
Modular Hierarchical Reinforcement Learning for Robotics:
Improving Scalability and Generalizability

Mihai Anca 1 Mark Hansen 2 Matthew Studley 2

Abstract
We present a novel software architecture for re-
inforcement learning applied to robotics that em-
phasizes modularity and reusability. Our method
treats each agent as a plug-and-play ROS node
that can be easily integrated into a larger HRL
system, similar to using software libraries in pro-
gramming. This modular approach improves the
scalability and generalizability of pre-trained re-
inforcement learning agents. We demonstrate the
effectiveness of our method by solving the real-
world task of stacking three objects with two dif-
ferent robots that were trained only in simulation.
Our results show that the modular approach sig-
nificantly reduces the training and setup time re-
quired compared to a vanilla reinforcement learn-
ing baseline. Overall, our work showcases the
potential of using trained agents as modules to en-
able the development of more complex and adapt-
able robotics applications.

1. Introduction
The concept of software libraries, similar to using mod-
ules or plug-and-play components, has been used in pro-
gramming since the early days of computer programming.
Libraries allow developers to reuse code and reduce the
amount of time and effort required to write new code from
scratch. Moreover, the introduction of package managers
has seen increases in productivity and the development of
more complex software systems, on top of reducing the
entry level for new software developers. Unfortunately,
that is not the case for reinforcement learning. There are
many frameworks for training reinforcement learning agents
((Makoviichuk & Makoviychuk, 2022; Raffin et al., 2021;

1University of Bristol, Bristol, United Kingdom 2University of
the West of England, Bristol, United Kingdom. Correspondence
to: Mihai Anca <mihai.anca@bristol.ac.uk>.

Workshop on New Frontiers in Learning, Control, and Dynamical
Systems at the International Conference on Machine Learning
(ICML), Honolulu, Hawaii, USA, 2023. Copyright 2023 by the
author(s).

Liang et al., 2017; François-Lavet, 2016)), however, there
are no widely accepted solutions that allow agents to be
treated as modular components that can be combined into
larger systems. This makes it difficult to reuse pre-trained
agents across different tasks or to scale up the size of the
system.

To address this issue, we propose a new software architec-
ture based on Hierarchical Reinforcement Learning (HRL)
and Robotics Operating System (ROS) (Quigley et al., 2009)
that alleviates the Sim2Real burden of previous RL meth-
ods. Our approach is modular, incorporating the use of
pre-trained agents as plug-and-play components. Moreover,
it leverages the hierarchy of tasks that is common in robotics
to create a system of modules that can be easily combined to
solve more complex problems. By treating each RL agent as
a ROS node, we are able to reuse pre-trained agents across
different tasks and integrate them into larger systems with
ease. This allows for a more scalable and generalizable
approach to reinforcement learning, which has traditionally
been limited by its lack of modularity.

Contrary to RL, robotic systems such as autonomous vehi-
cles (Munir et al., 2018) have long made use of modular
designs thanks to the ROS framework, which has estab-
lished itself as a leading open-source framework for building
robotic systems. Its suite of tools, libraries, and conventions
provides a foundation for the creation of complex robotic
applications. ROS’s key strength is its ability to facilitate
communication between different components, making it
an ideal ecosystem for the creation and sharing of a library
of pre-trained reinforcement learning agents.

The field of robotics includes both emerging technologies
and established systems. For example, humanoid assistant
robots are still in development and not yet available on the
market, while assembly-line robots have undergone numer-
ous improvements over the years. One way to accelerate
the progress of assistant robot research is by leveraging the
primitive skills of picking, placing, and manipulating that
have already been developed for assembly line robots. In
turn, the experiences gathered by interacting with more frag-
ile items and people in household environments could be
used to further upgrade assembly line robots. By sharing
knowledge and skills between these two areas of robotics,



Modular Hierarchical Reinforcement Learning for Robotics

Figure 1. Shared Object Interaction module between a robot assis-
tant solution and an assembly line system. The module comprises
three layers with interchangeable parts depending on the specifica-
tions of the task and the robotic system used.

we can create a more efficient and effective ecosystem for
robot development and innovation (see Fig 1 for a visual
example).

Although there are efforts to create large foundation models
(Ahn et al., 2022) that can, in theory, replace the described
work through fine-tuning, they often require significant re-
sources and infrastructure, making them challenging to use.
Additionally, they depend on the full release by publishers.

In the following sections, we describe the method in more
detail and demonstrate its effectiveness on the task of stack-
ing multiple objects using two separate robotic arms in the
real world. Based on the example given earlier, the task
chosen and the resulting system can be seen as a small
module in itself, which can be integrated as part of a robot
assistant or as part of an assembly line. By comparing with
a vanilla RL architecture such as (Anca et al., 2023), we
demonstrate that our approach significantly speeds up the
setup and training time, while also providing a structure that
benefits scalability.

2. Background
The software architecture described in this paper is mainly
inspired by previous hierarchical reinforcement learning
frameworks such as the Options ((Sutton et al., 1999; Stolle
& Precup, 2002)) and Feudal (Dayan & Hinton, 1992) frame-
works. A direct comparison between these and our architec-
ture is presented in Section 3.

Currently, there is a lack of standardization in adapting pre-
vious work to new tasks or combining multiple pre-trained
agents into more complex systems. Despite this, RL has
achieved great success in the area of robotics and abstract
environments, such as games. For instance, research in

complex games such as Starcraft (Vinyals et al., 2019),
Chess (Silver et al., 2017) and Go (Silver et al., 2016) have
achieved great results in abstract worlds, and recent work
in robotics has demonstrated success in complex manipu-
lation tasks such as in-hand manipulation (Andrychowicz
et al., 2020), painting (Park et al., 2022), and speed folding
(Avigal et al., 2022).

A potential solution is presented in (Andreas et al., 2017),
where the authors introduce MMRL, a modular approach
for achieving efficient and effective multitask reinforcement
learning. MMRL introduces the concept of policy sketches,
which are modular building blocks that can be combined to
create policies for different tasks. MMRL’s main strength
is its ability to learn multiple tasks concurrently, which can
lead to significant time savings, compared to learning each
task separately. However, MMRL’s performance is limited
by the accuracy of the policy sketches used, which can be
difficult to design and fine-tune. Moreover, the authors note
that the framework still requires significant manual engi-
neering and is not yet scalable to more complex domains.

A different method is presented in (Haarnoja et al., 2018).
In this paper, the authors propose a novel approach that com-
bines reinforcement learning with a compositional architec-
ture for robotic manipulation. The authors demonstrate that
their approach can effectively learn complex manipulation
tasks with minimal prior knowledge, while also being able
to generalize to unseen objects and scenarios. However, the
approach cannot scale well because it relies on finding a
good weighting of different policies for each task.

In the following subsections, we will explore the key theo-
retical concepts essential for this discussion.

2.1. Reinforcement Learning

Reinforcement learning is a machine learning technique
that trains an agent to make decisions based on feedback
from its environment, with the aim of maximizing a reward
signal defined by the system designer. In this technique, the
agent interacts with the environment by taking actions and
receiving feedback in the form of rewards. The goal of the
agent is to learn a policy that maps states to actions that
maximizes the expected cumulative reward over time. This
is usually formulated as a Markov Decision Process (MDP),
a mathematical framework for modeling decision-making
problems while dealing with uncertainty.

The expected cumulative reward over time is represented
by the expected value function, denoted as V (s), which
represents the expected reward starting from a state s and
following a particular policy. The optimal policy is the one
that maximizes the expected value function, i.e. π∗(s) =
argmax V (s). The value function can be estimated using
the Bellman equation, which expresses the value function



Modular Hierarchical Reinforcement Learning for Robotics

of a state in terms of the values of its neighbor states:

V (s) = E [R(s, a) + γV (s′)] ,

where R(s, a) is the expected reward of taking action a in
state s, s′ is the next state, γ is the discount factor that trades
off immediate and future rewards.

Deep Q-Networks (DQN) (Mnih et al., 2015) use a reinforce-
ment learning algorithm that combines Q-learning with deep
neural networks to handle high-dimensional state spaces.
DQN uses a replay buffer to store experience tuples, which
are used to update the Q-network in batches to improve
sample efficiency and stability. DQN is a good choice when
the state space is high-dimensional and discrete actions are
sufficient to solve the problem.

Proximal Policy Optimization (PPO) (Schulman et al., 2017)
is another popular reinforcement learning algorithm that
uses a trust region optimization approach to update the pol-
icy. PPO is designed to balance exploration and exploitation
by constraining the size of policy updates, which improves
stability and convergence. PPO has been shown to perform
well on a variety of tasks, including continuous control
(Rudin et al., 2022) and robotic manipulation (Andrychow-
icz et al., 2020).

2.2. Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) is a subfield of
reinforcement learning. It aims to improve the efficiency
and scalability of learning by breaking down a task into
sub-tasks with different levels of temporal and/or spatial
abstractions. The main idea is to learn a hierarchy of poli-
cies, each of which controls a different level of abstraction,
such that the policies at the lower levels can be reused for
multiple higher-level tasks, leading to faster learning and
improved generalization.

One of the earliest and most influential HRL frameworks
is the Options architecture (Sutton et al., 1999; Stolle &
Precup, 2002). It introduces ”options” as temporally ex-
tended actions that are defined as Markov decision processes
(MDPs) with their own policies and termination conditions.
The follow-up work of (Bacon et al., 2017) improves the
Options framework by formalizing it in the context of neural
networks. This approach can significantly reduce problem
complexity and increase the agent’s flexibility by enabling
it to select between different options. One limitation is
the need to train many low-level agents for each option,
without the possibility of sharing pre-trained ones due to the
manager having to re-learn the capabilities of each low-level
agent. The Options framework has been applied successfully
to robotic control (Krishnan et al., 2017) and game-playing
(Zhang & Whiteson, 2019).

Another HRL framework is Feudal Reinforcement Learning
(Dayan & Hinton, 1992). It is a structured approach to
control, where a decision-making agent, called the manager,
selects goals for sub-managers responsible for achieving
those goals. One of the significant advantages of feudal
learning is that it allows sub-managers to choose their sub-
goals that align with the assigned main goal. Thanks to the
reward and information-hiding mechanisms, sub-managers
can learn to achieve sub-goals even if the manager was
mistaken in setting them. This approach permits decision-
making at a higher level, making it easier for managers to
have a broad understanding of the system’s state and focus
on their chosen tasks’ details.

While both the Option Critic framework and Feudal RL
have been successful in different domains, the Option Critic
framework has been found to be more scalable and efficient
due to the fact that the options can be learned independently.
On the other hand, Feudal RL has been shown to be more
interpretable and better suited for hierarchical tasks due to
its clear separation of high-level goals and low-level skills.

2.3. Sim2Real

Sim2Real, or simulation-to-reality transfer, is a rapidly
growing area of robotics research. The fundamental idea is
to use simulations as a safe and cost-effective way to train
machine learning models for various robotic tasks, and then
transfer the learned policies to the real world. However, the
differences between simulation and reality in many simu-
lation tools have led to limited deployment of policies in
reality. To reduce this gap, researchers (Dimitropoulos et al.,
2022) propose more realistic simulations, as well as more
robust policies.

Current approaches to obtain robust policies include the in-
troduction of perturbations in the environment (Pinto et al.,
2017), and domain randomization (Tobin et al., 2017; Ding
et al., 2021; Peng et al., 2018). The former involves introduc-
ing changes in the environment, while the latter randomizes
various simulation parameters during training to encourage
the model to learn more generalized policies.

The proposed methods increase the complexity that the
agent must incorporate into its learning, resulting in longer
training times. To mitigate this effect, it is possible to sepa-
rate the modules that interact directly with the environment
and apply the required techniques only to them. This ap-
proach reduces the burden of complexity on higher-level
agents, while still maintaining the benefits associated with
increased generalizability of low-level agents.

3. Method
Our architecture is based on RL agents trained in isolation,
that can later be used together to form a more complex



Modular Hierarchical Reinforcement Learning for Robotics

Figure 2. The experimental setup built on top of ROS consisting of two RL agents (High Level and Low Level) communicating through the
use of a logic-based Middle Level. The high-level agent receives the observation from the Camera Node and generates a goal, which then
gets passed to the Middle Level. Here, the abstract goal is converted to 3D coordinates using the workspace dimensions and depending on
the state, the gripper is engaged. The Low Level, upon receiving the converted goal and the observation from the robot, generates per-joint
velocity targets at a lower frequency than the high and middle levels. Finally, the robot controller follows the velocity commands at a yet
higher frequency.

system. The integration is done using ROS, where each
agent is wrapped into a node. There are two types of agents:
a high-level agent, generally operating in a discrete version
of the real environment that produces abstract goals; and
a low-level agent, which produces actions that affect the
environment directly, based on the goals provided from a
linked high level.

Similarly, we have high and low layers, each of which con-
sists of one or more pre-trained agents. The communication
between these layers is facilitated by another middle layer,
which consists of logic-based nodes written by engineers.
Their role is to introduce task-specific knowledge into the
system, such as real-world measurements/dimensions, and
to convert the abstract goals into continuous ones that can
be used by the low layers. An added benefit of organising
everything in multiple layers is that each can run at dif-
ferent frequencies, allowing for available resources to be
efficiently allocated. Please see Figure 2 for an example of
how this was used in our experiments.

In the context of HRL, the proposed software architecture
is a hybrid between the Feudal (Dayan & Hinton, 1992) and
the Option-Critic (Bacon et al., 2017) frameworks. In the
Option-Critic architecture, one high-level agent is trained to
identify the states in which each of the provided low-level
agents is most suitable. Similar to our proposed method,
low-level agents are trained disjointly, however, if the avail-
ability of the low-level agents changes, the training process
must be restarted. This problem has been addressed by intro-
ducing middle layers, through which engineers can control
the logical flow of the system.

In the feudal framework, each level can only have one agent,
with higher-level agents producing goals for lower-level
agents. If we replace a low-level agent with another agent
that can achieve the given goals with the same degree of
accuracy, the overall performance will not be affected. We
maintain this property in our architecture by making use of

the same goal-setting communication style between differ-
ent levels. However, having only one agent per level can
prove limiting in complex systems, such as the robot assis-
tant example discussed in the Introduction. There, low-level
agents could directly influence the environment through
speech, movement and manipulation, therefore, having spe-
cialised nodes for each of these tasks could prove beneficial.

4. Evaluation
Task decomposition has been proven to decrease training
time in RL agents (Pateria et al., 2021; Narvekar et al.,
2020). This is especially important in real-world applica-
tions, where training data is sparse, re-training is costly,
and redundant modules are necessary to ensure the con-
tinual operation of the system. This section describes the
experiments we used to highlight the benefits of modular-
ity and hardware independence properties of our software
architecture.

Our real-world experiments involve a robotic arm positioned
in front of a table with three cubes (see Fig. 3). Each
object has an attached Aruco tag that is used to translate the
position of each object into an occupancy grid, using the
Intel RealSense camera. To successfully complete the task,
the system controlling the robot arm must stack all three
cubes at a desired goal location.

We used the 7 DOF Panda robotic arm by Franka Emika,
and the 6 DOF UR5e from Universal Robots, to show the
generalizability of our approach to two different hardware
systems. Both are controlled through the CRI (Lloyd, 2022)
library using joint-based velocity control. The Panda arm
uses the stock gripper, while the UR5e is equipped with the
Robotiq 2F-85 gripper.

We divide the task and train our agents in two simulated en-
vironments: 1) a high-level discrete environment, designed
for training an agent to plan a series of moves that would



Modular Hierarchical Reinforcement Learning for Robotics

Figure 3. Franka Panda robot (left) and UR5e robot (right) posi-
tioned in front of 3 blocks. An Intel Realsense camera is used to
track the Aruco tags attached to the blocks.

lead to stacking a tower of cubes; and 2) a low-level con-
tinuous environment, where a robotic arm is simulated and
trained to reach specific goal positions. A logic-based mid-
dle level sits in between these two, containing task-specific
knowledge, such as the dimension of the workspace and the
size of objects. Using this information, the middle layer
translates the abstract goals, generated by the high-level
agent, into 3D world coordinates that the low-level agent
can use.

4.1. High-level

Using an abstract environment to train the high-level agent
can significantly reduce the training time of each agent, al-
lowing for faster iteration through solutions. Decoupling the
high-level from the low-level agent provides the first boost
in training time, but the major step comes from working
with a discrete world.

Figure 4. High-level environment observation formed from 3
sparse matrices containing information about object, end-effector
and goal positions.

For simplicity, to prove our approach, we chose a 3x3x3
size to represent all possible object positions. The agent can
grasp, release, and move the end-effector instantly between
these positions. Its goal is to stack the three objects at a
desired location.

The observation space (Fig. 4) consists of three sparse

3x3x3 boolean matrices, with 1s representing the objects,
end-effector, and goal positions. The action space is discrete
and has a size of 29, with the first 2 actions representing
grasping and releasing, and the remaining 27 representing
possible movements.

The reward is sparse, with an additional signal for each cor-
rectly placed object. To increase the speed of convergence
even further, a negative reward has been added for releasing
objects into the air.

4.2. Low-level

Figure 5. Low-level environment built using Nvidia Isaac Gym
for training agents in controlling the Franka Panda and Universal
Robots UR5e robotic arms to reach specific 3D locations.

The low-level environment (Fig. 5) comprises a Proximal
Policy Optimization (PPO) agent trained on a robot arm
simulated in Nvidia Isaac Gym (Makoviychuk et al., 2021)
to perform the Reach task. The observation and action
space is continuous, and the goal is represented by a set
of 3D coordinates that the end-effector must reach within
the episode’s time limit. The agent learns to set velocity
targets for each joint to maintain a vertical orientation of the
end-effector while trying to reach the goal position.

Similar to the examples provided in (Makoviychuk et al.,
2021), we incentivize the agent to reach the goal position
by using a dense reward function based on the distance
between the end-effector and the goal position. The reward
is calculated as the inverse of the Euclidean distance, and is
bounded between [−1, 1] using the tanh function.

To facilitate Sim2Real transfer, we introduced domain ran-
domization (Peng et al., 2018) as noise to observations,
and slight adjustments to joint parameters such as damping,
range, friction, and mass.

Building on the approach advocated in (Böhm et al., 2022),
we included the time since the last observation as part of
the next one. We also added noise to this value to simulate
communication delays in the real world.

Consistent with (Peng et al., 2018), we found that maintain-
ing a fixed frequency control loop even when training the



Modular Hierarchical Reinforcement Learning for Robotics

Figure 6. Low-level training graphs. The task is solved upon reaching a mean reward of 40. UR5e achieves a better score due to a reduced
workspace and a lower number of joints to be controlled.

agent, has a significant positive impact on its transferability.

5. Results
Stacking items is one of the primary uses for robotic arms,
therefore, we evaluate the efficacy of our proposed method
on the task of stacking three blocks in the real world. By
comparing the required training time of our method against a
vanilla RL baseline (Anca et al., 2023), we demonstrate that
decomposing the task significantly decreases training time.
Our experiments also show that all trained agents can form
a basis for a library of reusable behaviours. Furthermore, by
employing two different robots, we prove that our system is
hardware independent.

The Stable Baselines 3 framework (Raffin et al., 2021) is
used to train a DQN agent for the high-level environment
(see Fig. 7). For the low-level, two separate agents were
trained on the Franka Panda and the UR5e robots, using
the PPO implementation provided by the RL Games frame-
work (Makoviichuk & Makoviychuk, 2022) (see Fig. 6).
Hyperparameters can be found in the Appendix.

Figure 7. High-level training graphs. The task is solved upon reach-
ing a mean reward of 0. The reward is negative to encourage the
agent to take meaningful actions at each time step.

The chosen baseline (Anca et al., 2023) is a PPO agent
trained using curriculum learning and reward shaping on the
same cube stacking task. Their method trains directly on
the task without decomposing it or applying any temporal
or spatial abstraction. Table 1 shows the significant im-

Table 1. Training time comparison between our two agents (high
and low level) and a vanilla RL baseline.

Name Resources Training time
Low-level 1 GPU - 4096 envs 24min
High-level CPU - 1 env 2h
Baseline 2 GPUs 20h

provement in training time gained by decomposing the task
across three layers. Furthermore, hyperparameter search
and fine-tuning operations have become much easier with
a modular approach. Additionally, the baseline method
does not include domain randomization, which generally
increases the complexity of the task during training. In
contrast, the low-level agent trained in this work leverages
domain randomization to enhance the transferability at a
much lower training time cost.

5.1. Real world experiment

For simple tasks - such as cube stacking, the low-level con-
troller can be replaced with an inverse kinematics (IK) logic
module. The IK module directly calculates the joint angles
required to reach a given goal pose. However, our experi-
ments use the cube stacking task only to demonstrate the
effectiveness of the proposed architecture. Our solution
can be transferred to more complex environments where IK
would fail to find a direct solution. To achieve this, we com-
bined the high-level agent with an IK module and a trained
low-level RL agent separately. We tested the combined
agents on both robots in 10 randomized trials.

The results of our experiments show that the high-level agent
is able to successfully complete the cube stacking task with
both the IK module and the trained low-level RL agent. This
demonstrates the modularity of the proposed architecture,
as the high-level agent is able to work with different types
of low-level controllers with no changes required to the high



Modular Hierarchical Reinforcement Learning for Robotics

or middle layers.

Similarly, when repeating the experiment on the second
robot, only the low-level agent controlling the robot must
be swapped with the newly trained one. The middle layer,
which is logic-based, undergoes minor modifications, such
as updating the workspace dimensions due to a slightly
reduced workspace size. However, all other modules and
communication remain the same. The software architecture
presented is, therefore, hardware independent.

All combinations of high and low levels (see Appendix
for a list of trials) successfully stack all three cubes across
all trials. Visit this link to watch a successful trial with
each robotic arm, where both the high and low levels are
controlled by RL.

6. Conclusion
We have introduced a novel software architecture designed
for reinforcement learning agents in the area of robotics.
It provides a way of separating task-specific RL solutions
from their implementations, reducing the transfer burden
to a real-world system. We have shown how this approach
leads to far faster learning and hardware-independent de-
ployment compared to a vanilla algorithm. We have proved
the modularity of this approach in our experiments by solv-
ing the real-world task of stacking three cubes, using two
different robotic arms. Due to no changes being required at
the high and middle layers, swapping one low-level agent
for another took significantly less time than building the sys-
tem from scratch. The system’s modular nature improves
scalability and generalizability, by allowing complex tasks
to be split into sub-tasks that can be more easily solved -
either through an abstract environment or direct training.
Our work suggests that building a library of pre-trained RL
agents is now possible, and will significantly reduce the
costs of applying RL on complex real-world applications.

References
Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,

David, B., Finn, C., Gopalakrishnan, K., Hausman, K.,
Herzog, A., et al. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691, 2022.

Anca, M., Studley, M., Hansen, M., Thomas, J. D., and
Pedamonti, D. Achieving goals using reward shaping and
curriculum learning. arXiv preprint arXiv:2206.02462v2,
2023.

Andreas, J., Klein, D., and Levine, S. Modular multitask
reinforcement learning with policy sketches. In Interna-
tional Conference on Machine Learning, pp. 166–175.
PMLR, 2017.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz,
R., McGrew, B., Pachocki, J., Petron, A., Plappert, M.,
Powell, G., Ray, A., et al. Learning dexterous in-hand
manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020.

Avigal, Y., Berscheid, L., Asfour, T., Kröger, T., and Gold-
berg, K. Speedfolding: Learning efficient bimanual fold-
ing of garments. In 2022 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 1–8.
IEEE, 2022.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic
architecture. In Proceedings of the AAAI conference on
artificial intelligence, volume 31, 2017.

Böhm, P., Pounds, P., and Chapman, A. C. Non-blocking
asynchronous training for reinforcement learning in real-
world environments. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
10927–10934. IEEE, 2022.

Dayan, P. and Hinton, G. E. Feudal reinforcement learning.
Advances in neural information processing systems, 5,
1992.

Dimitropoulos, K., Hatzilygeroudis, I., and Chatzilyger-
oudis, K. A brief survey of sim2real methods for robot
learning. Advances in Service and Industrial Robotics:
RAAD 2022, pp. 133–140, 2022.

Ding, Z., Tsai, Y.-Y., Lee, W. W., and Huang, B. Sim-to-real
transfer for robotic manipulation with tactile sensory. In
2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 6778–6785. IEEE, 2021.

François-Lavet, V. Deep reinforcement learning framework,
2016. URL https://github.com/VinF/deer.

Haarnoja, T., Pong, V., Zhou, A., Dalal, M., Abbeel, P.,
and Levine, S. Composable deep reinforcement learning
for robotic manipulation. In 2018 IEEE international
conference on robotics and automation (ICRA), pp. 6244–
6251. IEEE, 2018.

Krishnan, S., Fox, R., Stoica, I., and Goldberg, K. Ddco:
Discovery of deep continuous options for robot learning
from demonstrations. In Conference on robot learning,
pp. 418–437. PMLR, 2017.

Liang, E., Liaw, R., Moritz, P., Nishihara, R., Fox, R., Gold-
berg, K., Gonzalez, J. E., Jordan, M. I., and Stoica, I.
Rllib: Abstractions for distributed reinforcement learning.
arxiv e-prints, page. arXiv preprint arXiv:1712.09381,
2017.

Lloyd, J. Common robot interface, 2022. URL https:
//github.com/jlloyd237/cri.

https://www.veed.io/view/0d135379-6a6d-4241-bb32-76d26b41adc8?panel=share
https://github.com/VinF/deer
https://github.com/jlloyd237/cri
https://github.com/jlloyd237/cri


Modular Hierarchical Reinforcement Learning for Robotics

Makoviichuk, D. and Makoviychuk, V. Rl games,
2022. URL https://github.com/Denys88/
rl_games.

Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey,
K., Macklin, M., Hoeller, D., Rudin, N., Allshire, A.,
Handa, A., et al. Isaac gym: High performance gpu-based
physics simulation for robot learning. arXiv preprint
arXiv:2108.10470, 2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Munir, F., Azam, S., Hussain, M. I., Sheri, A. M., and Jeon,
M. Autonomous vehicle: The architecture aspect of self
driving car. In Proceedings of the 2018 International
Conference on Sensors, Signal and Image Processing, pp.
1–5, 2018.

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor,
M. E., and Stone, P. Curriculum learning for reinforce-
ment learning domains: A framework and survey. J.
Mach. Learn. Res., 21(1), jan 2020. ISSN 1532-4435.

Park, Y., Jeon, S., and Lee, T. Robot learning to paint
from demonstrations. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
3053–3060. IEEE, 2022.

Pateria, S., Subagdja, B., Tan, A.-h., and Quek, C. Hierar-
chical reinforcement learning: A comprehensive survey.
ACM Comput. Surv., 54(5), jun 2021. ISSN 0360-0300.
doi: 10.1145/3453160. URL https://doi.org/10.
1145/3453160.

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel,
P. Sim-to-real transfer of robotic control with dynamics
randomization. In 2018 IEEE international conference on
robotics and automation (ICRA), pp. 3803–3810. IEEE,
2018.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A.
Robust adversarial reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2817–2826.
PMLR, 2017.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., Ng, A. Y., et al. Ros: an open-
source robot operating system. In ICRA workshop on
open source software, volume 3, pp. 5. Kobe, Japan,
2009.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine

Learning Research, 22(268):1–8, 2021. URL http:
//jmlr.org/papers/v22/20-1364.html.

Rudin, N., Hoeller, D., Reist, P., and Hutter, M. Learn-
ing to walk in minutes using massively parallel deep
reinforcement learning. In Faust, A., Hsu, D., and
Neumann, G. (eds.), Proceedings of the 5th Conference
on Robot Learning, volume 164 of Proceedings of Ma-
chine Learning Research, pp. 91–100. PMLR, 08–11 Nov
2022. URL https://proceedings.mlr.press/
v164/rudin22a.html.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. arXiv
preprint arXiv:1712.01815, 2017.

Stolle, M. and Precup, D. Learning options in reinforce-
ment learning. In Abstraction, Reformulation, and Ap-
proximation: 5th International Symposium, SARA 2002
Kananaskis, Alberta, Canada August 2–4, 2002 Proceed-
ings 5, pp. 212–223. Springer, 2002.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W.,
and Abbeel, P. Domain randomization for transferring
deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp. 23–30. IEEE, 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

Zhang, S. and Whiteson, S. Dac: The double actor-critic
architecture for learning options. Advances in Neural
Information Processing Systems, 32, 2019.

https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games
https://doi.org/10.1145/3453160
https://doi.org/10.1145/3453160
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://proceedings.mlr.press/v164/rudin22a.html
https://proceedings.mlr.press/v164/rudin22a.html


Modular Hierarchical Reinforcement Learning for Robotics

A. Appendix

Table 2. High-level hyperparameters
Parameter Value
Timesteps 500000
learning rate 8e-4
batch 128
learning start 1000
gamma 0.82
target update freq 30
gradient steps 199
exploration fraction 0.0258
exploration final eps 0.067

Table 3. Low-level hyperparameters
Parameter Value
num envs 1024
ep. length 16
distReward 2.0
doneReward 7.5
actionPenalty 0.001
orietationPenalty 5
distanceThreshold 0.005
noiseSteps True
delaySteps True
controlFrequencyInv 6
mlp units [128, 128, 128]
activation elu
fixed sigma True
gamma 0.99
tau 0.95
learning rate 5e-4
lr schedule adaptive
horizon length 16
minibatch size 8192

Table 4. Experiment variants
Setup Goal
1 0 0
1 0 0
0 1 0

[1, 1]

0 1 0
0 1 0
0 0 1

[1, 1]

0 0 0
0 0 1
1 0 1

[0, 1]

1 0 1
0 1 0
0 0 0

[1, 2]

1 0 0
0 0 0
1 0 1

[0, 2]

0 0 0
1 1 1
0 0 0

[0, 1]

0 1 1
0 1 0
0 0 0

[2, 1]

0 1 0
0 1 0
1 0 0

[0, 0]

0 0 0
0 1 1
0 1 0

[2, 2]

0 1 0
1 0 1
0 0 0

[0, 1]


