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Abstract

Curriculum learning is a class of training strate-
gies that organizes the data being exposed to a
model by difficulty, gradually from simpler to
more complex examples. This research explores
a reverse curriculum generation approach that re-
cursively decomposes complex datasets into sim-
pler, more learnable components. We propose a
teacher-student framework where the teacher is
equipped with the ability to reason step-by-step,
which is used to recursively generate easier ver-
sions of examples, enabling the student model
to progressively master difficult tasks. We pro-
pose a novel scoring system to measure data diffi-
culty based on its structural complexity and con-
ceptual depth, allowing curriculum construction
over decomposed data. Experiments on math
datasets (MATH and AIME) demonstrate that
models trained with curricula generated by our
approach exhibit superior performance compared
to standard training on original datasets.

1. Introduction

When teaching language models (LMs) to solve mathemati-
cal problems, one common solution is to apply supervised
learning on a dataset of problems with worked-out solu-
tion steps. This is, to some extent, in stark contrast to how
humans are educated and generally taught to solve prob-
lems, e.g. with a curriculum, where a teacher presents sim-
pler concepts first, to build a foundation for later tackling
more challenging tasks.

Transposing this strategy to train machine learning mod-
els, e.g. via curriculum learning (Elman, 1993; Bengio et al.,
2009), has historically yielded mixed results. We speculate
that one of the reasons is that approaches largely relied on
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ranking by difficulty examples within a dataset (Wu et al.,
2020; Lalor & Yu, 2020). Not only is accurately estimating
difficulty challenging, but datasets may also lack the diversity
or granularity needed to isolate and teach the fundamental
“skills” required for complex problem-solving. Recent stud-
ies suggest that curriculum learning is more effective when
“decomposed” datasets that isolate atomic skills are available
to the learner (Lee et al., 2024).

We build upon this intuition and, assuming access to a
teacher model that can reason step-by-step, we propose a way
of “decomposing” a dataset of mathematical problems into a
hierarchy of problems with different difficulty levels. Our ap-
proach enables smaller LMs to progressively acquire elemen-
tal skills before tackling more intricate ones. Although we
focus on mathematical datasets such as MATH (Hendrycks
et al., 2021) and AIME (of America, 2024), we think the
approach might be applied to a broader range of domains in
the future.

Our dataset decomposition approach starts with a dataset
of mathematical questions and step-by-step solutions. The
main idea is that a teacher model can generate simpler prob-
lems by looking at sub-steps in the solution. Every sub-step
is by definition simpler than the original problem and thus
can be used as the answer for a latent, simpler problem.
Crucially, this process can be recursively iterated: we can
now ask a teacher model to create a step-by-step solution
to the sub-problem and recursively generate simpler prob-
lems in the same manner until a stopping criterion — such as
recursion depth or problem simplicity — is met. Given the
strong inductive bias of step-by-step reasoning, the teacher
is encouraged to work out solutions to progressively simpler
problems. This process creates a tree of sub-problems for
each question in the original dataset.

To facilitate curriculum construction, we assign difficulty
scores to sub-problems based on their structural complex-
ity. We tag sub-problems and construct a graph of tags by
connecting each sub-problem’s tag to its parent problem’s
tag. The graph synthesizes tag relationships across the en-
tire dataset. The simplicity of a problem is then computed
both using the "depth" of the tags associated with a given
problem and the number of sub-problems it generates.
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We use our dataset decomposition to train small LMs to do
mathematical reasoning on MATH and AIME via supervised
fine-tuning (SFT). Even when decomposed problems are
presented i.i.d. to the models, our approach improves the
ability of small LMs to learn from a small set of examples.
We see further gains when sub-problems are presented in
the order of increasing complexity.

Apart from the dataset augmentation and curriculum con-
struction aspect, one of the useful byproducts of our method
is the potential for creating a “cartography” of a given
dataset (Swayamdipta et al., 2020). Our induced graph of
skills can be used to gain more insights into coverage of
the dataset and how additional samples might increase the
coverage, or even how two seemingly different datasets are
related to each other.

2. Related Work

Data Augmentation Data Augmentation, synthetically
generated from an LLM can be seen as a form of distillation
(Hinton et al., 2015; Kim & Rush, 2016). This approach
has been especially successful in distilling reasoning capa-
bilities into smaller models (Mitra et al., 2023; Li et al.,
2023; Mitra et al., 2024). This approach has also been ap-
plied to generate mathematical reasoning traces. For in-
stance, Self-Taught Reasoner (Zelikman et al., 2022) gener-
ates and then learns from its own chain-of-thought reason-
ing steps. MuggleMath (Li et al., 2024) and MetaMath (Yu
et al., 2024b) both amplify diversity by evolving problem
queries and sampling multiple reasoning traces, and by ap-
plying paraphrases and backward reasoning transformation,
respectively. MuMath (Yin et al., 2024) further enriches
examples through multiple rewrites using several “perspec-
tives”, e.g., paraphrase, symbolic reformulation. MathGe-
nie (Lu et al., 2024) back-translates a small seed set through
a generator—verifier loop to create high-fidelity new prob-
lems. PersonaMathQA (Luo et al., 2024) adds “persona
diversification” plus self-reflection to generate richer prob-
lem contexts. Beyond direct data augmentation, Shridhar
et al. (2023) generates subquestions and solutions to distill
the knowledge from the teacher model to students, Huang
et al. (2025) synthesizes QA pairs by extracting key points
from problems. To simultaneously address the quality, di-
versity, and complexity of the dataset, Davidson et al. (2025)
proposes Simula, a unified framework for generating and
evaluating synthetic data. However, existing data augmen-
tation techniques somewhat neglect prior knowledge and
difficulty. To address this gap, we propose hierarchically
decomposing problems with multi-step augmentation so
models progressively acquire elemental skills.

Curriculum Learning (Bengio et al., 2009; Elman, 1993)
originally propose to apply curriculum to train LMs. (Wu

et al., 2020) shows mixed results when applying curricu-
lum learning methods based on example difficulty. In the
past, many have studied different curriculum learning strate-
gies to either increase the context length or more efficiently
train LMs (Press et al., 2020; Nagatsuka et al., 2021), with
unconvincing results. More recently, studies started to in-
vestigate synthetic data creation associated with curriculum
learning, yielding promising results for training small LMs
for code (Nair et al., 2024). Work on TinyStories (Eldan &
Li, 2023) shows that carefully synthetically curated datasets
can be helpful in teaching tiny LMs basic English proficien-
cies. These works align with ours in the hypothesis that the
synthetic data creation of easier examples can be used as a
driving factor underpinning a successful curriculum. In the
robotics domain, (Florensa et al., 2017) proposes a “reverse”
learning strategy that starts RL training from the goal state
and gradually guides the policy to learn to reach the goal
from a set of start states increasingly far from the goal. This
approach also builds a curriculum with increasing difficulty
levels (in a guaranteed way) by reversing the original task.
However, our reasoning domain is different because it allows
us to leverage the compositionality of language to decom-
pose the reasoning tasks at much meaningful abstraction
levels.

3. Dataset Decomposition

In this section, we propose a recursive algorithm that de-
composes complex math problems into simpler subproblems
based on their underlying reasoning steps. Our algorithm
consists in two phases: first, we decompose each example
into a hierarchical structure of sub-problems; second, we
connect these sub-problems at a dataset level using a tag-
ging approach and we build a graph of tags, useful to infer
the difficulty of every sub-problem. Finally, we describe
how we use the difficulty score in our curriculum learning
procedure.

3.1. How to generate subproblems? - Recursive Problem
Decomposition

We propose a recursive dataset decomposition framework
that constructs verified, grounded sub-problems from multi-
step solutions. Each sub-problem corresponds to a clear,
atomic mathematical reasoning operation, explicitly linked
to a core mathematical concept and validated for correctness.
We assume access to a teacher model 7 (a large LM, we use
GPT-4o0 in our experiments), which we assume is proficient
at the task of the dataset of interest.

Step Extraction. Given a solution trace cot for a math
problem g, we first decompose it into at most k reasoning
steps. This is achieved by prompting the teacher model to
segment the text based on conceptual granularity: cot —
[s;, 55, ...,8;], where each step s; introduces a new and
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Figure 1. Left: We recursively decompose a math example (g, cot, a) into a set of smaller problems (depth 2 in the figure). We first split
the cot into steps, then create a question for each step and an associated concept tag. We then ask the teacher model to solve the question
step-by-step. We verify the final answer by ensuring it is the same as the answer obtained without the ground-truth step in context. We
then recursively apply this procedure until a stopping criterion. Right: We create a graph of tags, where dependency relation is given by
the hierarchy in the decomposition tree. The graph of tags is used to quantify the difficulty of a generated sub-problem.

distinct mathematical operation.

Concept Tagging. For each step s;, we extract an atomic
concept tag t; by querying the teacher model to identify
the most specific mathematical concept that governs the
reasoning step.

Subproblem Generation. Given the original problem ¢, a
step s;, and its tag t;, we generate a new subproblem g; (i.e.
a question) grounded in the original context (¢;,q). Then,
we ask the teacher model to solve the generated problem g;
step-by-step leading to a solution cot; and final answer q;.

Verification. To assess that the answer to the generated sub-
problem g; is correct and answerable, we also ask the teacher
model to solve g; without access to the original context (¢;, q)
resulting in an answer 4;. Given that g; has been generated
with access to the original context, it is more likely to be
correct. Therefore, we compare the resulting numerical an-
swer d; to a; using a symbolic verifier V. Only subproblems
satisfying V(a;, d;) = True are accepted. Otherwise, the
subproblem is regenerated with a retry budget of R attempts.

Recursive Expansion. The sub-problem reasoning cot; con-
tains further multi-step reasoning by construction. There-
fore, we can apply the process recursively by decomposing
cot; using the same procedure up to a maximum depth D.
This produces, for every example in the dataset, a nested
structure:

m
q; coty, a; = {(q; - coty jra; YL

where each child ¢; ; corresponds to a problem grounded in
the constituent sub-step j of cot;.

In summary, the final output is a dataset composed of sub-
problems, associated concept tags, sub-problem depth, rea-
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soning steps and answers (see Figure 1, left). We also illus-
trate the whole workflow with concrete problems in Figure 2.

Algorithm 1 Recursive Dataset Decomposition

:Problem set D,,,,, teacher model 7', maximum decom-
position depth D, maximum steps per layer k
Output :Decomposed dataset D,

Input

curr

Initialize empty dataset D, = {}

Function DecomposeExample (q,cot,a,d,D,,,)

Split cot into steps {sy, ..., s, } using T’
for i =1to k do
Generate concept tag t, for step s; using 7
for retry = 1 to MaxRetries do
Generate question ¢;, step-by-step solution cot;, and
answer g, from (g, s,,¢;) using 7
Verify a, via auto-solver and consistency check (see
paper)
if verified then
| Break
end
end
Dcurr = Dcurr U (qi’ COti’ a;, ti’ d)
if d < D then
‘ DecomposeExample (g;,cot;,a;,d +1,D,,,.) #
Recursive call
end
end
end
foreach (g, cot,a) € D,,, do
DecomposeExample (q,cot,a,0,D,,,.)
Dnurr = Dcurr U (Qv COt9 a,—, D)

end
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Figure 2. Left: We show the decomposition of the math problem on the top obtained with our method, along with the associated concept
tags. The problems in the solid white boxes are the generated sub-problems. Right: The graph of concept tags, obtained by connecting the

tags across the dataset examples.

3.2. How difficult is a certain (sub)problem? — Concept
Dependency Graph

We construct a directed acyclic graph (DAG) over concepts
derived from the recursive decomposed problem-solving
process above. This graph encodes the prerequisite rela-
tionships between mathematical operations across all the
examples in the dataset, thus enabling curriculum design.

Let G = (V, &) denote the Concept Dependency Graph,
where V is a set of concept tags (such as “GCD” or “Square
Root”), and £ C VY x Vis a set of directed edges representing
prerequisite relationships between concepts. A directed edge
(4, v) € € indicates that concept v depends on concept u.

The construction algorithm proceeds as follows. We initial-
ize an empty directed graph G. We add the ensemble of tags
across examples to the node set V. A parent tag 7, has a
child tag ¢, if they are obtained while decomposing the same
example and their depth differ by 1. For every parent tag
I and child tag 7., we insert an edge (tp, t,) € &, unless
t, =1,

Nodes with zero in-degree in G represent foundational con-
cepts. Formally, the set of root nodes is defined as R =
{v € V| in-degree(v) = 0}. To quantify concept difficulty,
we define a depth function d : V — N such that:

ifveR,

d(v) =
. 1+ max, ,es d(u) otherwise.

This depth serves as a proxy for the reasoning complexity
required to apply concept v.

3.2.1. CONCEPT CLUSTERING VIA EMBEDDING
SIMILARITY

Our generated tags include variations such as "GCD" and
"Greatest Common Divisor" that refer to the same math-
ematical concept. To unify these concepts and minimize
semantic redundancy in our graph, we use unsupervised
clustering on tags’ embedding representations.

Specifically, each concept tag t € V is mapped to a dense
vector representation ¢(t) € R? using a pre-trained LM. We
then compute pairwise cosine similarities between all tag
embeddings. Denote, the similarity as S(i, j).

To cluster tags, we employ a greedy clustering algorithm
with a predefined similarity threshold 6. Specifically, we
sequentially select unassigned tags as cluster representatives
and group all other tags exceeding the similarity threshold
under them. Formally, the mapping from original tags to
cluster representatives 7 is concisely defined as:

(1) = arg max {S@;,1) | S@;,1) =6},

rep

where V.., C

rep & V represents the set of selected representative
tags.

After clustering, we relabel the nodes in the concept depen-
dency graph G accordingly. Edges are rewired based on these
updated labels, explicitly removing any self-loops arising
from clustering:

& = {(zw),7(v) | (u,v) € &, 7(u) # 7(v)}.

This results in a refined concept dependency graph ¢’ =
(V', &"), where each node uniquely represents a distinct con-
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ceptual skill.

3.2.2. DIFFICULTY MEASUREMENT VIA STRUCTURAL
AND CONCEPTUAL FEATURES

The difficulty of a data sample stems from both the number
of mathematical operations it includes and the complexity
of the concepts involved. For example, consider solving the
following three problems: a) 1+1;b) 1+1+...+1; (sum
of thousands of 1); ¢) sqrt (3) + (5/76)**2. ¢)is
harder than P1 due to conceptual complexity (the complexity
of operations involved) while b) is harder than a) because
of structural complexity, the number of atomic operations
involved.

While the Concept Dependency Graph provides a data-
driven way to gauge a concept’s complexity by measuring
the depth of the concept’s tag in the graph, it may fall short
in accounting for the structural complexity of a specific rea-
soning step that involves that concept, such as the number of
sub-problems it can be decomposed into, or how important
the sub-problem is to solve other problems in the dataset.
To address this, we introduce a composite difficulty score
that combines both conceptual and structural factors for a
more comprehensive characterization.

Given a reasoning step s (or a data sample g before the first
iteration of decomposition) in the recursive decomposition
tree (e.g., step; in Figure 1), we compute:

o structural complexity SC(s): the number of direct chil-
dren of the reasoning step, reflecting its structural branch-
ing factor. In the example in Figure 1, SC(step;) = 3 be-
cause step; can be further decomposed into three lower-
level reasoning steps (i.e., step;;, step;,, and step;3).

o conceptual depth CD(s): the maximum depth of the
concept tag in the Concept Dependency Graph G that is
associated with this reasoning step. In the example in
Figure 1, CD(step,) equals the depth of tag; in G.

Therefore, the overall difficulty score #(s) € R is defined
as a weighted combination of these two terms:

2(s) = aj - SC(s) + a, - CD(s),

where a;,a, € R* are tunable coefficients that balance
structural complexity and conceptual depth.

3.3. Curriculum Learning via Difficulty Measurement

To leverage the difficulty scores £ during training, we im-
plement a staged curriculum learning framework where the
model is exposed to data in increasing order of difficulty.
This approach enables the model to first acquire capabilities
on simpler sub-problems before attempting harder examples.

LetD' = {q, cot, £(q)} be the decomposed dataset where the
question in each sample is annotated with our difficulty score.
We partition D’ into K non-overlapping subsets D, ..., D’
based on the quantiles of difficulty:

D\u--uDy =D,
D) = {(g,cor) € D' | gb;_; < £(q) < qb;},

where {qbg,gby, ..., qbg } are the quantile breakpoints com-
puted from the score distribution. We adopt an easy-to-hard
curriculum, where the model is trained sequentially from
D' to D/, Each stage is trained with early stopping to avoid
overfitting and to allow controlled progression:

Stagei : 0, < arg ngn LZ(G;D:),

where 6, denotes model parameters after stage i. We split
the training budget across the full curriculum, so that exper-
iments presented in this paper are compute matched for a
given setting.

4. Experiments and Results

In this section, we describe our experimental and evaluation
procedure used to validate the effectiveness of DECOMPX.

4.1. Experimental Setup

Models We adopt the Qwen2.5-1.5B (Qwen et al., 2024)
and Qwen3-4B-Base (Qwen et al., 2025) models as our
student models. Our dataset decomposition is driven by
GPT-40, which we leverage as our teacher model.

Datasets Our setup uses MATH (Hendrycks et al., 2021)
and the American Invitational Mathematics Examination
(AIME). MATH (Hendrycks et al., 2021) is a benchmark
of competition math problems of varying difficulty. We
evaluate on the same 500 samples in the prior work (Light-
man et al., 2023). AIME contains challenging mathematical
competition problems. For training, we use AIME 24 as
training set and AIME 25 as test set. Both datasets contain
30 problems that were used in the AIME in 2024 and 2025,
respectively.

Training Follow the fine-tuning setup in the previous
work (Muennighoff et al., 2025) we train each model for
5 epochs with a batch size of 16. We train the models using
bfloat16 precision with a learning rate of 1073, warmed
up linearly for 5% and then decayed to O over the rest of the
training, following a cosine schedule. We use the AdamW
optimizer (Loshchilov & Hutter, 2019). Unless otherwise
specified, we evaluate with a temperature of O (greedy de-
coding) and measure accuracy (equivalent to pass@1). The
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Table 1. Comparison of testing accuracy to LLMs on the MATH-500 benchmark.# data refers to the number of examples used for
fine-tuning. *We evaluate based on the checkpoint released at https://huggingface.co/Qwen/Qwen2.5-1.5B using lighteval (Habib et al.,

2023).

Model #data MATH-500
Open-Weights Models
Qwen2.5-1.5B (Qwen et al., 2024) N.A. 35.0
Qwen2.5-3B (Qwen et al., 2024) N.A. 42.6
Llama-3-70B (Dubey et al., 2024) N.A. 42.5
Mixtral-8x22B (Jiang et al., 2024) N.A. 41.7
Gemma2-27B (Team et al., 2024) N.A. 42.7
MiniCPM3-4B (Hu et al., 2024) N.A. 46.6
Gemma2-9B-Instruct (Team et al., 2024) N.A. 443
Llama3.1-8B-Instruct (Dubey et al., 2024)  N.A. 51.9
Owen2.5-1.5B SFT on MATH

Base? NA.  472+22
SFT (full dataset) 7500 476 £2.2
SFT 360 484 +2.2
SFT-MetaMATH-Aug 2638 372+6.8
SFT-DecompX (Ours) 4500 50.8+£2.2
SFT-DecompX + Curriculum (Ours) 4500 51.6+22

results are averaged over three different training seeds. Our
experiments are conducted on NVIDIA A100 GPUs with
80GB VRAM.

Baselines We compare our dataset decomposition and cur-
riculum learning method with a set of baseline systems: (1)
closed-weights models such as GPT-40; (2) open-weights
models; (3) Supervised Fine-Tuning (SFT), which uses the
training set of the original MATH and AIME datasets; (4)
MetaMath-Aug: we compare with MetaMath (Yu et al.,
2024a) data augmentation pipeline. MetaMath augments
mathematical datasets by rephrasing questions as well as
generating answers in four augmentation types (rephrasing,
self-verification, answer-augmentation and backward rea-
soning).

4.2. Main Results

We present our main results, evaluated across different bench-
marks, and compared with baseline approaches. We sum-
marize the findings below.

DEcoMPX improves performance across different bench-
marks. We start our analysis by investigating performance
on smaller LLMs. We see that across two different base
models and datasets, DECOMPX shows consistent gains over
standard baselines; Table 1 presents results using Qwen2.5-
1.5B finetuned and evaluated on MATH. We note that it

achieves a 2.4% improvement over SFT and a 13.6% relative
gain over SFT-MetaMATH-Aug. Table 2 reports test accu-
racy on AIME2025 obtained from fine-tuning Qwen3-4B-
Base on the AIME2024 data. Again, DECOMPX performs
well, showing improvements of 10% over SFT and 8.9%
over SFT-MetaMATH-Aug. It even outperforms Qwen2.5-
72B-Instruct, a significantly larger model, using only 385
training samples. Overall, these results highlight the effec-
tiveness of our method and validate the benefit of structured
decomposition and curriculum learning in mathematical rea-
soning tasks. Finally, we note that DECOMPX is better than
MetaMATH on both of the benchmarks, which is used for
generating augmented data for finetuning.

Performance reduced during post-training for tradi-
tional SFT. Surprisingly, we find that SFT on mathemati-
cal datasets may reduce the performance compared to the
base model in our experiments. This behavior is especially
visible on AIME (Tab 2), suggesting that the model may be
prone to overfitting given the small dataset size.

DEcoOMPX shows better generalisation. S1 (Muen-
nighoff et al., 2025) is a reasoning model obtained via super-
vised finetuning based on Qwen2.5-32B-Instruct using 1,000
samples. Although this sample-efficient baseline achieves
strong performance on MATH-500 and AIME2024, it does
not perform as well on AIME2025. The model is over-
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Table 2. Comparison of testing accuracy to LLMs on the AIME 2025 benchmark. # data refers to the number of examples used for
fine-tuning. *We evaluate based on the checkpoint released at https://huggingface.co/simplescaling/s1-32B without budget forcing.

Model #data AIME2025
Open-Weights Models

Qwen2.5-72B-Instruct (Qwen et al., 2024)  N.A. 15.0

S1-32B* (Muennighoff et al., 2025) 1000 13.3
Close-Source Models

GPT-40 (OpenAl et al., 2023) N.A. 7.6

Owen3-4B-Base SFT on AIME2024

Base
SFT
SFT-MetaMATH-Aug
SFT-DecompX (Ours)

SFT-DecompX + Curriculum (Ours) 385

N.A. 10.0 +£5.6
30 33+33
114 44+42
385 133 +£6.3

16.7+ 6.9

parameterized relative to the amount of signal in the data.
which means that the dataset contains less information than
the model can represent. In contrast, DECOMPX outper-
forms S1 even with a much smaller base model (4B) on
AIME2025. Model trained only on decomposed data gener-
ated from AIME2024 performance suggests its effectiveness
in generalizing to unseen mathematical tasks.

SFT on AIME 2024 fails to generalize to another year of
AIME, whereas our data decomposition can help model
better to learn the features that stay predictive not only for
in-domain generalisation, but also under the distribution
shift. With curriculum learning added to DECOMPX,, it can
reshape the training trajectory so that the model first captures
universal mathematical skills, then gradually adapts itself
against wording and distribution drift. We see evidence that
curriculum learning can lead to better generalization and
help model competitive performance on AIME 2025 even
when the other strong baselines do not.

Curriculum learning is beneficial. In regular SFT, the
examples are randomly shuffled. However, with the sample
difficulty measurement yielded by DECOMPX, we can create
a learning curriculum, starting with the easiest samples and
progressively moving towards harder ones. This explores
whether difficulty measurements are useful in forming a
curriculum without changing the set of training examples.
From Table 1 and Table 2, we find that even when training
on the same set of examples, difficulty measurements are
useful for improving performance, compared to training with
a random sample order. Indeed, curriculum yields a 0.8%
and 3.4% on MATH and AIME datasets for DECOMPX, or
relative improvements of 1.6% and 25.6% respectively over
randomly ordered sampling.

4.3. Case Study

Table 3 presents both the original data sample from the
MATH training set (Left) and three corresponding generated
data samples (Right), which are decomposed based on the
original example. Using the difficulty measurement defined
earlier, we compute the difficulty scores and categorize the
samples into different levels. In both the MATH and AIME
datasets, the difficulty scores range from 2 to 20. We define
three levels of difficulty: low (scores around 2 to 6), medium
(around 6 to 10), and high (from 10 up to 20). As shown in
Table 3, we successfully decompose complex problems into
simpler subproblems and effectively quantify the difficulty
of each subproblem.

5. Conclusion

In this work, we propose a novel curriculum learning ap-
proach via recursive dataset decomposition, enabling smaller
language models to progressively master mathematical rea-
soning tasks. Our experiments on math benchmarks (MATH
and AIME) show significant performance improvements
over baseline methods, highlighting the effectiveness of our
structured decomposition and difficulty-scoring strategies.
In the future, we plan to improve DECOMPX so it could be
effectively used for generating more general datasets in a
broader range of domains. However, this will require exten-
sive study on teacher models’ capability and reliability in
task decomposition in other specific domains.

Limitations and broader impacts. This work proposes
using stronger LLM teachers to recursively generate simpler
data that builds up a curriculum for training student models.
It assumes access to strong enough teacher models that are
capable of understanding a math problem, decomposing the
problem into meaningful sub-tasks, and faithfully describing
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Table 3. Examples of an original data sample from MATH training set and its generated data samples.

Original Data

Decomposed Data

. oo 34432
Problem: Simplify 33 Express

your answer as a common fraction.

Solution: The common factor of 3 in
the numerator and the denominator

can be factored out:
34432 3(3343) _ 343
3¥-3 T 332-1) ~ 32-1°

Now compute: numerator is
27 + 3 = 30, denominator is
15

Z .

_ 30 _
9-1=28,s0 T =

Generated Data with Lower Difficulty Difficulty Score: 4.0

Problem: What is the value of 33?

Solution: To solve for 3%, we multiply 3 by itself three times: 3 X 3 = 9, then
9x3=27.8S0,3*=27.

Tag: Exponentiation

Generated Data of Medium Difficulty Difficulty Score: 10.0

Problem: What is the greatest common divisor (GCD) of the numbers 30 and 8?
Solution: To find the greatest common divisor (GCD) of 30 and 8, we need
to identify the largest number that divides both 30 and 8 without leaving a
remainder. 1. List the factors of 30:- 1, 2, 3, 5, 6, 10, 15, 30 2. List the factors of
8:- 1, 2,4, 8 3. Identify the common factors of 30 and 8:- The common factors are
1 and 2. 4. The greatest of these common factors is 2.

Tag: GCD Calculation

Generated Data with Higher Difficulty Difficulty Score: 18.0

3
Problem: Simplify the expression ;—f
Solution: We first compute the powers3® = 27,3> = 9. Next, substitute into
2743

the expression:

- Perform addition and subtraction%.

. 1 N .
fractlon% = 75. Final Answer is

And simplify the

15
2|

Tag: Fraction Simplification

the sub-tasks. As mentioned above, for tasks beyond math,
where the reasoning path to solve a task is less divisible in
an obvious way, the teacher models may face challenges in
generating the curriculum. This may require the design of
better scaffolding and/or the use of more advanced teacher
models. Moreover, LLMs have been shown to hallucinate in
various ways, our method is inherently vulnerable because
LLM usage is at the core of the system design. For example,
a hallucinating or fabricating teacher model may generate
inaccurate reasoning chains and decompose them in the
wrong ways. The student models trained on the generated
curriculum in such a way may result in poor performance or
learn unexpected behaviors due to the suboptimality of the
curriculum. Finally, we acknowledge that our work is not
yet at a stage to be used in many real-world tasks, especially
in domains involving high-risk decision making such as law
enforcement, legal, finance, or healthcare.
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A. Details of subset of MATH training data

In Table 4, we present the original and sampled sizes of the MATH dataset used in our experiments, broken down by subject
domain and difficulty level. Sampling was performed uniformly at random within each group to ensure representative
coverage of the various topics and levels.

Table 4. Statistics of the original and sampled MATH dataset by subject domain (left) and by difficulty level (right). Samples were
drawn uniformly at random within each group to ensure representative coverage across topics and difficulty tiers.

By Domain H By Difficulty Level

Domain #Total #Sampled || Level #Total #Sampled
Algebra 1744 84 || Level 1 566 26
Counting and Probability 771 36 || Level 2 1348 65
Geometry 870 43 || Level 3 1592 77
Intermediate Algebra 1295 63 || Level 4 1690 81
Number Theory 869 41 || Level 5 2304 111
Prealgebra 1205 58

Precalculus 746 35

#Sampled / #Total | 30077500

B. Examples of Concept Dependency Graph

Figure 3 presents the concept dependency graphs constructed during the data decomposition process. We observe that an
atomic mathematical operation, such as Addition, has many edges linking it to more advanced operations.
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Figure 3. Concept dependency graph constructed during the AIME data decomposition process. Nodes represent mathematical
concepts, and edges indicate prerequisite relationships between concepts.
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C. Zero-shot Small Model Performance

We partitioned the decomposed AIME2024 dataset into five equal-sized bins (quintiles) based on our proposed difficulty
measurement, shown in Table 5. This measurement is derived from the concept dependency graph, designed to reflect the

conceptual complexity of each problem. We then evaluated the zero-shot performance of the Qwen3-4B-Base model on
each difficulty tier.

Our results shown in Figure 4 demonstrate a clear inverse correlation between difficulty score and model accuracy: the
model achieves the highest accuracy on problems with the lowest difficulty scores (Quintile 1), and its performance degrades
as the difficulty increases, reaching the lowest accuracy on the highest difficulty tier (Quintile 5). This performance trend

validates the effectiveness of our concept dependency graph-based difficulty metric in capturing the relative hardness of
mathematical problems.

Table 5. Definition of difficulty quintiles based on concept dependency graph scores. Each quintile groups problems whose scores fall
within the specified range.

Quintile Difficulty Score Range
Quintile 1 (Easiest) 2.0-4.0
Quintile 2 40-4.0
Quintile 3 4.0-6.0
Quintile 4 6.0-10.0
Quintile 5 (Hardest) 10.0-20.0
so- Model Accuracy Across Difficulty Quintiles
—e— Trend
72.29% Accuracy

70| 68.67%

Accuracy (%)
v o
=) =)

B
o
T

30+

20

Q1 (Easiest) Q2 Q3 Qa Q5 (Hardest)
Difficulty Quintile

Figure 4. Zero-shot performance of the Qwen3-4B-Base model across difficulty quintiles. Accuracy decreases as problem difficulty
increases, validating our proposed difficulty metric.

D. Tag Clustering Details

We summarize the tag information identified in both the MATH dataset (Table 6) and the AIME dataset (Tables 7 and 8).

E. Examples of Decomposed Data

We apply our data decomposition method to the S1 dataset and demonstrate the two-layer recursive decomposition process
for a sample data point in Table 9.

12



Learning to Solve Complex Problems via Dataset Decomposition

Table 6. Summary of Cluster Tags. Sample count represents the number of mathematical problems associated with each cluster tag.
Keywords are derived from the tags within each cluster.

Domain #questions Keywords

Equation Manipulation 17 Equation Manipulation, Equation Simplification, Equation Solving, Equation Subtraction, Linear Equation,
Linear Equation in Two Variables, Linear Equations, Polynomial Equation Solving, Polynomial Simplifica-
tion, Quadratic Equation, Rational Equation, Rational Equation Solving, Rearranging Equations, Simplifying
Expressions, Simultaneous Equations, Simultaneous Equations Solving, Solving Rational Equations, Substi-
tution, Subtraction, Variable substitution

Elimination Method 14 Elimination Method, Equation Solving: Isolating Variables, Linear Equation Solving, Solving Linear Equa-
tions, Substitution Method

Addition 12 Addition, Addition of Integers, Arithmetic Addition, Arithmetic Operations, Column Addition, Digit Sum,
Fraction Addition, Integer Addition, Multiplication, Place Value Addition, Summation

Divisibility 11 Divisibility, Divisibility Rules, Division Property of Equality, Polynomial Division

Clearing Fractions 10 Clearing Fractions, Common Denominator Calculation, Fraction Multiplication, Fraction Simplification,
Fraction Subtraction, Partial Fraction Decomposition, Reciprocal Calculation, Simplifying Fractions, Sub-
tracting Fractions with Common Denominator

Arithmetic Sequence 7 Arithmetic Sequence, Arithmetic Sequence Formula, Arithmetic Subtraction, Counting Integers in an
Arithmetic Sequence, Modular Arithmetic, Sum of a Sequence, Sum of an Arithmetic Series

Factoring Polynomials 6 Factoring Polynomials, Factoring Quadratic Equations, Factoring by Grouping, Factoring by grouping,
Polynomial Expansion, Prime Factorization

Binomial Coefficient 6 Binomial Coefficient, Binomial Coefficient Calculation, Combination Formula, Combinations Calculation,
Combinatorial Counting, Sum of coefficients

Complementary Counting 6 Complementary Counting, Counting Principle, Counting Principles, Counting Rows, Inclusion-Exclusion
Principle

Combining Like Terms 6 Combining Like Terms

Cross-Multiplication 5 Cross-Multiplication, Multiplication Principle, Prime Multiplication, Scalar Multiplication

Division 5 Division, Division of Equations, Division of constants, Long Division

Absolute Value 4 Absolute Value, Absolute Value Calculation, Absolute Value Equation, Absolute Value Equation Solving,
Absolute Value Equations, Magnitude of a Complex Number, Magnitude of a Vector

Isolating Variables 4 Isolating Variables, Isolating the Variable

GCD Calculation 3 GCD Calculation, GCD Property

Cauchy-Schwarz Inequality 3 Cauchy-Schwarz Inequality, Compound Inequalities, Inequalities, Inequality Manipulation, Linear Inequality
Simplification

Altitude in Triangles 3 Altitude in Triangles, Altitude of a Triangle, Similar Triangles, Triangle Construction

Stars and Bars 3 Stars and Bars, Stars and Bars Method

Exponentiation 3 Exponentiation, Logarithm Power Rule, Modular Exponentiation

Square Root Calculation 3 Square Root Calculation, Squaring a number, Squaring both sides

Order of Operations 2 Order of Operations, Order of an Element

Identifying Parallel Lines 2 Identifying Parallel Lines, Line Intersection, Parallel Lines in Polygons, Slope of Parallel and Perpendicular
Lines, Slope of Perpendicular Lines

Perpendicular Slopes 2 Perpendicular Slopes, Slope of a Line, Vertical Tangent Line

Quadratic Equation Identification 2 Quadratic Equation Identification, Quadratic Formula

Combinatorial Placement 2 Combinatorial Placement

Solving Linear Inequalities 2 Solving Linear Inequalities, System of Linear Equations

Cyclic Distance Calculation 2 Cyclic Distance Calculation, Distance Formula

Euler’s Relation for Triangle Centers 2 Euler’s Relation for Triangle Centers, Euler’s Theorem

Arc Length Calculation 2 Arc Length Calculation, Perimeter Calculation

Angle Bisector Theorem 2 Angle Bisector Theorem, Perpendicular Bisector of a Chord

Bayes’ Theorem 1 Bayes’ Theorem, Conditional Probability

Distributive Property 1 Distributive Property

Floor Function 1 Floor Function

Finding Zeros of a Function 1 Finding Zeros of a Function

Factorial Calculation 1 Factorial Calculation

Pigeonhole Principle 1 Pigeonhole Principle

Conclusion Verification 1 Conclusion Verification

Change of Base Formula 1 Change of Base Formula

Logarithm Properties 1 Logarithm Properties, Logarithmic Identity, Logarithmic Properties, Logarithmic Reciprocity

Summation of a finite set 1 Summation of a finite set

Complex Number Magnitude 1 Complex Number Magnitude, Complex Number Scaling, Dot Product Magnitude, Modulus of a Complex
Number, Vector Magnitude Calculation

Place Value 1 Place Value

Chinese Remainder Theorem 1 Chinese Remainder Theorem

Lifting The Exponent Lemma (LTE) 1 Lifting The Exponent Lemma (LTE)

Order of an Element in Modular 1 Order of an Element in Modular Arithmetic, Order of an element modulo p

Arithmetic

Primitive Root Calculation 1 Primitive Root Calculation

p-adic Valuation

Diagonal of a Rectangular Prism
Calculation

Pythagorean Theorem

Interior Angle of a Regular Polygon
Pairing Elements

Power of a Point Theorem
Bipartite Graph Matching
Permutation Calculation
Prime Identification

Triangle Perimeter Calculation
Triangle Side Classification
Counterexample

Mode Calculation

Sorting Numbers

Area of a Circle

Cross-Section of a Sphere
LCM Calculation

Proportion

Radius of a sphere

Volume of a Tetrahedron
Newton’s Sums

Vieta’s Formulas

p-adic Valuation, vp (p-adic valuation)
Diagonal of a Rectangular Prism Calculation

Pythagorean Theorem, Pythagorean Theorem in 3D
Interior Angle of a Regular Polygon

Pairing Elements

Power of a Point Theorem

Bipartite Graph Matching

Permutation Calculation

Prime Identification, Prime Number Identification, Prime Number Multiplication
Triangle Perimeter Calculation

Triangle Side Classification

Counterexample

Mode Calculation, Mode Identification

Sorting Numbers

Area of a Circle, Area of a Circle Calculation
Cross-Section of a Sphere, Cross-sections of spheres
LCM Calculation

Proportion, Proportion Solving, Ratio and Proportion
Radius of a sphere

Volume of a Tetrahedron

Newton’s Sums

Vieta’s Formulas, Vieta’s formulas

13



Learning to Solve Complex Problems via Dataset Decomposition

Table 7. Summary of Cluster Tags (Sample Count > 3). Sample count represents the number of mathematical problems associated with
each cluster tag. Keywords are derived from the tags within each cluster.

Domain #questions Keywords

Combinatorial Probability 100 Combinatorial Probability, Counting & Probability

Basic Counting Principle 46 Basic Counting Principle, Counting Principle, Counting Principles, Fundamental Counting Principle, Funda-
mental Principle of Counting, Multiplication Principle of Counting

Combination Calculation 36 Combination Calculation, Combination Enumeration, Combination Formula, Combination Selection, Com-
bination Subtraction, Combination and Permutation Calculation, Combinations, Combinations Calculation,
Combinations Formula, Counting Combinations

Factorial 31 Factorial, Factorial Calculation, Factorial Division, Factorial Expansion, Factorial Manipulation, Factorial
Multiplication, Factorial Properties, Factorial Simplification, Factorial simplification

Combinatorial Counting 30 Combinatorial Counting, Combinatorial Enumeration, Combinatorial Exclusion, Combinatorial Reasoning,
Combinatorics, Counting, Counting Arrangements, Counting Multiples, Counting Subsets

Binomial Coefficient 29 Binomial Coefficient, Binomial Coefficient Calculation, Binomial Coefficient Formula, Binomial Coefficient
Multiplication, Binomial Coefficient Simplification, Binomial Coefficients, Binomial Coefficients Calculation,
Binomial Expansion, Binomial Probability Formula, Binomial Theorem

Fraction Conversion 28 Fraction Conversion, Fraction Identification, Fraction Multiplication, Fraction Subtraction, Multiplication of
Fractions, Percentage to Fraction Conversion, Simplifying Fractions

Linear Equation Evaluation 26 Linear Equation Evaluation, Linear Equation Solving, Linear Expression Evaluation, Solving Linear Equations

Division Simplification 24 Division Simplification, Division of Fractions, Fraction Division, Fraction Multiplication and Simplification,
Fraction Simplification, Ratio Simplification, Simplifying Ratios

Addition 23 Addition, Addition of Integers, Addition of integers, Arithmetic Addition, Integer Addition

Arithmetic Operations 21 Arithmetic Operations, Basic Arithmetic Subtraction, Multiplication, Multiplication of Integers, Multiplica-
tion of integers

Division Property of Equality 21 Division Property of Equality

Exponent Simplification 21 Exponent Simplification, Exponentiation

Basic Probability Calculation 19 Basic Probability Calculation, Conditional Probability Calculation, Probability, Probability Calculation

Equation Substitution 18 Equation Substitution, Substitution, Substitution Method, Variable Substitution

Circular Permutations 17 Circular Permutations, Cyclic Permutations, Permutation, Permutations

Set Subtraction 13 Set Subtraction, Subtraction

Division 12 Division, Division Algorithm, Long Division

GCD Calculation 12 GCD Calculation

Independent Probability Multiplication 11 Independent Probability Multiplication, Multiplication Rule for Independent Events, Multiplication Rule for
Probabilities, Probability Multiplication Rule

Isolating Variables 10 Isolating Variables, Isolating the variable

Combinations with Repetition 9 Combinations with Repetition, Permutations and Combinations, Permutations with Repetition

Counting Exclusion 9 Counting Exclusion, Exclusion Principle, Inclusion-Exclusion Principle

Counting and Summation 8 Counting and Summation, Summation

Adding Fractions 8 Adding Fractions, Adding Fractions with Like Denominators, Adding Fractions with Unlike Denominators,
Addition of Fractions, Arithmetic with Fractions, Common Denominator Addition, Fraction Addition,
Multiplying Fractions

Prime Factorization 8 Prime Factorization

Combining Like Terms 7 Combining Like Terms

Place Value 7 Place Value, Place Value Identification

Arithmetic Sequence 6 Arithmetic Sequence, Arithmetic Sequence Formula, Arithmetic Sequence Identification, Arithmetic Se-
quence Sum, Arithmetic Sequence Sum Formula, Arithmetic Sequence Summation, Arithmetic Sequences,
Arithmetic Sequences Counting, Counting Terms in an Arithmetic Sequence

Equation Simplification 6 Equation Simplification, Linear Equation Simplification, Polynomial Simplification

Conditional Probability 6 Conditional Probability

Permutation with Restrictions 6 Permutation with Restrictions, Permutations with Restrictions, Permutations with restrictions

Divisibility Rule for 3 6 Divisibility Rule for 3, Divisibility Rules

Factoring by grouping 6 Factoring by grouping, Factorization

Complement Rule 5 Complement Rule, Complement Rule in Probability

Multiplication Principle 4 Multiplication Principle

Arithmetic Series Formula 4 Arithmetic Series Formula, Arithmetic Series Sum Formula, Arithmetic Series Summation, Arithmetic Sum
Calculation, Summation of Arithmetic Series

Order of Operations 4 Order of Operations

Equation Balancing 3 Equation Balancing

Binomial Probability 3 Binomial Probability

Counting Integers 3 Counting Integers, Counting Integers in a Range

Power Set Calculation 3 Power Set Calculation

Discriminant Calculation 3 Discriminant Calculation

Identifying Coefficients in a Quadratic 3 Identifying Coefficients in a Quadratic Equation, Quadratic Coefficients Identification

Equation

Complementary Counting 3 Complementary Counting

Distributive Property 3 Distributive Property

Combination Symmetry 3 Combination Symmetry, Combinatorial Symmetry, Symmetry Counting

Area Calculation 3 Area Calculation, Area Calculation of a Square, Area Ratios, Area of a Rectangle Calculation, Area of a
Square Calculation, Area of a Triangle Calculation

Area of a Right Triangle 3 Area of a Right Triangle, Area of a Triangle, Triangle Area Formula

Counting Outcomes 3 Counting Outcomes, Enumerating Outcomes

Independent Events 3 Independent Events, Independent Events Probability, Independent Events Probability Calculation, Probability
of Independent Events

Scalar Multiplication 3 Scalar Multiplication

Case Analysis 3 Case Analysis

Common Denominator Calculation 3 Common Denominator Calculation, Common Denominator Conversion, Finding a Common Denominator,
Subtracting Fractions with Common Denominator, Subtracting Fractions with Common Denominators

Finding the Least Common Multiple 3 Finding the Least Common Multiple (LCM), LCM Calculation, Least Common Multiple (LCM) Calculation

(LCM)

Factoring Common Factor 3 Factoring Common Factor, Factoring Out Common Factors, Finding Factors

Counting Even Numbers 3 Counting Even Numbers, Counting Odd Numbers, Even Numbers Identification, Even and Odd Numbers,
Identifying Even Numbers

Modular Arithmetic 3 Modular Arithmetic, Modulo Operation
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Table 8. Summary of Cluster Tags (Sample Count < 3). Sample count represents the number of mathematical problems associated with
each cluster tag. Keywords are derived from the tags within each cluster.

Domain

#questions

Keywords

Probability Distribution

Range of Sums for Dice Rolls
Uniform Probability Distribution
Properties of Platonic Solids
Division of Constants
Permutations of Multisets

Digit Fixation in Positional Notation
Multiples Identification
Distance Formula

Graphing Inequalities
Intersection of Lines and Curves
Isosceles Right Triangle
Probability of Combined Events
Combinatorial Selection

Subset Identification
Complementary Probability
Probability Addition Rule
Factor Pairing

Finding Multiples

Prime Identification

Expected Value Calculation
Addition and Subtraction Properties of
Equality

S S N S N N S N N S S S S N AN ESESESE S

Probability Distribution

Range of Sums for Dice Rolls, Sum of Two Dice Rolls
Uniform Probability Distribution

Properties of Platonic Solids, Symmetry of Platonic Solids
Division of Constants, Division of constant:

Permutations of Multisets

Digit Fixation in Positional Notation, Digit Placement
Multiples Identification

Distance Formula, Horizontal Distance Calculation

Graphing Inequalities, Graphing Linear Inequalities, Linear Inequality Graphing
Intersection of Lines and Curves, Line Intersection

Isosceles Right Triangle, Isosceles Triangle Properties
Probability of Combined Events, Probability of a Single Event
Combinatorial Selection, Subset Selection

Subset Identification

Complementary Probability

Probability Addition Rule, Total Probability Rule

Factor Pairing, Factor Pairs Identification

Finding Multiples, Multiples of a Number

Prime Identification, Prime Number Identification, Prime and Composite Numbers Identification
Expected Value Calculation

Addition and Subtraction Properties of Equality

Long Multiplication 2 Long Multiplication, Multiplication of Large Numbers

Geometric Series 2 Geometric Series, Geometric Series Formula, Geometric Series Identification, Geometric Series Sum
Formula, Geometric Series Summation, Infinite Geometric Series Formula, Sum of Infinite Geometric Series

Pascal’s Triangle Construction 2 Pascal’s Triangle Construction, Pascal’s Triangle Row Sum

Independent Probability 2 Independent Probability

Exponentiation of Fractions 2 Exponentiation of Fractions

Simplifying Rational Expressions 2 Simplifying Rational Expressions

Pascal’s Identity 2 Pascal’s Identity, Pascal’s Triangle

Summation of Series 2 Summation of Series, Summation of a Sequence

Intersection of Sets 2 Intersection of Sets, Set Intersection

Set Union 2 Set Union, Set Union Cardinality

Percentage Calculation 2 Percentage Calculation, Percentage Conversion, Percentage to Decimal Conversion

Symmetry in Probability 2 Symmetry in Probability

Counting Grid Positions 2 Counting Grid Positions, Counting Rectangles in a Grid, Counting Squares in a Grid, Counting Subsets in a

Parity

Recurrence Relation

Block Permutation

Digit Pairing for Sum
Permutation Calculation
Cyclic Number Patterns
Bipartite Graph

Digit Constraints

Counting Leap Years
Minimum Value Calculation
Pigeonhole Principle

Range Calculation

Burnside’s Lemma
Polyhedron Properties
Rotational Symmetry
Rotational Symmetry of Polyhedra
Slope Calculation

Pair Counting

Pairwise Sum Calculation
Division of Even Numbers
Frequency Distribution
Conditional Statements
Counting Intervals

Period Calculation

Time Interval Calculation
Unit Conversion

Factoring Quadratic Expressions
Simultaneous Equations
Counting Cyclic Quadrilaterals with
Integer Sides

Counting Rectangles

Hockey Stick Identity
Perimeter Calculation
Properties of Quadrilaterals
Properties of a Square

Stars and Bars Method
Triangle Inequality

Distance Comparison
Absolute Value Simplification
Subset Definition

Equivalent Fractions

Cube Root Estimation
Inequality Comparison
Sequential Multiplication
Angle Measurement in Radians
Arc Length Calculation

Arc Measure

Central Angle Theorem
Circumference of a Circle
Commutative Property of Addition
Factorial Decomposition
Matrix Indexing

Probability with Replacement
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Grid

Parity

Recurrence Relation, Recurrence Relations

Block Permutation

Digit Pairing for Sum, Digit Sum Calculation, Pairing Numbers for a Fixed Sum
Permutation Calculation

Cyclic Number Patterns, Cyclic Sequences

Bipartite Graph, Bipartite Graph Coloring

Digit Constraints, Digit Restriction, Digit Sum Constraints, Single-digit constraint
Counting Leap Years, Leap Year Calculation

Minimum Value Calculation

Pigeonhole Principle

Range Calculation

Burnside’s Lemma

Polyhedron Properties, Properties of Polyhedra

Rotational Symmetry

Rotational Symmetry of Polyhedra, Symmetry in Polyhedra
Slope Calculation

Pair Counting

Pairwise Sum Calculation

Division of Even Numbers

Frequency Distribution

Conditional Statements

Counting Intervals

Period Calculation

Time Interval Calculation

Unit Conversion

Factoring Quadratic Expressions

Simultaneous Equations

Counting Cyclic Quadrilaterals with Integer Sides

Counting Rectangles

Hockey Stick Identity

Perimeter Calculation

Properties of Quadrilaterals, Symmetry in Quadrilaterals
Properties of a Square

Stars and Bars Method

Triangle Inequality

Distance Comparison

Absolute Value Simplification

Subset Definition

Equivalent Fractions

Cube Root Estimation

Inequality Comparison

Sequential Multiplication

Angle Measurement in Radians, Radian-Degree Conversion
Arc Length Calculation, Arc Length Formula
Arc Measure

Central Angle Theorem

Circumference of a Circle

Commutative Property of Addition

Factorial Decomposition

Matrix Indexing 15

Probability with Replacement
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Table 9. Decomposed S1 data sample. Black text denotes the original data; text represents the first level of decomposition; and
blue text represents the second level of decomposition.

{Question:"Given a rational number, write it as a fraction in lowest terms and calculate the product of the resulting numerator
and denominator. For how many rational numbers between 0 and 1 will 20! be the resulting product?",

Solution:"Let the rational number between 0 and 1 be r. When written as a fraction in lowest terms, let it be %, where a and
b are positive integers, gcd(a, b) = 1, and 0 < a < b.We are given that the product of the numerator and denominator is
20!, so a X b = 20!.We need to find the number of pairs (a, b) such that a X b = 20!, gcd(a, b) = 1, and a < b.Let N = 20!.
The prime factorization of N is pil pgz pik, where p; are distinct prime numbers.The number of distinct prime factors of
20! is the number of primes less than or equal to 20. These primes are 2, 3, 5,7, 11, 13, 17, 19. Thus, there are 8 distinct
prime factors, so k = 8.Since a X b = N and gcd(a, b) = 1, each prime power factor pf’ of N must be entirely a factor
of a or entirely a factor of b.The number of ways to distribute the prime power factors between a and b is 2%, where k is
the number of distinct prime factors of N. Each distribution corresponds to a unique pair (g, b) such that a X b = N and
gcd(a, b) = 1.The number of such pairs is 2°N), where w(N) is the number of distinct prime factors of N.Since 20! is not a
perfect square, for every pair (a, b) such that a X b = 20! and gcd(a, b) = 1, we have a # b. The pairs can be grouped into
(a, b) and (b, a), where a # b.The number of pairs with a < b is equal to the number of pairs with b < a.The total number

of pairs is 229, The number of pairs with a < b is % x 20000 = 20C0-1 The number of distinct prime factors of 20! is

@(20!) = 8.The number of pairs (a, b) such that a X b = 20!, gcd(a,b) = 1,and a < b is 28-1 = 27 = 128.Each such pair
(a, b) corresponds to a unique rational number % between 0 and 1 in lowest terms, with the product of the numerator and

denominator equal to 20!.Final Answer: The final answer is "}

Solution: {

ReasoningStep: "We have the fraction F =
divisible by 7.",

Tag:"Exponent of a prime in a factorial (Legendre’s formula)",

Question:"In the context of reducing the fraction 7/(20!/7), use Legendre’s formula to find the exponent of the prime 7 in the
prime factorization of 20!.",

Solution:" 1. Legendre’s formula states that the exponent of a prime pinn! is given by the sum of |n/p* | fork = 1,2, .p* > n.
2. Here, n=20 and p=7:

- For k=1: [20/7| =2

- For k=2: |20/49] =0

- Higher powers of 7 exceed 20, so their terms are zero.

3. Summing these gives 2 + 0 =2."

b

;
201/7°

Since 20! contains 7% (because |20/7] = 2), the number 20!/7 is still
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{

ReasoningStep:"Compute ged(7, 20!/7). Because 20! contains 72, dividing by 7 leaves one factor of 7, so gcd(7, 20!/7) =
7.11’

Tag:"GCD calculation using prime factorization",

Question:"In reducing the fraction 7 one over (20! divided by 7) to lowest terms, compute gcd(7, 20! / 7) by using prime
factorization.",

Solution:"1. We need the exponent of the prime 7 in 20!.

2. Use the formula for exponent of a prime p in n!: v;(20!) = [20/7] + [20/49] =2+ 0 = 2.
3. Thus 20! has a factor 72.

4. When we divide 20! by 7, the exponent of 7 in (20!/7)is2 1= 1.

5. So (20!/7) contains exactly one factor of 7, and the number 7 also contains one factor of 7.
6. Therefore ged(7,201/7)=7" =7."

}

{

ReasoningStep:"Divide numerator and denominator by 7: Numerator: 7 =7 = 1. Denominator: (20!/7) =7 = 20!/(7%) =
20!/49.",

Tag:"Cancelling common factors in a fraction",

Question:"In the context of the original problem, you encounter the fraction #,/7 By cancelling the common factor 7 in the

numerator and denominator, what is the resulting simplified denominator?",

Solution:"1. Start with the fraction 2077. 2. Observe that both the numerator and denominator contain the factor 7. 3. Divide
numerator and denominator by 7: - New numerator: 7 =7 = 1. - New denominator: (20!/7) +7 = 20!/(7%) = 20!/49. 4.

Thus, after cancellation, the fraction becomes 20,1/ 9 5. The question asks for the simplified denominator, which is 20!/49."
),

{

ReasoningStep:"Hence the fraction in lowest terms is

1 "
201/49° °

Tag:"Reducing fractions to lowest terms",

Question:"Reduce the fraction 7 divided by (20! divided by 7) to lowest terms.",
Solution:"1. Start with the unreduced fraction: 7 / (20! /7).

2. Rewrite as a single fraction: 7 X 7/20! =49/20!.

3. Observe that 20! contains the factor 72 = 49, soged(49,20!) = 49.

4. Divide numerator and denominator by 49: e Numerator: 49 + 49 = 1 e Denominator: 20! + 495. Hence the fraction in
lowest terms is 1 / (20! / 49).

6. Compute 20! =2 432 902 008 176 640 000, then divide by 49 to get 49 651 061 391 360 000.
7. Final reduced form is 1 /49651061391360000.",],
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Solution:
{ ReasoningStep:"By definition, 20! = 1X2x3x...%20, so every prime p 20 divides 20!.",
Tag:"Definition of factorial",

Question:"In the definition of factorial, 20! is written as the product 1x2x3x...x20. How many integers are multiplied
together in this product?",

Solution:"By definition, n! = 1x2x3X...xn, which multiplies all integers from 1 up to n. For n = 20, the integers are 1, 2, 3,
..., 20. Counting these gives 20 numbers being multiplied.",

{ ReasoningStep:"The primes less than or equal to 20 are 2, 3, 5, 7, 11, 13, 17, and 19, and there are no others in that range.",
Tag:"Primality Testing",

Question:"Among the integers from 1 through 20 inclusive, how many are prime numbers?",

Solution:"1. By definition, a prime number is an integer greater than 1 that has no positive divisors other than 1 and itself.

2. We test each integer from 1 to 20: - 1 is not prime by definition. - 2 is divisible only by 1 and 2 — prime. - 3 is divisible
only by 1 and 3 — prime. - 4 is divisible by 1, 2, 4 — not prime. - 5 is divisible only by 1 and 5 — prime. - 6 is divisible by
1,2, 3,6 — not prime. - 7 is divisible only by 1 and 7 — prime. - 8 is divisible by 1, 2, 4, 8 — not prime. - 9 is divisible by
1, 3,9 — not prime. - 10 is divisible by 1, 2, 5, 10 — not prime. - 11 is divisible only by I and 11 — prime. - 12 is divisible
by 1,2, 3,4, 6, 12 — not prime. - 13 is divisible only by 1 and 13 — prime. - 14 is divisible by 1, 2, 7, 14 — not prime. - 15
is divisible by 1, 3, 5, 15 — not prime. - 16 is divisible by 1, 2, 4, 8, 16 — not prime. - 17 is divisible only by 1 and 17 —
prime. - 18 is divisible by 1, 2, 3, 6, 9, 18 — not prime. - 19 is divisible only by 1 and 19 — prime. - 20 is divisible by 1, 2,
4,5, 10, 20 - not prime.

3. The primes in this range are 2, 3, 5,7, 11, 13, 17, and 19.

4. Counting them gives a total of 8 primes.",

{ ReasoningStep:"Therefore, the prime factorization of 20! includes exactly these 8 distinct primes.",
Tag:"Prime Factorization",

Question:"When prime factorizing 20!, we include every prime number that is less than or equal to 20. How many distinct
prime numbers appear in the prime factorization of 20! ?",

Solution:"1. A prime divides 20! exactly if it is 20, since 20! is the product of all integers from 1 to 20.
2. The primes 20 are 2, 3, 5,7, 11, 13, 17, and 19.

3. Counting these gives 8 distinct primes in the factorization of 20!." },
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. R . e ~ . .. . "
{ ReasoningStep:"Since ged(a, b) = 1, each prime power p.' of N must go entirely to a or b, giving 2% pairs (a, b).",

Tag:"Fundamental Theorem of Arithmetic",

€k

Question:"Let N be 20! and write N in its prime factorization N = p(l'l . péz SRR

Using the Fundamental Theorem of Arithmetic, in how many ways can you choose a pair of positive integers (a, b) such that
. . ) e . . -
ab =N and gcd(a, b) = 1 by assigning each prime power p;" entirely to either a or b?",

Solution: {ReasoningStep:"By the Fundamental Theorem of Arithmetic, 20! factors into prime powers corresponding to
each prime p 20.",

Tag:"Prime Factorization",
Question:"In the prime factorization of 20!, what is the exponent of the prime 27",

Solution:"1. By Legendre’s formula, the exponent of a prime p in n! is |n/p] + [n/p*| + |n/p? |+ ... until the terms are
zZero.

2. Forp=2andn=20: [20/2] =10[20/4] =5]20/8| =2[20/16] = 1]20/32] = 0 (and all higher powers give zero)
3. Sumthese: 10+5+2+1=18.",
}7

{ReasoningStep:"The primes 20 are 2, 3,5, 7, 11, 13, 17, 19, so there are k = 8 distinct prime powers in the factorization of
20!.",

Tag:"Listing primes up to a given limit",

Question:"In the prime factorization of 20!, how many distinct prime bases (i.e., prime numbers 20) appear?",
Solution:"

1. To find the distinct prime factors of 20!, we list all prime numbers that are less than or equal to 20.

2. A prime number is a number greater than 1 with no positive divisors other than 1 and itself.

3. Checking the integers from 2 up to 20, the primes are: 2, 3, 5, 7, 11, 13, 17, 194. Count these primes: there are 8 of
them.",

),
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{ReasoningStep:"To form a pair (a, b) with ab = N and gcd(a, b) = 1, each prime power pf" must go entirely to a or entirely
tob.",

Tag:"Fundamental Theorem of Arithmetic",

Question:"Let N = 20! and write its prime factorization as N = pil . pgz e pi". By the Fundamental The-

orem of Arithmetic, to form pairs of positive integers (a, b) with ab = N and gcd(a, b) = 1, each prime power
pf" mustgoentirelytoaorentirel ytob. F orasingleprimepowerpf", in how many ways can you assign it to either a or b so
that ged(a, b) = 17",

Solution:" 1. The Fundamental Theorem of Arithmetic ensures N’s prime factorization is unique.

2. To keep gcd(a, b) = 1, you cannot split pie” between a and b.

3. Therefore, for that prime power, you have exactly two choices: - Assign pf‘ to a (so exponentinaise;, inbis0), —orassi gnpfi
to b (so exponentin ais 0, in b is e;).

4. No other distributions are allowed without violating gcd(a, b) = 1.",

),

{ReasoningStep:"Each of the k = 8 prime powers has 2 choices, so by the multiplication principle there are 2¢ = 28 ways.",
Tag:"Fundamental Counting Principle",

Question:"Suppose the prime factorization of 20! contains 8 distinct prime powers. If you assign each prime power entirely
to either integer a or integer b, in how many ways can you make these assignments by the Fundamental Counting Principle?",

Solution:"1. There are 8 prime powers to assign.
2. Each prime power has 2 independent choices: assign it to a or to b.

3. By the Fundamental Counting Principle, multiply the number of choices for each prime power: Total ways = 2e2e...¢2(8
times) = 28 = 256.",

}]7
}’
{ReasoningStep:"As 20! is not a perfect square, a # b, so half the pairs have a < b, yielding 2¢~1 =27 = 128.",

Tag:"Divisor Pairing Principle",

Question:"Using the Divisor Pairing Principle, in how many ways can we write 20! as a product ab of two positive integers
with gcd(a,b)=1 and a<b?",
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Solution:

{ReasoningStep:"The prime factorization of 20! involves exactly k = 8 distinct primes (2, 3, 5, 7, 11, 13, 17, 19).",
Tag:"Prime factorization",

Question:"In the prime factorization of 20!, how many distinct prime factors does it contain?",

Solution:"1. By definition, 20! =1-2-3 . ... - 20.

2. Every prime p 20 divides one of the factors in the product.

3. The prime numbers less than or equal to 20 are 2, 3, 5, 7, 11, 13, 17, and 19.

4. There are 8 such primes.",

),

{ReasoningStep:"To have ab = 20! and gcd(a, b) = 1, each prime’s entire power in 20! must go eithertoaortob.",
Tag:"Unique Prime Factorization",

Question:"In the prime factorization of 20!, what is the exponent of the prime 3?",

Solution:"1. By unique prime factorization, the exponent of a prime pinn! is given by summing |n/p* | fork > luntilp* > n.
2. For p=3 and n=20: — [20/3] = 6A|20/9] = 21[20/27]| = O(stophere)

3. Sum of theseis 6 + 2 = 8.",

),

{ReasoningStep:"Therefore there are 2¢ = 28 = 256 unordered assignments of prime-powers to (a, b).",
Tag:"Fundamental Counting Principle",

Question:"The prime factorization of 20! involves 8 distinct prime-power factors. Suppose each entire prime-power factor
must be assigned either to integer a or to integer b. Using the Fundamental Counting Principle, in how many ways can these
8 prime powers be distributed between a and b?",

Solution:"1. There are 8 distinct prime-power factors in 20! (for primes 2, 3, 5, 7, 11, 13, 17, 19).

2. For each prime-power factor, we have exactly 2 choices: assign it to a or assign it to b.

3. By the Fundamental Counting Principle, the total number of ways to make all choices is 2 X 2 X ... x 2 (8 factors) = 28.
4. Compute 28 = 256.",

),

{ReasoningStep:"Since 20! is not a perfect square, no assignment yields a = b, so exactly half of these yield a < b, giving
256/2 = 128.",

Tag:"Symmetry argument in combinatorial counting",

Question:"Suppose there are 256 ordered pairs of positive integers (a,b) such that ab = 20! and gcd(a,b) = 1. Using a
symmetry argument, how many of these pairs satisfy a < b?",

Solution:"1. We are given that there are 256 ordered coprime factor pairs (a,b) with ab = 20!.

2. For each ordered pair (a,b), there is a corresponding “swapped” pair (b,a).

3. Because 20! is not a perfect square, no pair has a = b; every pair is distinct from its swap.

4. Thus the 256 ordered pairs split evenly into two groups: those with a < b and those with a > b.
5. By symmetry, the number with a < b is half of 256, namely 256/2 = 128.",}, }
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