
Contrastive Learning Enables Low-Bandwidth Semantic Communication

Eleonora Grassucci, Giordano Cicchetti, Danilo Comminiello*

Dept. of Information Eng., Electronics, and Telecommunications, Sapienza University of Rome, Italy

Abstract

The rapid growth of multimodal data streaming requiring
more and more bandwidth is posing new challenges for com-
munication systems. Concurrently, by transmitting only the
semantic information and not the whole original bitstream,
the novel semantic communication paradigm promises to
reduce the bandwidth requirements. However, for multi-
modal data transmission, conventional semantic communi-
cation frameworks also require conveying a considerable
amount of information for each modality, resulting in a high
transmission load. In this paper, we propose to model the se-
mantic latent space with a novel contrastive learning loss,
so as to extract the centroid representing the semantic con-
tent of the respective cluster and transmit over the channel
just one single compressed representation, regardless of the
number of modalities. We show how the proposed frame-
work allows a considerable reduction of the bandwidth while
preserving multimodal reconstruction results with respect to
conventional approaches.

Introduction
In recent years, the creation and exchange of multimodal and
multimedia content have been rapidly growing, with video
streaming representing the majority share of internet traffic
today, with estimates up to 80% 1. For wireless communica-
tions, this multimedia data comprising different modalities
such as video, audio, text, and so on, poses new challenges
in terms of bandwidth requirements for the transmission (Du
et al. 2024; Bocus, Wang, and Piechocki 2023; Tandon et al.
2021).

In the last few years, a novel communication paradigm
has gained attention, shifting from the first level (the tech-
nical level) of Shannon and Weaver (Weaver 1953) commu-
nication theory to the second one, the semantic level. The
so-called semantic communication paradigm relies on trans-
mitting only the semantic information necessary to recover
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the meaning of the message or accomplish some predefined
tasks at the receiver over the communication channel (Xie
et al. 2021; Dai et al. 2023; Choi et al. 2024). Semantic com-
munication systems promise to reduce bandwidth require-
ments and expand possible applications horizons, especially
when endowed with large learning models such as diffu-
sion models (Grassucci, Barbarossa, and Comminiello 2023;
Zeng et al. 2024; Grassucci et al. 2024) or large language
models (Zhao et al. 2024). Under this branch, language-
oriented frameworks obtain interesting results by drastically
reducing the necessary bandwidth for image transmission.
By means of image-to-text generative models, these frame-
works extract the textual description of the image and then
transmit over the channel such a compressed semantic rep-
resentation of image content (Nam et al. 2024, 2023). At
the receiver, a text-to-image generative model maps the cap-
tion back to the image domain, regenerating the intended
image. Despite the textual description allows a crucial re-
duction of necessary bandwidth with respect to transmitting
the whole image, regenerated content may severely differ
from the original one (Cicchetti et al. 2024). To address this
limitation, other works proposed to help the receiver gener-
ation with a latent representation of the original image and
give both the latent and the text embeddings to the gen-
erative model to more precisely guide the generative pro-
cess (Cicchetti et al. 2024). Although the improved results,
when dealing instead with multiple modalities, such meth-
ods do not scale well and still require transmitting a con-
sistent amount of bits over the channel, requiring minimum
the transmission of a latent representation vector for each
modality.

In this paper, we propose a novel semantic communica-
tion framework able to reconstruct multiple modalities at the
receiver while transmitting only one representation over the
channel, regardless of the number of modalities. Our frame-
work builds a semantically aligned latent space with special-
ized novel contrastive loss functions. In this space, seman-
tically similar content tends to cluster together, regardless
of the modality, and representations with diverse semantic
meanings are pushed away from each other, as shown in
Fig.2. From each semantic cluster, we can extract the av-
erage semantic information of that cluster, corresponding to
the centroid. The latter contains highly informative semantic
content, therefore, we then transmit just the centroid vector
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Figure 1: The proposed framework. The encoders are trained to build a semantically-aligned latent space and the decoders
to reconstruct the original data from the received latent vectors. At inference time, we extract the centroid of the respective
semantic cluster and transmit solely the centroid vectors over the channel. Then, the decoders reconstruct the original data
starting from the centroid vector in input preserving the semantic information of the transmitted data.

over the channel up to the receiver and use it as input to the
decoders for reconstruction. Given the semantically aligned
latent space, decoders can almost perfectly reconstruct the
data even though decoders for different modalities receive
the same single latent vector in input. Therefore, together
with comparable reconstructions, the proposed method can
crucially reduce the bandwidth required for the transmission
of multimodal data by 67% in the three-modal case and po-
tentially to 1/n in the case of n modalities.

In summary, our main contributions are: i) We propose
a novel semantic communication framework based on con-
trastive learning that crucially reduces the bandwidth re-
quired for transmission. ii) We propose a novel contrastive
loss function based on centroids to build a more aligned se-
mantic space. iii) We test the framework in a vanilla three-
modal scenario, proving that we can reduce the required
bandwidth while preserving the reconstruction performance.

Proposed Method
Preliminaries
Let us consider a batch of B multimodal data samples, we
can extract latent representation from each sample and each
modality using encoder functions E. This results in N × B
embeddings that we can define as follow: mij is the j-th
embedding of the i-th modality normalized at norm 1:

mij = normalized(Ei(xij)). (1)

Given xij the input j-th sample of modality i and given
mij its normalized latent representations, we can pass this
embedding to the corresponding decoder of the i-th modality
Di obtaining x̂ij as the reconstructed j-th sample for modal-
ity i-th.

x̂ij = Di(mij)). (2)

Finally, given a batch of latent embeddings, we can com-
pute B centroids by simply averaging latent vectors corre-
spondent to co-occurrent input sample, i.e. :

cj =
1

N

N∑
i=0

mij . (3)

Framework
The proposed framework is composed of three encoder func-
tions at the sender that take care of mapping the original
data to the latent space, and three corresponding decoders
at the receiver, whose aim is to recover the original data
from the latent representation received. During training, the
encoders learn to map the multimodal data into the latent
space in a semantically meaningful way, while the decoders
learn to reconstruct the original data from the latent vectors
provided by the encoders. At the end of the training, the la-
tent space will be semantically aligned and embeddings with
the same semantic content will be clustered close to each
other, regardless of the original modality. Therefore, during
the transmission of content at inference time, we can extract
the centroid of the corresponding cluster and solely trans-
mit this vector over the channel, without requiring the trans-
mission of one vector for each modality, crucially reducing
the bandwidth requirements. Figure 1 shows the structure of
the framework with the example of transmitting the image
containing the 3 digit, the spectrogram of the spoken audio
”three”, and the textual description of the number. Given the
semantically aligned space, although the transmission of the
centroid and not of each modality-specific latent vector, the
decoders are able to properly reconstruct the original data.

Loss Functions
For each sample i and for each modality j, given mij its
normalized latent representation in (1) and cj the centroid
for the j-th class as defined in (3), the aim of our training



process is to align mij to the corresponding centroid cj and
push away from the others.

The proposed contrastive loss function is based on the
centroid computation and it is defined as:

LM2C = − 1

B

N∑
i=1

B∑
j=1

log
exp(m⊤

ijcj/τ)∑B
k=1 exp(m⊤

ikck/τ)
, (4)

LC2M = − 1

B

N∑
i=1

B∑
j=1

log
exp(c⊤j mij/τ)∑B
k=1 exp(c⊤k mik/τ)

. (5)

Moreover, to encourage a sparsification in the latent space
we introduce an additional loss function that is in charge of
uniformly distributing the centroind all over the latent space:

LCentroids = − 1

B

B∑
j=1

log
exp(c⊤j cj/τ)∑B
k=1 exp(c⊤j ck/τ)

. (6)

Normalizing centroids vector to the unitary norm, the utility
of the latter loss function is only to spread away centroids
that are different from each other by augmenting the angle
between them.

The final centroid contrastive learning loss function takes
the form:

LCL =
1

2
(LM2C + LC2M ) + LCentroids. (7)

Regarding the reconstruction part, for each modality, we
can design specific reconstruction losses Li. Summed all to-
gether we have the total reconstruction loss:

LR =

N∑
i=0

B∑
j=0

Li(x̂ij ,xij). (8)

In this work, as reconstruction losses, we consider a mean
absolute error loss for the audio modality, a mean squared
error for the image one, and a cross-entropy loss for the tex-
tual one.

The final loss function is a weighted sum between the con-
trastive loss and the reconstruction loss:

Ltot = LCL + λLR, (9)
with λ a hyperparameter used to balance the two loss func-
tions. In our experiments, we set λ = 10.

Experiments
We consider a vanilla scenario in which the sender has three
different modalities to transmit: an image, an audio related
to the image, and their textual description, all of them en-
coded with three different encoders. The receiver aims to re-
cover the original data for each modality by means of three
different decoders. The whole framework is shown in Fig. 1.

Datasets. We select two well-known datasets for our
vanilla scenario, the MNIST dataset, comprised of 60,000
images, and the Audio-MNIST dataset (Becker et al. 2023),
which comprises 30,000 audio samples of spoken digits (0-
9) from diverse speakers with different accents. We compute
the Mel spectrograms with 128 nmels, fmax at 8000, hop
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Figure 2: Aligned latent space with latent dim equal to 3
with three different modalities: text (stars), audio (triangles),
images (squares). The classes are clustered together accord-
ing to the semantics (i.e., the digits), regardless if they come
from different modalities.
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Figure 3: Reconstructed images for conventional method
(second row) and ours (third row) with latent dim at 32.

length equal to 512, and 2048 nfft. Textual descriptions are
the digit words associated with the images and the audio,
i.e., ”seven” for the digit 7.

Models. We build three vanilla autoencoders for image,
audio, and text reconstruction. As a vision encoder, we con-
sider a two-layer convolutional network (32 and 64 filters,
respectively) with ReLU activation functions, a Max Pool-
ing, and a final MLP layer to map the features into the la-
tent space. To encode the audio modality, instead, we build a
three-layer convolutional encoder with 16, 32, and 64 filters,
respectively, ReLU activation functions, and an MLP layer
to map also audio features into the latent space. Instead, the
audio decoder is a stack of MLP layers of dimensions 64,
128, 192, and 128, with the final layer outputting 1 channel
representing the audio spectrogram channel. We consider a
simple encoder with Word2Vec (Mikolov et al. 2013) and
a decoder with three MLP layers for autoencoding the text
modality. Being comprised of ten words (numbers from 0 to
9), we encode our text corpora in one-hot encoding vectors.

Training. We experiment with different latent dimensions
equal to 3, 16, or 32. Interestingly, setting a latent dimen-



Table 1: Results for audio reconstruction (MAE), image reconstruction (MSE), and text reconstruction (Acc). Additionally,
Recall at 1 (R@1) score measuring the semantic alignment of the latent space. Moreover, we report the total transmitted
information (TTI), measured as the dimension of latent vectors transmitted, and the TTI over the amount of total original
information (TOI) for the conventional reconstruction method and our proposed framework.

Method Latent dim. MAE (↓) MSE (↓) Acc (↑) R@1 (↑) TTI TTI/TOI

Conventional 3 0.099 0.049 100.0 100.0 9 0.002
Ours 3 0.099 0.050 100.0 100.0 3 (-67%) 0.001

Conventional 16 0.078 0.016 100.0 100.0 48 0.012
Ours 16 0.088 0.033 100.0 100.0 16 (-67%) 0.004

Conventional 32 0.079 0.014 100.0 100.0 96 0.025
Ours 32 0.091 0.038 100.0 100.0 32 (-67%) 0.008

sion of 3 allows us to directly visualize (and, thus, control)
the true latent space the models shape, while for higher di-
mensions the plot is not possible without some projections or
stochastic algorithms like tSNE or U-MAP. The learning rate
is fixed for all the models to 1e−4, the batch size is equal to
10 and we train the framework for 15000 iterations setting
λ = 10. During training, the encoders are encouraged by the
contrastive learning loss LCL to build a semantically mean-
ingful latent space with embeddings of different modalities
with the same semantic content (i.e., the same digit) to clus-
ter together. Concurrently, the reconstruction loss LR helps
decoders to reconstruct the original data at the receiver. Dur-
ing training, the decoders receive in input their respective
latent vectors encoded by the encoders, therefore the vision
decoder receives the vision embedding, the audio decoder
receives the audio embedding, and so on. At inference time,
once the latent space is properly modeled, all the decoders
receive as input a single (and equal for each of them) latent
vector, which is the centroid of the cluster with semantic
information corresponding to the original multimodal data
transmitted.

Metrics. To evaluate the performance of the proposed
framework, we analyze all the aspects of the framework,
ranging from the quality of reconstructions to a measure of
the semantic alignment of the latent space. We evaluate the
audio reconstruction with the mean absolute error (MAE),
the image reconstruction with the common mean squared er-
ror (MSE), and the text one with the Accuracy (Acc), as we
encode this data into one-hot encoding vectors. Finally, to
measure the alignment of the latent space, we compute the
recall at 1 (R@1) for the task of multimodal video-audio-
text retrieval.

Results. The first determining result to analyze is the se-
mantic alignment of the latent space, which is crucial to pro-
vide meaningful semantic information by transmitting the
clusters centroid at the decoders. By setting the latent di-
mension to 3, we can directly plot this space and have a look
on how the encoders and the contrastive loss contribute to
shape the space. Figure 2 shows the resulting latent space.
Regardless of their modality, latent vectors representing the
same semantic content, that is the digit, tend to cluster to-
gether (by color). This proves the effectiveness of the con-
trastive learning training with the centroid loss proposed in

(4) and that centroids will be meaningful and representative
of their respective cluster.

Figure 3 shows some random samples of image recon-
struction. The first row is the original content, the second
row corresponds to images reconstructed by the decoder re-
ceiving in input the encoded image latent vector, therefore
as in classical recovering approaches. Finally, the third row
shows the reconstructed images with the proposed method,
thus when the decoder receives the centroid of the seman-
tic cluster and reconstructs the images from it. As it is clear
in Fig. 3, although the quality is a little bit degraded, the
semantic content is highly preserved also in the proposed
method, in which digits are clearly recognizable. Therefore,
we can conclude that the semantic communication has been
effectively accomplished.

Finally, the results of the quantitative evaluation are re-
ported in Tab. 1 for different latent dimensions. Interestingly,
for the smaller latent dimension, our method achieves barely
the same results as conventional methods, which, however,
require much more bandwidth for transmission. Indeed, our
method allows a consistent reduction of bits equal to 67%
while preserving performance in almost all scenarios. With
a dimension equal to 32 our method still obtains good re-
sults, but probably conventional methods manage to encode
more details in the latent vector and achieve slightly better
performance at a high cost in terms of bandwidth require-
ments.

Conclusion

In this paper, we proposed a novel semantic communication
framework for multimodal data communication. The frame-
work is based on a novel contrastive learning loss function
that shapes a semantically aligned latent space allowing a
crucial reduction of transmitted information over the com-
munication channel. During inference, the proposed frame-
work transmits over the channel only the centroid associated
with the respective cluster allowing a considerable reduc-
tion of bandwidth requirements, while the receiver decoders
still reconstruct original data with barely any loss in perfor-
mance.
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