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Abstract

The task of inductive link prediction in (discrete) attributed multigraphs infers
missing attributed links (relations) between nodes in new test multigraphs. Tra-
ditional relational learning methods face the challenge of limited generalization
to test multigraphs containing both novel nodes and novel relation types not seen
in training. Recently, under the only assumption that all relation types share the
same structural predictive patterns (single task), Gao et al. (2023) proposed a link
prediction method using the theoretical concept of double equivariance (equivari-
ance for nodes & relation types), in contrast to the (single) equivariance (only for
nodes) used to design Graph Neural Networks (GNNs). In this work we further
extend the double equivariance concept to multi-task double equivariance, where
we define link prediction in attributed multigraphs that can have distinct and poten-
tially conflicting predictive patterns for different sets of relation types (multiple
tasks). Our empirical results on real-world datasets demonstrate that our approach
can effectively generalize to test graphs with multi-task structures without access
to additional information.

1 Introduction

Discrete attributed multigraphs (e.g., knowledge graphs, multilayer networks, heterogeneous net-
works, etc.), which we refer as attributed graphs for simplicity, have been widely used for modeling
relational data, which can also be expressed as a collection of triplets. Storing factual knowledge
in attributed graphs enables their application across a wide variety of tasks, encompassing complex
question answering [15, 21] and logical reasoning [8]. Since relational data is often incomplete,
predicting missing triplets, or, equivalently, predicting the existence of a relation of a certain type
between a pair of nodes is an important task. However, conventional methods are generally limited
to predicting missing links for relation types observed during training. As a consequence, standard
attributed link prediction methods are incapable of making predictions that involve completely new
relation types over completely new nodes (or new graphs), which is arguably the most difficult and
perhaps the most interesting link prediction task in attributed graphs.

In this work we focus on the task of predicting missing triplets in test attributed graphs that contain
completely new nodes and new relation types (i.e., no training nodes and no training relations).
We assume that no extra information is available either at train or test time, apart from the input
(observable) graph with its nodes and relation types. As a result, existing zero-shot methods [35,
19, 27], which rely on textual descriptions and/or ontological information of the relation types, and
few-shot learning methods [50, 7, 41, 56, 22], which require a shared observable graph between
train and test set, are unable to perform our task. Recently, Gao et al. [18], Lee et al. [26] have
tackled this problem by proposing novel approaches capable of generalizing to completely new
nodes and relation types without requiring any extra information. More precisely, in order to solve
this task, Gao et al. [18] introduced double (permutation) equivariant models for attributed graphs.
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Figure 1: An example of a setting where not all relation types are exchangeable. Train graph contains
relation types in the racing and the gymnastic communities. Test graph contains relation types in a
business community.

Intuitively, these models treat every type of relation and all nodes as interchangeable with each other,
effectively capturing what can be referred to as the double exchangeability assumption. Since the
new test relation types are likewise assumed to be exchangeable with the training ones, the missing
test triplets can be predicted directly using knowledge acquired during training. However, in some
real-world attributed graphs, this double exchangeability may leave performance on the table since it
can make the model excessively equivariant. For instance, consider the scenario in Figure 1 where
the training graph comprises two weakly-connected knowledge bases representing different sports
communities (racing and gymnastic) with some different relation types. The predictive patterns for
relation types in those communities might differ and potentially be contradictory, implying that not
all relation types are exchangeable. In our example, two racing teammates necessarily have the same
team principal in the racing community, and therefore (Horner, team_principal_of, Pérez) can be
predicted from ((Horner, team_principal_of, Verstappen), (Verstappen, teammate_of, Pérez)).
On the contrary, two gymnastic teammates might have different coaches and (Landi, coach_of, Lee)
should not be predicted when seeing ((Landi, coach_of, Biles), (Biles, teammate_of, Lee)). Due
to this contradictory patterns, team_principal_of and coach_of are not exchangeable. Similarly,
the new test relation types might be exchangeable only with a subset of the training ones. In our
example, boss_of is exchangeable with team_principal_of, but not with coach_of.

Our approach. Our work relaxes the double equivariance proposed by Gao et al. [18] by learning
to partition the set of relations into distinct clusters, where each cluster exclusively contains relation
types that are exchangeable among themselves. We demonstrate that these clusters of relation types
can be understood as distinct tasks in a multi-task setting. Consequently, our method learns multiple
double equivariant graph models, one for each task (cluster). At test time, we employ an adaptation
procedure to assign new relation types to the most appropriate cluster, thus ensuring generalization to
previously unseen relation types.

Main contributions. Our main contributions are as follows: 1. We develop a method capable
of modeling the existence of distinct and contradictory predictive patterns among various sets of
relation types by treating them as separate tasks in a multi-task setting; 2. We propose a test-time
adaptation procedure that learns task assignments for new relation types, enabling the application of
our proposed method to entirely new test relation types; 3. We create new benchmark datasets that
fit the multi-task scenario we focus on; 4. We develop a novel evaluation metric to more effectively
measure the performance of existing methods in predicting missing triplets.

2 Related work

Link prediction in attributed graphs. Existing link prediction methods in attributed graphs can
be categorized into factorization-based approaches [31, 6, 48, 52, 32, 44, 25, 13, 30, 42, 9] and
GNN-based models [39, 45, 16, 55, 60]. Although the former exhibit remarkable performances,
especially when combined with appropriate training strategies [37, 23], they are typically restricted
to transductive settings. Conversely, GNN-based models can also be applied to inductive scenarios
involving new nodes in test [43, 61, 1, 59, 17]. All these methods, however, cannot work when
presented with new relation types in test, which instead represents the main interest of our paper.
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Zero-shot and few-shot learning on new relation types (with side information). Recent works,
aiming to predict missing triplets involving new relation types, consider the zero-shot or few-shot
learning paradigm. To generalize to new relation types, zero-shot methods [35, 19, 27] use additional
contextual information, such as the semantic descriptions of the relation types, making them unfit
for our scenario. In contrast, few-shot methods primarily adopt a meta-learning paradigm [50, 7, 41,
56, 22] to discover similarities between the new relation types and the ones used during training,
by learning from a limited number of support triplets. These methods, however, typically require
the support triplets to be connected to the seen nodes and relation types. For instance, Huang et al.
[22] proposed to measure the similarities between the subgraphs around the target triplet involving
the unseen relations with those involving the training relations, assuming the presence of a shared
observable graph between training and test sets. This setting is more constrained than ours since we
consider a completely new graph at test time involving no nodes and relations seen during training.

Double inductive link prediction (without side information). Our work extends ISDEA [18],
which introduces the double inductive link prediction task and the concept of double (permutation)
equivariant graph models. These models are specifically designed to capture the double exchange-
ability assumption on the data, where, intuitively, nodes as well as relation types are interchangeable
with each other. Importantly, these models are capable of generalizing to unseen relations, aligning
to our task of interest. ISDEA also demonstrated that InGram [26], another recent approach for
handling new relation types in test, generates positional embeddings that exhibit double equivariance
in distribution, and introduced a corresponding method to enhance InGram’s model, referred to as
DEq-InGram. In this paper we build upon ISDEA’s model and address the shortcomings of double
exchangeability. As we shall see next, approaches modeling the double-exchangeability assumption
are unable to properly model the difference in predictions between non-exchangeable relation types
that have different (and potentially contradictory) predictive patterns. Due to space constraints, we
refer the reader to Appendix A for detailed comparisons with prior work.

3 Problem Definition

In this section we introduce the notation used through the remainder of this work. We consider an
attributed graph (multigraph) as a finite collection of typed relations between nodes. Formally, let
V be a finite discrete set of nodes and R a finite discrete set of relation types. A triplet (u, r, v) in
the attributed graph indicates that a node u ∈ V is linked to another node v ∈ V by means of a
relation of type r ∈ R. Without loss of generality, we assume node and relation sets are numbered,
that is V := {1, 2, . . . , N} and R := {1, 2, . . . , R}, where N ≥ 2 and R ≥ 2. Consequently, we
can represent an attributed graph in tensor form as A ∈ AN,R, with AN,R = {0, 1}N×R×N , where
Au,r,v = 1 if and only if (u, r, v) is a triplet in the attributed graph.

Link prediction in attributed graphs can be cast as a self-supervised learning problem [12, Appendix
B], where an input graph A is assumed to be the result of the application of an unknown mask
M ∈ {0, 1}N×R×N on an unknown attributed graph A(full), i.e., A = M ⊙ A(full) with ⊙ the
element-wise product, where the masking process hides the existence of certain triplets. The goal of
a model is to predict the existence of the masked (or missing) triplets from A. That is, if M is the
complement mask defined as M = 1−M , the model is asked to predict P (M ⊙ A(full) | A).

In this work we focus on predicting missing triplets in new attributed graphs with new relation types.
Given a training graph A(tr), with node set V (tr) and relation set R(tr), we aim to learn a model capable
of accurately predicting missing triplets in a test graph A(te), with node set V (te) and relation set R(te),
involving both new nodes and new relations types: V (tr) ̸⊇ V (te) and R(tr) ̸⊇ R(te). To accurately
predict missing test triplets without any extra information, such as contextual information (as in
zero-shot methods [35, 19, 27]) or task labels (few-shot methods [50, 7, 41, 56, 22]), A(te) must exhibit
predictive patterns found in A(tr), which implies that missing test triplets can be predicted using the
knowledge acquired from training, even if the relations convey entirely different meanings. Gao et al.
[18] recently proposed double equivariant models, capturing the concept of double exchangeability,
that can solve our task of interest, namely the existence of new relation types at test time without
extra information. However, as we discuss next, the methods in Gao et al. [18] require that all relation
types share a single predictive pattern.
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Figure 2: Example of our multi-task scenario. Solid arrows constitute the input (or observable)
triplets, whereas the blue, dashed arrows represent the missing triplets to be predicted. The training
attributed graph exhibits conflicting predictive patterns for parent_of and child_of. The new test
relation advisor_of follows the same predictive pattern as parent_of.

Existing gap: Learning to predict new relation types on graphs with conflicting predictive
patterns. To the best of our knowledge, no existing method aims at solving the problem of predicting
missing triplets involving new relation types without the need of extra information when relations
exhibit different and potentially conflicting predictive patterns. Figure 2 illustrates an example of
this setting, with solid arrows representing the input graph and dashed arrows denoting the missing
triplets to be predicted. In this example, the training graph A1 has family-tree relationships, while
the test graph A2 has relations in academia. Our goal is to learn predictive patterns from A1 and
generalize to predict the missing triplets in A2. However, as demonstrated in the figure, the training
graph A1 contains conflicting predictive patterns. The type of relation between Alice and Cole is the
first relation type in the 2-hop chain ((Alice, parent_of, Bob), (Bob, sibling_of, Cole)), which is
parent_of. Conversely, the type of relation between Dina and Faye is the second relation type in the
2-hop chain ((Dina, sibling_of, Elmo), (Elmo, child_of, Faye)), which is child_of. Having
conflicting predictive patterns in training does not prevent accurate prediction of test triplets, as long
as we can correctly identify which pattern, among the learned ones, a test relation follows. In our
example, the true test relation type advisor_of between Xena and Zane in A2 shares the same
predictive pattern as the relation parent_of in A1, as can be inferred from the observable triplet
(Ula, advisor_of, Wynn). Since the pioneering work by Gao et al. [18] focuses on a single double
equivariant model, it learns a single model for all predictive patterns, which makes the model unable
to distinguish the predictions of parent_of and child_of, and, consequently, between those of
advisor_of and labmate_of in the example above.

4 A Multi-Task Perspective on Inductive Learning of New Relation Types

In the previous section we noted that accurate prediction of missing triplets in a test graph with
completely new relation types requires the test graph to exhibit the similar predictive patterns as the
training graph. Expanding upon this concept, we next define a predictive pattern through the notion of
relation type exchangeability and describe a task as a set of relation types sharing the same predictive
patterns. This allows us to frame the problem of predicting with new relation types as entailing
multiple tasks, where we learn different predictive patterns for each task. Correctly performing on all
tasks will then result in accurate predictions of test triplets having new relation types, as long as we
can identify to which task they belong to.

4.1 Re-imagining Inductive Learning as Relational Tasks

We begin by defining the concept introduced in Gao et al. [18] of exchangeability between relation
types, which can informally be understood as the property of (certain) relation types to be inter-
changeable with each other. This property encapsulates our notion of shared predictive patterns, as
exchangeable relation types necessarily follow the same patterns.
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Definition 4.1 (Exchangeability between relation types [18]). Let A ∈ AN,R be a random variable
representing an attributed graph with node set V = {1, 2, . . . , N} and relation set R = {1, 2, . . . , R}
and two relation types r, r′ ∈ R, we say that r and r′ are exchangeable if there exists some node
permutation π ∈ SN and relation type permutation σ ∈ SR such that the following two conditions
are satisfied:

σ ◦ r = r′ and P (A) = P (σ ◦ π ◦ A),

where ◦ denotes the permutation actions of π on the nodes and σ on the relation types in a graph.
That is, for all u, v ∈ V and r ∈ R, the symmetric group SN and the symmetric group SR act on a
graph via (π ◦ A)π◦u,r,π◦v = Au,r,v and (σ ◦ A)u,σ◦r,v = Au,r,v. We denote the exchangeability
between relation types by ∼e.

A similar formalization can be made for nodes (as commonly defined in the graph neural network
literature [51, 29]). Due to space limits, we omit this definition, but we consider nodes to be
exchangeable throughout the paper.

In the following, we introduce our theoretical contributions. We start by proving that the exchangeabil-
ity property between relation types can be regarded as a higher-order relation between the elements
in R, or, more precisely, as an equivalence relation on R.
Lemma 4.2. The exchangeability between relation types ∼e defines an equivalence relation on R,
since it satisfies the reflexivity, symmetry, and transitivity properties.

The importance of Lemma 4.2 is in that it allows us to partition the set of relations R into disjoint
equivalence classes. Each equivalence class contains relation types that are exchangeable with
each other, whereas relation types that are not exchangeable belong to different equivalence classes.
Consequently, these partitions of R can naturally be considered as different tasks, dubbed relational
tasks henceforth, each containing relation types that share the same predictive patterns.
Definition 4.3 (Relational tasks). We define a relational task with respect to a relation type r ∈ R of
an attributed graph A with node set V and relation set R to be the equivalence class [r] under ∼e, i.e.,

Tr := [r] = {r′ ∈ R : r′ ∼e r}. (1)

Viewing R as partitioned into a hidden set of disjoint relational tasks allows us to consider the
problem from a multi-task perspective. Our goal then becomes finding a model able to accurately
learn all tasks, specializing on the patterns unique to each task, which are potentially conflicting
among each other. Such model will then be asked to recognize which task a test relation type belongs
to, in order to predict missing test triplets by applying what was learned in train for the same task.

4.2 Handling Conflicting Patterns for Different Relation Types as a Multi-task Scenario

Definitions 4.1 and 4.3 allow us to formalize in the following definition the attributed graphs of our
interest, such as the one introduced in Section 3, which we dub multi-task double-exchangeable
attributed graphs. We adopt the term double exchangeable from Gao et al. [18], since it inherently
captures the idea of exchangeability both between node ids and between relation types – a shared
concept between our work and theirs – but we extend it to our multi-task scenario.
Definition 4.4 (Multi-task double-exchangeable attributed graph). Given an attributed graph A, with
node set V and relation set R, A is said to be a multi-task double-exchangeable attributed graph if it
has more than one relational tasks, i.e.,

|{Tr : r ∈ R}| > 1.

Equivalently, A is a multi-task double-exchangeable attributed graph if there exist two relation types
r, r′ ∈ R such that r ̸∼e r

′.

In words, the training graph is a multi-task double-exchangeable attributed graph, in which each
task comprises exchangeable relation types that follow the same predictive patterns, while distinct
tasks may have conflicting patterns. Furthermore, our test graph is a multi-task double-exchangeable
attributed graph, with tasks that constitute a subset of the training ones.

Definition 4.4 can be specialized to the case of a single relational task (Definition 4.3), where all
relations belong to the same equivalence class (Lemma 4.2). An example of this scenario happens
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when considering only the boxed subgraph A′
1 of the training graph in Figure 2. If we restrict our

training graph to A′
1 and maintain A2 as the test graph, then the true test relation type advisor_of

between Xena and Zane in A2 can accurately be predicted by the model from Gao et al. [18]. This
is because it follows the only predictive pattern present in the data, which is the one of the relation
parent_of. Nonetheless, the single-task configuration represents a particular case of the more
general multi-task setting, which accommodates the existence of potentially conflicting predictive
patterns of different relations, such as those in the complete training graph A1 in Figure 2.

5 Proposed Method

In this section we introduce our framework to learn the different predictive patterns which are specific
for each task and a procedure to generalize to new test relation types. Our proposed architecture
models exchangeability between relation types belonging to the same task while differentiating them
from the learned patterns of other tasks. To adapt to the unseen relations in the test attributed graph,
we propose a test-time adaptation procedure to identify the tasks to which test relations belong.

5.1 Multi-Task Double-Equivariant Linear Layer

Suppose we knew that the ground-truth relational tasks {Tr : r ∈ R} in Equation (1) given an at-
tributed graph A with node set V and relation set R. 1 Without loss of generality, consider an arbitrary
ordering of the relational tasks and denote the ordered relational tasks as T (1), T (2), . . . , T (K), where
T (k) is the k-th ordered task of a total number of K tasks. We denote by i : R → {1, 2, . . . ,K}
a task index mapping, such that T (i(r)) = Tr. Inspired by the equivariant framework proposed by
Maron et al. [28], Bevilacqua et al. [4] we present the following Multi-Task Double-Equivariant
Linear Layer (MTDE linear layer), which updates representations at every layer t as

H
(t+1)
·,r,·,· = L

(t)
1

(
H

(t)
·,r,·,·

)
+ L

(t)
2

(
1 ⊗ pi(r) +

∑
r′∈T (i(r))\{r}

H
(t)
·,r′,·,·

)
+

∑
k=1,...,K
k ̸=i(r)

L
(t)
3

(
1 ⊗ pk +

∑
r′′∈T (k)

H
(t)
·,r′′,·,·

)
, (2)

where H(t) ∈ RN×R×N×d is the layer input with H(0) = A, H(t)
·,r,·,· denotes the graph representa-

tions specific to relation type r, and L
(t)
1 , L

(t)
2 , L

(t)
3 : RN×N×d → RN×N×d′

are GNN layers that
output pairwise representations with N the number of nodes, R the number of relations and d, d′

appropriate dimensions. The vectors pk ∈ Rd, k = 1, 2, . . . ,K are learnable positional embeddings,
each specific to the task T (k), which are repeated on the last dimension through the Kronecker
product with the matrix of all ones, 1 ∈ {1}N×N×1. The sums in

∑
r′∈T (i(r))\{r} H

(t)
·,r′,·,· and∑

r′′∈T (k) H
(t)
·,r′′,·,· can be replaced by any other set aggregations.

Note that if the total number of relational tasks K is 1, then Equation (2) recovers the single-task
double-equivariant layer proposed in Gao et al. [18]. Indeed, if K = 1, then i(r) = 1 for any r ∈ R
with T (1) = R, and Equation (2) can be rewritten as

H
(t+1)
·,r,·,· = L

(t)
1 (H

(t)
·,r,·,·) + L

(t)
2

( ∑
r′∈R\{r}

H
(t)
·,r′,·,·

)
, (3)

where the term 1 ⊗ pi(r) was absorbed into L
(t)
2 .

The role of positional embeddings. Equation (2) uses the positional embedding vectors pj ∈ Rd,
j ∈ {1, . . . ,K}, to allow representations of relation types belonging to different tasks to be different,
even when they have isomorphic observable graphs. In order to understand the role of pj in our
architecture, we refer once again to Figure 2. Without the inclusion of the positional embeddings,
Equation (2) would give the same representation to the missing triplet involving parent_of and the
missing triplet involving child_of, even if those relations belong to two different relational tasks,
because the inputs to L

(t)
1 , L

(t)
2 , L

(t)
3 are the same, starting from t = 0.

1In Section 5.2 we will remove this assumption and show how to learn task memberships.
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5.2 Learning Soft Task Membership via Attention Weights

The previous section assumes we know the ground-truth assignment of relation types to tasks. In
what follows, we learn such assignments from data only. Intuitively, we need to partition all relations
R into disjoint equivalence classes, where each partition corresponds to a unique relational task. This
process is a discrete optimization problem, which we relax into a continuous one by means of an
learnable attention matrix α ∈ [0, 1]R×K̂ , where K̂ is a hyperparameter controlling the maximum
number of partitions we allow our architecture to model (which is potentially different from K, the
ground-truth number of relational tasks unknown to us). The individual attention value αr,k denotes
the degree (or probability) that the relation r ∈ R belongs to the k-th equivalence class, with the
constraint that

∑K̂
k=1 αr,k = 1 for all r ∈ R. Hence, the MTDE linear layer of Equation (2) can be

relaxed into what we called the soft MTDE linear layer:

H
(t+1)
·,r,·,· = L

(t)
1

(
H

(t)
·,r,·,·

)
+ L

(t)
2

(
1 ⊗ pî(r) +

∑
r′∈R\{r}

αr′ ,̂i(r)H
(t)
·,r′,·,·

)
+

∑
k=1,...,K̂

k ̸=î(r)

L
(t)
3

(
1 ⊗ pk +

∑
r′′∈R\{r}

αr′′,kH
(t)
·,r′′,·,·

)
, (4)

where î(r) = argmaxk=1...K̂ αr,k, which ideally should give the correct id i(r) of the ground-truth
relational task Tr that the relation r belongs to. The final architecture, which we name the Multi-Task
Double-Equivariant Architecture (MTDEA), is obtained by stacking T soft MTDE linear layers to
produce a graph representation Γ(A) ∈ RN×R×N×d for a given attributed graph A:

Γ(A) := L(T )
(
f
(
· · · f

(
L(1)(A)

)
· · ·

))
,

where f is a non-polynomial activation such as ReLU. The predictions of individual triplets can then
be obtained through a triplet score function Γtri : V ×R×V ×AN,R → [0, 1] followed by a sigmoid
activation function, i.e., Γtri((u, r, v),A) := σ(Γ(A)u,r,v,·).

5.3 Dual-Sampling Loss with Task Membership Regularization

Existing literature that tackles link prediction in attributed graphs relies on a loss as based on entity-
centric negative sampling [52, 39, 61], where for each ground-truth (existing) triplet (u, r, v), the
tail node v of (u, r, v) is randomly corrupted to obtain a fixed number of negative samples (u, r, v′).
Such entity-based negative sampling is insufficient for our loss because correctly predicting the
relation type between two nodes is equally important as correctly predicting the tail node given the
head node and relation type. To this end, we propose the dual-sampling task loss Ldual, which given
the training attributed graph A(tr) with node set V (tr) and relation set R(tr), makes use of n negative
samples obtained by corrupting tail nodes and m negative samples obtained by corrupting the relation
types from positive samples, that is

Ldual := −
∑

(u,r,v)∈S

(
log(Γtri((u, r, v),A(tr)))+

1

n

n∑
i=1

log(1− Γtri((u, r, v
′
i),A

(tr))))

+
1

m

m∑
j=1

log(1− Γtri((u, r
′
j , v),A

(tr))))

)
, (5)

where S := {(u, r, v) ∈ V (tr) ×R(tr) ×V (tr) | A(tr)
u,r,v = 1} is the set of positive triplets, (u, r, v′i) is the

i-th entity-based negative sample and (u, r′j , v) the j-th relation-based negative sample corresponding
to the positive triplet (u, r, v).

Equation (5) constitutes only a term of the loss function we optimize, which further contains
regularization terms on the attention matrix α. Intuitively, we want the individual attention values to
be either 0 or 1, because each value should represent whether a relation type belongs to certain task
(value 1) or not (value 0). Moreover, we aim to have a large concentration of the attention values,
in order to have as few partitions as possible. Hence, we propose the following model loss, where
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λ1, λ2 ∈ R are hyper-parameters weighting the terms:

L = Ldual + λ1

∑
r∈R(tr)

(
−

∑
j=1...K̂

αr,j logαr,j

)
︸ ︷︷ ︸

L1-hot

+λ2

(
−

∑
j=1...K̂

LGamma
(
1 +

∑
r∈R(tr)

αr,j

))
︸ ︷︷ ︸

Lconc

. (6)

The first term Ldual is the dual-sampling loss in Equation (5). The second term L1-hot minimizes the
entropy of αr,·, i.e. the relation type r’s partition membership probabilities, for each relation type
r. This effectively pushes αr,· towards a one-hot vector, encouraging individual attention values to
be close to either 0 or 1. Finally, the third term Lconc takes advantage of the log-gamma function to
encourage the relation set to be split in as few partitions as possible.

5.4 A Test-Time Adaptation Procedure

The attention matrix learned during training encodes task membership of relation types in training,
and therefore it cannot be directly ported to the new test relation types in our test graph A(te) with N (te)

nodes and R(te) relation types. We address this issue by adopting a test-time adaptation procedure
where we optimize a new test-time attention matrix α(te) ∈ [0, 1]R

(te)×K̂ , α(te) ̸= α(tr), while freezing
all other parameters of the architecture. During the adaptation, only the observable triplets of the test
graph A(te) are used for training α(te). That is, we follow the standard self-supervised procedure for
link prediction (as in Section 3 and Cotta et al. [12, Appendix B]), and create a self-supervised mask
M ∈ {0, 1}N (te)×R(te)×N (te)

that tunes α(te) to maximize P (M⊙A(te) | M⊙A(te)), with M = 1−M .

6 Experiments

In this section, we empirically evaluate our model in predicting missing triplets involving new relation
types. Due to space constraints, we present our main results, and defer readers to Appendices C to E.
We set to address the following main questions: Q1 Does our model outperform the baselines on
a synthetic dataset constructed to contain multiple tasks? Q2 How does our model compare to the
baselines on real-world datasets that likely contain multiple tasks?

Baselines. We evaluate our model against four baselines: InGram [26], ISDEA [18], the homogeneous
version of NBFNet [61] (NBFNet-homo), and the homogeneous version of ISDEA (ISDEA-homo).
The homogeneous models are obtained by modifying the corresponding base models to treat all
relation types equally. As a result, when predicting a tail node v given a head node u and a relation
type r, a homogeneous model returns the node v for which the edge (u, v) is most likely to exist,
regardless of the relation type. When predicting the relation type r between given nodes u and v, a
homogeneous model returns a uniform prediction over all possible relation types. This modification
allows NBFNet to generalize to new test relation types, a task it cannot perform otherwise. To the
best of our knowledge, these models are the only ones applicable to our scenario.

Table 1: Dual-sampling metrics on METAFAM. We
report mean and std over 3 seeds, with best values in
bold, second-best underlined. K̂ denotes the maximum
number of tasks the architecture can model. Our model
MTDEA with K̂ = 2 is comparable to the baselines
on Hits@10 and outperforms them on Hits@1.

Models Hits@1 ↑ Hits@10 ↑
NBFNet-homo 0.068 (0.001) 0.400 (0.001)
ISDEA-homo 0.000 (0.000) 0.000 (0.000)
ISDEA [18] 0.292 (0.029) 0.609 (0.050)
InGram [26] 0.222 (0.029) 0.719 (0.135)

MTDEA (K̂ = 2) 0.344 (0.067) 0.704 (0.072)
MTDEA (K̂ = 4) 0.172 (0.134) 0.358 (0.199)
MTDEA (K̂ = 6) 0.169 (0.057) 0.520 (0.117)

Dual-sampling metrics. In line with the
dual-sampling loss we proposed in Equa-
tion (5), we present the dual-sampling met-
rics, which include Hits@k, k ∈ {1, 10}
(Mean Rank (MR), and Mean Reciprocal
Rank (MRR) in the Appendix). For each
positive triplet we generate 24 negative
samples by corrupting the tail entity and
26 negative samples by corrupting the re-
lation type. These metrics are better suited
for measuring the capabilities of the mod-
els in our tasks (Appendix E.1).

A1: Synthetic multi-task dataset. To ad-
dress Q1, we construct a synthetic dataset
METAFAM that explicitly exhibits conflict-
ing predictive patterns, or multiple tasks,
in the attributed graphs. In particular, we
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Table 2: Dual-sampling metrics on WIKITOPICS-MT1 and WIKITOPICS-MT2, tested on four topics
(HEALTH and TAXONOMY for WIKITOPICS-MT1, LOCATION and SCIENCE for WIKITOPICS-
MT2) not seen in training. We report mean and std over 3 seeds, with best values in bold, second-best
underlined. K̂ denotes the maximum number of tasks the architecture can model. Our models
consistently outperform the baselines with significantly smaller standard deviations on Hits@1.

MT1-HEALTH MT1-TAXONOMY MT2-LOCATION MT2-SCIENCE

Models Hits@1 ↑ Hits@10 ↑ Hits@1 ↑ Hits@10 ↑ Hits@1 ↑ Hits@10 ↑ Hits@1 ↑ Hits@10 ↑
NBFNet-homo 0.041 (0.000) 0.339 (0.003) 0.034 (0.000) 0.315 (0.001) 0.035 (0.002) 0.292 (0.016) 0.024 (0.001) 0.235 (0.008)
ISDEA-homo 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
ISDEA [18] 0.323 (0.140) 0.481 (0.138) 0.269 (0.063) 0.365 (0.082) 0.393 (0.038) 0.569 (0.005) 0.390 (0.034) 0.617 (0.023)
InGram [26] 0.122 (0.037) 0.869 (0.117) 0.198 (0.100) 0.723 (0.220) 0.091 (0.043) 0.780 (0.049) 0.063 (0.053) 0.691 (0.052)

MTDEA (K̂ = 2) 0.358 (0.191) 0.513 (0.112) 0.330 (0.157) 0.457 (0.121) 0.417 (0.023) 0.557 (0.014) 0.406 (0.008) 0.595 (0.027)
MTDEA (K̂ = 4) 0.390 (0.127) 0.496 (0.108) 0.307 (0.203) 0.417 (0.175) 0.405 (0.049) 0.547 (0.037) 0.409 (0.004) 0.590 (0.010)
MTDEA (K̂ = 6) 0.457 (0.012) 0.555 (0.010) 0.422 (0.010) 0.504 (0.025) 0.431 (0.004) 0.558 (0.014) 0.405 (0.012) 0.580 (0.024)

recreate the conflicting predictive patterns shown in Figure 2 where we use family relationships in
train, and academic relationships in test (see Appendix C.3 for details). Table 1 shows the results
under the dual-sampling metrics. As we can see from the table, our MTDEA model with two task
partitions K̂ = 2 obtains the best performance under Hits@1 and achieves comparable performance
to the best-performing baseline InGram on Hits@10. In addition, on both Hits@1 and Hits@10,
our model surpasses ISDEA, the baseline model that our MTDEA is built upon. This observation
conforms to our expectation as METAFAM was constructed to include exactly two conflicting predic-
tive patterns and therefore a model capable of modeling two distinct tasks is expected to obtain the
superior predictions in this dataset. We note that our model falls short of InGram on Hits@10, but
this is likely due to the poor performance of ISDEA on this metric.

A2: Real-world multi-task datasets. To address Q2, we create two novel multi-task scenarios,
named WIKITOPICS-MT1 and WIKITOPICS-MT2, in the WIKITOPICS dataset introduced by Gao
et al. [18] and obtained from the WIKIDATA5M [47] by grouping the relation types into different
topics, such as Art, Education, and Sports. The WIKITOPICS dataset was employed by Gao et al. [18]
to assess the extrapolation performance of the double-equivariant model, ISDEA, when trained on one
topic and tested on another one. For our multi-task datasets WIKITOPICS-MT1 and WIKITOPICS-
MT2, we select for training pairs of topics where, as shown in Gao et al. [18], ISDEA exhibits the
lowest transfer-topic performance (e.g., the ART and PEOPLE, which we use in WIKITOPICS-MT1)
and test on a third topic (HEALTH or TAXONOMY, used in WIKITOPICS-MT1) on which the ISDEA
trained on one training topic (e.g. ART) performs good but the ISDEA trained on the other training
topic (e.g. PEOPLE) performs poorly. Since the transfer-topic performance of ISDEA indicates the
degree of double-exchangeability between graphs in the two topics, which is related to the definition
of tasks (Definition 4.3), this strategy likely produces train and test graphs with multiple tasks.

Table 2 presents the performance on WIKITOPICS-MT1 when trained on relations from both ART and
PEOPLE topics and tested on either HEALTH or TAXONOMY topic, and on the WIKITOPICS-MT2
when trained on relations from both SPORT and HEALTH topics and tested on either LOCATION or
SCIENCE topic. Our model MTDEA, and in particular the one with K̂ = 6, outperforms ISDEA
on both test scenarios across all metrics and surpasses InGram on the Hits@1 metric, while having
significantly smaller standard deviations on both Hits@1 and Hits@10 metrics. These results suggest
that the WIKITOPICS-MT datasets indeed possess a complicated multi-task structure, and our model,
which has the best multi-task modeling capabilities, exhibit more consistent performances. We note
that MTDEA is outperformed by InGram on Hits@10 metric. However, this can be likely attributed to
the comparatively low performance of ISDEA, the model on which MTDEA is built, on this metric.

7 Conclusions

In this work we studied the problem of extrapolating to new relation types in link prediction tasks in
discrete attributed multigraphs. To overcome the challenge faced by existing work when the graphs
contain relation types exhibiting contradictory predictive patterns, we proposed a relaxation of the
double equivariance models of Gao et al. [18] and demonstrated that this relaxation can be interpreted
within a multi-task framework. We designed an architecture capable of modeling this multi-task
double equivariance, along with a test-time adaptation procedure to learn task assignments for new
relation types. To empirically evaluate our method, we introduced new benchmark datasets featuring
multi-task structures and presented novel evaluation metrics to measure its benefits.
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Supplementary Material for
A Multi-Task Perspective for Link Prediction

with New Relation Types and Nodes

A Expanded Related Work

GNNs for attributed graph completion. Due to their recent success in diverse graph-learning
tasks, Graph Neural Networks (GNNs) have been widely used to predict missing attributed links
between nodes in attributed graphs. One of the first adaptation of standard GNNs to multi-relational
data was proposed in Schlichtkrull et al. [39], while an alternative formulation has been considered
in Vashishth et al. [45]. These two models have then inspired several improved versions for both
transductive [16, 55, 60] and inductive [43, 61, 1, 59] link prediction tasks on attributed graphs, even
in the context of large graphs [17]. Recently, their limitations and their relationships have been
studied from a theoretical viewpoint, by relating their capabilities in distinguishing different attributed
graphs to the Weisfeiler-Leman algorithm [3]. These methods, however, cannot work when presented
with new relation types in test, which instead represents the main interest of our work.

Tensor Factorization. Factorization-based methods [31, 6, 48, 52, 32, 44, 25, 13, 30, 42, 9] are
classical graph representation learning methods for attributed graphs. Despite their superior empirical
performance on transductive tasks, especially when coupled with specific training strategies [37, 23],
these models cannot be applied to inductive tasks featuring new nodes in test. To overcome this
limitation, Chen et al. [10] propose a new architecture that borrows principles from GNNs and bridges
the gap between these two approaches. All these methods, however, are not applicable to the tasks of
our interest, where test graphs contain both new nodes and relation types.

Logical reasoning. Predicting missing attributed links in attributed graph can also be performed by
learning logical rules that are then used to infer the missing links. Yang et al. [52, 53], Sadeghian et al.
[38], Cheng et al. [11] focus on learning Horn clauses from the graph. To understand the expressive
power of standard GNNs in learning logical rules, Barceló et al. [2] characterize the fragment of
FOC2 formulas, a well-studied fragment of first order logic, that can be expressed as GNNs. Recently,
Qiu et al. [36] extended the analysis to heterogeneous graphs.

Zero-shot learning for link prediction in attributed graphs. To predict links involving completely
new relation types at test time, zero-shot methods typically require additional information encoding
the semantic of the relation types. Qin et al. [35] rely on semantic features obtained from the text
descriptions of the relation types. Geng et al. [19] enrich the relation features using information from
the ontological schema. Finally, Li et al. [27] use the character n-gram information from the relation
name to generate more expressive representations of the relations. As we do not assume access to any
extra information apart from the input graphs, not even the relation textual names2, these methods are
inapplicable to our scenario. To the best of our knowledge, InGram [26] and ISDEA [18] are the only
methods capable of generalizing to new test graphs without extra information. InGram [26] introduced
a method for learning relation embeddings within a relation graph specifically designed to capture
the structural affinity between relation types. Later, ISDEA [18] introduced the concept of double-
exchangeability, which includes exchangeability between relation types, intuitively their property of
being interchangeable with one another, and proposed the double equivariant representations capable
of generalizing to unseen relations. It also proved that InGram in fact produces positional embeddings
that are double equivariant in distribution.

Few-shot learning for link prediction in attributed graphs. To the best of our knowledge, most
few-shot methods predict novel relation types in test following a meta-learning paradigm [50, 7, 56,
41, 22]. For instance, GMatching [50] proposes to solve the one-shot relation prediction problem
by matching the similarity of the new relation type to those seen in training. FSRL [56] extends
GMatching to the few-shot setting by using an attention aggregation so that information from all
support triplets of the new relation type can be utilized. MetaR [7] computes a meta representation
for relation types by averaging all node pair-specific relation representations. CSR [22], on the

2We always consider relation types as numbers, R := {1, . . . , R}, R ∈ N.
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other hands, matches the test relations to the training ones by comparing the connection subgraphs
surrounding the target triplets generated by a hypothesis testing procedure. Even though these
methods are capable of reasoning over new relation types, and some, such as CSR [22], are also
capable of handling new nodes, they all require the presence of a shared observable graph between
training and test. In other words, the few-shot triplets of the new relation types and new nodes need
be connected to the existing ones already observed in training. Hence, they are more constrained than
our method since we consider a completely new graph at test time involving no nodes and relations
seen during training.

B Theoretical Analysis

Lemma 4.2. The exchangeability between relation types ∼e defines an equivalence relation on R,
since it satisfies the reflexivity, symmetry, and transitivity properties.

Proof. We prove each property separately.

The exchangeability between relation types ∼e is reflexive. This can be trivially shown by considering
the identity node permutation IdN ∈ SN and identity relation type permutation IdR ∈ SR. Namely,
let A ∈ AN,R be a random variable representing an attributed graph sampled from some data
distribution. For any relation r ∈ R, naturally IdR ◦ r = r and IdR ◦ IdN ◦A = A, and consequently
P (IdR ◦ IdN ◦ A) = P (A). Hence, r is exchangeable with r.

The exchangeability between relation types ∼e is symmetric. We first note that the node permutation
and relation type permutation are commutative [18]. That is, given any attributed graph A ∈ AN,R,
π ∈ SN , and σ ∈ SR, we have σ ◦ π ◦ A = π ◦ σ ◦ A. In other words, it makes no difference
whether we permute the nodes first or we permute the relation types first. Now, for any two relations
r, r′ ∈ R, if r is exchangeable with r′, then we know there exists some π ∈ SN and σ ∈ SR such
that σ ◦ r = r′ and P (A) = P (σ ◦ π ◦ A) for any A sampled from the data distribution. Since SN
and SR are groups, π and σ have unique inverses π′ ∈ SN and σ′ ∈ SR satisfying π′ ◦ π = IdN and
σ′ ◦ σ = IdR respectively. Hence,

σ′ ◦ r′ = σ′ ◦ (σ ◦ r) = (σ′ ◦ σ) ◦ r = IdN ◦ r = r

σ′ ◦ π′ ◦ (σ ◦ π ◦ A) = σ′ ◦ (π′ ◦ π) ◦ σ ◦ A = σ′ ◦ σ ◦ A = A.

Consequently, we have P (σ◦π◦A) = P (A) = P (σ′◦π′◦(σ◦π◦A)). Moreover, since permutations
are bijective mappings, we know that for any A′ ∈ AN,R there exists some A such that A′ = σ◦π◦A.
Hence, P (A′) = P (σ ◦ π ◦ A) = P (σ′ ◦ π′ ◦ (σ ◦ π ◦ A)) = P (σ′ ◦ π′ ◦ A′) for any A′ sampled
from the data distribution. Therefore, r′ is also exchangeable with r.

The exchangeability between relation types ∼e is transitive. Let r1, r2, r3 ∈ R be three relation
types such that r1 is exchangeable with r2, and r2 is exchangeable with r3. Then, there exists some
π1, π2 ∈ SN and σ1, σ2 ∈ SR such that

σ1 ◦ r1 = r2 and P (A) = P (σ1 ◦ π1 ◦ A)

σ2 ◦ r2 = r3 and P (A′) = P (σ2 ◦ π2 ◦ A′),

for any A and A′ sampled from the data distribution. Hence, take any A ∈ AN,R,

P (A) = P (σ1 ◦ π1 ◦ A) = P (σ2 ◦ π2 ◦ (σ1 ◦ π1 ◦ A))

= P ((σ2 ◦ σ1) ◦ (π2 ◦ π1) ◦ A),

where we also have (σ2 ◦ σ1) ◦ r1 = r3, showing that r1 is exchangeable with r3.

Since the exchangeability between relation types is reflexive, symmetric, and transitive, it is an
equivalence relation on R.

C Datasets Construction

C.1 WIKITOPICS-MT

The WIKITOPICS-MT scenarios are derived from the WIKITOPICS dataset previously introduced
by Gao et al. [18], which comprises 11 attributed graphs with relation types in each attributed graph
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(b) WIKITOPICS-V2.

Figure 3: ISDEA [18] transfer-topics performance on both versions of WIKITOPICS without the
shortest-distance heuristic embeddings. Color indicates the value of the dual-sampling MRR metric.

corresponding to a specific topic. Our goal is to construct training graphs exhibiting multi-task
structures while ensuring the test graph possesses a task also present in training. In Gao et al. [18],
this dataset was leveraged to assess the ISDEA model’s zero-shot generalization capabilities on pairs
of attributed graphs that may have relation types not exchangeable with each other. We observe that
the ISDEA model’s performance can be viewed from an alternative perspective: poor test performance
on a certain topic when trained on a different topic indicates that the topics contain relation types
that are likely not exchangeable. Consequently, the corresponding attributed graphs likely contains
distinct tasks (Definition 4.3), implying that combining the attributed graphs of these two topics
would yield an aggregated attributed graph containing multiple tasks.

To identify which pairs of topics are likely to contain distinct tasks, we rerun the ISDEA model from
Gao et al. [18] on both versions of the WIKITOPICS dataset. To reduce the memory footprint and
the computational time, we run the experiments without the shortest-distance heuristic embeddings
that are used to augment the triplet representations in Gao et al. [18] (as explained in Appendix D).
Figures 3a and 3b show the heatmaps representing the transfer-topic performance of the ISDEA
model on the 121 pairs of topics for each version of the dataset. Each row in Figures 3a and 3b
corresponds to one training topic, each column corresponds to a test topic, and the color represents
the performance evaluated using the dual-sampling Mean Reciprocal Ranks (MRR).

Based on the heatmaps (Figures 3a and 3b), we devise multi-task scenarios using the outlined strategy.
For the training graph, we pick two topics such that when trained on one and evaluated on the other
the performance is low (e.g. HEALTH and SPORT in Figure 3a). This indicates that the ISDEA model,
trained on one topic (HEALTH), demonstrates relatively poor zero-shot generalization performance
on the other topic (SPORT), suggesting that the attributed graphs associated with these topics likely
contain distinct tasks. We then combine the attributed graphs of the two topics to create an aggregated
graph (HEALTH + SPORT), which is expected to exhibit multi-task structures. Next, we select one
test topic for each training topic, and evaluate separately on the two test topics. A test topic (e.g.,
LOCATION) is determined such that the ISDEA model trained on one of the training topics (in this
case, SCIENCE) performs well on the selected test topic (LOCATION), but the good performance on
this test topic may not necessarily be observed when the ISDEA model is trained on the other training
topic (SPORT).

Using this data creation strategy, we construct the following four multi-task scenarios, two for each
version of WIKITOPICS:

1. WIKITOPICS-MT1: created from WIKITOPICS-V1. The training topic is a combination
of ART and PEOPLE, and the 2 test topics are HEALTH and TAXONOMY.

2. WIKITOPICS-MT2: created from WIKITOPICS-V1. The training topic is a combination
of SPORT and HEALTH, and the 2 test topics are LOCATION and SCIENCE.
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Table 3: Dataset statistics of the WIKITOPICS-MT scenarios.
Scenarios Train/Test Topics # Entities # Relation Types # Observable Triplets # Missing Triplets

WIKITOPICS-MT1
ART + PEOPLE (Train) 10000 35 32145 3571
HEALTH (Test) 10000 8 14110 1566
TAXONOMY (Test) 10000 10 16526 1834

WIKITOPICS-MT2
SPORT + HEALTH (Train) 10000 19 43528 4836
LOCATION (Test) 10000 11 22971 2552
SCIENCE (Test) 10000 17 14852 1650

WIKITOPICS-MT3
PEOPLE + TAXONOMY (Train) 10000 99 57815 6243
ART (Test) 10000 65 28023 3113
INFRASTRUCTURE (Test) 10000 37 21646 2405

WIKITOPICS-MT4
PEOPLE + TAXONOMY (Train) 10000 94 54140 6015
LOCATION (Test) 10000 62 80269 8918
ORGANIZATION (Test) 10000 34 30214 3357

Table 4: Dataset statistics of the FBNELL dataset.
Train/Test Splits # Entities # Relation Types # Observable Triplets # Missing Triplets

Train 4797 100 10275 1224
Test 4725 200 10685 597

3. WIKITOPICS-MT3: created from WIKITOPICS-V2. The training topic is a combination
of PEOPLE and TAXONOMY, and the 2 test topics are ART and INFRASTRUCTURE.

4. WIKITOPICS-MT4: created from WIKITOPICS-V2. The training topic is a combination
of LOCATION and ORGANIZATION, and the 2 test topics are HEALTH and SCIENCE.

Table 3 shows the datasets statistics of the 4 multi-task scenarios. The experiment results of the
WIKITOPICS-MT1 scenario are shown in Section 6 in the main paper, and the additional experiment
results of the WIKITOPICS-MT2, WIKITOPICS-MT3, and WIKITOPICS-MT4 scenarios are shown
in Appendix E.3.

C.2 FBNELL

We create the FBNELL dataset by combining the FB15K-237 [39] and the NELL-995 [49]
datasets. The training graph is obtained by first choosing the top 50 most frequent relation types in
each FB15K-237 and NELL-995, yielding a total of 100 relation types, and then extracting the
triplets corresponding to these 100 relation types. For the test graph, we pick the top 100 most frequent
relation types from each dataset, extract the triplets corresponding to the resulting 200 relation types,
and predict only those triplets that involve new relation types, while using the remaining triplets as
the observable (test) graph. Consequently, the test graph’s set of relation types forms a strict superset
of those in the training graph, but the evaluation is performed only on the unseen ones. Table 4 shows
the statistics of the dataset.

We emphasize that, unlike in the data construction strategy employed for the WIKITOPICS-MT
scenarios, we do not actively identify the presence of multiple tasks within either FB15K-237 or
NELL-995, nor verify whether their combination exhibit a multi-task structure. Therefore, even
though the two datasets come from distinct domains, they might still share the same relational task
(single-task).

C.3 METAFAM

We construct a synthetic dataset, dubbed METAFAM, that explicitly exhibits conflicting predictive
patterns, or equivalently, a multi-task structure. In particular, we recreate the conflicting predictive
patterns shown in Figure 2. We generate the dataset by first creating the family trees using the
ontology and the code provided in Hohenecker and Lukasiewicz [20]. Each family tree is generated
by starting from a single person and incrementally adding a new child to an existing node until the
tree reaches the maximum size of 26 nodes or a maximum depth of 5. The parent of the node to be
added is chosen uniformly at random, with the only constraint that the maximum branching factor of
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Table 5: Dataset statistics of the METAFAM dataset.
Train/Test Splits # Entities # Relation Types # Observable Triplets # Missing Triplets

Train 1316 29 13630 781
Test 656 29 7257 184

each tree is 5. Each family tree contains triplets involving 29 different relation types representing
different kinds of relationships, such as mother_of, daughter_of, uncle_of.

We generate the training split by randomly selecting 50 non-isomorphic family trees. In each training
family tree we mask out either some of the triplets with relation types mother_of and father_of,
or some of the triplets involving relation types son_of and daughter_of, and we use those as the
triplets we aim to predict during training time. Doing so ensures that the model is challenged with the
two conflicting patterns illustrated in Figure 2 when learning to predict these triplets. Specifically, the
former two relation types, mother_of and father_of, obey to the first kind of predictive pattern (e.g.
subgraph A′

1 as illustrated in Figure 2), and the latter two relation types, son_of and daughter_of,
follow the second kind of predictive pattern (the rest of the training graph A1 as illustrated in Figure 2).
As the test split, we create 25 additional non-isomorphic family trees having the same relation types
of the training attributed graph but permuted. In test, we only mask out triplets corresponding to the
(permuted) relation types mother_of and father_of, so that only one predictive pattern is required
to accurately predict these missing triplets at test time.

Table 5 shows the statistics of the METAFAM dataset. The experiment results are described in the
main text and in Appendix E.2.

D Implementation and Experiment Details

D.1 Licenses, Computational Resources and Experimental Setup

We implemented our MTDEA model using PyTorch [34] and PyTorch Geometric [14], which are
available under the BSD and MIT license respectively. The Wikidata knowledge base [46], which the
WIKITOPICS dataset is based on, is available under the CC0 1.0 license. We ran our experiments
on NVIDIA V100, A100, GeForce RTX 2080Ti, GeForce RTX 4090, and Titan V GPUs. We use
Weights & Biases [5] to perform hyperparameter tuning. We train all models (baselines and MTDEA)
in all experiments for a maximum of 10 epochs, with an early stop patience of 5 epochs based on the
dual-sampling MRR value on the validation set. At test time we adapt our MTDEA models to learn
the task assignments for the test relation types (as described in Section 5.4) for a maximum of 10
epochs. For our MTDEA models, we train with a number of maximum task partitions K̂ = 2, 4, 6 in
all experiments. The time spent on each experiment depends mainly on the size of the dataset and
on K̂. For example, training MTDEA with K̂ = 4 on WIKITOPICS-MT3 takes around 10 hours to
complete, while training MTDEA with K̂ = 2 on WIKITOPICS-MT1 takes around 2 hours and 30
minutes. Our code and datasets are available. 3

D.2 Details of the Neural Architecture

Attention matrix. In our implementation, the attention matrix α (Section 5.2) is obtained from
a real-valued learnable weight matrix w ∈ RR×K̂ , where R is the number of relations and K̂ the
number of maximum partitions we allow. We apply a Softmax activation over the task partition
dimension for every relation type r ∈ R, i.e., αr,k =

exp(wr,k)∑K̂
k′=1

exp(wr,k′ )
, for k ∈ {1, . . . K̂}. At

training time we refer to w as w(tr), since R is R(tr), the number of training relation types. During
the test-time adaptation, we freeze all parameters of the model, we discard w(tr) and initialize a
new matrix w(adapt) ∈ RR(te)×K̂ , where R(te) is the number of test relation types. Then, w(adapt) is
optimized via gradient descent with the same training loss used in training (Equation (6)), with the

3https://anonymous.4open.science/r/MTDEA.
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only difference that the positive and negative triplets are now sampled from the observable test graph
A(te).

Structural node representation for link prediction tasks. Structural node representations, which
are obtained from GNNs, are known to have limited capabilities for link prediction tasks in homo-
geneous graphs [40, 54], an issue that also arises in attributed graphs. Theoretically, Equation (4)
overcomes this limitation by employing GNNs that output pairwise-representations as L(t)

1 , L
(t)
2 , L

(t)
3 .

However, most-expressive pairwise representations [57, 61, 58] are computationally expensive. In
Gao et al. [18], the authors sought a middle ground for their ISDEA model by employing structural
node representations enhanced with heuristic embeddings, such as the shortest distances between
the two nodes in the pair to be predicted. Specifically, the representation for a triplet (u, r, v), with
u, v ∈ V, r ∈ R, before the final MLP layers is obtained as h(T )

u,r ∥h(T )
v,r ∥d(u, v)∥d(v, u), where h

(T )
u,r

and h
(T )
u,r are the structural node representations for, respectively, nodes u and v specific to the relation

type r obtained after T ISDEA layers; d(u, v) and d(v, u) are the shortest distances from node u
to v and from node v to u in the directed attributed graph, and ∥ denotes the vector concatenation
operation.

Nevertheless, computing the shortest distance, d(u, v), for all pairs (u, v), u, v ∈ V in the attributed
graph is time- and space-demanding. Due to this limitation, we opt not to compute the shortest
distances, and instead use only the structural node representations as the representation of a triplet
(u, r, v), that is h(T )

u,r ∥h(T )
v,r , in all our experiments, except for the synthetic METAFAM dataset. In

practice, this means that we implement L(t)
1 , L

(t)
2 , L

(t)
3 in Equation (4) as GNNs outputting node

representations. We empirically observe no performance degradation when removing the shortest
distance heuristics on real-world attributed graphs.

Layers. In all our experiments, excluding those on the synthetic METAFAM dataset, our MTDEA
model employs two GNN-based soft MTDE linear layers (Equation (4)). Conversely, for the synthetic
METAFAM dataset, our model consists of only one GNN-based MTDE linear layer, in order to learn
exactly the conflicting predictive patterns depicted in Figure 2. We select GIN [51] with ϵ = 0 as our
GNN layer, which implements the L1, L2, and L3 components of a MTDE linear layer.

After these GNN-based MTDE linear layers, we employ two soft MTDE linear layers with MLPs
L1, L2, and L3 components. The representation of each triplet (u, r, v) with u, v ∈ V , r ∈ R is then
obtained using the node representations after these layers as h(T )

u,r ∥h(T )
v,r , and it is then passed to a

two-layers MLP to obtain the final prediction.

D.3 Hyper-parameters

In all experiments, involving either our MTDEA models or the baseline ISDEA-homo, we train with
mini-batches comprising 256 positive triplets. We use a training negative sample rate of 2 for both the
tail-based negative samples and the relation-based negative samples. Hence, for each positive triplet
in a minibatch, we construct four negative samples, thus resulting in mini-batches containing 1280
triplets in total. Additional hyper-parameters values for MTDEA and ISDEA-homo include hidden
layer dimension of 32, ReLU activations, mean set aggregation (i.e. the set aggregation operation
within the parentheses of L2 and L3 in Equation (2)), a gradient clipping norm of 1.0, a learning rate
of 0.001, and a weight decay rate of 5× 10−4 in our Adam optimizer.

Apart from the aforementioned hyper-parameters, our MTDEA features additional hyper-parameters
associated with its regularization losses. In all our experiments, we set the initial regularization
coefficient values to λ1 = 0.1 and λ2 = 0.1 (Equation (6)), with a per-epoch multiplicative annealing
factor of 1.1. This approach ensures that the regularization gains more significance in later epochs
(closer to the end). That is, after each epoch, the values of λ1 and λ2 are updated to 1.1 × λ1 and
1.1× λ2 respectively.

For the NBFNet-homo baseline, we use the default hyper-parameters provided by Zhu et al. [61].
Specifically, we choose a hidden dimension of 32 for all layers, the distance multiplier message
function, the pna aggregate function, and we employ layer norm. We further use Adam optimizer
with a learning rate of 0.005 and a batch size of 64.
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For the InGram [26] baseline, we tune its hyperparameters on all datasets by performing a grid search
over the configuration of ranking loss margin γ ∈ {1.0, 2.0}, learning rate α ∈ {0.0005, 0.001},
number of relation layers L ∈ {1, 2, 3}, and number of entity layers L̂ ∈ {2, 3, 4}. We use the
suggested best values from Lee et al. [26] and default values present in their codebase for all other
hyperparameters, such as the number of bins B = 10 and the number of attention heads K = 8. We
fix the entity embedding dimension and relation embedding dimension size to 32 for a fair comparison
with other models.

E Additional Experiments

E.1 Dual-sampling versus Entity-centric Metrics

In both our training loss (Equation (5)) and evaluation metrics (Section 6), we adopt a dual-sampling
scheme wherein for each positive triplet we draw two different types of negative samples: those
with the tail node randomly corrupted (entity-centric) and those with the relation type randomly
corrupted (relation-type centric). In contrast, existing literature focuses solely on entity-centric
negative samples [52, 39, 61]. We argue that correctly predicting the tail node, given a head node and
a relation type, is as important as determining the type of relation connecting a head and a tail node
of interest, and therefore the two negative sampling schemes should be used in conjunction. This
combination results in the dual-sampling metrics we propose.

Tables 6 to 8 compare the performances of various models under the dual-sampling metrics with their
performances under the traditional entity-centric metrics, commonly used in the literature. As can be
seen from the tables, the baseline NBFNet-homo demonstrates strong performances under the entity-
centric metrics, but not under the dual-sampling metrics. In particular, it achieves 95% entity-centric
Hits@10 on the FBNELL dataset. Therefore a model that disregards the information contained
in the relation types can achieve near-perfect accuracy under the entity-centric metrics (simply
by predicting whether u is connected to v, irrespective of the relation type). These results suggest
that the entity-centric metrics are insufficient for assessing model performance, as homogeneous
link prediction methods can easily solve a task when evaluated based on these metrics. Such an
observation is also echoed by Jambor et al. [24] on few-shot link prediction tasks, in which the
authors commented that they found “a simple zero-shot baseline - which ignores any relation-specific
information - achieves surprisingly strong performance," further giving grounds to the importance
of evaluating a model’s performance not only on predicting entities but also on predicting relation
types between nodes. In contrast, the homogeneous models achieve at most 38% Hits@10 accuracy
under the dual-sampling metrics, illustrating that the dual-sampling scheme is a more suitable,
comprehensive, and challenging evaluation scheme, where homogeneous link prediction models
cannot unreasonably obtain near-perfect performances.

E.2 Synthetic Experiments

We conduct additional experiments using the dataset METAFAM, which was explicitly constructed
to exhibit conflicting predictive patterns, or multiple tasks, in the attributed graphs (Appendix C.3).
Table 9 shows the results under the dual-sampling metrics. As we can see from the table, our MTDEA
model with two task partitions K̂ = 2 consistently obtains the best performance under all metrics
except for MR and Hits@10. This observation conforms to our expectation, since the METAFAM
was constructed to include exactly two conflicting predictive patterns and therefore a model capable
of modeling two distinct tasks is expected to obtain the best predictions in this dataset. We note that,
again as mentioned in Section 6, our model falls short of InGram [26] on MR and Hits@10, but this
is likely due to the poor performance of ISDEA [18] on these metrics (since our model MTDEA is
built on ISDEA). Still, MTDEA outperforms ISDEA on MR and Hits@10 with a significant margin.

We further investigate the performances of the models under different metrics. We consider the
entity-centric metrics, where we generate 50 negative samples for each positive triplet by corrupting
its tail node, and we additionally compare to what we refer as the relation-type centric metrics,
obtained by constructing 50 negative samples for each positive triplet by corrupting its relation type.
These results are summarized in Tables 10 and 11. We observe that, although our best-performing
model (MTDEA with K̂ = 2) is slightly worse than the baseline ISDEA under the entity-centric
metrics, it outperforms all the baseline models under most of the relation-based metrics.
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Table 6: Model performances on WIKITOPICS-MT1 under the dual-sampling metrics, tested on
two topics (HEALTH and TAXONOMY) not seen in training (ART + PEOPLE). We report mean and std
across 3 random seeds. For our MTDEA, K̂ denote the maximum number of tasks the architecture
can model (Section 5.2).

Test on HEALTH topic Test on TAXONOMY topic

Models MR ↓ MRR ↑ Hits@1 ↑ Hits@10 ↑ MR ↓ MRR ↑ Hits@1 ↑ Hits@10 ↑
NBFNet-homo 15.843 (0.119) 0.122 (0.001) 0.041 (0.000) 0.339 (0.003) 16.260 (0.068) 0.113 (0.000) 0.034 (0.000) 0.315 (0.001)
IS-DEA-homo 42.276 (0.768) 0.025 (0.001) 0.000 (0.000) 0.000 (0.000) 40.963 (1.276) 0.026 (0.001) 0.000 (0.000) 0.000 (0.000)
IS-DEA [18] 15.405 (6.030) 0.384 (0.133) 0.323 (0.140) 0.481 (0.138) 19.143 (3.895) 0.323 (0.063) 0.269 (0.063) 0.365 (0.082)
InGram [26] 5.489 (1.701) 0.342 (0.074) 0.122 (0.037) 0.869 (0.117) 7.045 (3.136) 0.368 (0.113) 0.198 (0.100) 0.723 (0.220)

MTDEA (K̂ = 2) 15.015 (4.947) 0.422 (0.170) 0.358 (0.191) 0.513 (0.112) 16.840 (4.222) 0.393 (0.141) 0.330 (0.157) 0.457 (0.121)
MTDEA (K̂ = 4) 16.576 (2.293) 0.441 (0.115) 0.390 (0.127) 0.496 (0.108) 18.171 (4.242) 0.365 (0.191) 0.307 (0.203) 0.417 (0.175)
MTDEA (K̂ = 6) 13.774 (3.224) 0.504 (0.013) 0.457 (0.012) 0.555 (0.010) 16.902 (3.837) 0.470 (0.018) 0.422 (0.010) 0.504 (0.025)

Table 7: Model performances on WIKITOPICS-MT1 under the entity-centric metrics, tested on two
topics (HEALTH and TAXONOMY) not seen in training (ART + PEOPLE). We report mean and std
across 3 random seeds. For our MTDEA, K̂ denote the maximum number of tasks the architecture
can model (Section 5.2).

Test on HEALTH topic Test on TAXONOMY topic

Models MR ↓ MRR ↑ Hits@1 ↑ Hits@10 ↑ MR ↓ MRR ↑ Hits@1 ↑ Hits@10 ↑
NBFNet-homo 5.767 (0.238) 0.628 (0.004) 0.568 (0.004) 0.858 (0.017) 5.980 (0.149) 0.572 (0.001) 0.498 (0.002) 0.855 (0.003)
ISDEA-homo 32.793 (1.683) 0.112 (0.035) 0.054 (0.025) 0.172 (0.065) 30.065 (2.717) 0.108 (0.051) 0.039 (0.028) 0.203 (0.124)
IS-DEA [18] 19.538 (8.350) 0.364 (0.136) 0.314 (0.142) 0.444 (0.140) 24.138 (4.299) 0.301 (0.059) 0.252 (0.063) 0.336 (0.071)
InGram [26] 9.169 (4.148) 0.504 (0.085) 0.397 (0.074) 0.697 (0.013) 10.962 (4.586) 0.457 (0.073) 0.343 (0.070) 0.682 (0.107)

MTDEA (K̂ = 2) 19.707 (6.651) 0.422 (0.166) 0.360 (0.185) 0.486 (0.138) 23.146 (7.251) 0.368 (0.149) 0.300 (0.158) 0.457 (0.119)
MTDEA (K̂ = 4) 20.316 (5.700) 0.442 (0.122) 0.386 (0.131) 0.494 (0.115) 22.408 (6.274) 0.375 (0.132) 0.310 (0.141) 0.449 (0.124)
MTDEA (K̂ = 6) 14.920 (1.523) 0.513 (0.013) 0.455 (0.023) 0.570 (0.007) 19.405 (0.518) 0.453 (0.002) 0.392 (0.002) 0.524 (0.002)

Table 8: Model performances on FBNELL under the dual-sampling metrics (left) and the entity-
centric metrics (right). We report mean and std across 3 random seeds. For our MTDEA, K̂ denote
the maximum number of tasks the architecture can model (Section 5.2).

Dual-Sampling Metrics Entity-Centric Metrics
Models MR ↓ MRR ↑ Hits@1 ↑ Hits@10 ↑ MR ↓ MRR ↑ Hits@1 ↑ Hits@10 ↑
NBFNet-homo 9.410 (0.029) 0.129 (0.001) 0.042 (0.001) 0.379 (0.002) 2.501 (0.041) 0.818 (0.008) 0.782 (0.010) 0.950 (0.001)
ISDEA-homo 31.625 (0.940) 0.033 (0.001) 0.000 (0.000) 0.000 (0.000) 9.424 (1.915) 0.373 (0.028) 0.235 (0.025) 0.700 (0.067)
IS-DEA [18] 10.925 (0.383) 0.624 (0.010) 0.562 (0.014) 0.697 (0.010) 10.924 (0.893) 0.611 (0.013) 0.540 (0.009) 0.712 (0.030)
InGram [26] 4.258 (0.612) 0.456 (0.051) 0.251 (0.052) 0.932 (0.037) 4.258 (0.612) 0.456 (0.051) 0.251 (0.052) 0.932 (0.037)

MTDEA (K̂ = 2) 9.106 (0.162) 0.622 (0.012) 0.553 (0.010) 0.704 (0.024) 10.797 (0.920) 0.602 (0.011) 0.524 (0.010) 0.707 (0.028)
MTDEA (K̂ = 4) 10.730 (0.666) 0.606 (0.006) 0.543 (0.007) 0.680 (0.023) 10.464 (0.092) 0.613 (0.011) 0.540 (0.015) 0.720 (0.007)
MTDEA (K̂ = 6) 10.386 (0.683) 0.609 (0.015) 0.547 (0.017) 0.678 (0.008) 10.753 (0.828) 0.612 (0.005) 0.538 (0.008) 0.719 (0.021)

E.3 More WIKITOPICS-MT Scenarios

Tables 6 and 12 to 14 show the additional experiment results on multi-task scenarios WIKITOPICS-
MT2, WIKITOPICS-MT3, and WIKITOPICS-MT4. In most cases, our MTDEA model outperforms
the baseline models on the MRR and Hits@1, while being comparable in other metrics.

E.4 General Dataset FBNELL

We also experiment on the commonly used datasets FB15K-237 [39] and NELL-995 [49] by
combining them and creating the FBNELL dataset. Specifically, the training graph consists of the
50 most frequent relation types and the test graph of the 100 most frequent ones for each dataset.
We note that it is not clear from this construction whether FBNELL exhibits multi-task structures
because the relation types might still be exchangeable despite belonging to different domains.

Table 15 shows the performance on FBNELL. Our model is on par (and sometimes outperforms)
ISDEA, even in this scenario where a multi-task structure may not be present. We associate smaller
performance gaps to the simplicity of the constructed dataset, which does not seem to exhibit complex
multi-task structures (the smallest K̂ has the highest performance). Overall, our result suggests that
in real-world scenarios might be advantageous to employ the MTDEA model because, even in the
single-task setting (due to its regularization towards fewer relation equivalence classes and patterns),
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Table 9: Model performances on METAFAM under the dual-sampling metrics. We report mean and
std across 3 random seeds. For our MTDEA, K̂ denote the maximum number of tasks the architecture
can model (Section 5.2). Our MTDEA is the only model that can correctly represent the existing
conflicting patterns.

Models MR ↓ MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@5 ↑ Hits@10 ↑
NBFNet-homo 13.785 (0.045) 0.153 (0.001) 0.068 (0.001) 0.145 (0.002) 0.216 (0.001) 0.400 (0.001)
ISDEA-homo 27.369 (0.027) 0.037 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
IS-DEA [18] 10.112 (1.120) 0.292 (0.029) 0.145 (0.025) 0.323 (0.038) 0.440 (0.044) 0.609 (0.050)
InGram [26] 7.805 (1.181) 0.222 (0.029) 0.050 (0.033) 0.222 (0.060) 0.380 (0.062) 0.719 (0.135)

MTDEA (K̂ = 2) 9.763 (4.246) 0.344 (0.067) 0.178 (0.063) 0.407 (0.068) 0.518 (0.083) 0.704 (0.072)
MTDEA (K̂ = 4) 13.795 (3.966) 0.172 (0.134) 0.070 (0.114) 0.150 (0.173) 0.213 (0.174) 0.358 (0.199)
MTDEA (K̂ = 6) 11.332 (0.894) 0.169 (0.057) 0.031 (0.029) 0.148 (0.110) 0.272 (0.161) 0.520 (0.117)

Table 10: Model performances on METAFAM under the entity-centric metrics. We report mean and
std across 3 random seeds. For our MTDEA, K̂ denote the maximum number of tasks the architecture
can model (Section 5.2).

Models MR ↓ MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@5 ↑ Hits@10 ↑
NBFNet-homo 1.114 (0.071) 0.952 (0.026) 0.939 (0.032) 0.987 (0.010) 0.998 (0.002) 1.000 (0.000)
ISDEA-homo 1.742 (0.056) 0.741 (0.031) 0.558 (0.056) 0.936 (0.004) 0.991 (0.002) 0.998 (0.003)
IS-DEA [18] 1.663 (0.069) 0.757 (0.015) 0.580 (0.021) 0.941 (0.020) 0.996 (0.006) 1.000 (0.000)
InGram [26] 1.552 (0.085) 0.788 (0.034) 0.626 (0.060) 0.960 (0.010) 0.997 (0.002) 1.000 (0.000)

MTDEA (K̂ = 2) 4.226 (4.363) 0.697 (0.082) 0.527 (0.052) 0.870 (0.118) 0.913 (0.139) 0.919 (0.140)
MTDEA (K̂ = 4) 1.812 (0.032) 0.710 (0.021) 0.505 (0.046) 0.935 (0.014) 0.989 (0.005) 1.000 (0.000)
MTDEA (K̂ = 6) 1.685 (0.123) 0.748 (0.039) 0.564 (0.063) 0.950 (0.010) 0.995 (0.004) 1.000 (0.000)

Table 11: Model performances on METAFAM under the relation-type centric metrics. We report
mean and std across 3 random seeds. For our MTDEA, K̂ denote the maximum number of tasks the
architecture can model (Section 5.2).

Models MR ↓ MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@5 ↑ Hits@10 ↑
NBFNet-homo 51.000 (0.000) 0.020 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
ISDEA-homo 51.000 (0.000) 0.020 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
IS-DEA [18] 18.043 (1.957) 0.224 (0.006) 0.117 (0.009) 0.224 (0.012) 0.330 (0.044) 0.473 (0.037)
InGram [26] 9.678 (1.749) 0.199 (0.040) 0.052 (0.034) 0.179 (0.079) 0.313 (0.081) 0.603 (0.154)

MTDEA (K̂ = 2) 15.001 (4.420) 0.279 (0.062) 0.163 (0.057) 0.294 (0.076) 0.387 (0.082) 0.545 (0.069)
MTDEA (K̂ = 4) 25.124 (7.784) 0.126 (0.126) 0.059 (0.102) 0.101 (0.150) 0.140 (0.169) 0.233 (0.179)
MTDEA (K̂ = 6) 20.160 (1.464) 0.110 (0.041) 0.023 (0.017) 0.067 (0.056) 0.128 (0.096) 0.315 (0.127)

it obtains a similar, if not better, performance than the single-task counterpart ISDEA. Notably,
MTDEA is outperformed by InGram on MR and Hit@10 metrics. Exploring the development of a
multi-task version of InGram could potentially result in a model that always outperforms it, but we
leave this avenue for future research.
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Table 12: Model performance on WIKITOPICS-MT2 under the dual-sampling metrics, tested on
two topics (LOCATION and SCIENCE) not seen in training (SPORT + HEALTH). We report mean
and std across 3 random seeds. For our MTDEA, K̂ denotes the maximum number of tasks the
architecture can model (Section 5.2).

Test on LOCATION topic Test on SCIENCE topic

Models MR ↓ MRR ↑ Hits@1 ↑ Hits@10 ↑ MR ↓ MRR ↑ Hits@1 ↑ Hits@10 ↑
NBFNet-homo 18.231 (1.027) 0.109 (0.004) 0.035 (0.002) 0.292 (0.016) 19.525 (0.908) 0.091 (0.002) 0.024 (0.001) 0.235 (0.008)
IS-DEA-homo 39.716 (1.022) 0.027 (0.001) 0.000 (0.000) 0.000 (0.000) 37.581 (2.115) 0.028 (0.001) 0.000 (0.000) 0.000 (0.000)
IS-DEA [18] 14.873 (1.270) 0.462 (0.031) 0.393 (0.038) 0.569 (0.005) 12.991 (1.067) 0.473 (0.024) 0.390 (0.034) 0.617 (0.023)
InGram [26] 7.234 (0.905) 0.283 (0.047) 0.091 (0.043) 0.780 (0.049) 8.447 (0.939) 0.224 (0.069) 0.063 (0.053) 0.691 (0.052)

MTDEA (K̂ = 2) 15.619 (1.262) 0.480 (0.178) 0.417 (0.023) 0.557 (0.014) 13.795 (3.410) 0.482 (0.007) 0.406 (0.008) 0.595 (0.027)
MTDEA (K̂ = 4) 16.864 (0.704) 0.470 (0.042) 0.405 (0.049) 0.547 (0.037) 13.302 (1.518) 0.483 (0.002) 0.409 (0.004) 0.590 (0.010)
MTDEA (K̂ = 6) 16.362 (0.933) 0.490 (0.001) 0.431 (0.004) 0.558 (0.014) 14.531 (1.121) 0.476 (0.007) 0.405 (0.012) 0.580 (0.024)

Table 13: Model performance on WIKITOPICS-MT3 under the dual-sampling metrics, tested on
two topics (ART and INFRASTRUCTURE) not seen in training (PEOPLE + TAXONOMY). We report
mean and std across 3 random seeds. For our MTDEA, K̂ denotes the maximum number of tasks the
architecture can model (Section 5.2).

Test on ART topic Test on INFRASTRUCTURE topic

Models MR ↓ MRR ↑ Hits@1 ↑ Hits@10 ↑ MR ↓ MRR ↑ Hits@1 ↑ Hits@10 ↑
NBFNet-homo 19.495 (0.447) 0.099 (0.002) 0.030 (0.001) 0.257 (0.006) 15.622 (0.174) 0.137 (0.002) 0.056 (0.001) 0.357 (0.004)
IS-DEA-homo 37.31 (0.5739) 0.028 (0.000) 0.000 (0.000) 0.000 (0.000) 35.456 (1.634) 0.029 (0.001) 0.000 (0.000) 0.000 (0.000)
IS-DEA [18] 12.981 (0.753) 0.475 (0.049) 0.385 (0.062) 0.638 (0.035) 12.438 (0.904) 0.461 (0.011) 0.304 (0.008) 0.696 (0.011)
InGram [26] 11.476 (1.041) 0.154 (0.020) 0.025 (0.014) 0.527 (0.085) 6.667 (1.988) 0.333 (0.137) 0.147 (0.143) 0.789 (0.109)

MTDEA (K̂ = 2) 13.388 (1.928) 0.464 (0.021) 0.376 (0.030) 0.614 (0.041) 11.887 (1.314) 0.456 (0.013) 0.351 (0.010) 0.664 (0.008)
MTDEA (K̂ = 4) 14.185 (1.181) 0.488 (0.002) 0.405 (0.010) 0.598 (0.004) 10.224 (0.917) 0.466 (0.007) 0.353 (0.006) 0.685 (0.012)
MTDEA (K̂ = 6) OOM OOM OOM OOM OOM OOM OOM OOM

Table 14: Model performance on WIKITOPICS-MT4 under the dual-sampling metrics, tested on
two topics (HEALTH and SCIENCE) not seen in training (LOCATION + ORGANIZATION). We report
mean and std across 3 random seeds. For our MTDEA, K̂ denotes the maximum number of tasks the
architecture can model (Section 5.2).

Test on HEALTH topic Test on SCIENCE topic

Models MR ↓ MRR ↑ Hits@1 ↑ Hits@10 ↑ MR ↓ MRR ↑ Hits@1 ↑ Hits@10 ↑
NBFNet-homo 17.083 (0.070) 0.124 (0.001) 0.046 (0.001) 0.328 (0.002) 19.998 (0.081) 0.094 (0.001) 0.026 (0.001) 0.246 (0.002)
IS-DEA-homo 32.286 (0.731) 0.032 (0.001) 0.000 (0.000) 0.000 (0.000) 36.882 (4.891) 0.029 (0.004) 0.000 (0.000) 0.000 (0.000)
IS-DEA [18] 7.199 (1.047) 0.681 (0.002) 0.581 (0.003) 0.819 (0.009) 6.696 (1.160) 0.707 (0.012) 0.612 (0.019) 0.847 (0.012)
InGram [26] 9.994 (1.236) 0.158 (0.036) 0.020 (0.012) 0.605 (0.121) 14.10 (1.794) 0.126 (0.037) 0.017 (0.018) 0.392 (0.126)

MTDEA (K̂ = 2) 6.990 (0.686) 0.678 (0.015) 0.581 (0.015) 0.803 (0.029) 6.477 (0.464) 0.704 (0.004) 0.615 (0.005) 0.827 (0.005)
MTDEA (K̂ = 4) 6.387 (1.531) 0.680 (0.011) 0.575 (0.013) 0.827 (0.019) 5.994 (0.053) 0.715 (0.011) 0.634 (0.011) 0.827 (0.021)
MTDEA (K̂ = 6) OOM OOM OOM OOM OOM OOM OOM OOM

Table 15: Model performance on FBNELL under the dual-sampling metrics. We report mean and
std across 3 random seeds. For our MTDEA, K̂ denote the maximum number of tasks the architecture
can model (Section 5.2).

Models MR ↓ MRR ↑ Hits@1 ↑ Hits@10 ↑
NBFNet-homo 14.116 (0.029) 0.129 (0.001) 0.042 (0.001) 0.379 (0.002)
ISDEA-homo 31.625 (0.940) 0.033 (0.001) 0.000 (0.000) 0.000 (0.000)
ISDEA [18] 10.925 (0.383) 0.624 (0.010) 0.562 (0.014) 0.697 (0.010)
InGram [26] 4.258 (0.612) 0.456 (0.051) 0.251 (0.052) 0.932 (0.037)

MTDEA (K̂ = 2) 9.106 (0.162) 0.622 (0.012) 0.553 (0.010) 0.704 (0.024)
MTDEA (K̂ = 4) 10.730 (0.666) 0.606 (0.006) 0.543 (0.007) 0.680 (0.023)
MTDEA (K̂ = 6) 10.386 (0.683) 0.609 (0.015) 0.547 (0.017) 0.678 (0.008)
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F Time and Space Complexity

In this section we analyze the complexity of our model, focusing on Equation (4). We assume
L
(t)
1 , L

(t)
2 , L

(t)
3 : RN×N×d → RN×N×d′

to be GNNs that output node representations instead of
pairwise representations, which is the setup we adopt in our experimental evaluation, as described in
Appendix D. We consider the feature dimension to be a constant.

For input graph with N nodes and R relation types, denote by ∆max the maximum node degree, and
let K̂ be the maximum number of tasks our architecture can model. The time complexity of the L

(t)
1

and L
(t)
2 components in Equation (4) is O(RN∆max), as each of the R relation types is processed

using a standard GNN, which has time complexity O(N∆max). The time complexity of the L
(t)
3

component in Equation (4) is O(RK̂N∆max), since each of the R relation types iterates over the K̂
tasks and for each of them aggregates all other relation types and processes the aggregation using
a standard GNN, which has time complexity O(N∆max). Therefore, our method, as described in
Equation (4), has an overall time complexity O(RK̂N∆max). In practice, K̂ is small compared to R

and N (the maximum value we consider in our experiments is K̂ = 6).

We note that the complexity of our method can be reduced if we replace the set aggregation inside
L
(t)
3 to avoid excluding the current relation type. That is, if we substitute

∑
r′′∈R\{r} αr′′,kH

(t)
·,r′′,·,·

with
∑

r′′∈R αr′′,kH
(t)
·,r′′,·,·, then for each of the K̂ tasks, the output of L(t)

3 can be computed only
once, instead of computing it for each relation type. Therefore, the overall time complexity of our
method can be improved to O(RN∆max) by a simple change in the set aggregation function.

The space complexity of our method is O(R(N + N∆max) + RK̂), as for each relation type we
need to store N node features and its connectivity, as well as the attention weights α ∈ [0, 1]R×K̂ .

G Limitations

Despite the contributions and advancements made in this work, there are aspects that can be further
refined and explored in future works:

• Scalability: The proposed model may face challenges when scaling up to extremely large
graphs, as memory demands might become prohibitively high. Further research is necessary
to develop approximation techniques to handle such large-scale applications.

• Model complexity: The proposed model introduces additional complexity compared to
some baseline methods. Efforts to simplify the models while preserving their performance
benefits are worth exploring in future research.

• Non-exchangeable relations: There may exist cases where no relations are exchangeable,
rendering it necessary to have a number of task partitions equal to the number of relations.
In such situations, the benefits of our proposed method may be reduced. Investigating these
cases remains an important avenue for future research.
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