL denote the
set of attention heads within these layers. For a subset of heads S ⊆ HL, we set the output of heads
inHL \ S to 0 and denote the ablated LLM as LLMS(·). Define f as:

fL(S) ≜ Accuracy of LLMS on training set of MMLU. (6)

Pruning results. We use the LASSO and PROXYSPEX to identify the most important heads for
various sparsity levels ( i.e., the number of retained heads) across different sets of layers. We also
compare to a Best-of-N baseline, where we take the best ofN = 5000 different randomly chosen S,
further details are in Appendix C.2. We use the procedure detailed in Section 4.2 to identify heads
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Figure 10: Attention head pruning for Llama-3.1-8B-Instruct for MMLU (high-school-us-
history). Top: We report the test accuracy vs. percentage of heads retained, comparing PROX-
YSPEX, LASSO, and Best-of-N across layer groups (1-3, 14-16, 30-32). Unpruned accuracy
shown by dashed line. Bottom: PROXYSPEX’s learned spectral energy distribution into linear
effects, within-layer, and across-layer interactions per layer group.

to remove for both PROXYSPEX and LASSO. Test accuracies for each method are presented in
Figure 10 at three different sparsity levels, and with three different layer ranges: initial (1-3), middle
(14-16) and final (30-32). We observe that PROXYSPEX consistently outperforms both baselines,
with a higher test accuracy on the pruned models identified using PROXYSPEX.

Characterizing interactions between attention heads. Analyzing the Fourier spectrum learned by
PROXYSPEX offers insights into the nature of the internal mechanisms of the LLM. As shown in
Figure 10 (bottom), the spectral energy attributed to interactions, particularly within-layer interac-
tions, markedly increases in deeper layers of Llama-3.1-8B-Instruct. There are many works that
look at the differing functional roles of attention heads across layers [59]. PROXYSPEX provides
an exciting new quantitative approach to further investigate these phenomena.

6 Discussion

Conclusion. We introduce PROXYSPEX, an inference-efficient interaction attribution algorithm
that efficiently scales with n by leveraging an observed hierarchical structure among significant inter-
actions in the Fourier spectrum of the model. Experiments across 4 high-dimensional datasets show
that PROXYSPEX exploits hierarchical interactions via a GBT proxy model to reduce inferences by
∼10× over SPEX [4] while achieving equally faithful explanations. Through applications to data
and model component attribution, we demonstrate the importance of efficient interaction discovery.

Limitations. GBTs effectively capture hierarchical interactions but may not perform as well when
interactions have a different structure. For example, simulations in Appendix B.4 empirically con-
firm that GBTs suffer in the case of sparse but non-hierarchical functions. More generally, in cases
where the proxy GBT model is not faithful, the interactions identified by PROXYSPEX might not
be representative of the model’s reasoning. Another limitation is the degree of human interpretabil-
ity that can be understood from computed interactions. While interactions can offer richer insights,
they are more difficult to parse than marginal alternatives. Further improvements in visualization
and post-processing of interactions are needed to fully harness the advances of PROXYSPEX.

Future work. Inference-efficiency could be further improved by exploring alternative proxy mod-
els, additional Fourier spectral structures, or adaptive masking pattern designs. Integrating PROX-
YSPEX with internal model details, such as via hybrid approaches with MI or by studying its con-
nection to sparsity in transformer attention [60], offers another promising avenue. Finally, further
deepening and improving applications of PROXYSPEX in data attribution and mechanistic inter-
pretability as well as potentially exploring more complex value functions or larger-scale component
interactions remains interesting future work.
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A Method Details

A.1 Fourier Conversions

INTERACTION INDEX FOURIER CONVERSION

Banzhaf ψi −2F ({i})

Shapley ϕi (−2)
∑

S⊇{i}
|S| is odd

F (S)
|S|

Influence ξi
∑
S∋i

F (S)2

Möbius IM(T ) (−2)|T | ∑
S⊇T

F (S)

Or IO(T )


∑

S⊆[n] F (S) if T = ∅
−(−2)|T |

∑
S⊇T

(−1)|S|F (S) if T 6= ∅

Banzhaf Interaction IB(T ) −2F (T )

Shapley Interaction IS(T ) (−2)|T |∑
S⊇T s.t. (−1)|S|=(−1)|T |

F (S)
|S|−|T |+1

Shapley Taylor IST
ℓ (T )


IM(T ), |T | < ℓ,∑
S⊇T

(
|S|
ℓ

)−1

IM (S), |T | = ℓ.

Faith-Banzhaf IFB
ℓ (T ) (−2)|T |∑

S⊇T
|S|≤ℓ

F (S)

Faith-Shapley IFS
ℓ (T )

IM (T ) + (−1)ℓ−|T | |T |
ℓ+ |T |

(
ℓ

|T |

) ∑
S⊃T
|S|>ℓ

F (S) γ(S, T, ℓ)

where γ(S, T, ℓ) =
∑

T⊂R⊆S
|R|>ℓ

(|R|−1
ℓ

)(|R|+ℓ−1
ℓ+|T |

) (−2)|R|

The relationship between Fourier coefficients and influence scores are provided in [37]. We derive
the conversion between Fourier and the OR interaction index [61] in this work. All remaining
conversions are derived in Appendix C of [4].

A.2 Fourier Extraction

The exact Fourier transform of a decision tree can be computed recursively [5, 62, 63]. Due to
the linearity of the Fourier transform, the Fourier transform of each boosted tree can be computed
separately and added together. Algorithm 1, provided by [5], proceeds by traversing the nodes of
each tree and summing the resultant Fourier transforms.
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Algorithm 1 Fourier Extraction from Gradient Boosted Trees [5]

Require: Gradient boosted modelM
Ensure: Fourier mapping F

1: Initialize F ← ∅
2: for Tree T inM do
3: F ← F .merge(EXTRACTTREE(T .root)) ▷ Add mappings of the individual trees
4: end for
5: return F

6: procedure EXTRACTTREE(node n)
7: if n is leaf then
8: return {∅ 7→ n.value}
9: else

10: NL ← EXTRACTTREE(n.leftChild)
11: NR ← EXTRACTTREE(n.rightChild)
12: N ← ∅
13: for S in (NL.keys ∪NR.keys) do
14: vL ← NL[S] ▷ Mapping returns 0 if not contained
15: vR ← NR[S]
16: N [S]← (vL + vR)/2
17: N [S ∪ {n.featureSplit}]← (vL − vR)/2
18: end for
19: end if
20: return N
21: end procedure

A.3 Sparse Fourier Optimization

We assume f̂(S) is a sparse, low-degree function with support K:

f̂(S) =
∑
T∈K

(−1)|S∩T |F̂ (T )

Equivalently, the function can be represented (and efficiently converted) under the Möbius transform.
Converting Fourier to Möbius (via Appendix A.1), letting K+ =

{
R ⊆ T

∣∣ T ∈ K}, and
applying the inverse Möbius transform:

f̂(S) =
∑

R∈K+,R⊆T

ÎM (R)

The optimization problem can then be expressed as a polynomial over {0,1}. Let x be a binary vector
of length n and S = {i ∈ [n] | xi = 1}. We will focus on the maximization problem (minimization
follows analogously).

max
S⊆[n]

f̂(S) = max
x∈{0,1}n

∑
R∈K+

ÎM (R)
∏
i∈R

xi

To reduce the problem to a linear integer program, each monomial
∏

i∈R xi can be replaced with a
decision variable yR and the following constraints:

max
y∈{0,1}|K+|

∑
R∈K+

ÎM (R)yR (7)

s.t. yR ≤ yQ ∀Q ⊂ R, R ∈ K+ (8)∑
i∈R

y{i} < |R|+ yR ∀R ∈ K+ (9)

The first constraint guarantees that whenever a monomial is activated (i.e. xi = 1 ∀i ∈ R), all
of its subsets are also activated. The second constraint ensures that if a monomial is deactivated
(i.e. ∃ i ∈ R s.t. xi = 0), at least one of its constituent terms (y{i}) is likewise deactivated. After
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the optimization is solved, the solution can be read-off from the univariate monomials y{i}. These
monomial terms can also be used to impose cardinality constraints on the solution, as was used in
Section 4.2 and Section 5.2.
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B Experimental Details

B.1 Implementation Details

B.1.1 Hyper-parameters

We performed 5-fold cross-validation over the following hyper-parameters for each of the models:

Model Hyper-parameter

LASSO L1 Reg. Param. λ (100 with λmin/λmax = 0.001)
SPEX L1 Reg. Param. λ (100 with λmin/λmax = 0.001)

PROXYSPEX Max. Tree Depth [3, 5, None]
Number of Trees [500, 1000, 5000]

Learning Rate [0.01, 0.1]
L1 Reg. Param. λ (100 with λmin/λmax = 0.001)

Random Forest Max. Tree Depth [3, 5, None]
Number of Trees [100, 500, 1000, 5000]

Neural Network Hidden Layer Sizes [(n4 ), (n4 , n
4 ), (n4 , n

4 , n
4 )]

Learning Rate [Constant, Adaptive]
Learning Rate Init. [0.001, 0.01, 0.1]

Number of Trees [100, 500, 1000, 5000]

B.1.2 Sentiment Analysis

20 movie reviews were used from the Large Movie Review Dataset [46] with n ∈ [256, 512] words.
To measure the sentiment of each movie review, we utilize a DistilBERT model [47] fine-tuned for
sentiment analysis [48]. When masking, we replace the word with the [UNK] token. We construct
an value function over the output logit associated with the positive class.

B.1.3 HotpotQA

We consider 50 examples from the HotpotQA[49] dataset between n ∈ [64, 128] sentences. We use
a Llama-3.2-3B-Instruct model with 8-bit quantization. When masking, we replace with the
[UNK] token, and measure the log-perplexity of generating the original output. Since HotpotQA is a
multi-document dataset, we use the following prompt format.

Title: {title_1}
Content: {document_1}
. . .
Title: {title_m}
Content: {document_m}

Query: {question}. Keep your answers as short as possible.

B.1.4 DROP

We consider 50 examples from the DROP [49] dataset with n ∈ [256, 512] number of words. We use
the same model as HotpotQA and mask in a similar fashion. We use the following prompt format.

Context: {context}
Query: {question}. Keep your answers as short as possible.
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B.1.5 MS-COCO

We utilize the Microsoft Common Objects in Context (MS-COCO) dataset [42], which comprises
images paired with descriptive text captions. For our experiments, we treat image patches (there are
48 patches per image) and individual words from the captions as the input features. We used the first
50 examples from the test set, which had n (image patches + words) between the range of [60, 85].

To model the relationship between images and text, we employed the CLIP-ViT-B/32 model, a
vision-language encoder designed to learn joint representations of visual and textual data. In our
PROXYSPEX framework, when masking input features (either image patches or words), we replace
them with a generic placeholder token suitable for the CLIP architecture (e.g., a zeroed-out patch
vector or the text [MASK] words. The value function f(S) for a given subset of features S was
defined as the contrastive loss among the other image/caption pairs. By measuring the change in
this contrastive loss upon masking different feature subsets, we can attribute importance to individual
features and their interactions in the context of joint image-text understanding.

B.2 Measuring Spectral Hierarchies

To quantify the hierarchical structure observed in the Fourier spectra of the LLMs under study,
we introduce and analyze two key metrics: the Staircase Rate (SCR) and the Strong Hierarchy
Rate (SHR). These metrics are computed based on the set of the k largest (in magnitude) Fourier
coefficients, denoted as Fk.

The Staircase Rate (SCR(f, k)) is defined as:

SCR(f, k) =
1

k

∑
S∈Fk

1

{
∃(e1, . . . , e|S|) ∈ Perm(S) s.t.

(
∀j ∈ {0, . . . , |S|} :

j⋃
l=1

{el} ∈ Fk

)}
,

where Fk denotes the k largest Fourier coefficients of f ,
and Perm(S) is the set of all ordered sequences of the elements in S.

(10)
The SCR measures the proportion of top-k Fourier coefficients F (S) for which there exists an or-
dering of its constituent elements (e1, . . . , e|S|) such that all initial subsets (i.e., e1, {e1, e2}, . . . , S
itself) are also among the top-k coefficients. A high SCR indicates that significant high-order inter-
actions are built up from significant lower-order interactions in a step-wise or "staircase" manner.

The Strong Hierarchy Rate (SHR(f, k)) is defined as:

SHR(f, k) =
1

k

∑
S∈Fk

1 {∀S′ ⊆ S, S′ ∈ Fk} , where Fk denotes the k largest
Fourier coefficients of f .

(11)

The SHR is a stricter measure, quantifying the proportion of top-k coefficients F (S) for which all
subsets of S (not just initial subsets, as in DSR) are also present in Fk. A high SHR suggests a
very robust hierarchical structure where the significance of an interaction implies the significance of
all its underlying components.

Figure 11 visualizes these rates alongside faithfulness (R2) for the Sentiment Analysis and MS-
COCO datasets. These empirical results aim to demonstrate that LLM feature interactions exhibit
significant hierarchical structure. The high SCR and SHR scores support the core motivation for
PROXYSPEX: that important interactions are often built upon their lower-order subsets, a structure
that Gradient Boosted Trees (GBTs) are well-suited to capture and exploit.

B.3 Sparsification

The process of sparsification is crucial for enhancing the interpretability of the explanations gen-
erated by PROXYSPEX . By retaining only the top k Fourier coefficients, we can achieve a more
concise and understandable representation of the model’s behavior without significantly compromis-
ing the faithfulness of the explanation. As demonstrated in Figure 5, a relatively small number of
Fourier coefficients (approximately 200) are often sufficient to achieve faithfulness comparable to
using a much larger set of coefficients for tasks like sentiment classification and image captioning
(MS-COCO).
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Figure 11: (top row) We run SPEX until R2 > 0.9. We report the faithfulness of when we truncate
the spectrum to keep just the top k coefficients for a range of k. We include results from Sentiment
n ∈ [256, 512], and MS-COCO n ∈ [60, 85]. In both cases faithfulness steadily increases as we
increase k. (middle row) We report the SCR (10) for the same top k Fourier truncated functions
above. In all cases, the SCR is nearly 100%. (bottom row) We also report the SHR (11), which is
the strongest of the metric we consider. Here we find that even though SHR decreases somewhat
as k grows, it is still strongly in favor of the hierarchy hypothesis.

Further results in Figure 12 illustrate the relationship between relative faithfulness and Fourier spar-
sity for both Sentiment and MS-COCO datasets across different inference multipliers (α). These
plots show that faithfulness generally increases with k, plateauing after a certain number of coeffi-
cients, reinforcing the idea that a sparse representation can effectively capture the essential dynamics
of the LLM’s decision-making process.

B.4 Proxy Model Selection

The choice of GBTs as the proxy model within PROXYSPEX is motivated by their inherent ability to
identify and learn hierarchical interactions from limited training data. This is a critical characteristic,
as LLM feature interactions often exhibit a hierarchical structure where higher-order interactions are
built upon their lower-order subsets. As indicated in the main text, GBTs have been shown to vastly
outperform other proxy models, including random forests, particularly because random forests are
less effective at learning hierarchical functions. GBT-like algorithms, on the other hand, are adept
at disentangling sums of these hierarchical components.

Figure 13 provides a comparative view of proxy model performance. Figure 13a and Figure 13b
illustrate the faithfulness (R2) of different proxy models (LASSO, Random Forest, Neural Network,
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Figure 12: We plot faithfulness (R2) as a function of Fourier sparsity. Only ≈ 200 coefficients are
required to achieve equivalent faithfulness.

and GBTs) on both a synthetic dataset with a complete hierarchy (defined below) and the Sentiment
Analysis dataset, respectively, across various inference parameters (α). These results empirically
support the superiority of GBTs in capturing these complex interaction structures. However, it’s also
important to acknowledge limitations; for instance, GBTs may not perform as well when interactions
possess a different, non-hierarchical sparse structure, as empirically confirmed by simulations like
the Synthetic-Peak example (which lacks hierarchical structure) shown in Figure 13c.

Synthetic Peak Synthetic Complete Hierarchy

fSP(S) =
∑

T⊆P(−1)|S∩T |F (T ) fSCH(S) =
∑

R⊆H(−1)|S∩R|F (R)

where P is a set of 10 uniformly whereH = {R ⊆ T |T ∈ P}
sampled sets of cardinality 5 and F (R) ∼ Uniform(−1, 1) for R ∈ H

and F (T ) ∼ Uniform(−1, 1) for T ∈ P

B.5 Shapley Value Approximation

We repeat the experiments of Section 4.3 under the metric of mean squared error relative to those
computed by KernalSHAP under an inference budget of 10,000. In Figure 14, we find that PROX-
YSPEX uniformly outperforms KernelSHAP within this tested range. Just as with recall, with large
enough α, KernelSHAP eventually surpasses PROXYSPEX.

B.6 Practical Implications

The practical implications of PROXYSPEX are significant, primarily revolving around its inference
efficiency and the resulting speedups in generating faithful explanations for LLMs. A major chal-
lenge with existing interaction attribution methods, like SPEX, is the substantial number of model
inferences required, which can be computationally expensive and time-consuming for large models.
PROXYSPEX addresses this by leveraging a GBT proxy model, which dramatically reduces the
number of inferences needed while maintaining or even improving explanation faithfulness.

Figure 15 presents the practical benefits in terms of wall clock time for achieving different levels
of faithfulness (R2) on the Sentiment Analysis (Figure 15a) and MS-COCO (Figure 15b) datasets.
These plots clearly demonstrate the speedups achieved by PROXYSPEX. For example, in the senti-
ment analysis task using the smaller DistilBERT model, PROXYSPEX offers a speedup of approx-
imately 3x, while for the larger CLIP-ViT-B/32 model with MS-COCO, the speedup is around 5x
when compared to methods that require more extensive sampling. This increased efficiency makes
PROXYSPEX a more viable tool for interpreting complex LLMs in real-world scenarios where com-
putational resources and time are often constrained.
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Figure 13: Comparison of proxy model faithfulness in capturing function structures. (a) Faithfulness
of LASSO, Random Forest, Neural Network, and GBTs on a synthetic dataset with a complete
hierarchical structure, across varying inference parameters (α). (b) Faithfulness of the same proxy
models on the Sentiment Analysis dataset across varying α. (c) Faithfulness on a synthetic dataset
with a sparse, non-hierarchical peak function, across varying α, illustrating a limitation of GBTs for
non-hierarchical structures.

C Case Study Details

C.1 Data Attribution via Non-Linear Datamodels

The training masks and margin outputs were provided by [55], corresponding to their subsampling
rate of 50% (i.e., half the training images were used to fit each model). See [55] for the hyper-
parameters selected. With n = 50,000 training samples, 300,000 training masks (model retrainings)
were provided. This corresponds to α ≈ 0.38, which underscores the inference-efficiency of PROX-
YSPEX to identify strong interactions.

Utilizing these masks and margins, we randomly selected 60 test images (6 from each class) for
analysis with PROXYSPEX. Below, in Figure 16 and Figure 17, we present the strongest second-
order interactions of the first thirty of these selected test images. Figure 9 visualizes the six test
images exhibiting the most significant third-order interactions identified through this analysis.

After fitting PROXYSPEX, we convert the Fourier interactions to Möbius using Appendix A.1.
Since target and non-target images affect the test margin in opposite directions, we partition the
interaction space into the following categories:

• Target-class interactions T : Interactions composed exclusively of training images that
share the same label as the held-out test image.

• Non-target-class interactions T c: Interactions where at least one training image in the set
has a label different from that of the held-out test image.
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Figure 14: Shapley value mean square error after α · n log2(n) inferences for multipliers α ∈
{0.25, 0.5, 0.75, 1.0}. Across all four tasks and multipliers, within the tested range, PROX-
YSPEX provides a better approximation of the values computed under 10,000 inferences. Error
bands indicate the standard deviation across ten different runs of the algorithms.
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Figure 15: Wall clock time demonstrating PROXYSPEX’s efficiency. Comparison of wall clock
time (seconds) required to achieve different levels of faithfulness (R2) for PROXYSPEX, show-
ing breakdown of inference time and attribution computation time. (a) Results on the Sentiment
Analysis dataset with the DistilBERT model. (b) Results on the MS-COCO dataset with the
CLIP-ViT-B/32 model, highlighting speedups achieved by PROXYSPEX.

Synergistic Interactions: The top synergistic interaction R∗ of order-r is defined as:

S∗ = argmax
S∈T ,|S|=r

IM (S)

T ∗ = argmin
T∈T c,|T |=r

IM (T )

R∗ =

{
S∗ if |IM (S∗)| ≥ |IM (T ∗)|
T ∗ otherwise

(12)

Visually, as presented in Figure 16 for r = 2, the interactions R∗ identified by this rule often
involve training images that appear to work together to reinforce or clarify the classification of the
held-out image, frequently by contributing complementary features or attributes. It is important to
acknowledge that this definition serves as a heuristic and does not perfectly isolate synergy; For

24



example, the first frog image contains redundant bird images due to strong higher-order interactions
involving these bird images.

Redundant Interactions: The top redundant interaction R∗ of order-r is defined as:

S∗ = argmin
S∈T ,|S|=r

IM (S)

T ∗ = argmax
T∈T c,|T |=r

IM (T )

R∗ =

{
S∗ if |IM (S∗)| ≥ |IM (T ∗)|
T ∗ otherwise

(13)

Figure 17 demonstrates that this definition identifies redundant training images that are similar to
the held-out image.
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Figure 16: For 30 random held-out images, their corresponding top second-order synergistic inter-
action (green box).
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Figure 17: For 30 random held-out images, their corresponding top second-order redundant interac-
tion (red box).
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C.2 Model Component Attribution

We study the influence of specific model components on task performance, using a controlled abla-
tion methodology. Our experiments are conducted on Llama-3.1-8B-Instruct evaluated on the
high-school-us-history subset of the MMLU dataset, a benchmark comprising multiple-choice
questions.

MMLU includes 231 questions in the high-school-us-history subset. To perform pruning and
then evaluate the ablated models, we split this data into two sets—training split Dtrain consisting
of the first 120 questions and test split Dtest with the remaining questions. We use accuracy as
the evaluation metric, which is computed as the proportion of correctly answered multiple-choice
questions on a given data split.

For an L layer LLM, we let [L] denote the set of layers and let Hℓ denote the set of attention
heads in layer ℓ ∈ [L]. For each experiment, we focus on a particular group of layers L ⊆ [L]
within the model and denote the corresponding set of attention heads as HL =

⋃
ℓ∈LHℓ. The

Llama-3.1-8B-Instruct model consists of L = 32 layers, each with 32 attention heads.

At each layer ℓ of the LLM, the output of the attention heads is combined into a latent representation
by concatenating the outputs of the attention heads. Then, this latent vector is passed to the feed-
forward network of layer ℓ. To study the contribution of specific heads, we define an ablated model
LLMS for any subset S ⊆ HL. In LLMS , the outputs of the heads in HL \ S are set to zero before
the concatenation step. After concatenation, we apply a rescaling factor to the resulting latent vector
at each layer ℓ ∈ L, equal to the inverse of the proportion of retained heads in that layer, i.e., |Hℓ|

|S∩Hℓ| .
This modified latent representation is then passed to the feed-forward network as usual.

We define fL as
fL(S) ≜ Accuracy of LLMS on Dtrain, (14)

and interpret fL(S) as a proxy for the functional contribution of head subset S to model performance,
enabling quantitative analyses of attribution and interaction effects among attention heads.

Pruning. We perform pruning experiments across three different layer groups L: initial layers
(L = {1, 2, 3}), middle layers (L = {14, 15, 16}), and final layers (L = {30, 31, 32}). Since each
layer has 32 attention heads, we effectively perform ablation over n = |HL| = 96 features (attention
heads) in total. For a given group L, we begin by estimating the function fL using both LASSO and
PROXYSPEX, based on evaluations of fL(S) for 5000 subsets S sampled uniformly at random.
These estimates serve as surrogates for the true head importance function. We then maximize the
estimated functions to identify the most important attention heads under varying sparsity constraints
(target numbers of retained heads). We use the procedure detailed in Section 4.2 to identify heads
to remove for both PROXYSPEX and LASSO. We also compare against a Best-of-N baseline, in
which the model is pruned by selecting the subset S that achieves the highest value of fL(S) among
5000 randomly sampled subsets at the target sparsity level.

Evaluation. In order to evaluate the performance of an ablated model LLMS , we measure its accu-
racy on the test set using

gL(S) ≜ Accuracy of LLMS on Dtest. (15)

In Figure 10, we report the value of gL(S) for the pruned models obtained by each method. We find
that PROXYSPEX consistently outperforms both baselines, yielding higher test accuracy across all
evaluated sparsity levels.

Inference setup. All experiments are run on a single NVIDIA H100 GPU, with batch size 50. Av-
erage runtime per ablation (i.e., evaluating fL(S) once for a given S) is approximately 1.7 seconds.
Therefore, collecting a training dataset {(Si, fL(Si))} with 5000 training samples takes approxi-
mately 2.5 hours.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the paper are clearly stated. The results, which are primarily
empirical, are backed by experimental data. Relevant theoretical research is also cited.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a limitations section, which specifically highlights work that remains
to be done.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We make no major theoretical claims, and any theoretical statements are
accompanied by proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All code and experimental setup are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All data and code will be included in the publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All relevant details are included.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are provided where relevant.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on the compute used is included.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, this is presented in the work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: all assets are open-source.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: All code and new tools will be published and reasonably documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not a non-standard component of the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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