Under review as a conference paper at ICLR 2023

UNION SUBGRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) are widely used for graph representation learning
in many application domains. The expressiveness of GNNs is upper-bounded by
1-dimensional Weisfeiler-Lehman (1-WL) test as they operate on rooted subtrees
in message passing. In this paper, we empower GNNs by injecting neighbor-
connectivity information extracted from a new type of substructures. We first
investigate different kinds of connectivities existing in a local neighborhood and
identify a substructure called union subgraph, which is able to capture the com-
plete picture of the 1-hop neighborhood of an edge. We then design a shortest-
path-based substructure descriptor that possesses three nice properties and can ef-
fectively encode the high-order connectivities in union subgraphs. By infusing the
encoded neighbor connectivities, we propose a novel model, namely Union Sub-
graph Neural Network (UnionSNN), which is proven to be strictly more powerful
than 1-WL in distinguishing non-isomorphic graphs. Our extensive experiments
on both graph-level and node-level tasks demonstrate that UnionSNN outperforms
state-of-the-art baseline models, with competitive computational efficiency.

1 INTRODUCTION

With the ubiquity of graph-structured data emerging from various modern applications, Graph Neu-
ral Networks (GNNs) have gained increasing attention from both researchers and practitioners.
GNNs have been applied to many application domains, including quantum chemistry (Duvenaud
et al., 2015} Dai et al.,2016), social sciences (Ying et al.L|2018;|Fan et al.,2019)), and brain networks
(Ahmedt-Aristizabal et al.,[2021). GNNSs also attained promising results on the tasks of graph clas-
sification (Xu et al., 2018 Ying et al., 2018), node classification (Kipf & Welling, 2016; Hamilton
et al.| 2017), link prediction (Zhang & Chenl [2018)), etc.

Recently, a limitation in the expressiveness of GNNs has been identified. | Xu et al.| (2018) shows
that GNNs are at most as powerful as 1-dimentional Weisfeiler-Lehman (1-WL) test (Weisfeiler &
Leman| |1968) in distinguishing non-isomorphic graph structures. This is because a vanilla GNN
essentially operates on a subtree rooted at each node in its message passing, i.e., it treats every
neighbor of the node equally in its message aggregation. In this regard, it overlooks any discrepancy
that may exist in the connectivities between neighbors. To address this limitation, efforts have
been devoted to incorporating local substructure information to GNNs. Several studies attempt
to encode local substructure information, such as induced subgraph (Zhao et al. [2021)), overlap
subgraph (Wijesinghe & Wangl [2021)) and spatial encoding (Bouritsas et al. |2022), to enhance
GNNs’ expressiveness. But the local structure they choose are not able to capture the complete
picture of the 1-hop neighborhood of an edge. Some others incorporate shortest path information
to edges in message passing via distance encoding (Li et al.| 2020)), adaptive breath/depth functions
(Liu et al.} 2019), affinity matrix (Wan et al., 2021), etc., to control the message from different
distance of neighbors. However, the substructure descriptor used to encode the substructure may
overlook some connectivities between neighbors. Furthermore, some of above models would also
suffer from high computational cost due to the incorporation of certain substructures.

In this paper, we aim to develop a model that overcomes the above drawbacks and yet is able to
empower GNNs’ expressiveness. (1) We define a new type of substructures named union subgraphs,
each capturing the entire closed neighborhood w.r.t. an edge. (2) We design an effective substructure
descriptor that encodes high-order connectivities. (3) We propose a new model, namely Union
Subgraph Neural Network (UnionSNN), which is strictly more expressive than GNNs (1-WL) in
theory and also computationally efficient in practice. Our contributions are summarized as follows:

Under review as a conference paper at ICLR 2023

* We investigate different types of connectivities existing in the local neighborhood and iden-
tify the substructure, named “union subgraph”, that is able to capture the complete neigh-
borhood.

e We abstract three desired properties for a good substructure descriptor and design a
shortest-path-based descriptor that possesses all the properties with high-order connectivi-
ties encoded.

* We propose a new model, UnionSNN, which injects the information extracted from union
subgraphs in message passing. We theoretically prove that UnionSNN is more expressive
than 1-WL. We also show that UnionSNN at least stronger than 3-WL on some cases.

* We perform extensive experiments on both graph-level and node-level tasks. The results
justify the superiority of UnionSNN over state-of-the-art baselines in terms of both effec-
tiveness and efficiency.

2 RELATED WORK

2.1 SUBSTRUCTURE-ENHANCED GNNS

In recent years, several novel GNN architectures have been designed to enhance their expressiveness
by encoding local substructures. GraphSNN (Wijesinghe & Wang| |2021) brings the information of
overlap subgraphs into the massage passing scheme as a structural coefficient. However, the overlap
subgraph and the substructure descriptor used by GraphSNN are is not powerful enough to distin-
guish all non-isomorphic substructures in the 1-hop neighborhood. [Zhao et al.|(2021) encode the
induced subgraph for each node and inject it into node representations. Graph Substructure Network
(Bouritsas et al.| |2022) introduces structural biases in the aggregation function to break the symme-
try in message passing. For these two methods, the neighborhood under consideration should be
pre-defined, and the subgraph matching is extremely expensive (O(n*) for k-tuple substructure)
when the substructure gets large. Other transformer-based methods incorporate local structural in-
formation via positional encoding. Graphormer (Ying et al. |2021) combines the node degree and
shortest path information for spatial encoding. [Dwivedi et al.| (2021)) introduce the random-walk
matrix and Graph Laplacian matrix to add the canonical positional information into nodes. These
positional encodings only consider relative distances from the center node and ignore high-order
connectivities between the neighbors.

2.2 PATH-RELATED GNNS

A significant amount of works have focused on the application of shortest paths and other shortest-
path-based techniques to GNNs. |Li et al. (2020) presents a distance encoding to augment node
features and control the receptive field of message passing. GeniePath (Liu et al.l 2019) proposes an
adaptive breath function to learn the importance of different-sized neighborhoods and an adaptive
depth function to extract and filter signals from neighbors within different distances. PathGNN (Tang
et al.,|2020) imitates how the Bellman-Ford algorithm solves the shortest path problem in generating
weights when updating node features. SPN (Abboud et al., [2022) designs a scheme, in which the
representation of a node is propagated to each node in its shortest path neighborhood. Some recent
works adapt the concept of curvature from differential geometry to reflect the connectivity between
nodes and the possible bottleneck effects. CurvGN (Ye et al.,|2019) reflects how easily information
flows between two nodes by graph curvature information, and exploits curvature to reweigh dif-
ferent channels of messages. [Topping et al.|(2021)) propose Balanced Forman curvature that better
reflects the edges having bottleneck effects, and alleviates the over-squashing problem of GNNs by
rewiring graphs. SNALS (Wan et al., [2021) utilizes an affinity matrix based on shortest paths to
encode the structural information of hyperedges. Our method is different from these existing meth-
ods by introducing a shortest-path-based substructure descriptor for distinguishing non-isomorphic
substructures in the message passing of MPNNs.

3 LocCAL SUBSTRUCTURES TO EMPOWER MPNNS

In this section, we first introduce MPNNs. We then investigate what kind of local substructures are
beneficial to improve the expressiveness of MPNNSs.

Under review as a conference paper at ICLR 2023

3.1 MASSAGE PASSING NEURAL NETWORKS

We represent a graph as G = (V, E, X), where V = {v1, ..., v, } is the set of nodes, E € V x V is
the set of edges, and X = {x,, | v € V'} is the set of node features. The set of neighbors of node v
is denoted by N'(v) = {u € V | (v,u) € E}. As defined in [Xu et al|(2018), the [-th layer of an
MPNN can be written as:

h() = AGGU V(Y MSGEV({hlY uw e N(v)})), (1)

where hf,l) is the representation of node v at the I-th layer, hq(jo) = X,, AGG(-) and MSG(-) denote
the aggregation and message functions, respectively.

3.2 LocAL SUBSTRUCTURES TO IMPROVE MPNNSs

According to Eq. (I), MPNN updates the representation of a node isotropously at each layer and
ignores the structural connections between the neighbors of the node. Essentially, the local sub-
structure utilized in the message passing of MPNN is a subtree rooted at the node. Consequently,
if two non-isomorphic graphs have the same set of rooted subtrees, they could not be distinguished
by MPNN (and also 1-WL). Such an example is shown in Figure[I[a). A simple fix to this problem
is to encode the local structural information about each neighbor, based on which neighbors are
treated unequally in the message passing. One natural question arises: which substructure shall
we choose to characterize the 1-hop local information?

E; j Epv (a.b)
E3* (a.d)

S,NS, S,US,

Squ

(@) (b)

Figure 1: (a) A pair of non-isomorphic graphs not distinguishable by 1-WL; (b) An example of
various local substructures for two adjacent nodes v and w.

To answer the above question, we consider two adjacent nodes v and u, and discuss different types
of edges that may exist in their neighbor sets, N'(v) and NV (u). We define the closed neighbor set

of node v as N'(v) = N'(v) U {v}. The induced subgraph of N/ (v) is denoted by S,, which defines
the closed neighborhood of v. The common closed neighbor set of v and u is Ny, = N (v) NN (u)

and the exclusive neighbor set of v w.r.t u is defined as N[= N (v) — Nyw. As shown in Figure
b), there are four types of edges in the closed neighborhood of {v, u}:

o EP% € Nyu X Nyy: edges between the common closed neighbors of v and u, such as (a, b);

o E3% € (Nyu X N %) U (Nyy X N ?): edges between a common closed neighbor of v and
u and an exclusive neighbor of v/u, such as (a, d);

« Ey" € N* x N V: edges between two exclusive neighbors of v and u from different
sides, such as (¢, d);

o EX% e (N X NJ") U (NY x N7V): edges between two exclusive neighbors of v or
u from the same side, such as (d, f).
We now discuss three different local substructures, each capturing a different set of edges.

Overlap subgraph. (Wijesinghe & Wang| [2021) The overlap subgraph of two adjacent nodes v and
w is defined as S,n, = S, N S,. The overlap subgraph contains only edges in E7".

Union minus subgraph. The union minus subgraph of two adjacent nodes v and w is defined as
SyUu = Sy U Sy,. The union minus subgraph consists of edges in £7%, E5* and Ej™.

Under review as a conference paper at ICLR 2023

Union subgraph. The union subgraph of two adjacent nodes v and u, denoted as Sy, is defined

as the induced subgraph of N (v) U N (u). The union subgraph contains all four types of edges
mentioned above.

It is obvious that the union subgraph captures the whole picture of the neighborhood of two adjacent
nodes. It covers all kinds of connectivities in the neighborhood, which serves as a perfect local
substructure for improving the expressiveness of MPNNs. Note that we restrict the discussion to the
1-hop neighborhood because we aim to develop a model based on the MPNN architecture, in which
a single layer of convolution is performed on the 1-hop neighbors.

3.3 UNION ISOMORPHISM

In this subsection, we define the isomorphic relationship between the neighborhoods of two nodes
based on the concept of union subgraphs. The definition follows that of overlap isomorphism in
Wijesinghe & Wang|(2021).

Overlap Isomorphism. S; and S; are overlap-isomorphic, denoted as S; ~gyeriap Sj, if there
exists a bijective mapping g: V(i) — N(j) such that g(:) = j, and for any v € N(i) and g(v) = u,
Sinw and S, are isomorphic (ordinary graph isomorphic).

Union Isomorphism. S; and S; are union-isomorphic, denoted as S; ~ynion S, if there exists a
bijective mapping g: N (¢) — N(j) such that g(¢) = 7, and for any v € N (i) and g(v) = u, Siuw
and S, are isomorphic (ordinary graph isomorphic).

Y\
‘/subtree \

\)
/—QIP\
overlap subgraph

~_
Gy G

\ u

Figure 2: (G; and G5 are overlap-isomorphic (have the same overlap subgraphs), but not union-
isomorphic. Any union subgraph containing v are (3 itself. Same for u. The detailed discussion is
provided in Appendix [A]

Theorem 1. If S; ~union Sj, then S; ~overiap Sj; but not vice versa.

Theorem [I] states that union-isomorphism is stronger than overlap-isomorphism. The proofs of all
theorems in this paper are provided in Appendix [B] Figure 2]shows a pair of non-isomorphic graphs
that are distinguishable under union-isomorphism but not overlap-isomorphism or 1-WL (subtree).
The union subgraph of v and one of its arbitrary neighbors is (57 itself (same for node u). Since G
and G5 are not isomorphic, they are not union-isomorphic either.

4 UNIONSNN

In this section, we first discuss how to design our substructure descriptor so that it well captures the
structural information in union subgraphs with several desired properties. We then present our model
UnionSNN, which effectively incorporates the information encoded by the substructure descriptor to
MPNN:Ss. Finally, we show that UnionSNN has a stronger expressiveness than 1-WL and is superior
to GraphSNN in its design.

4.1 DESIGN OF SUBSTRUCTURE DESCRIPTOR FUNCTION

Let U = {Syuul(v,u) € E} be the set of union subgraphs in G. In order to fuse the information
of union subgraphs in message passing, we need to define a function f(-) to describe the structural
information of each S, € U. Ideally, given two union subgraphs centered at node v, Syu, =
(V’UU’LH Equ) and Syuu = (VUUU'7 EUU’U/)? we want f(Squ) = f(Squ’) iff Syuy and Sy are
isomorphic. We abstract the following properties of a good substructure descriptor function f(-):

Under review as a conference paper at ICLR 2023

* Size Awareness. f(S,uy) # f(Svuw) if |Vouu| # [Vouw | ot |Evoul # | Evow s

M COHneCtiVity Awareness. f(Squ) 7é f(Squ’) if H/UUu| = |‘/1)Uu’| and |E1)Uu| = |E1)Uu’|
but Sy, and Sy, are not isomorphic;

* Isomorphic Invariance. f(S,) = f(Syuw) if Syuw and S,y are isomorphic.

Figure |3|illustrates the properties.

Size Awareness Connectivity Awareness) [[somorphic Invariance

Figure 3: Three properties that a good substructure descriptor function f(-) should exhibit.

Herein, we design f(-) as a function that transforms S,,, to a path matrix P?* € RIVeuulx[Vouul
such that each entry:

P/i* = PathLen(i, j, Svuu); i, § € Vouu, 2

where PathLen(-) denotes the length of the shortest path between ¢ and j in S,,. We choose the
path matrix over the adjacency matrix or the Laplacian matrix as it explicitly encodes high-order
connectivities between the neighbors. In addition, with a fixed order of nodes, we can get a unique
P* for a given S,u,, and vice versa. We formulate it in Theorem [2]

Theorem 2. With a fixed order of nodes in the path matrix, we can obtain a unique path matrix P*"
for a given union subgraph S, ., and vice versa.

It is obvious that our proposed f(-) satisfies the above-mentioned three properties, with a node
permutation applied in the isomorphic case.

Discussion on other substructure descriptor functions. In literature, some other functions have
also been proposed to describe graph substructures. (1) Edge Betweenness (Brandes,, 2001) is de-
fined by the number of shortest paths between any pair of nodes in a (sub)graph G that pass through
an edge. When applying the edge betweenness to (v, u) in Sy, the metric would remain the same
on two different union subgraphs, one with an edge in E{* and one without. This shows that edge
betweenness does not satisfy Size Awareness; (2) Wijesinghe & Wang| (202 1)) put forward a substruc-
ture descriptor as a function of the number of nodes and edges. This descriptor fails to distinguish
non-isomorphic subgraphs with the same size, and thus does not satisfy Connectivity Awareness;
(3) Discrete Graph Curvature, e.g., Olliveier Ricci curvature (Ollivier, 2009; [Lin et al. [2011), has
been introduced to MPNNS in recent years (Ye et al., 2019). Ricci curvature first computes for each
node a probability vector of length |V| that characterizes a uniform propagation distribution in the
neighborhood. It then defines the curvature of two adjacent nodes as the Wasserstein distance of
their corresponding probability vectors. Similar to edge betweenness, curvature doesn’t take into
account the edges in Ef" in its computation and thus does not satisfy Size Awareness either. We
detail the definitions of these substructure descriptor functions in Appendix [C]

4.2 NETWORK DESIGN
For the path matrix of an edge (v, u) to be used in message passing, we need to further encode it as

a scalar. We choose to perform Singular Value Decomposition (SVD) (Horn & Johnson, 2012) on
the path matrix and extract the singular values:

P=UZV* 3)

The sum of the singular values of P, denoted as a** = sum(X"") , is used as the local structural
coefficient of the edge (v,u) € E. Note that since the local structure never changes in message

Under review as a conference paper at ICLR 2023

passing, we can compute the structural coefficients in preprocessing before the training starts. A
nice property of this structural coefficient is that, it is permutation invariant thanks to the use of
SVD and the sum operator. With an arbitrary order of nodes, the computed a,,, remains the same,
which removes the condition required by Theorem 2.

We now present our model, namely Union Subgraph Neural Network (UnionSNN), which utilizes
union-subgraph-based structural coefficients to incorporate local substructures in message passing.
For each vertex v € V, the node representation at the [-th layer is generated by:

RO = MLP D [(14 D) RO 43 Trans D@)h(Y |)
uweN (v)
where €('~1) is a learnable scalar parameter and 4" = ——%——. MLP;(+) denotes a multilayer

weN (u) @7
perceptron (MLP) with a non-linear function ReLU. To transform the weight a** to align with the
multi-channel representation hq(f -1 , we follow|Ye et al.|(2019) and apply a transformation function
Trans(-) for better expressiveness and easier training:

Trans(a) = softmax(MLPs(a)), (5)

where MLP5 denotes an MLP with ReLU and a channel-wise softmax function softmax(-) normal-
izes the outputs of MLP separately on each channel.

4.3 EXPRESSIVE POWER OF UNIONSNN

We formalize the following theorem to show that UnionSNN is more powerful than 1-WL test in
terms of expressive power.

Theorem 3. UnionSNN is more expressive than 1-WL in testing non-isomorphic graphs.

The stronger expressiveness of UnionSNN over 1-WL is credited to its use of union subgraphs, with
an effective encoding of local neighborhood connectivities via the shortest-path-based design of
structural coefficients. We further provide a special case to show some graphs can be distinguished
by UnionSNN but not by 3-WL or GraphSNN in Appendix [D]

Design Comparisons with GraphSNN. Our UnionSNN is similar
to GraphSNN in the sense that both improve the expressiveness of
MPNNs (and 1-WL) by injecting the information of local substruc-
tures. However, UnionSNN is superior to GraphSNN in the follow-
ing aspects. (1) Union subgraphs in UnionSNN are stronger than
overlap subgraphs in GraphSNN, as ensured by Theorem[I] (2) The
shortest-path-based substructure descriptor designed in UnionSNN is
more powerful than that in GraphSNN: the latter fails to possess the
property of Connectivity Awareness (as elaborated in Section [.1)).
An example of two non-isomorphic subgraphs S,n, and S,/ is Figure 4: Example of two
shown in Figure @ They have the same structural coefficients in non-isomorphic —subgraphs
GraphSNN. (3) The aggregation function in UnionSNN works on Wwith the same structural
adjacent nodes in the input graph, while that in GraphSNN utilizes ~coefficient in GraphSNN
the structural coefficients on all pairs of nodes (regardless of their ad-

jacency). Consequently, GraphSNN requires to pad the adjacency matrix and feature matrix of each
graph to the maximum graph size, which significantly increases the computational complexity. The
advantages of UnionSNN over GraphSNN are also evidenced by experimental results in Section[5.4]

I I

v u v u

5 EXPERIMENTAL STUDY

In this section, we evaluate the effectiveness of our proposed model under various settings and aim
to answer the following research questions: RQ1. Can UnionSNN outperform existing MPNNs?
RQ2. Can other GNNs benefit from our structural coefficient? RQ3. How do different components

Under review as a conference paper at ICLR 2023

affect the performance of UnionSNN? RQ4. Is our runtime competitive with other substructure
descriptors? We conduct experiments on three tasks: graph classification, graph regression and
node classification.

Datasets. For graph classification, we use twelve benchmark datasets. Eight of them were se-
lected from the TUDataset (Kersting et al.,|2016)), including MUTAG, PROTEINS, ENZYMES, DD,
FRANKENSTEIN (denoted as FRANK in our tables), Tox21, NCI1 and NCI109. The other two
datasets OGBG-MOLHIV and OGBG-MOLBBBP were selected from Open Graph Benchmark (Hu
et al., 2020). For Graph Regression, we conduct experiments on ZINC10k and ZINC-full datasets
(Dwivedi et al.,|2020). For node classification, we test on five datasets, including citation networks
(Cora, Citeseer, and PubMed (Sen et al., 2008))) and Amazon co-purchase networks (Computer and
Photo (McAuley et al.,2015))). These datasets cover various graph sizes and densities. The statistics
of datasets are summarized in Appendix [E]

Baseline Models. We select various GNN models as baselines, including (1) classical MPNNs
such as GCN (Kipf & Welling, [2016)), GIN (Xu et al., 2018), GraphSAGE (Hamilton et al., 2017,
GAT (Velickovic et al.l [2017); (2) WL-based GNNs such as 3WL-GNN (Maron et al.| [2019); (3)
transformer-based methods such as UGformer (Nguyen et al., 2019); (4) state-of-the-art graph pool-
ing methods such as MEWISPool (Nouranizadeh et al., 2021); (5) methods introducing structural
information by shortest paths or curvature, such as GeniePath (Liu et al.| 2019), CurvGN (Ye et al.,
2019) and NestedGIN (Zhang & Li,2021)); (6) GNNs with positional encoding, such as GatedGCN-
LSPE (Dwived: et al., 2021); (7) GraphSNN (Wijesinghe & Wang| 2021). Model implementation
details are provided in Appendix[F|

5.1 PERFORMANCE ON DIFFERENT GRAPH TASKS
MUTAG PROTEINS ENZYMES DD FRANK Tox21 NCI1 NCI109

GCN T7.13 £524 73.89 £285 64.33 £583 72.16 2283 58.80 +1.06 90.10 20.77 79.73 £0.95 7591 +1.53
UnionGCN (ours) |81.87 +381 75.02 +250 64.67 +7.14 69.69 £4.18 61.72 +1.76 91.63 072 80.41 +1.94 79.50 +1.82
GIN 86.23 +8.17 72.86 +4.14 65.83 £593 70.29 £296 66.50 237 91.74 095 82.29 +1.77 80.95 £ 1.87
UnionGIN (ours) |88.86 +433 73.22 +390 67.83 +6.10 70.47 +4.98 68.02 +147 91.74 +0.74 82.29 +1.98 82.24 +1.24
GatedGCN 77.11 £1005 76.18 +3.12 66.83 +508 72.58 £3.04 61.40 +1.92 90.83 096 80.32 +2.07 78.19 £2.39
UnionGGCN(ours)| 77.14 +8.14 76.91 +306 67.83 +6.87 72.50 £2.22 61.47 +254 91.31 +0.89 80.95 +2.11 78.21 +2.58
GraphSAGE 80.38 £1098 74.87 +338 52.50 +569 73.10 +4.34 52.95 +4.01 88.36 +0.15 63.94 +2.52 65.46 + 1.12
UnionSAGE(ours) | 83.04 +870 74.57 235 58.32 +264 73.85 +4.46 56.75 +3.85 88.59 +0.12 69.36 + 1.64 69.87 +1.04
GAT 77.56 £1049 74.34 +200 67.67 £374 74.25 £3.76 62.85 +1.90 90.35 £0.71 78.07 +1.94 74.34 £2.18
3WL-GNN 84.06 662 60.18 +635 54.17 625 74.84 £2.63 58.68 +1.93 90.31 +1.33 78.39 2154 77.97 2222
UGformer 75.66 £867 70.17 £542 64.57 £453 75.51 352 56.13 £2.51 88.06 2050 68.84 +1.54 66.37 +2.74
MEWISPool 84.73 +473 68.10 £397 53.66 2607 76.03 £2.59 64.63 +2.83 88.13 +0.05 74.21 326 75.30 £ 1.45
CurvGN 87.25+628 75.73 +287 56.50 £7.13 72.16 £1.88 61.89 +2.41 90.87 £0.38 79.32 +1.65 77.30 £ 1.78
GraphSNN 84.04 409 71.78 x411 67.67 £3.74 76.03 +259 67.17 +225 92.24 + 059 70.87 +2.78 70.11 £ 1.86
NestedGIN 86.23 +882 68.55 +322 54.67 +9.99 70.04 £4.32 67.07 146 91.42 £1.18 82.04 223 79.94 £ 1.50
GatedGCN-LSPE |88.33 +388 73.94 +272 64.50 +592 76.74 +2.04 67.74 +265 91.71 +0.71 80.75 +1.67 80.13 +233
UnionSNN (ours) |87.31 +529 75.02 +250 68.17 +570 77.00 £2.37 67.83 +1.99 91.76 +0.85 82.34 +1.93 81.61 +1.78

Table 1: Graph Classification Results (Average Accuracy + Standard Deviation) over 10-fold-CV.
The best result is highlighted in bold. The winner between a base model with and without our struc-
tural coefficient injected is underlined. UnionGGCN is short for UnionGatedGCN and UnionSAGE
is short for UnionGraphSAGE.

Graph Classification. We report the results on 8 TUDatasets in Table [T]and the results on 2 OGB
datasets in Table 0] (Appendix [G)). Our UnionSNN outperforms all baselines in 8 out of 10 datasets.
We further apply our structural coefficient as a plugin component to two MPNNs: UnionGCN for
GCN and UnionGIN for GIN. The results show that our structural coefficient is able to boost up the
performance of the base model in almost all cases, with an improvement of up to 6.15%. The graph
regression results are shown in Table [T0] (Appendix [G.2).

Node Classification. We report the results of node classification in Table[2} Our model achieves the
best performance on all 5 datasets. When injecting our structural coefficient to existing models such
as GCN, GIN, and GraphSNN, their performance improves in almost all cases.

Under review as a conference paper at ICLR 2023

Cora Citeseer PubMed Computer Photo
GCN 72.56 +4.41 5830+6.32 7444+0.71 84.58+3.02 91.71+0.55
UnionGCN (ours) 7448 £0.42 59.02+3.64 74.82+1.10 88.84+0.27 92.33+0.53
GIN 75.86 +£1.09 63.10+£2.24 76.62+0.64 86.26+0.56 92.11+0.32
UnionGIN (ours) 7590+£0.80 63.66+1.75 76.78+1.02 86.81+2.12 92.28+0.19
GraphSAGE 70.60 +0.64 55.02+3.40 7036+429 80.30+130 89.16+1.03
GAT 74.82+£195 63.82+281 74.02+1.11 8594+235 91.86+047
GeniePath 72.16£2.69 5740+2.16 7096+2.06 82.68+0.45 89.98+1.14
CurvGN 7406 £1.54 62.08+0.85 74.54+1.61 86.30+0.70 92.50+0.50
GraphSNN 7544 +£0.73 64.68+2.72 76.76£0.54 84.11+0.57 90.82+0.30
UnionGraphSNN (ours) | 75.58 +0.49 6522+ 1.12 76.92+0.56 84.58+0.46 90.60 +0.58
UnionSNN (ours) 76.86 +1.58 65.02+1.02 77.06+1.07 87.76+0.36 92.92+0.38

Table 2: Node Classification Results (Average Accuracy + Standard Deviation) over 10 runs. The
best result is highlighted in bold. The winner between a base model with and without our structural
coefficient injected is underlined.

5.2 ABLATION STUDY

In this subsection, we validate empirically the design choices made in different components of our
model: (1) the local substructure; (2) the substructure descriptor; (3) the encoding method from a
path matrix to a scalar. All experiments are conducted on 6 graph classification datasets.

Local substructure. We test three types of local substructures defined in Section overlap
subgraphs, union minus subgraphs and union subgraphs. They are denoted as “overlap”, “minus”,
and “union” respectively in Table 3] We can see that the best results are achieved by using union-

related substructures: 4 on union subgraphs and 2 on union minus subgraphs.

MUTAG PROTEINS ENZYMES DD NCI1 NCI109

overlap | 85.70+7.40 7133+£535 65.00+5.63 7343+4.07 73.58+1.73 72.96+2.01
minus 87.31+£5.29 68.70+3.61 6533+458 74.79+£4.63 80.66+190 78.70+2.48
union 87.31+529 75.02+250 68.17+570 77.00+237 8234+193 81.61+1.78

Table 3: Ablation study on local substructure. The best result is highlighted in bold.

Substructure descriptor. We compare our substructure descriptor with four existing ones dis-
cussed in Section[d.1] We replace the substructure descriptor in UnionSNN with edge betweenness,
node/edge counting, Ricci curvature, and Laplacian matrix (other components unchanged), and ob-
tain four variants, namely BetSNN, CountSNN, CurvSNN, and LapSNN. As shown in TableE], our
UnionSNN is a clear winner: it achieves the best result on 5 out of 6 datasets. More experiments
based on GCN and GIN are provided in Appendix[G.3] These experiments demonstrate that the path
matrix better captures substructure information.

MUTAG PROTEINS ENZYMES DD NCI1 NCI109

BetSNN 80.94+£6.60 69.44+6.15 65.00+5.63 7020+5.15 7491248 73.70+1.87
CountSNN | 84.65+6.76 70.79+5.07 66.50+6.77 7436+7.21 8174235 79.80+1.67
CurvSNN 85.15+£7.35 T7277+442 67.17+6.54 7588+3.24 81.34+£227 80.64+1.85
LapSNN 89.39+524 6832+349 66.17+4.15 7631+2.85 81.39+2.08 81.34+2.93
UnionSNN | 87.31+5.29 75.02+250 68.17+570 77.00+2.37 82.34+193 81.61+1.78

Table 4: Ablation study on substructure descriptor. The best result is highlighted in bold.

Path matrix encoding method. We test three methods that transform a path matrix to a scalar: (1)
sum of all elements in the path matrix (matrix sum); (2) maximum eigenvalue of the path matrix
(eigen max); (3) sum of all singular values of the matrix (svd sum) used by UnionSNN in Section
[4.2] Table[5]shows that the encoding method “svd sum” performs the best on 5 out of 6 datasets.

5.3 CASE STUDY

Under review as a conference paper at ICLR 2023

MUTAG PROTEINS ENZYMES DD NCI1 NCI109

matrix sum | 88.89+7.19 71.32+548 6517+£643 70.71+4.07 80.37+2.73 79.84+1.89
eigenmax | 86.73+5.84 71.78+3.24 67.67+6.88 7429+326 8137+2.08 79.23+2.01
svd sum 87.31+£5.29 75.02+250 68.17+570 77.00+2.37 8234+193 81.61+1.78

Table 5: Ablation study on path matrix encoding method. The best result is highlighted in bold.

In this subsection, we investigate how the pro- c Modify edge | av
posed structural coefficient ¢ reflects local con- Original a”* | 2320 | | _gp 2366
nectivities. We work on an example union sub-

graph S,y in Figure[5|and modify its nodes/edges b

to study how the coefficient " varies with the lo-

cal structural change. We have the following ob- a

servations: (1) with the set of nodes unchanged, d
deleting an edge increases a""; (2) deleting anode ¢

(and its incident edges) decreases a¥"; (3) the four

types of edges in the closed neighborhood (Sec- v u e
tion[3.2) have different effects to a"*: E{* <E3"

<E{" <EY“ (by comparing -ab, -ad, -de, and Figure 5: Structural coefficient analysis.
+df). These observations indicate that a smaller

coefficient will be assigned to an edge with a denser local substructure. This matches with our ex-
pectation that the coefficient should be small for an edge in a highly connected neighborhood. The
rationale is, such edges are less important in message passing as the information between their two
incident nodes can flow through more paths. By using the coefficients that well capture local con-
nectivities, the massages from different neighbors could be properly adjusted when passing to the
center node. This also explains the effectiveness of UnionSNN in the performance experiments.

+bc 2271
-ab+bc 23.16
-ad 23.70
-de 2381
+df 21.30
-ve 24.35
-uc 24.84
-vb 24.28

Modify node | a¥*

20.60
20.02
19.51
19.54
1891
17.50

R
-|lo|alo|oc|o

5.4 EFFICIENCY ANALYSIS

In this subsection, we conduct experiments on PROTEINS, DD and FRANKENSTEIN datasets,
which cover various number of graphs and graph sizes.

Runtime computational cost. We conduct an experiment

to compare the total runtime cost of UnionSNN with those PROTEINS DD FRANK
in other MPNNs. The results are reported in Table @ GCN 0.67 151 1.65
Although UnionSNN runs slightly slower than GCN and GIN 053 181 201
GIN, it runs over 4.56 times faster than WL-based MPNN 3WL-GNN 6.06 7525 19.31
(BWL-GNN) and is comparable to MPNN with positional GatedGCN-LSPE| 1.33 ~ 3.65 2.55
encoding (GatedGCN-LSPE). Compared with GraphSNN, ~ GraphSNN 4.05 3045 576
UnionSNN runs significantly faster: the efficiency im- UnionSNN 131 361 246

provement approaches an order of magnitude on datasets
with large graphs, e.g., DD. This is because UnionSNN
does not need to pad the adjacency matrix and the feature
matrix of each graph to the maximum graph size in the
dataset, as what GraphSNN does. The analysis of prepro-
cessing computational cost are provided in Appendix [G.4]

Table 6: Time cost (hours) for a single
run with 10-fold-CV, including train-
ing, validation, test (excluding prepro-
cessing).

6 CONCLUSIONS

In this paper, we propose UnionSNN, a model that is strictly more powerful than 1-WL in dis-
tinguishing non-isomorphic graphs. UnionSNN is empowered by an effective shortest-path-based
substructure descriptor applied to union subgraphs. Our experimental results show that UnionSNN
outperforms state-of-the-art baselines on both graph-level and node-level classification tasks, with-
out sacrificing its computational efficiency. The strength of union subgraphs in capturing neighbor
connectivities and benefiting message passing is demonstrated. When applying union subgraphs to
existing models, their performance is improved by up to 6.15%.

Under review as a conference paper at ICLR 2023

REFERENCES

Ralph Abboud, Radoslav Dimitrov, and Ismail Tlkan Ceylan. Shortest path networks for graph
property prediction. arXiv preprint arXiv:2206.01003, 2022.

David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon Denman, Clinton Fookes, and Lars Pe-
tersson. Graph-based deep learning for medical diagnosis and analysis: Past, present and future.
Sensors, 2021.

Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the limits of message passing graph neural networks. In International Con-
ference on Machine Learning, pp. 599-608. PMLR, 2021.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks.
In International Conference on Machine Learning, pp. 1026—1037. PMLR, 2021.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of mathematical sociology,
25(2):163-177, 2001.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for struc-
tured data. international conference on machine learning, 2016.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gémez-Bombarelli, Tim-
othy D. Hirzel, Alan Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for
learning molecular fingerprints. neural information processing systems, 2015.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Wengqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. the web conference, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118-22133, 2020.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power
of graph neural networks with i2-gnns. arXiv preprint arXiv:2210.13978, 2022.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Bench-
mark data sets for graph kernels, 2016. URL http://graphkernels.cs.tu-dortmund.
de.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

10

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de

Under review as a conference paper at ICLR 2023

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465-4478, 2020.

Yong Lin, Linyuan Lu, and Shing-Tung Yau. Ricci curvature of graphs. Tohoku Mathematical
Journal, Second Series, 63(4):605-627, 2011.

Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. Geniepath:
Graph neural networks with adaptive receptive paths. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 44244431, 2019.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based rec-
ommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pp. 43-52, 2015.

Dai Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phung. Universal graph transformer self-attention
networks. arXiv preprint arXiv:1909.11855, 2019.

Amirhossein Nouranizadeh, Mohammadjavad Matinkia, Mohammad Rahmati, and Reza
Safabakhsh. Maximum entropy weighted independent set pooling for graph neural networks.
arXiv preprint arXiv:2107.01410, 2021.

Yann Ollivier. Ricci curvature of markov chains on metric spaces. Journal of Functional Analysis,
256(3):810-864, 2009.

Pal Andras Papp and Roger Wattenhofer. A theoretical comparison of graph neural network exten-
sions. arXiv preprint arXiv:2201.12884, 2022.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al magazine, 29(3):93-93, 2008.

Hao Tang, Zhiao Huang, Jiayuan Gu, Bao-Liang Lu, and Hao Su. Towards scale-invariant graph-
related problem solving by iterative homogeneous gnns. Advances in Neural Information Pro-
cessing Systems, 33:15811-15822, 2020.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Changlin Wan, Muhan Zhang, Wei Hao, Sha Cao, Pan Li, and Chi Zhang. Principled hyperedge
prediction with structural spectral features and neural networks. arXiv preprint arXiv:2106.04292,
2021.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NT1, Series, 2(9):12-16, 1968.

Asiri Wijesinghe and Qing Wang. A new perspective on” how graph neural networks go beyond
weisfeiler-lehman?”. In International Conference on Learning Representations, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Ze Ye, Kin Sum Liu, Tengfei Ma, Jie Gao, and Chao Chen. Curvature graph network. In Interna-
tional Conference on Learning Representations, 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877—-28888, 2021.

11

Under review as a conference paper at ICLR 2023

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Process-
ing Systems, 34:15734-15747, 2021.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn
with local structure awareness. arXiv preprint arXiv:2110.03753, 2021.

12

Under review as a conference paper at ICLR 2023

A AN EXAMPLE FOR OUR ISOMORPHISM CONCEPTS

a; b, ¢ d,

Uy

Figure 6: An example that the bijective mapping between the nodes in the subgraphs is not required
to be the same as g.

We provide an example for our subgraph and isomorphism concepts and how they are related.
As shown in Figure |§|, we have two subgraphs S, and S,,. These two subgraphs are overlap-
isomorphic. The bijective mapping g is: g(k1) = g(kz2), Vk € {v,a,b,¢,d, e, f,g, h}. Take a pair
of corresponding overlap subgraphs as an example: Sy, g, and Sy,ng,. They are based on two red
edges (v1,91), and (ve, g2) and the rest of edges in the overlap subgraphs are colored in blue. It is
easy to see that Sy, g, and S,,ng, are isomorphic (ordinary one). In this ordinary graph isomor-
phism, its bijective mapping between the nodes is not required to be the same as g, just as in the case
of Sy ng, and Sy,ng,. It could be the same or different, as long as the ordinary graph isomorphism
holds between this pair of overlap subgraphs. In this example, any pair of corresponding overlap
subgraphs defined under g are isomorphic (ordinary one). In fact, all overlap subgraphs have the
same structure in this example. In this sense, the concept of “overlap isomorphism” does not look at
the neighborhood based on a single edge, but captures the neighborhoods of all edges and thus the
“overlap” connectivities of the two subgraphs S, and S,,.

B PROOFS OF THEOREMS

B.1 PROOF OF THEOREM 1

Theorem 1. If S; ~yunion Sj, then S; ~oyeriap Sj; but not vice versa.

Proof. By the definition of union isomorphism, if S; ~ynion S;, then there exists a bijective map-
ping g : N'(i) — N(j) such that g(i) = j and for any v € N(i) and g(v) = u, Si, and Sjuy
are isomorphic. Since ¢g(i) = j and g(v) = w, according to the definition of graph isomorphism,
vi € N(i) N N(v) if and only if g(v;) € N(j) N N(u). Therefore, g(-) is a bijective map-
ping from N (i) N N (v) to N'(j) N N (), and vy, v, € N (i) N N(v) are adjacent if and only if
g(v1),g(v2) € N(4) NN (u) are adjacent. This proves that Sir, and S;n,, are isomorphic, and thus
Si overiap S;. On the contrary, it is possible that S; ~oyeriap S5 Ut S; Zunion S;, as shown by
graphs G and G in Figure[2] [J

B.2 PROOF OF THEOREM 2

Theorem 2. With a fixed order of nodes in the path matrix, we can obtain a unique path matrix P"
for a given union subgraph S,_., and vice versa.

Proof. We prove the theorem in two steps.

Step 1: We prove that we get a unique P"* from a given S,u,,. With the node order fixed, the rows
and the columns of P"" are fixed. Since P"" stores the lengths of all-pair shortest paths, the matrix
is unique given an input union subgraph.

13

Under review as a conference paper at ICLR 2023

Step 2: We prove that we can recover a unique Sy, from a given P"*. The node set of .S,,, can be
recovered from the row (or column) indices of P"*. The edge set of .S, can be recovered from the
entries in PV* with the value of ”1”. Both the node set and the edge set can be uniquely constructed
from P*", and thus Sy, is unique. O

B.3 PROOF OF THEOREM 3

The proof of Theorem 3 follows a similar flow to that of Theorem 4 in (Wijesinghe & Wang, [2021]).
We first define the concept of subtree isomorphism. Let h,, denote the node feature of anode v € V.

Subtree Isomorphism. S; and S; are subtree-isomorphic, denoted as S; ~gyptree S;, if there exists
a bijective mapping ¢g: N (i) — N (j) such that g(i) = j, and for any v € N(i) and g(v) = u,
hy = hy.

We assume that #,.4 and W are three countable sets that H is the node feature space, A is the
structural coefficient space, and W = {a*h;la¥’ € A,h; € H}. Suppose H and W are two
multisets that contain elements from #H and W, respectively, and |H| = |W|. In order to prove
Theorem 3, we need to use Lemmas 1 and 2 in|Wijesinghe & Wang| (2021)). To be self-contained,
we repeat the lemmas here and refer the readers to Appendix C of Wijesinghe & Wang| (2021) for
the proofs.

Lemma 1. There exists a function f s.t. 1(H, W) = ZheH’weW f(h,w) is unique for any distinct
pair of multisets (H, W).

Lemma 2. There exists a function f s.t. ©'(hy, H,W) = v f(ho, |H|ho) + D) cwew f(h,w) is
unique for any distinct (h,, H, W), where h,, € H,|H|h, € W, and y can be an irrational number.

From the lemmas above, we can now prove Theorem 3:
Theorem 3. UnionSNN is more expressive than 1-WL in testing non-isomorphic graphs.

Proof. By Theorem 3 in (Wijesinghe & Wang, 2021)), if a GNN M satisfies the two following
conditions, then M is strictly more powerful than 1-WL in distinguishing non-isomorphic graphs.

1. M can distinguish at least one pair of neighborhood subgraphs S; and \S; such that S; and S
are subtree-isomorphic, but they are not isomorphic, and {{a*’|v € N(i)}} # {{@’"|u €
N(j)}}, where a** is the normalised value of a”;

2. The aggregation scheme q)(hgt), {{hg') lue N(v)}} {{ (@, h&t))\u € N(v)}}) is injec-
tive.

For condition 1, the pair of graphs in Figure [2] satisfies the condition, and can be distinguished by
UnionSNN as they are not union-isomorphic.

For condition 2, by Lemmas 1 and 2 and the fact that the MLP Trans(-) is a universal approximator
and can model and learn the required functions, we conclude that UnionSNN satisfies this condition.

Therefore, UnionSNN is more expressive than 1-WL in testing non-isomorphic graphs. []

C DEFINITIONS OF THREE OTHER SUBSTRUCTURE DESCRIPTOR FUNCTIONS

Edge Betweenness. The betweenness centrality of an edge ¢ € F in a graph G = (V, E, X) is
defined as the sum of the fraction of all-pair shortest paths that pass through e:

cale) = Z o(v,u,Gle) ©)

)
v,ueV U(U’ , G)

where o (v, u, G) is the number of shortest paths between v and u, and o (v, u, G|e) is the number
of those paths passing through edge e.

Node/Edge Counting. GraphSNN (Wijesinghe & Wang,|2021) defines a structural coefficient based
on the number of nodes and edges in the (sub)graph. When applied to the union subgraph, we have

14

Under review as a conference paper at ICLR 2023

|Equ|

— Vouul? 7
|VUUU||VUUU_1|| 'UU'I.L|) ()

W(Squ)

where A = 1 for node classification and A = 2 for graph classification.

Ollivier Ricci Curvature. Given a node v € V in a graph G = (V, E, X), a probability vector of v
is defined as:

wy o u ;T,UJEN(U), ®)
0, otherwise

where a € [0,1) is a hyperparameter. Following (2019), we use & = 0.5 in all our
experiments. The a-Ricci curvature %, on an edge (v, u) € E is defined by:

oo p_ Wass(uy,)

o d(v,u) ©)

where Wass(+) denotes the Wasserstein distance and d(-) denotes the shortest path length between v
and u. The Wasserstein distance can be estimated by the optimal transportation distance, which can
be solved by the following linear programming:

min Y di,5) M (i)

PEN (v),jEN (u)

sty M(ij) = (i), Vi € N(v); (10)
JEN (u)
> M(i,g) = (4) Vi € N(u).
ieN (v)

D THE CONNECTION WITH HIGHER-ORDER WL TESTS

Figure 7: These two graphs can be distinguished by UnionSNN but 3-WL will fail.

As discussed in[Papp & Wattenhofer](2022), high-order WL tests are concepts of global comparisons
over two graphs. Therefore, it is arguable if the WL hierarchy is a suitable tool to measure the
expressiveness of GNN extensions as the latter focus on locality. Nonetheless, there exist some
graph structures such that the 3-WL test and GraphSNN are not stronger than UnionSNN, i.e., some
graphs can be distinguished by UnionSNN but not by 3-WL and GraphSNN. Similar analyses have
been performed in existing works, such as [Balcilar et al.| (2021)) and [Bodnar et al| (2021). As an
example, UnionSNN can distinguish the 4x4 Rook’s graph and the Shrikhande graph (as shown
in Figure which is cited from |Huang et al.| (2022)), while 3-WL and GraphSNN cannot, which
suggests that UnionSNN is stronger than 3-WL and GraphSNN on such graphs. This could be
explained by the fact that the number of 4-cycles in these two graphs are different, and UnionSNN
is able to reflect the number of 4-cycles with the consideration of E5* edges in union subgraphs.

15

Under review as a conference paper at ICLR 2023

E DATASETS STATISTICS

Statistics of the datasets used are summarized in Tables [7land [8]

Dataset Graph# Class# Avg Node# Avg Edge#
MUTAG 188 2 17.93 19.79
PROTEINS 1113 2 39.06 72.82
ENZYMES 600 6 32.63 62.14
DD 1178 2 284.32 715.66
FRANKENSTEIN 4337 2 16.90 17.88
Tox21 8169 2 18.09 18.50
NCI1 4110 2 29.87 32.30
NCI109 4127 2 29.68 32.13
OGBG-MOLHIV 41127 2 25.50 27.50
OGBG-MOLBBBP 2039 2 24.06 25.95
ZINC10k 12000 - 23.16 49.83
ZINC-full 249456 - 23.16 49.83

Table 7: Statistics of Graph Classification/Regression Datasets.

Node# Edge# Class# Feature# Training#
Cora 2708 5429 7 1433 140
Citeseer 3327 4732 6 3703 120
PubMed 19717 44338 3 500 60
Computer | 13381 259159 10 7667 1338
Photo 7487 126530 8 745 749

Table 8: Statistics of Node Classification Datasets.

F IMPLEMENTATION DETAILS

The settings of our experiments mainly follow those in\Dwivedi et al.|(2020). For graph classifica-
tion on TUDataset, we split each one into 8:1:1 for training, validation and test, respectively. We
evaluate each model with the same random seed for 10-fold cross-validation and report the average
accuracy. As for graph classification on OGB datasets, we use the scaffold splits run 10 times with
different random seeds and report the average ROC-AUC due to the class imbalance issue. For graph
regression, we use the data split of ZINC10k and ZINC-full datasets from [Dwivedi et al.| (2020).
We keep the total parameters of all GNNs less than 100K and 500K on ZINC10k and ZINC-full
datasets, respectively, by adjust the hidden dimensions. For node classification, we use the standard
split in the original paper and report the average accuracy for 10 runs with different random seeds.
We choose the best values of the learning rate from {0.02, 0.01, 0.005, 0.001}, weight decay from
{0.005, 0.001, 0.0005}, hidden dimension from {16, 64, 128, 256} and dropout from {0, 0.2, 0.4,
0.6, 0.8}. The whole network is trained in an end-to-end manner using the Adam optimizer (Kingma
& Bal 2014). We use the early stopping criterion, i.e., we stop the training once there is no further
improvement on the validation loss during 25 epochs. All experiments were conducted in a Linux
server with Intel(R) Core(TM) 19-10940X CPU (3.30GHz), GeForce GTX 3090 GPU, and 125GB
RAM.

G MORE EXPERIMENTAL RESULTS

G.1 GRAPH CLASSIFICATION ON OGB DATASETS.

We conduct experiments on OGBG-MOLHIV and OGBG-MOLBBBP datasets. As shown in Table
[91 UnionSNN outperforms all 6 baseline methods.

16

Under review as a conference paper at ICLR 2023

model OGBG-MOLHIV OGBG-MOLBBBP
GraphSAGE 70.37 £0.42 60.78 £2.43
GCN 73.49 +£1.99 64.04 £0.43
GIN 70.60 + 2.56 64.10 = 1.05
GAT 70.60 + 1.78 63.30 £ 0.53
CurvGN 73.17 £0.89 66.51 £ 0.80
GraphSNN 73.05 £ 0.40 62.84 +0.36
UnionSNN (ours) 74.44 £ 1.21 68.28 + 1.47

Table 9: Graph classification results (average ROC-AUC = standard deviation) on OGBG-MOLHIV
and OGBG-MOLBBBP datasets. The best result is highlighted in bold.

G.2 GRAPH REGRESSION

We conduct experiments on ZINC10k and ZINC-full datasets, as shown in Table [I0} UnionSNN
outperforms all 7 baseline methods, and the performance of MPNNs with our structural coefficient
(UnionGCN, UnionGIN and UnionGraphSAGE) are also beyond their counterparts. We are not
reporting the result of CurvGN on ZINC-full since the preprocessing of computes Ricci Curvature
would take more than 100 hours.

ZINC10k ZINC-full

GCN 0.4652 0.1159
UnionGCN 04211 0.0879
GIN 0.3745 0.1496
UnionGIN 0.3607 0.1343
GraphSAGE 0.4468 0.1219
UnionGraphSAGE | 0.4404 0.1134
GAT 0.4869 0.1112
GatedGCN 0.4425 0.0919
CurvGN 0.4512 -

3WLGNN 0.3616 0.0964
UnionSNN 0.3566 0.0843

Table 10: Graph regression results (test MAE) on ZINC10k and ZINC-full datasets. The best result
is highlighted in bold. The winner between a base model with and without our structural coefficient
injected is underlined.

G.3 SUBSTRUCTURE DESCRIPTOR ABLATION STUDY ON OTHER MPNN VARIANTS

In this subsection, we tried to plugin different substructure descriptors into GCN and GIN, and
the results are reported in Table [[T] and Table [I2] The best results are highlighted in bold and the
second-best results are highlighted in italic. The experiments show that the path matrix (UnionGCN
and UnionGIN) can always get the top 2 results comparing to other substructure descriptors. This
demonstrates the effectiveness of the substructure descriptor in UnionSNN.

MUTAG PROTEINS ENZYMES NCI109
GCN 7713 £524 73.89+285 6433+£583 7591+1.53
BetGCN 76.61 £8.86 73.23+6.45 63.04+£8.70 76.12+1.35
CountGCN 78.56 £4.74 75.02+4.49 64.67+7.14 77.84+1.36
CurvatureGCN | 84.59+£7.30 73.94+6.01 61.32+2.64 7835+1.74
LapGCN 79.13£6.83 7424 +552 64.57+£235 80.33+1.59
UnionGCN 81.87+3.81 75.02+250 64.67+7.14 79.50+1.82

Table 11: Ablation study on substructure descriptor based on GCN. The best result is highlighted in
boldand the second-best results are highlighted in ifalic.

G.4 EFFICIENCY ANALYSIS FOR PREPROCESSING

17

Under review as a conference paper at ICLR 2023

MUTAG PROTEINS ENZYMES NCI109
GIN 86.23 +8.17 72.86+4.14 65.83+593 80.95+1.87
BetGIN 86.70 +542 73.31+£3.20 66.83+794 81.42+1.80
CountGIN 87.25+4.78 73.49+391 66.67+453 81.83+1.62
CurvatureGIN | 86.62+5.40 62.86+8.65 64.67+5.72 80.96+2.29
LapGIN 87.81£524 71.87+4.13 68.50+797 81.54+2.38
UnionGIN 88.86 £+4.33 7322+390 67.83+6.10 8224+1.24

Table 12: Ablation study on substructure descriptor based on GIN. The best result is highlighted in
boldand the second-best results are highlighted in ifalic.

Preprocessing computational cost. UnionSNN com- PROTEINS DD FRANK
putes structural coefficients in preprocessing. We com- Betweenness 51 749 47
pare its preprocessing time with the time needed in Count_ne 44 669 41
baseline models for pre-computing their substructure ~ Curvature 304 1295 1442
descriptors, including edge betweenness (Between- Ours 73 1226 59

ness) in BetSNN, node/edge counting (Count_ne)
in GraphSNN, and Ricci curvature (Curvature) in
CurvGN. As shown in Table [I3] the preprocessing
time of UnionSNN is comparable to that of other mod-
els. This demonstrates that our proposed structural coefficient derived by SVD on the path matrix is
able to improve classification performance without significantly sacrificing the preprocessing cost.

Table 13: Time cost (seconds) for comput-
ing structural coefficients in preprocessing.

18

	Introduction
	Related Work
	Substructure-enhanced GNNs
	Path-Related GNNs

	Local Substructures to Empower MPNNs
	Massage Passing Neural Networks
	Local Substructures to Improve MPNNs
	Union Isomorphism

	UnionSNN
	Design of substructure descriptor function
	Network design
	Expressive power of UnionSNN

	Experimental Study
	Performance on Different Graph Tasks
	Ablation Study
	Case Study
	Efficiency Analysis

	Conclusions
	An Example for Our Isomorphism Concepts
	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Definitions of three other substructure descriptor functions
	The Connection with Higher-order WL Tests
	Datasets Statistics
	Implementation Details
	More experimental results
	Graph Classification on OGB datasets.
	Graph Regression
	Substructure Descriptor Ablation Study on Other MPNN variants
	Efficiency Analysis for Preprocessing

