Published as a conference paper at ICLR 2024

AT WHICH TRAINING STAGE DOES CODE DATA HELP
LLMS REASONING?

Yingwei Ma'-2* Yue Liu'*, Yue Yu'] Yuanliang Zhang', Yu Jiang®, Changjian Wang',
Shanshan Li'f

'National University of Defense Technology

2Peng Cheng Laboratory

3Tsinghua University

ABSTRACT

Large Language Models (LLMs) have exhibited remarkable reasoning capabili-
ties and become the foundation of language technologies. Inspired by the great
success of code data in training LLMs, we naturally wonder at which training
stage introducing code data can really help LLMs reasoning. To this end, this
paper systematically explores the impact of code data on LLMs at different stages.
Concretely, we introduce the code data at the pre-training stage, instruction-tuning
stage, and both of them, respectively. Then, the reasoning capability of LLMs is
comprehensively and fairly evaluated via six reasoning tasks in five domains. We
critically analyze the experimental results and provide conclusions with insights.
First, pre-training LLMs with the mixture of code and text can significantly enhance
LLMs’ general reasoning capability almost without negative transfer on other tasks.
Besides, at the instruction-tuning stage, code data endows LLMs the task-specific
reasoning capability. Moreover, the dynamic mixing strategy of code and text data
assists LLMs to learn reasoning capability step-by-step during training. These
insights deepen the understanding of LLMs regarding reasoning ability for their
application, such as scientific question answering, legal support, etc.

1 INTRODUCTION

Recently, Large Language Models (LLMs) have achieved impressive generalization performance
across various tasks. Significantly, OpenAl developed ChatGPT |OpenAl|(2023a), Google designed
PalLM [Chowdhery et al.|(2022), Baidu built ERNIE Bot Baidu|(2023)), and Alibaba presented Tongyi
Qianwen |Alibabal (2023)). However, these industrial products are regrettably not open-source for
commercial reasons. Thanks to the surging open-source projects of LLMs such as LLaMA (Touvron
et al., 2023), Code LLama Roziere et al|(2023), Baichuan|Yang et al.|(2023), Alpaca (Taori et al.,
2023)), and ChatGLM (Du et al., [2022a), the academic research and industrial products of LLMs
mark new milestones.

Two of the key factors to the great success of LLMs are 1) training data and 2) training strategies.
First, for the training data, researchers aim to endow LLMs with language capabilities and general
knowledge via training models on large-scale data from various domains. For example, LLaMA
was trained with 1.4 trillion tokens consisting of texts (CommonCrawl, C4) and codes (GitHub).
These large-scale data with diversity help the model to achieve competitive performance on multiple
tasks. Second, the common pipeline goes through two stages for the training strategies: pre-training
and instruction-tuning. The pre-training is conducted in a self-supervised manner on the massive
unlabeled data, while instruction-tuning aims to fine-tune models with human-annotated prompts
and feedback (Ouyang et al., |2022). Benefiting from the data and training strategies, LLMs gain
remarkable skills, such as translation, conversation, examination, legal support, etc. These skills are
all based on one of the most important capabilities, i.e., reasoning capability. So, how can LLMs gain
such strong reasoning capability?

*Co-first author.
"Corresponding author.

Published as a conference paper at ICLR 2024

We analyze the reasons from two aspects: training data and strategies. First, from the training data
aspect, compared with the common textual data, code data is more logical and less ambiguous (refer
to case studies in Appendix [F). Also, from the experiments, researchers (Liang et al.| 2022} [Fu
et al.| 2022) verified that models trained on code data have strong reasoning capability. Therefore,
code data is essential for model reasoning. Second, for the training strategies, both pre-training and
fine-tuning are crucial to the model’s performance. Pre-training feeds general knowledge to models
while fine-tuning feeds domain-specific ability to models. To further explore the deep-in reasons for
the strong reasoning capability of LL.Ms, this paper aims to answer an important question: at which
stage does code data help LLMs reasoning?

To this end, we conduct comprehensive and fair experiments and provide analyses and conclusions
with insights. First, we pre-train LLMs with pure text data and mixture data of code and text,
respectively. Subsequently, at the instruction-tuning stage, LLMs are fine-tuned with the pure text
data and mixture data of code and text, respectively. After training, to comprehensively measure
the model reasoning capability, we evaluate LLLMs on six tasks in five domains, including logical
reasoning, code reasoning, legal reasoning, scientific reasoning, and analogical reasoning. Based
on extensive experimental results and analyses, we provide three insights. 1) Pre-training LLMs
with the mixture of code and text can significantly enhance LLMs’ general reasoning capability
almost without negative transfer on other tasks. 2) At the instruction-tuning stage, code data endows
LLMs the task-specific reasoning capability. 3) The dynamic mixing strategy of code and text data
assists LLMs to learn reasoning capability step-by-step during training. These findings deepen the
understanding of LLMs regarding reasoning ability for their applications, such as scientific question
answering, legal support, etc. The main contributions of this work are summarized as follows.

* Research question: this paper raises and aims to answer one essential concern, i.e., at which
training stage can codes data help LLMs reasoning.

* Analyses and insights: we conduct extensive experiments and provide critical analyses and
insights, which deepen the understanding of LLMs regarding reasoning capability.

* Open-source resourceﬂ: we release the model implementation and the trained model param-
eters, which contribute to the further research in the LLMs community.

1.1 TRAINING DATA & TRAINING STRATEGIES

Three key factors to the great success of LLMs are training data, training strategies, and model
designs. In this section, we introduce our training data and training strategies. The next section details
the model designs.

We study two training phases of LLMs, i.e., pre-training stage and instruction-tuning stage, on two
different datasets including one plain text data and one text-code-mixed data. Figure [I]demonstrates
the process of each stage. Specifically, we use the open-sourced PanGu2.6B and PanGu13B of the
PanGu-« team |Zeng et al.| (2021) as baseline models for text models (trained on 100GB text data and
larger text data, respectively), and train CodePanGu2.6B from scratch on the mixed code data for
comparison. We will introduce detailed data settings in later chapters.

1.2 PRE-TRAINING CORPUS

The pre-training corpus consists of two parts. To ensure a fair comparison with PanGu2.6B, we
collected a large amount of original data from public datasets such as BaiDuQA, CAIL2018, Sogou-
CA, and network data sets such as Common Crawl, encyclopedias, news, and e-books according
to the PanGu-« team (Zeng et al., |2021). Then we use rule-based data cleaning and model-based
data filtering methods to filter to ensure high quality. Finally, we obtain 100GB of text data with the
same scale and source as PanGu2.6B by sampling each data source using different ratios. Please refer
to Appendix [G]for a detailed data processing process. To verify the influence of code data on the
reasoning capability of the model in the pre-training stage, we used the CodeParrot (Huggingface)
2023)) dataset as the second supplementary part. CodeParrot is a public Python dataset from BigQuery,
comprising approximately 50GB of code and 5,361,373 files. Figure[2]shows the composition of the
~42B tokens in pre-training data.

'nttps://github.com/yingweima2022/Codel LM

https://github.com/yingweima2022/CodeLLM

Published as a conference paper at ICLR 2024

Pre-training Stage Instruction-tuning Stage
This work studies the extent to which [...] Instruction:\Explain the[...]\n Input:\n
You can also create your own copy of [...] Instruction:\nLook [...]\n Input:s=[...]\n
Provide a short description of your [...] Instruction:\nRewrite [...\n Input:\n
with or without code-related data: with or without code-related instruction:
def floor_Min(A,B,N): x =[...] returnA[..] Instruction:\nCreate an[...J\n Input:\n
def remove_kth_element(list1, L): return [...] Instruction:\nWrite [...\n Input:s=[...]\n
def is_upper(string): return (string.upper [...] Instruction:Write class...\n Input:I=[...] \n

Language
Model

Language
Model

Figure 1: Demonstration of the pre-training and tuning phase.

next token

Common Crawl -

e-Books

13.5% _— CodeParrot

News

Encyclopedia
Public Datasets

Figure 2: Distribution of the ~42B tokens in pre-training data.

1.3 INSTRUCTION-TUNING CORPUS

We collect and construct 400K instruction tuning data to verify the effect of adding code instructions in
the instruction tuning stage and convert them into a unified instruction format. The instruction tuning
corpus is divided into two parts. The first part is from the natural language open source instruction
dataset, Alpaca-GPT-4 and PromptCLUE (pCLUE team, [2022). Alpaca-GPT-4 is
generated by GPT-4, including 52K Chinese and English instruction tuning data. PromptCLUE unifies
the differences between different NLP tasks (e.g., reading comprehension, question answering) and
converts the original task training set into a unified text-to-text data form, from which we randomly
sample 200K data for instruction tuning.

The second part comes from the open-source data CodeAlpaca (Chaudhary], [2023) and our build
dataset, with 150K instructions. The CodeAlpaca data contains 20K instruction tuning data generated
according to the self-instruct technology, which can be used for instruction tuning of the code
generation model. In order to supplement the code-related instruction tuning data, we use the
CosQA (Huang et al, 2021) training set and the MBPP (Austin et al.,[2021)) training set to unify the
task format in the way of PromptCLUE and expand the CodeAlpaca data. Figure[3is an example of
the format of instruction tuning data.

2 MODEL

We conduct experiments on large-scale autoregressive language models by adopting the GPT
paradigm(Brown et al [2020). It iteratively takes all tokens in the corpus as input, predicts the
next token, and compares it to the ground truth. Assuming that a sequence X = {x1, za, ..., } is

Published as a conference paper at ICLR 2024

instruction (NL) :
What does DNA stand for?

instruction (CODE) :
Write a function to find the number of distinct

states in a given matrix.
input:
output:

DNA stands for Deoxyribonucleic Acid. [...]
and reproduction of all living organisms.

input: matrix = [[1, 0, 0], [1, 0, 1], [1, 1, 1]
output:

deffind_num_distinct_states(matrix):\n [...]

Figure 3: Example of the instruction tuning data format. NL denotes natural language.

composed of n tokens, the training objective can be formulated as maximization of the log-likelihood:

£:Zlogp(xi|x17x27“‘7$i71;®) (1)
=1

where p(x;|x1, 2, ..., x;—1; O) is the probability of observing the i-th token x; given the previous
context x1, o, ..., T;_1, and © denotes the model parameters.

2.1 MODEL ARCHITECTURE

Similar to recent pre-trained models such as GPT-3 Brown et al.|(2020), LLaMA (Touvron et al.,
2023)), CodeGeeX (Zheng et al., [2023), and PANGU-« (Zeng et al.,2021)), we follow a generative pre-
training (GPT) architecture for autoregressive language modeling. At the same time, to make a fair
comparison with the baseline of PanGu2.6B, we retain the setting of the 32-layer transformer decoder.
The original GPT model uses a pooler function to obtain the final output. Follow CodeGeeX (Zheng
et al., 2023) and PANGU-« (Zeng et al., 2021), we use an additional query layer on top of the
stacked Transformer layers to explicitly induce the expected output with attention to obtain the final
embedding.

2.2 TOKENIZATION

For the text-only model, we use the open-source vocabulary of the PanGu2.6B model released by
PanGu-« team (Zeng et al., 2021)), and the size of the vocabulary is 40,000. For the model training
with mixed code, considering that there may be variables, functions, and class names in the code that
are often meaningful words, we use the ChatGLM (Du et al., 2022b) vocabulary open-sourced by the
THUGLM team to encode text and the code. The vocabulary size is 130,044. In addition, ChatGLM
encodes multiple spaces as extra tokens to improve encoding efficiency. Specifically, L spaces are
represented by <lextratoken_XI>, where X=8+L. Both vocabularies are BPE-based tokenizers, which
use fixed-size vocabularies to handle variable-length characters in open-vocabulary problems.

3 EXPERIMENTS

3.1 TASK DESCRIPTION

To measure the reasoning ability of the models, we evaluate it on six tasks in realistic reason-centric
scenarios, including general reasoning scenarios such as logical reasoning, legal reasoning, scientific
reasoning, and analogical reasoning, and code-related scenarios such as code generation. These
reasoning-intensive tasks elucidate the reasoning capabilities of the model through the model’s
performance in these scenarios. When publicly available, we evaluate the models with the test sets
for each task. Otherwise, we use the development sets instead. We describe each task as follows.

Logical Reasoning. Logic is the study of reasoning and argumentation, which focuses on the rules
of logic and methods of reasoning in the thinking process. We use the logic subject in the C-Eval
dataset (Huang et al., 2023)) to determine whether the model can understand and apply logical rules
to make reasonable reasoning.

Published as a conference paper at ICLR 2024

Task Type Dataset Input & Prompt
Logical Logic The answer: $choice, can answer the following questions: $problem
Legal JEC-QA The answer: $choice, can answer the following questions: $problem

Scientific ScienceQA $lecture\n anwser: $choice can answer the following question: $question

Analogical E-KAR The reasoning relationship: $rl, the analogy reasoning relationship: $r2
Code CosQA $question? Answered code is correct or wrong: $code
Code MBPP $question\n Code:\n

Table 1: The input & prompt template for each task. $ is the input and other words are prompt.

Legal Reasoning. For legal reasoning, we use JEC-QA (Zhong et al., 2020)), the largest question
answering dataset in the legal domain, collected from the National Judicial Examination of China. The
examination is a comprehensive evaluation of the professional skills of legal practitioners. Multiple
reasoning skills are required to retrieve relevant material and answer legal questions.

Scientific Reasoning. We use the ScienceQA dataset (Lu et al.| [2022) to evaluate the scientific
reasoning ability of the model. The scientific question answering task can diagnose whether the
artificial intelligence model has multi-step reasoning ability and interpretability. To answer scientific
questions from ScienceQA, a model not only needs to understand multimodal content but also needs
to extract external knowledge to arrive at the correct answer.

Analogical Reasoning. We use the E-KAR dataset |Chen et al| (2022) to evaluate the model’s
analogical reasoning ability. It comes from the Civil Service Examination, a comprehensive test of
the candidate’s critical thinking and problem-solving ability. To solve the analogy reasoning problem,
candidates need to understand the relationship among the options, which requires specific reasoning
ability and background knowledge, especially common sense and facts, and knowing why a fact is
denied.

Code Reasoning. We use CosQA (Huang et al.,[2021)) to test the model performance on the code
question-answering task. The dataset includes 604 natural language-code question-answer pairs.
Furthermore, we use the MBPP dataset (Austin et al.,2021) to test the model code generation ability,
containing 427 Python coding questions.

3.2 EVALUATION DETAILS

In evaluation, these tasks are usually divided into two parts, understanding task and generation task.
For the understanding task, we follow PanGu2.6B (Zeng et al.,|2021) and CPM Zhang et al.|(2021),
decomposing the task into a perplexity comparison task. We construct a prompt template for each
evaluation task and populate the template with instances as input to the model. Table [T]describes the
templates for each task.

We adopt a perplexity-based approach to solve classification tasks. For each <text, label> pair, input
will be automatically generated according to the predesigned prompt in Table |1} The sequences
generated by the prompt will be fed into the model, and a perplexity value will be calculated. The
label corresponding to the minimum perplexity value will be regarded as the predicted label for this
passage. For the generative task, we leverage the properties of autoregressive language models to
generate corresponding answers directly from a given input naturally.

3.3 RESULTS

3.3.1 PRE-TRAINING STAGE

To illustrate the impact of code data in the pre-training phase on the reasoning capabilities of large
language models, we compared the performance of the three models in real reasoning-intensive
scenarios. Among them, the NL (2.6B) and NL (13B) (i.e., PanGu2.6B and PanGu13B) models (Zeng
et al.,|2021) are trained on natural language datasets, and the CODE (2.6B) (i.e., CodePangu2.6B)
model is trained on mixed data (the dataset mentioned in Chapter [I.2). The models are evaluated
in zero-shot manner on downstream tasks. Specifically, we report accuracy on for Logic, JEC-QA,
ScienceQA, E-KAR, and CosQA tasks and BLEU score for MBPP task. In order to illustrate the

Published as a conference paper at ICLR 2024

Dataset Task Metric NL (2.6B) NL (13B) CODE (2.6B) p-value
Logic* Logical Reasoning ACC 36.36 45.45 40.90 4.197e-06
JEC-QA* Legal QA ACC 27.00 27.00 28.70 1.956e-25
ScienceQA* Scientific QA ACC 45.93 45.18 46.06 0.014
E-KAR* Analogical Reasoning ~ ACC 32.24 35.52 36.12 7.013e-07
CosQAf Code QA ACC 47.02 46.85 50.50 1.066e-40
MBPP! Code Generation BLEU 0.52 1.34 5.06 -

Table 2: Results on pre-training stage. Bold values indicate the best performance. * denote the
general reasoning task, and T denote the code-related reasoning task.

significance of these results, we conducted a t-test on the predicted scores. It demonstrates that all
p-values are less than 0.05, indicating that the results are statistically significant. Table[2]depicts the
results of these tasks. Consistently over these tasks, we have two observations as follows.

* After adding code training, LLM performs better on most reasoning-related tasks, even
though most of these tasks are not related to code. This shows that adding code data in
the pre-training stage can not only improve the coding-related ability but also improve the
general language reasoning ability of the model to a certain extent.

» Even with a larger scale model, i.e., NL (13B), it is still not as effective as CODE (2.6B) in
these reasoning scenarios. This is similar to the results of HELM |Liang et al.|(2022), which
suggest that if (a) the computational budget is constrained and (b) the resulting model is
applied in the code reasoning domain, adding code data in the pre-training phase may be
more effective than increasing the model parameter size.

In summary, we find that simply adding code data during the pre-training phase can effectively
improve the model’s general reasoning ability, which might indicate that mixing more code data for
training may produce a competitive model to solve tasks that require complex reasoning to complete.
This provides a promising prospect for subsequent LLM development.

3.3.2 INSTRUCTION-TUNING STAGE

ChatGPT |OpenAl| (2023a) and GPT-4 |OpenAll (2023b) successfully use instruction tuning to enable
LLMs to follow natural language instructions and complete real-world tasks; this improvement
has become standard in open-source LLMs. This is implemented by fine-tuning the model on a
wide range of tasks using human-annotated instructions and feedback, by supervised fine-tuning via
manually or automatically generated instructions using public benchmarks and datasets, or learning
from instruction-following data by developing from state-of-the-art instruction-tuned teacher LLMs.

To illustrate the impact of code data on the LLMs reasoning ability in the instruction tuning stage,
we use the instruction tuning datasets that contain codes and the instruction tuning datasets without
codes introduced in Chapter@] to fine-tune the PanGu2.6B and PanGu13B models (Zeng et al.}
2021) and evaluate their performance in reasoning-intensive scenarios. In addition, we also fine-tune
the CodePanGu2.6B model using the instruction tuning dataset containing codes to observe the
effect of using code data in both pre-training and instruction tuning stages. Table [3]shows the results
of these tasks. Among them, NN and NC represent the fine-tuned PanGu model using only text
instructions and instructions containing codes, respectively, and CC represents the fine-tuning model
of CodePanGu2.6B using instructions containing codes. Consistently over these tasks, we observe
the following:

* After fine-tuning with mixed code instruction data, LLM shows different trends in multiple
reasoning tasks. This indicates that introducing code data in the instruction tuning phase
may be less effective than in the pre-training phase. Therefore, it is best to add code data in
the pre-training stage to improve the model performance in general reasoning tasks.

* We find that training with code data in both stages can significantly improve code-related
tasks (CosQA and MBPP), especially code generation tasks. This may be because the code
instruction data activates the code reasoning ability of the language model, which suggests
that if the LLM needs to complete complex code tasks, the code reasoning ability can be
improved by effectively following code instructions and generating compliant content.

Published as a conference paper at ICLR 2024

Dataset NN (2.6B) NC(2.6B) NN (13B) NC13B) CC (2.6B)
Logic* 36.36 40.90 40.90 40.90 40.90
JEC-QA* 25.20 26.10 24.50 26.40 27.10
ScienceQA* 44.45 43.44 42.94 43.41 41.90
E-KAR* 30.45 28.66 26.27 27.46 27.20
CosQAT 45.20 48.18 47.52 51.99 52.48
MBPP! 0.00 5.61 0.00 1.88 24.88

Table 3: Results on instruction-tuning stage. Bold values indicate the best performance. * denote the
general reasoning task, and T denote the code-related reasoning task.

Dataset NL (2.6B) CODE (2.6B) NL (2.6B)+CoT CODE (2.6B)+CoT
ScienceQA 45.93 46.06 68.76 70.30
E-KAR 32.24 36.12 69.55 72.84

Table 4: Results with Chain-of-Thought prompt. Bold values denote the best results.

* Compared with the pre-training stage, the performance of instruction-tuned LLMs on some
tasks is degraded, similar to the TULU (Wang et al.,|2023) results. This may be because
the instruction tuning data usually covers a wide range of domains and dialogue content,
causing the model to tend to answer questions more comprehensively, resulting in a decline
in reasoning ability. We propose that if specific reasoning capabilities are required, they can
be augmented by adding domain-specific instructions during the tuning phase.

In summary, we find that adding code data in the instruction tuning stage is not as effective as the
pre-training stage in improving the general reasoning ability of the model. However, we find that
code instructions made the model follow natural language instructions and generate correct code,
improving the model’s code reasoning ability. This also suggests that tuning with relevant data may
be helpful when solving specific reasoning tasks.

3.3.3 CHAIN-OF-THOUGHT ABILITY

Compared with the standard prompt technology, Chain-of-Thought (CoT) (Wei et al.[2022) trans-
forms tasks into a continuous chain generation process. This technology enhances the model ability
in complex reasoning tasks by providing a language model with a series of related reasoning steps.
To evaluate the potential of the model in utilizing chains of thought in solving complex problems,
we conduct experiments on two pre-trained models, NL (2.6B), i.e., PanGu2.6B and CODE (2.6B),
i.e., CodePanGu2.6B on ScienceQA(CoT) (Lu et al.,|2022) and E-KAR(CoT) (Chen et al., 2022)
datasets. We incorporate CoT information as a part of the model input with the question and context
information. In this way, the model can directly use the reasoning process of the thinking chain for
answer generation. The experimental results are shown in Table

The experimental results show that after the introduction of the Chain-of-Thought, the performance
of all models in reasoning problems is significantly improved by making full use of the coherent
reasoning process of CoT. The CoT information is used as part of the model input to help the model
better understand the problem and generate answers according to the logic of the CoT. Among
them, CODE (2.6B) achieved the best performance, indicating that CODE (2.6B) can better use CoT
information for reasoning. This also suggests that pre-training with mixed-code data may result in a
competitive model for tasks that require complex reasoning.

3.3.4 EXPLORING WAYS TO MiX CODE AND TEXT DATA

Previous experiments have demonstrated that training with mixed code data in the two stages of
pre-training and instruction tuning can improve the general and specific reasoning capabilities of

Published as a conference paper at ICLR 2024

LLMs, respectively. Therefore, We naturally wonder how mixing these two types of data can better
improve model reasoning ability, which has not been explored in previous studies. Therefore, we
design comparative experiments in the instruction tuning stage to verify the impact of different data
mixing strategies. The mixed strategy is shown in Table[5] One group is uniform sampling, that is,
the proportion of text and code in each group of training data is roughly the same; the other two
groups gradually increase or decrease the proportion of code to verify whether step-by-step learning
will better activate the reasoning ability of LLMs. The experimental results are shown in Table [6]

Phase Uniform Sampling Stepwise Increase Stepwise Decrease

1 5:3 7:3 5:5
2 5:3 7:3 6:4
3 5:3 6:4 7:3
4 5:3 5:5 7:3

Table 5: Mixture strategies on text data and code data with different ratios (text:code).

Dataset Uniform Sampling Stepwise Increase Stepwise Decrease
Logic* 31.82 36.36 40.90
JEC-QA* 27.30 26.70 27.10
ScienceQA* 43.76 43.19 41.90
E-KAR* 28.66 28.36 27.46
CosQAT 51.65 50.66 52.48
MBPP! 23.68 23.42 24.88

Table 6: Result of different mixed strategies. Bold values indicate the best performance. * denote the
general reasoning task, and T denote the code-related reasoning task.

The experiment showed that the training strategy of using a higher code data ratio in the early stage
and gradually reducing the code data ratio in the later stage achieved the best results in code question
answering (CosQA) and code generation (MBPP) tasks, while ensuring the performance of the model
in other reasoning tasks. This may be because, due to the strong logic of the code, using more code
data in the early stage may help the model activate the code reasoning ability faster. Therefore, if
LLMs are expected to have better specific reasoning ability, adopting a stepwise descent strategy can
better activate the model potential. In addition, since experiments in the pre-training phase require a
lot of resources, we leave the validation of this phase to later work.

3.3.5 OTHER TASKS

We extensively evaluates various reasoning tasks, including logical and code reasoning, highlighting
the positive impact of code-related data. Additionally, we sought to ascertain whether code data would
affect common-sense tasks. Therefore, to verify the impact of code data on other comprehension
and generation tasks that are less demanding on reasoning, we conduct experiments on other tasks,
including two NLI tasks (OCNLI (Hu et al., 2020) and CMNLI (Wang et al., [2018))), requiring the
model to identify the relationship between two sentences, either entailment, neutral or contradiction;
a free-form multiple-choice Chinese machine reading comprehension dataset (C3) (Sun et al.,[2020)

Dataset Metrics without code with code
CcB ACC 54.14 54.30
OCNLI ACC 41.69 40.50
CMNLI ACC 45.07 43.49
EM 0.42 0.14
DuReader) 15.29 8.73

Table 7: Results of pre-training on other tasks. Bold values indicate the best performance.

Published as a conference paper at ICLR 2024

Dataset Metrics without code with code

3 ACC 55.07 5447
OCNLI ACC 40.78 41.19
CMNLI ACC 44.82 45.49

EM 12.07 8.05
DuReader) 34.85 25.05

Table 8: Results of instruction-tuning on other tasks. Bold values indicate the best performance.

consisting of documents (conversational or more formal mixed-type text) and their associated multiple-
choice free-form questions; one reading comprehension task duReader (He et al., [2017), requiring
the model to extract a text span from a given paragraph as the correct answer to the question. Refer to
Appendix [D| for prompt templates and evaluation metrics for different tasks.

Table[7]and Table [§]show the results of adding code data in the pre-training phase and adding code
instructions in the instruction tuning phase (only in this phase). Experimental results show that, in
most cases, using code data for training may negatively impact the performance of other tasks. In the
DuReader reading comprehension task, part of the performance will be reduced after adding code at
different stages. This may be because the model does not thoroughly learn the code and text data,
resulting in confusion when the model generates answers to reading comprehension questions. In
future, we will verify and solve it in a larger model and with larger data.

4 RELATED WORK

LLM training. LLMs are usually based on the transformer architecture (Dai et al.|[2019). Notable
models include BERT (Devlin et al., [2018)), GPT-2 (Radford et al.,[2019), and T5 (Ratffel et al., [2020);
after the emergence of GPT-3 (Brown et al.| |2020) with 175B parameters, a batch of larger models
emerged, including PaLM (Chowdhery et al., |2022), OPT (Zhang et al., [2022), PanGu-« (Zeng
et al.[2021), and LLaMA (Touvron et al.,|2023)), which have achieved remarkable results on various
NLP tasks. For LLMs to follow instruction output, instruction tuning (Peng et al., [2023)) plays an
important role. This can use human-annotated feedback (Ouyang et al.,[2022)) or public benchmarks
to automatically generate instructions (Wang et al., [2022) to fine-tune models on various tasks.

Model Evaluation. HELM |Liang et al.| (2022)) provides a large-scale evaluation of existing LLMs.
They found that the code-cushman-001 model trained on code data had more reasoning power than
other natural language models. In addition, some work analyzed the reasoning ability of LLMs
through the way of CoT and found that because the original GPT-3 had not been subjected the code
training, it could not do CoT reasoning Wei et al.[(2022). The PaLM training data contains 5% of the
code training data, which shows that PaLM can effectively perform CoT reasoning. However, in the
above work, the evaluated models have different parameters, data sizes, and unknown training details.
Therefore, it is not rigorous to speculate the exact impact of code data on reasoning ability only by
comparing existing models.

5 CONCLUSION

In this paper, we investigate at which stage introducing code data can help improve the reasoning
ability of LLMs. We validate the effect of code data at different stages with the same parameter scale
and using the same training objective. We point out that simply adding code data in the pre-training
phase can effectively improve the general reasoning ability of the model. Furthermore, we find that
adding code instructions in the instruction tuning stage can make the model follow human instructions
for output and improve specific code reasoning capabilities. Moreover, we point out that the dynamic
mixing strategy of code and text data assists LLMs in learning reasoning capability step-by-step
during the training process. We provide a well-designed and tested reference implementation for
LLMs training to help researchers and developers better understand and analyze LLMs. Models such
as ChatGPT illustrate that larger-scale models will produce emergent capabilities. Therefore, the
follow-up of this paper will study how to code the impact of data on models of different sizes and
explore the relationship between code data and emergent capabilities.

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS
This research was funded by NSFC No.62272473, the Science and Technology Innovation Program
of Hunan Province (N0.2023RC1001) and NSFC No.62202474.

REFERENCES
Alibaba. Tongyi qianwen. |https://tongyi.aliyun.com/, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Baidu. Ernie bot. https://yiyan.baidu.com/welcome, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https:
//github.com/sahil280114/codealpaca, 2023.

Jiangjie Chen, Rui Xu, Ziquan Fu, Wei Shi, Zhongqiao Li, Xinbo Zhang, Changzhi Sun, Lei
Li, Yanghua Xiao, and Hao Zhou. E-KAR: A benchmark for rationalizing natural language
analogical reasoning. In Findings of the Association for Computational Linguistics: ACL 2022,
pp- 3941-3955, Dublin, Ireland, May 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.findings-acl.311.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Fenia Christopoulou, Gerasimos Lampouras, Milan Gritta, Guchun Zhang, Yinpeng Guo, Zhongqi Li,
Qi Zhang, Meng Xiao, Bo Shen, Lin Li, et al. Pangu-coder: Program synthesis with function-level
language modeling. arXiv preprint arXiv:2207.11280, 2022.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. GLM:
general language model pretraining with autoregressive blank infilling. pp. 320-335, 2022a.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm:
General language model pretraining with autoregressive blank infilling. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
320-335, 2022b.

Yao Fu, Peng Hao, and Tushar Khot. How does gpt obtain its ability? tracing emer-
gent abilities of language models to their sources. Yao Fu’s Notion, Dec 2022. URL
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-\
Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30alab9e3e36faldcl.

Wei He, Kai Liu, Jing Liu, Yajuan Lyu, Shiqi Zhao, Xinyan Xiao, Yuan Liu, Yizhong Wang, Hua Wu,
Qiaogiao She, et al. Dureader: a chinese machine reading comprehension dataset from real-world
applications. arXiv preprint arXiv:1711.05073, 2017.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

10

https://tongyi.aliyun.com/
https://yiyan.baidu.com/welcome
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://aclanthology.org/2022.findings-acl.311
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-\Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-\Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1

Published as a conference paper at ICLR 2024

Hai Hu, Kyle Richardson, Liang Xu, Lu Li, Sandra Kuebler, and Larry Moss. Ocnli: Original chinese
natural language inference. In Findings of EMNLP, 2020. URL https://arxiv.org/abs/2010,
05444.

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan.
CoSQA: 20,000+ web queries for code search and question answering. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 5690-5700, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.442.
URL https://aclanthology.org/2021.acl-1long.442.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng
Liu, Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu, Maosong Sun, and Junxian He. C-eval:
A multi-level multi-discipline chinese evaluation suite for foundation models. arXiv preprint
arXiv:2305.08322, 2023.

Huggingface. codeparrot. https://huggingface.co/codeparrot, 2023.

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuanbin Wu, Xuanjing Huang, and Xipeng Qiu.
Codeie: Large code generation models are better few-shot information extractors. arXiv preprint
arXiv:2305.05711, 2023.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022.

Jing Liu, Xinxin Zhu, Fei Liu, Longteng Guo, Zijia Zhao, Mingzhen Sun, Weining Wang, Hanqing Lu,
Shiyu Zhou, Jiajun Zhang, et al. Opt: Omni-perception pre-trainer for cross-modal understanding
and generation. arXiv preprint arXiv:2107.00249, 2021.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. In The 36th Conference on Neural Information Processing Systems
(NeurIPS), 2022.

OpenAl. Chatgpt. https://openai.com/blog/chatgpt, 2023a.
OpenAl. Gpt-4. https://openai.com/gpt-4, 2023b.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730-27744, 2022.

pCLUE team. pclue:large-scale prompt-based dataset for multi-task and zero-shot learning in chinese.
2022. URL |https://github.com/CLUEbenchmark/pCLUE.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485-5551, 2020.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. Investigating prior knowledge for challenging chinese
machine reading comprehension. Transactions of the Association for Computational Linguistics,
8:141-155, 2020.

11

https://arxiv.org/abs/2010.05444
https://arxiv.org/abs/2010.05444
https://aclanthology.org/2021.acl-long.442
https://huggingface.co/codeparrot
https://openai.com/blog/chatgpt
https://openai.com/gpt-4
https://github.com/CLUEbenchmark/pCLUE

Published as a conference paper at ICLR 2024

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpacal 2023.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al.
Benchmarking generalization via in-context instructions on 1,600+ language tasks. arXiv preprint
arXiv:2204.07705, 2022.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go?
exploring the state of instruction tuning on open resources. arXiv preprint arXiv:2306.04751,
2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Chao Yin, Chenxu Lv, Da Pan, Dian
Wang, Dong Yan, Fan Yang, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

Wei Zeng, Xiaozhe Ren, Teng Su, Hui Wang, Yi Liao, Zhiwei Wang, Xin Jiang, ZhenZhang Yang,
Kaisheng Wang, Xiaoda Zhang, et al. Pangu-a: Large-scale autoregressive pretrained chinese
language models with auto-parallel computation. arXiv preprint arXiv:2104.12369, 2021.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su,
Haozhe Ji, Jian Guan, et al. Cpm: A large-scale generative chinese pre-trained language model.
Al Open, 2:93-99, 2021.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi
Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for code
generation with multilingual evaluations on humaneval-x, 2023.

Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang Zhang, Zhiyuan Liu, and Maosong Sun. Jec-qa:
A legal-domain question answering dataset. In Proceedings of AAAI, 2020.

A ADDITIONAL RELATED WORK

Data Mixtures. Models such as GPT-3 (Brown et al., 2020) and PanGu-« (Zeng et al., [2021) are
trained on natural language data from various domains, and models such as LaMDA (Thoppilan et al.|
2022) and LLaMA (Touvron et al.,[2023) are additionally trained on code data. However, the impact
and specific origin of this mixed-code data is unclear. Some researchers have extensively analyzed
the performance of current LLM on various tasks, pointing out that code may be the key to improving
reasoning ability (Liang et al.l 2022} [Fu et al.,2022). However, the evaluated models have different
parameters and data scales, and problems such as unknown training details exist. It is difficult to
determine the exact impact of code data on the reasoning ability of LLMs.

12

https://github.com/tatsu-lab/stanford_alpaca

Published as a conference paper at ICLR 2024

B CODE REPRODUCTION

B.1 MINDSPORE VERSION
To ensure reproducibility, we open-sourced the model training and inference code using the Mind-
Spore framework in the repository link: https://github.com/yingweima2022/CodeLLM.

B.2 INTRODUCTION TO MINDSPORE

We acknowledge that MindSpore is relatively newer and requires further development time. How-
ever, we would also like to highlight the adoption of MindSpore by prominent researchers in the
field. For instance, (Zheng et al., 2023) in their work on CodeGeeX, (Liu et al., [2021)’s OPT
model and (Christopoulou et al., 2022) in the release of PanGuCoder have both embraced the
software-hardware combination offered by MindSpore. According to the data from Papers with
Code (https://paperswithcode.com/trends), there have been 398 repositories utilizing the open-
source MindSpore framework since 2023, which is higher than the 192 repositories using TensorFlow.
This showcases its potential and the growing interest within the community.

C EXPERIMENTS DETAILS

Our experiments are developed under the Mindspore framework. To make a fair comparison with
the baseline of PanGu2.6B, we retain the setting of the 32-layer transformer decoder. The model
architecture as shown in Figure[d] In the pre-training stage, we trained CodePanGu2.6B on a cluster
of 16 Ascend 910 Al processors, and in the instruction-tuning stage, we tuned models on a cluster
of 8 Ascend 910 Al processors. The sequence length for the training data is set to 1024 for all the
models. Other detailed configurations can be found in Table 9]

Type Parameter Value
Framework Mindspore v1.7.0
Environmental parameter Hardwares Ascend 910
Mem per GPU 32GB
GPUs per node 8
Layers 32
Model parameter Hidden size 2560
FFN size 10240
Heads 32
Optimizer Adam
Initial/final learning rate le-4(2e-5)/1e-6
Optimization parameter Warm-up step 500
Learning rate scheduler cosine
Optimizer parameters 51 = 0.9, 52 = 0.95
Data parallel 16(8)
Parallelism parameter Model parallel 1
pipeline parallel 1

Table 9: Training configurations.(The values in parentheses are instruction-tuning parameters)

13

https://github.com/yingweima2022/CodeLLM
https://paperswithcode.com/trends

Published as a conference paper at ICLR 2024

Output

|

— Add & Norm

T

Query Layer

— Add & Norm

Transformer
Feed Decoder
Forward (x32 layers)

B

i — Add & Norm

Multi-Head
Attention

Positional @@ Mask
Encoding

Input
Embedding

!

Figure 4: Model architecture. We build models with 2.6B and 13B parameters, consisting of 32-layer
left-to-right transformer decoders and a top query layer.

D THE TEMPLATE FOR OTHER TASKS

We follow Chapter [3.2] conduct experiments on other tasks to verify the impact of code data on
other comprehension and generation tasks that are less demanding on reasoning, including C* (Sun
et al.;,2020); two NLI tasks (OCNLI (Hu et al.,2020) and CMNLI (Wang et al., 2018))); one reading
comprehension task duReader (He et al.| 2017). Table [I0]shows the prompt templates for these tasks.
The evaluation metrics for duReader, including F1 and exact match(EM), measure the similarity
between the predicted and ground-truth text spans. The evaluation metric of other tasks is accuracy.

Task Input & Prompt

c? Question: $question\n Answer:$choice comes from the dialogue: $context
OCNLI $S1? Yes/Maybe/No, $S2
CMNLI $S1? Yes/Maybe/No, $S2

duReader Read document: $Document\n Question:$Question \n Answer:

Table 10: The input & prompt template for other tasks.

14

Published as a conference paper at ICLR 2024

loss

10

Values

T T
0 100000 200000
Steps

Figure 5: The curves of training loss for CodePanGu2.6B.

E TRAINING LOSS

The curves of training loss for the CodePanGu2.6B model are shown in Figure[5] We show that the
cross entropy loss decreases steadily during training and the loss of this model converges to around
2.25.

F CASE STUDY

In summary, adding code data in the pre-training stage can effectively improve the general reasoning
ability of LLM, and can guide the model to make full use of the coherent reasoning process of the
Chain-of-Thought to generate answers. Consistent with GPTRoadMap’s point of view (Fu et al.|
2022), we think this may have something to do with the logic of the code itself. To further explain
why the code improves the reasoning ability of the model, we found several sample codes from the
dataset and explained each code, as shown in Figure[6]

We found that, regardless of the length of the code dealing with different problems, step-by-step
reasoning is required to ensure that the code is generated correctly, similar to the Chain-of-Thought
required by other reasoning tasks. This may indicate that the model implicitly learns the thinking
chain ability through the code data, which improves the reasoning ability of the language model. In
addition, we analyzed the data flow graph of the calculate_average function, as shown in Figure
We found many data flow dependence relations in the code data, which are distributed among
different code variables. Complex reasoning tasks usually require long dependencies to infer correct
conclusions, so the language model may benefit from dependencies such as data and control flow of
code data and improve the reasoning ability of the model.

G DATASET CONSTRUCTION

Cleaning and Filtering. To improve the data quality, we adopt the following rule-based text cleaning
strategies over the raw web pages from Common Crawl.

* Remove the document which contains less than 60% Chinese characters.

* Remove the document which contains less than 150 characters.

* Remove the document which contains only the title of a webpage.

* Remove the special symbols and duplicated paragraphs in each document.

15

Published as a conference paper at ICLR 2024

Description Code Explanation
def quicksort(arr):
if |en(arr) <=1: 1.Choose the first element as the pivot
return arr 2.Create a list of elements smaller than or

Write a funtion to

pivot = arr[0] equal to the pivot
implement quick

less = [x for xin arr1:] if X <= pivot] |3 create a list of elements greater than
sort greater = [x for x in arr[1:] if X > pivot] |the pivot
return quicksort(less) +

4R ivel he li
[pivot] + quicksort(greater) soursively sort the list

class Book: 1.Create a book class (Book):
def __init__(self, title, category): Attributes:
self title = title title, author, classification, ...
method:
def borrow(self, borrower): borrow, return_book, Display book
Write an online information (display_info), ...
shopping system class Library: 2.Create a library class (Library):

def __init__(self):
self.books =[]
self.borrow_history =[]
def borrow_book(self, title,

Attributes:

Book list (books), Borrowing History
(borrow_history), ...

method:

borrower): Add Book (add_book), Remove Book
(remove_book), ...

based on python

Figure 6: Examples of different codes.

Source code
def calculate_average(nums):

total =0
for num in nums:
total += num

average = total / len(nums)
return average

Data Flow @

Value comes from avg

Figure 7: Examples of code dependencies.

* Identify advertisements based on keywords and remove documents that contain advertise-
ments.

* Identify the navigation bar of the web page and remove it.

16

Published as a conference paper at ICLR 2024

Regarding the use of The Common Crawl corpus https://commoncrawl.org/the-data//in our
work, it’s worth noting that several prominent projects, such as Llama, have also employed this
dataset. Crawled data may exhibit biases, and ground truth data often resides within large corporations,
making access challenging. In light of this, we adopted a strategy similar to other open-source models
like Llama and Falcon, leveraging a broader range of data types such as open-source code and e-books
to supplement and mitigate potential biases.

Text Deduplication. Although we removed duplicate paragraphs in each document in the previous
step, there are still documents with highly overlapping content in different data sources. Therefore,
we carry out fuzzy data deduplication over the documents across all our data sources to further
remove high-overlap content. For fuzzy data deduplication, we employed Spark’s MinHashLL.SH
algorithm, a widely adopted technique by models like GPT-3.

Data Selection. Using the construction process described above, we constructed filtered text corpora
from five types of data sources. Based on this corpus, we constructed a training dataset of 100GB
text data by sampling each data source according to the ratio of Figure [2]and used this data as the first
part of the training set to train CodePanGu2.6B.

H URLS OF USED DATASETS

This section gives the URLs of the used benchmark datasets.

* The Common Crawl corpus: https://commoncrawl.org/the-data/

* BAAI-WuDao: https://openi.pcl.ac.cn/BAAI/WuDao-Data

* CodeParrot: https://huggingface.co/codeparrot/codeparrot

* github-code: https://huggingface.co/datasets/codeparrot/github-code
* stanford_alpaca: https://github.com/tatsu-lab/stanford_alpaca

* code_alpaca: https://github.com/sahil280114/codealpaca

* PromptCLUE: https://github.com/clue-ai/PromptCLUE

I EXAMPLES OF DATASETS

Below are examples from the Logic, JEC-QA, and E-KAR datasets.
One Example of Logic (Logical Reasoning).
Problem:

Regarding the physical education standard test for Class A, three teachers made the following
predictions: Teacher Zhang said, "Not everyone will fail." Teacher Li said, "Someone will fail."
Teacher Wang said, "Both the class president and the study committee member will pass." If only one
of these teachers’ predictions is correct, which of the following must be true?

Answer List:

A: "Both the class president and the study committee member failed.” B: "Both the class president
and the study committee member passed." C: "The class president passed, but the study committee
member failed." D: "The class president failed, but the study committee member passed."

Answer: A
One Example of JEC-QA (Legal QA).
Problem:

A miscellaneous article written by person A caused a significant stir after its publication. The
article was reprinted by several newspapers and websites without compensation. Person B translated
the article into French and person C translated it into Uighur. Both translations were published
domestically without A’s consent and without any remuneration. Which of the following viewpoints
is correct?

17

https://commoncrawl.org/the-data/

Published as a conference paper at ICLR 2024

Answer List:

A: "The act of newspapers and websites reprinting the article does not constitute infringement." B:
"The actions of both B and C do not constitute infringement." C: "B’s action does not constitute
infringement, but C’s action does." D: "B’s action constitutes infringement, but C’s action does not."

Answer: C

One Example of E-KAR (Analogical Reasoning)

Problem:

Based on the given relationship [Speed:Time:Distance], choose the option that fits this relationship.
Answer List:

A: "Interest Rate:Principal:Interest” B: "Quality: Variety:Quantity" C: "Profit:Cost:Value" D: "In-
come:Expenditure:Surplus”

Answer: A

Explanation: From the given relationship, we infer the following: "Speed" multiplied by "Time"
equals "Distance". In option A, "Interest Rate" multiplied by "Principal” equals "Interest". In option
B, there is no clear logic connecting "Quality", "Variety", and "Quantity". In option C, the product of
"Profit" and "Cost" is not "Value". In option D, "Surplus" is the difference between "Income" and

"Expenditure". Therefore, the correct choice is A.

J ADDITIONAL CONCLUSIONS OF MIXTURE STRATEGY

From the extensive experiments of the mixture strategy, we have three additional conclusions as
follows.

1) Using a larger code proportion in the early stage can improve the performance of LLM in coding
tasks (CosQA and MBPP). The reason may be that a higher code proportion in the early stage can
better activate code-related reasoning capabilities under a higher learning rate.

2) The descending strategy can improve the performance of logic. Since the code data is more logical,
giving more codes in the initial stage may improve the performance of logic reasoning.

3) In the other three datasets, uniform is better, probably because these tasks require both logical
reasoning ability and common sense as well as natural language understanding ability.

Therefore, we recommend choosing different hybrid strategies based on the characteristics of different
downstream tasks.

K OTHER DATASETS

In order to more comprehensively verify the observations of this article, we selected the high school
mathematics and high school physics problem parts of the MMLU (Hendrycks et al., 2020) test set to
evaluate the model in the pre-training stage. MMLU is a currently widely used data set to evaluate
the comprehensive ability of LLM (OpenAlL |[2023bj [Touvron et al.,[2023), among which mathematics
and physics can better reflect the reasoning ability of the model. The results obtained are shown in
the table [[T] below.

Task NL2.6B NL13B CODE2.6B p_value LLaMA-7B
MMLU_Math 24.16 22.30 2491 <0.05 24.97
MMLU_Physics 20.00 22.67 26.67 <0.05 27.97

Table 11: Performance in mathematics and physics subjects.

We can make the following observations:

* On mathematical and physical reasoning tasks, the CODE2.6B model shows advantages
over NL2.6B and NL13B, which strengthens the effectiveness of introducing code data

18

Published as a conference paper at ICLR 2024

in the pre-training stage. We performed a t-test for statistical significance and the results
showed that the p-value was less than 0.05, which indicated that the results were statistically
significant.

* We admit that models including LLaMA-7B and CODE2.6B perform relatively poorly on
mathematical and physical tasks, but we believe that the relative improvement brought by
code data is trustworthy. This also shows how it is necessary to further improve mathematics-
related tasks.

Note: Source of LLaMA results: https://github.com/baichuan-inc/Baichuan-7B

In addition, we supplemented our pre-training with an additional 50GB of natural language data
on top of the NL (2.6B) dataset. From Table[I2] we observed performance improvements on some
natural language datasets; however, these benefits were not as significant as those seen with code
data. Moreover, there was no enhancement in performance on code datasets, and in some cases, there
was even a negative effect. Therefore, it would be valuable to further explore the hybrid training of
code and text data or even other types of modal data.

Dataset Logic JEC-QA ScienceQA E-KAR CosQA MBPP
NL(2.6B)+50G 36.36 27.20 45.96 32.54 46.69 0.45

Table 12: Performance of model pre-trained with an additional 50GB data.

L LIMITATIONS

L.1 VERIFIED ON MORE LARGE LANGUAGE MODELS.

PanGu (Zeng et al., 2021), along with other LLMs like Llama (Touvron et al., [2023) and Google
PalM (Chowdhery et al.|[2022)), shares a common architecture based on the GPT-2 |OpenAl| (2023a)
decoder-only architecture and next token prediction task. Due to resource constraints and envi-
ronmental concerns, we currently only conduct experiments on PanGu, but we compare models
with different parameter scales (i.e., 2.6B and 13B) to demonstrate the impact of the code. For a
more comprehensive validation on a larger model, this section analyzes the performance of two
other models, namely the Llama 2 and Code Llama models on reasoning tasks. Among them,
Code Llama continued to pre-train using code data based on Llama 2. The performance summary
on code tasks and mathematical tasks is shown in Table [I3] The data comes from Open LLM
Leaderboard(https://huggingface.co/spaces/HuggingFaceH4/open_l1lm_leaderboard). Ex-
perimental results show that pre-training on code data can improve coding and mathematical reasoning
capabilities, and also preliminarily verify some of the conclusions obtained in this article. In the
future, this article will continue to verify and discuss model experiments on a larger scale. At the
same time, we look forward to the emergence of LLMs with different architectures than GPT, and we
also look forward to following up and verifying more LLMs with different architectures.

Model HumanEval (CODE) GSMSK (MATH)
Llama 2-7B 12.2 3.49
Code Llama-7B 335 5.16
Llama 2-13B 20.1 10.84
Code Llama-13B 36.0 12.13

Table 13: Results on Llama 2 and Code Llama (7B and 13B).

L.2 WHY NOT DESIGN A NEW MODEL FOR CODE?

Our paper primarily investigates at which training stage can codes help general LLMs reasoning.
Through extensive experimentation, we assess the impact of code data, offering insights that can
guide the development of future universal LLMs. Our objective is not to create a specialized code or
text model, but rather to provide guidance in this context. In the future, we plan to leverage these
findings for future development. We will explore integrating code features with models to create
more robust and versatile universal reasoning models.

19

https://huggingface.co/spaces/ HuggingFaceH4/open_llm_leaderboard

Published as a conference paper at ICLR 2024

M APPLICATION

The main contribution of this paper is to explore the impact of code data on LLM reasoning capabilities
at different training stages and draw the following conclusions. Firstly, adding code data in the pre-
training stage can effectively improve the model’s general reasoning capabilities. Secondly, adding
code instructions in the instruction fine-tuning stage can improve specific code reasoning capabilities.
Moreover, the dynamic mixing strategy of code and text data assists LLMs in learning reasoning
capability step-by-step during training. Below, we provide some ideas for further applications of
these conclusions.

M.1 IMPROVE GENERAL REASONING SKILLS.

The conclusions obtained in this article have direct implications for the application of general LLMs
in multiple reasoning-intensive fields (such as legal support, scientific question answering, etc.).
Secondly, for the construction of large models in vertical fields (such as large legal models, etc.), it is
often necessary to use vertical field data for continued pre-training. High-quality data is the key to
model training. If there is a lack of data in vertical fields, you can try to mix certain high-quality code
data to improve the model’s reasoning capabilities in vertical fields.

M.2 IMPROVE DOMAIN-SPECIFIC REASONING SKILLS.

This paper finds that mixing in code data during the fine-tuning phase can improve capabilities in
specific areas of the code. This may be because instructions for related tasks may activate reasoning
and response abilities in the corresponding tasks. Therefore, for specific fields such as information
extraction |Li et al.|(2023)), you can also consider mixing in instructions from specific fields to further
improve reasoning capabilities.

M.3 IMPORTANCE OF TRAINING DATA.

This paper verifies the impact of code data through ablation experiments and proves the importance
of data. However, there are still data that may be similar to code data, such as scientific paper data,
mathematical data, etc. This may also be the key to improving the reasoning ability of language
models. The experimental exploration in this article provides a direction for further research on how
multiple types of data affect model training.

20

	Introduction
	Training Data & Training Strategies
	Pre-Training Corpus
	Instruction-Tuning Corpus

	Model
	Model Architecture
	Tokenization

	Experiments
	Task Description
	Evaluation Details
	Results
	Pre-training Stage
	Instruction-tuning Stage
	Chain-of-Thought Ability
	Exploring Ways to Mix Code and Text Data
	Other Tasks

	Related Work
	Conclusion
	Additional Related Work
	Code Reproduction
	Mindspore Version
	Introduction to Mindspore

	Experiments Details
	The Template for Other Tasks
	Training Loss
	Case Study
	Dataset Construction
	URLs of Used Datasets
	Examples of Datasets
	Additional Conclusions of Mixture Strategy
	Other Datasets
	Limitations
	Verified on more large language models.
	Why not design a new model for code?

	Application
	Improve General Reasoning Skills.
	Improve Domain-specific Reasoning Skills.
	Importance of Training Data.

