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ABSTRACT

Protecting privacy in learning while maintaining the model performance has be-
come increasingly critical in many applications that involve sensitive data. Private
Gradient Descent (PGD) is a commonly used private learning framework, which
noises gradients based on the Differential Privacy protocol. Recent studies show
that dynamic privacy schedules of decreasing noise magnitudes can improve loss
at the final iteration, and yet theoretical understandings of the effectiveness of
such schedules and their connections to optimization algorithms remain limited.
In this paper, we provide comprehensive analysis of noise influence in dynamic
privacy schedules to answer these critical questions. We first present a dynamic
noise schedule minimizing the utility upper bound of PGD, and show how the
noise influence from each optimization step collectively impacts utility of the final
model. Our study also reveals how impacts from dynamic noise influence change
when momentum is used. We empirically show the connection exists for general
non-convex losses, and the influence is greatly impacted by the loss curvature.

1 INTRODUCTION

In the era of big data, privacy protection in machine learning systems is becoming a crucial topic
as increasing personal data involved in training models (Dwork et al., 2020) and the presence of
malicious attackers (Shokri et al., 2017; Fredrikson et al., 2015). In response to the growing demand,
differential-private (DP) machine learning (Dwork et al., 2006) provides a computational framework
for privacy protection and has been widely studied in various settings, including both convex and
non-convex optimization (Wang et al., 2017; 2019; Jain et al., 2019).

One widely used procedure for privacy-preserving learning is the (Differentially) Private Gradient
Descent (PGD) (Bassily et al., 2014; Abadi et al., 2016). A typical gradient descent procedure updates
its model by the gradients of losses evaluated on the training data. When the data is sensitive, the
gradients should be privatized to prevent excess privacy leakage. The PGD privatizes a gradient
by adding controlled noise. As such, the models from PGD is expected to have a lower utility as
compared to those from unprotected algorithms. In the cases where strict privacy control is exercised,
or equivalently, a tight privacy budget, accumulating effects from highly-noised gradients may lead
to unacceptable model performance. It is thus critical to design effective privatization procedures for
PGD to maintain a great balance between utility and privacy.

Recent years witnessed a promising privatization direction that studies how to dynamically adjust
the privacy-protecting noise during the learning process, i.e., dynamic privacy schedules, to boost
utility under a specific privacy budget. One example is (Lee & Kifer, 2018), which reduced the
noise magnitude when the loss does not decrease, due to the observation that the gradients become
very small when approaching convergence, and a static noise scale will overwhelm these gradients.
Another example is (Yu et al., 2019), which periodically decreased the magnitude following a
predefined strategy, e.g., exponential decaying or step decaying. Both approaches confirmed the
empirically advantages of decreasing noise magnitudes. Intuitively, the dynamic mechanism may
coordinate with certain properties of the learning task, e.g., training data and loss surface. Yet there
is no theoretical analysis available and two important questions remain unanswered: 1) What is the
form of utility-preferred noise schedules? 2) When and to what extent such schedules improve utility?

To answer these questions, in this paper we develop a principled approach to construct dynamic
schedules and quantify their utility bounds in different learning algorithms. Our contributions
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Table 1: Comparison of utility upper bound using different privacy schedules. The algorithms are T -iteration
1
2
R-zCDP under the PL condition (unless marked with *). The O notation in this table drops other ln terms.

Unless otherwise specified, all algorithms terminate at step T = O(ln N2R
D

). Assume loss functions are
1-smooth and 1-Lipschitz continuous, and all parameters satisfy their numeric assumptions. Key notations: Op –
bound occurs in probability p; D – feature dimension; N – sample size; R – privacy budget; ci – constant; other
notations can be found in Section 4. An extended table and explanation are available in Appendix A.

Algorithm Schedule (σ2
t ) Utility Upper Bound

GD+MA (Wang et al., 2017) O( T
Rε,δ

) O
(
D ln2 N
N2Rε,δ

)
Adam+MA (Zhou et al., 2020) O( T

Rε,δ
) Op

(√
D ln(NDε/(1−p))

NRε,δ

)
GD, Non-Private 0 O

(
D
N2R

)
GD+zCDP, Static Schedule T

R
O
(
D lnN
N2R

)
GD+zCDP, Dynamic Schedule O

(
γ(t−T )/2

R

)
O
(

D
N2R

)
Momentum+zCDP, Static Schedule T

R
O
(

D
N2R

(c+ lnNIT>T̂ )
)

Momentum+zCDP, Dynamic Schedule O
(
c1γ

T+t+c2γ
(T−t)/2

R

)
O
(

D
N2R

(1 + cD
N2R

IT>T̂ )
)

are summarized as follows. 1) For the class of loss functions satisfying the Polyak-Lojasiewicz
condition (Polyak, 1963), we show that a dynamic schedule improving the utility upper bound is
shaped by the influence of per-iteration noise on the final loss. As the influence is tightly connected to
the loss curvature, the advantage of using dynamic schedule depends on the loss function consequently.
2) Beyond gradient descent, our results show the gradient methods with momentum implicitly
introduce a dynamic schedule and result in an improved utility bound. 3) We empirically validate our
results on convex and non-convex (no need to satisfy the PL condition) loss functions. Our results
suggest that the preferred dynamic schedule admits the exponentially decaying form, and works
better when learning with high-curvature loss functions. Moreover, dynamic schedules give more
utility under stricter privacy conditions (e.g., smaller sample size and less privacy budget).

2 RELATED WORK

Differentially Private Learning. Differential privacy (DP) characterizes the chance of an algorithm
output (e.g., a learned model) to leak private information in its training data when the output
distribution is known. Since outputs of many learning algorithms have undetermined distributions, the
probability of their privacy leakages is hard to measure. A common approach to tackle this issue is to
inject randomness with known probability distribution to privatize the learning procedures. Classical
methods include output perturbation (Chaudhuri et al., 2011), objective perturbation (Chaudhuri et al.,
2011) and gradient perturbation (Abadi et al., 2016; Bassily et al., 2014; Wu et al., 2017). Among
these approaches, the Private Gradient Descent (PGD) has attracted extensive attention in recent
years because it can be flexibly integrated with variants of gradient-based iteration methods, e.g.,
stochastic gradient descent, momentum methods (Qian, 1999), and Adam (Kingma & Ba, 2014), for
both convex and non-convex problems.

Dynamic Policies for Privacy Protection. Wang et al. (2017) studied the empirical risk minimization
using dynamic variation reduction of perturbed gradients. They showed that the utility upper bound
can be achieved by gradient methods under uniform noise parameters. Instead of enhancing the
gradients, Yu et al. (2019); Lee & Kifer (2018) showed the benefits of using a dynamic schedule of
privacy parameters or equivalently noise scales. In addition, adaptive sensitivity control (Pichapati
et al., 2019; Thakkar et al., 2019) and dynamic batch sizes (Feldman et al., 2020) are also demonstrated
to improves the convergence.

Utility Upper Bounds. A utility upper bound is a critical metric for privacy schedules that char-
acterizes the maximum utility that a schedule can deliver in theory. Wang et al. (2017) is the first
to prove the utility bound under the PL condition. In this paper, we improve the upper bound by
a more accurate estimation of the dynamic influence of step noise. Remarkably, by introducing a
dynamic schedule, we further boost the sample-efficiency of the upper bound. With a similar intuition,
Feldman et al. (2020) proposed to gradually increase the batch size, which reduces the dependence
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on sample size accordingly. Recently, Zhou et al. proved the utility bound by using the momentum of
gradients (Polyak, 1964; Kingma & Ba, 2014). Table 1 summarizes the upper bounds of methods
studied in this paper (in the last block of rows) and results from state-of-the-art algorithms based on
private gradients. Our work shows that considering the dynamic influence can lead to a tighter bound.

3 PRIVATE GRADIENT DESCENT

Notations. We consider a learning task by empirical risk minimization (ERM) f(θ) =
1
N

∑N
n=1 f(θ;xn) on a private dataset {xn}Nn=1 and θ ∈ RD. The gradient methods are defined as

θt+1 = θt − ηt∇t, where ∇t = ∇f(θt) = 1
N

∑
n∇f(θt;xn) denotes the non-private gradient at

iteration t, ηt is the step learning rate. ∇(n)
t = ∇f(θt;xn) denotes the gradient on a sample xn. Ic

denotes the indicator function that returns 1 if the condition c holds, otherwise 0.

Assumptions. (1) In this paper, we assume f(θ) is continuous and differentiable. Many commonly
used loss functions satisfy this assumption, e.g., the logistic function. (2) For a learning task, only
finite amount of privacy cost is allowed where the maximum cost is called privacy budget and denoted
as R. (3) Generally, we assume that loss functions f(θ;x) (sample-wise loss) are G-Lipschitz
continuous and f(θ) (the empirical loss) is M -smooth.
Definition 3.1 (G-Lipschitz continuity). A function f(·) is G-Lipschitz continuous if, for G > 0
and all x, y in the domain of f(·), f(·) satisfies ‖f(y)− f(x)‖ ≤ G‖y − x‖2. .
Definition 3.2 (m-strongly convexity). A function f(·) is m-strongly convex if f(y) ≥ f(x) +
∇f(x)T (y − x) + m

2 ‖y − x‖
2, for some m > 0 and all x, y in the domain of f(·).

Definition 3.3 (M -smoothness). A function is M -smooth w.r.t. l2 norm if f(y) ≤ f(x) +
∇f(x)T (y − x) + M

2 ‖y − x‖
2, for some constant M > 0 and all x, y in the domain of f(·).

For a private algorithmM(d) which maps a dataset d to some output, the privacy cost is measured
by the bound of the output difference on the adjacent datasets. Adjacent datasets are defined to be
datasets that only differ in one sample. In this paper, we use the zero-Concentrated Differential
Privacy (zCDP, see Definition 3.4) as the privacy measurement, because it provides the simplicity
and possibility of adaptively composing privacy costs at each iteration. Various privacy metrics are
discussed or reviewed in (Desfontaines & Pejó, 2019). A notable example is Moment Accoutant
(MA) (Abadi et al., 2016), which adopts similar principle for composing privacy costs while is less
tight for a smaller privacy budget. We note that alternative metrics can be adapted to our study
without major impacts to the analysis.
Definition 3.4 (ρ-zCDP (Bun & Steinke, 2016)). Let ρ > 0. A randomized algorithmM : Dn → R
satisfies ρ-zCDP if, for all adjacent datasets d, d′ ∈ Dn, Dα(M(d)‖M(d′)) ≤ ρα, ∀α ∈ (1,∞)
where Dα(·‖·) denotes the Rényi divergence (Rényi, 1961) of order α.

zCDP provides a linear composition of privacy costs of sub-route algorithms. When the input vector
is privatized by injecting Gaussian noise of N (0, σ2

t I) for the t-th iteration, the composed privacy
cost is proportional to

∑
t ρt where the step cost is ρt = 1

σ2
t

. For simplicity, we absorb the constant
coefficient into the (residual) privacy budget R. The formal theorems for the privacy cost computation
of composition and Gaussian noising is included in Lemmas B.1 and B.2.

Generally, we define the Private Gradient Descent (PGD) method as iterations for t = 1 . . . T :
θt+1 = θt − ηtφt = θt − ηt(∇t + σtGνt/N), (1)

where φt = gt is the gradient privatized from ∇t as shown in Algorithm 1, G/N is the bound of
sensitivity of the gathered gradient excluding one sample gradient, and νt ∼ N (0, I) is a vector
element-wisely subject to Gaussian distribution. We use σt to denote the noise scale at step t and use
σ to collectively represents the schedule (σ1, . . . , σT ) if not confusing. When the Lipschitz constant
is unknown, we can control the upper bound by scaling the gradient if it is over some constant. The
scaling operation is often called clipping in literatures since it clips the gradient norm at a threshold.
After the gradient is noised, we apply a modification, φ(·), to enhance its utility. In this paper, we
consider two types of φ(·):

φ(mt, gt) = gt (GD), φ(mt, gt) = [β(1− βt−1)mt + (1− β)gt]/(1− βt) (Momentum)

We now show that the PGD using Algorithm 1 guarantees a privacy cost less than R:
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Algorithm 1 Privatizing Gradients

Input: Raw gradients [∇(1)
t , . . . ,∇(n)

t ] (n = N by default), vt, residual privacy budget Rt assuming
the full budget is R and R1 = R.

1: ρt ← 1/σ2
t ,∇t ← 1

n

∑n
i=1∇

(i)
t . Budget request

2: if ρt < Rt then
3: Rt+1 ← Rt − ρt
4: gt ← ∇t +Gσtνt/N , νt ∼ N (0, I) . Privacy noise
5: mt+1 ← φ(mt, gt) or g1 if t = 1
6: return ηtmt+1, Rt+1 . Utility projection
7: else
8: Terminate

Theorem 3.1. Suppose f(θ;x) is G-Lipschitz continuous and the PGD algorithm with privatized
gradients defined by Algorithm 1, stops at step T . The PGD algorithm outputs θT and satisfies
ρ-zCDP where ρ ≤ 1

2R.

Note that Theorem 3.1 allows σt to be different throughout iterations. Next we present a principled
approach for deriving dynamic schedules optimized for the final loss f(θT ).

4 DYNAMIC POLICIES BY MINIMIZING UTILITY UPPER BOUNDS

To characterize the utility of the PGD, we adopt the Expected Excess Risk (EER), which notion is
widely used for analyzing the convergence of random algorithms, e.g., (Bassily et al., 2014; Wang
et al., 2017). Due to the presence of the noise and the limitation of learning iterations, optimization
using private gradients is expected to reach a point with a higher loss (i.e., excess risk) as compared
to the optimal solution without private protection. Define θ∗ = arg minθ f(θ), after Algorithm 1 is
iterated for T times in total, the EER gives the expected utility degradation:

EER = Eν [f(θT+1)]− f(θ∗).

Due to the variety of loss function and complexity of recursive iterations, an exact EER with noise is
intractable for most functions. Instead, we study the worst case scenario, i.e., the upper bound of
the EER, and our goal is to minimize the upper bound. For consistency, we call the upper bound of
EER divided by the initial error as ERUB. Since the analytical form of EER is either intractable or
complicated due to the recursive iterations of noise, studying the ERUB is a convenient and tractable
alternative. The upper bound often has convenient functional forms which are (1) sufficiently simple,
such that we can directly minimize it, and (2) closely related to the landscape of the objective
depending on both the training dataset and the loss function. As a consequence, it is also used in
previous PGD literature (Pichapati et al., 2019; Wang et al., 2017) for choosing proper parameters.
Moreover, we let ERUBmin be the achievable optimal upper bound by a specific choice of parameters,
e.g., the σ and T .

In this paper, we consider the class of loss functions satisfying the Polyak-Lojasiewicz (PL) condition
which bounds losses by corresponding gradient norms. It is more general than the m-strongly
convexity. If f is differentiable and M -smooth, then m-strongly convexity implies the PL condition.

Definition 4.1 (Polyak-Lojasiewicz condition (Polyak, 1963)). For f(θ), there exists µ > 0 and for
every θ, ‖∇f(θ)‖2 ≥ 2µ(f(θ)− f(θ∗)).

The PL condition helps us to reveal how the influence of step noise propagates to the final excess
error, i.e., EER. Though the assumption was also used previously in Wang et al. (2017); Zhou et al.
(2020), neither did they discuss the propagated influence of noise. In the following sections, we will
show how the influence can tighten the upper bound in gradient descent and its momentum variant.
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4.1 GRADIENT DESCENT METHODS

For the brevity of our discussion, we first define the following constants:
1

α
,

2RMN2

DG2
(f(θ1)− f(θ∗)), κ ,

M

µ
, and γ , 1− 1

κ
, (2)

which satisfy κ ≥ 1 and γ ∈ [0, 1). Note that κ is the condition number of f(·) if f(·) is strongly
convex. κ tends to be large if the function is sensitive to small differences in inputs, and 1/α tends to
be large if more samples are provided and with a less strict privacy budget. The convergence of PGD
under the PL condition has been studied for private (Wang et al., 2017) and non-private (Karimi et al.,
2016; Nesterov & Polyak, 2006; Reddi et al., 2016) ERM. Below we extend the bound in (Wang
et al., 2017) by considering dynamic influence of noise and relax σt to be dynamic:
Theorem 4.1. Let α, κ and γ be defined in Eq. (2), and ηt = 1

M . Suppose f(θ;xi) is G-Lipschitz
and f(θ) is M -smooth satisfying the Polyak-Lojasiewicz condition. For PGD, the following holds:

ERUB = γT +R
∑T

t=1
qtσ

2
t , where qt , γT−tα. (3)

In Eq. (3), the step noise magnitude σ2
t has an exponential influence, qt, on the EER. The dynamic

characteristic of the influence is the key to prove a tighter bound. Plus, on the presence of the dynamic
influence, it is natural to choose a dynamic σ2

t . When relaxing qt to a static 1, a static σ2
t was studied

by Wang et al. They proved a bound which is nearly optimal except a ln2N factor. To get the optimal
bound, in the following sections, we look for the σ and T that minimize the upper bound.

4.1.1 UNIFORM SCHEDULE

The uniform setting of σt has been previously studied in Wang et al. (2017). Here, we show that the
bound can be further tightened by considering the dynamic influence of iterations and a proper T .
Theorem 4.2. Suppose conditions in Theorem 4.1 are satisfied. When σ2

t = T/R, let α, γ and κ be
defined in Eq. (2) and let T be:

T =

⌈
O
(
κ ln

(
1 +

1

κα

))⌉
. (4)

Meanwhile, if κ ≥ 1
1−c > 1, 1/α > 1/α0 for some constant c ∈ (0, 1) and α0 > 0, the correspond-

ing bound is:

ERUBuniform
min = Θ

(
κ2

κ+ 1/α
ln

(
1 +

1

κα

))
. (5)

Sketch of proof. The key of proof is to find a proper T to minimize

ERUB = E = γT +
∑T

t=1
γT−tαRσ2 = γT + αT

1− γT

1− γ
= γT + ακ(1− γT )T

where we use σt =
√
T/R. Vanishing its gradient is to solve γT ln γ+ακ(1−γT )−ακTγT ln γ = 0,

which however is intractable. In (Wang et al., 2017), T is chosen to be O(ln(1/α)) and ERUB is
relaxed as γT + ακT 2. The approximation results in a less tight bound as O(α(1 + κ ln2(1/α)))
which explodes as κ→∞.

We observe that for a super sharp loss function, i.e., a large κ, any minor perturbation may result in
tremendously fluctuating loss values. In this case, not-stepping-forward will be a good choice. Thus,
we choose T = 1

ln(1/γ) ln
(

1 + ln(1/γ)
α

)
≤ O

(
κ ln

(
1 + 1

κα

))
which converges to 0 as κ → +∞.

The full proof is deferred to the appendix.

4.1.2 DYNAMIC SCHEDULE

A dynamic schedule can improve the upper bound delivered by the uniform schedule. First, we
observe that the excess risk in Eq. (3) is upper bounded by two terms: the first term characterizes the
error due to the finite iterations of gradient descents; the second term, a weighted sum, comes from
error propagated from noise at each iteration. Now we show for any {qt|qt > 0, t = 1, . . . , T} (not
limited to the qt defined in Eq. (3)), there is a unique σt minimizing the weighted sum:
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Lemma 4.1 (Dynamic schedule). Suppose σt satisfy
∑T
t=1 σ

−2 = R. Given a positive sequence
{qt}, the following equation holds:

min
σ
R
∑T

t=1
qtσ

2
t =

(∑T

t=1

√
qt

)2

, when σ2
t =

1

R

∑T

i=1

√
qi
qt
. (6)

Remarkably, the difference between the minimum and T
∑T
t=1 qt (uniform σt) monotonically in-

creases by the variance of
√
qt w.r.t. t.

We see that the dynamics in σt come from the non-uniform nature of the weight qt. Since qt presents
the impact of the σt on the final error, we denote it as influence. Given the dynamic schedule in
Eq. (6), it is of our interest to which extent the ERUB can be improved. First, we present Theorem 4.3
to show the optimal T and ERUB.
Theorem 4.3. Suppose conditions in Theorem 4.1 are satisfied. Let α, κ and γ be defined in Eq. (2).
When ηt = 1

M , σt (based on Eqs. (3) and (6)) and the T minimizing ERUB are, i.e.,

σ2
t =

1

R

√
(1/γ)T − 1

1−√γ
√
γt, T =

⌈(
2κ ln

(
1 +

1

κα

))⌉
. (7)

Meanwhile, when κ ≥ 1 and 1/α ≥ 1/α0 for some positive constant α0, the minimal bound is:

ERUBdynamic
min = Θ

(
κ2

κ2 + 1/α

)
. (8)

4.1.3 DISCUSSION

In Theorems 4.2 and 4.3, we present the tightest bounds for functions satisfying the PL condition,
to our best knowledge. We further analyze the advantages of our bounds from two aspects: sample
efficiency and robustness to sharp losses.

Sample efficiency. Since dataset cannot be infinitely large, it is critical to know how accurate the
model can be trained privately with a limited number of samples. Formally, it is of interest to study
when κ is fixed and N is large enough such that α� 1. Then we have the upper bound in Eq. (5) as

ERUBuniform
min ≤ O

(
κ2α ln

(
1

κα

))
≤ Õ

(
DG2 ln(N)

MN2R

)
, (9)

where we ignore κ and other logarithmic constants with Õ as done in Wang et al. (2017). As a
result, we get a bound very similar to (Wang et al., 2017), except that R is replaced by RMA =
ε2/ ln(1/δ) using Moment Accountant. In comparison, based on Lemma B.3, R = 2ρ = 2ε +

4 ln(1/δ) + 4
√

ln(1/δ)(ε+ ln(1/δ) if θT satisfies ρ-zCDP. Because ln(1/δ) > 1, it is easy to see
R = RzCDP > RMA when ε ≤ 2 ln(1/δ). As compared to the one reported in (Wang et al.,
2017), our bound saved a factor of lnN and thus is require less sample to achieve the same accuracy.
Remarkably, the saving is due to the maintaining of the influence terms as shown in the proof of
Theorem 4.2.

Using the dynamic schedule, we have ERUBdynamic
min ≤ O(α) = O

(
DG2

MN2R

)
, which saved another

lnN factor in comparison to the one using the uniform schedule Eq. (9). As shown in Table 1, such
advantage maintains when comparing with other baselines.

Robustness. Besides sample efficiency, we are also interested in robustness of the convergence under
the presence of privacy noise. Because of the privacy noise, the convergence of private gradient
descent will be unable to reach an ideal spot. Specifically, when the samples are noisy or have noisy
labels, the loss curvature may be sharp. The sharpness also implies lower smoothness, i.e., a small M
or has a very small PL parameter. Thus, gradients may change tremendously at some steps especially
in the presence of privacy noise. As illustrated in the left figure, the highly-curved loss function (the
green curve) results in mean higher final loss (the red dashed line) than the flatten curve (purple and
blue lines). Such changes have more critical impact when only a less number of iterations can be
executed due to the privacy constraint. Assume α is some constant while κ� 1/α, we immediately
get:

ERUBuniform
min = Θ

(
κ ln

(
1 +

1

κα

))
= Θ

(
1

α

)
≤ O

(
MN2R

DG2

)
, ERUBdynamic

min = Θ(1).
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Both are robust, but the dynamic schedule has a smaller factor since 1/α could be a large number. In
addition, the factor implies that when more samples are used, the dynamic schedule is robuster.

4.2 GRADIENT DESCENT METHODS WITH MOMENTUM

0 1 2 3 4
0

1

2

3

4

5

6

7

8

lo
ss

Figure 1: Private gradient
descent repeated 100 times
on two differently-curved loss
functions. Solid lines are
optimization trajectories and
dashed horizontal lines are the
averaged final losses.

Section 4.1 shows that the step noise has an exponentially increas-
ing influence on the final loss, and therefore a decreasing noise
magnitude improves the utility upper bound by a lnN factor. How-
ever, the proper schedule can be hard to find when the curvature
information, e.g., κ, is absent. A parameterized method that less de-
pends on the curvature information is preferred. On the other hand,
long-term iterations will result in forgetting of the initial iterations,
since accumulated noise overwhelmed the propagated information
from the beginning. This effect will reduce the efficiency of the
recursive learning frameworks.

Alternative to GD, the momentum method can mitigate the two is-
sues. It was originally proposed to stabilize the gradient estimation
(Polyak, 1964). In this section, we show that momentum (agnostic
about the curvature) can flatten the dynamic influence and improve
the utility upper bound. Previously, Pichapati et al. used the mo-
mentum as an estimation of gradient mean, without discussions of
convergence improvements. Zhou et al. gave a bound for the Adam with DP. However, the derivation
is based on gradient norm, which results in a looser bound (see Table 1).

The momentum method stabilizes gradients by moving average history coordinate values and thus
greatly reduces the variance. The φ(mt, gt) can be rewritten as:

mt+1 = φ(mt, gt) =
vt+1

1− βt
, vt+1 = βvt + (1− β)gt = (1− β)

∑t

i=1
βt−igt, v1 = 0, (10)

where β ∈ [0, 1]. Note vt+1 is a biased estimation of the gradient expectation while mt+1 is unbiased.
Theorem 4.4 (Convergence under PL condition). Suppose f(θ;xi) is G-Lipschitz, and f(θ) is M -
smooth and satisfies the Polyak-Lojasiewicz condition. Assume β 6= γ and β ∈ (0, 1). Let ηt = η0

2M

and η0 ≤ 8
(√

1 + 64βγ(γ − β)−2(1− β)−3 + 1
)−1

. Then the following holds:

EER ≤
(
γT + 2Rη0α U3(σ, T )︸ ︷︷ ︸

noise varinace

)
(f(θ1)− f(θ∗))− ζ η0

2M

∑T

t=1
γT−tE ‖vt+1‖2︸ ︷︷ ︸

momentum effect

(11)

where γ = 1− η0
κ
, ζ = 1− 1

β(1− β)3
η20 −

1

4
η0 ≥ 0, (12)

U3 =
∑T

t=1
γT−t

(1− β)2

(1− βt)2
∑t

i=1
β2(t−i)σ2

i . (13)

The upper bound includes three parts that influence the bound differently: (1) Convergence. The
convergence term is mainly determined by η0 and κ. η0 should be in (0, κ) such that the upper bound
can converge. A large η0 will be preferred to speed up convergence if it does not make the rest two
terms worse. (2) Noise Variance. The second term compressed in U3 is the effect of the averaged
noise,

∑t
i=1 β

2(t−i)σ2
i . One difference introduced by the momentum is the factor (1− β)/(1− βt)

which is less than γt at the beginning and converges to a non-zero constant 1− β. Therefore, in U3,
γT−t(1− β)/(1− βt) will be constantly less than γT meanwhile. Furthermore, when t > T̂ , the
moving average

∑t
i=1 β

2(t−i)σ2
i smooths the influence of each σt. In Appendix D, we will see that

the influence dynamics is less steep than that of GD. (3) Momentum Effect. The momentum effect
term can improve the upper bound when η0 is small. For example, when β = 0.9 and γ = 0.99, then
η0 ≤ 0.98/M which is a rational value. Following the analysis, when M is large which means the
gradient norms will significantly fluctuate, the momentum term may take the lead. Adjusting the
noise scale in this case may be less useful for improving utility.

To give an insight on the effect of dynamic schedule, we provide the following utility bounds.

7
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Theorem 4.5 (Uniform schedule). Suppose the assumptions in Theorem 4.4 are satisfied. Let
σ2
t = T/R, and let:

T̂ = max t s.t. γt−1 ≥ 1− β
1− βt

, T =

⌈
O
(
κ

η0
ln
(

1 +
η0
κα

))⌉
.

Given some positive constant c and α0 > 0 with 1/α > 1/α0, the following inequality holds:

ERUBmin ≤ O
(

κ2

κ+ η0/α

[
IT≤T̂ + γT̂−1 ln

(
1 +

η0
κα

)
IT>T̂

])
.

Theorem 4.6 (Dynamic schedule). Suppose the assumptions in Theorem 4.4 are satisfied. Let
α′ = 2η0α

γ(1−γβ2) , β < γ and T̂ = max t s.t. γt−1 ≥ 1−β
1−βt . Use the following schedule:

σ2
t =

1

R

∑T

i=1

√
qi
qt
, T dyn =

⌈
O
(

2κ

η0
ln
(

1 +
η0
κα

))⌉
,

where qt = c1γ
T+tIT≤T̂ + γT̂−1c2γ

T−tIT>T̂ for some positive constants c1 and c2. The following
inequality holds:

ERUB ≤ γT + 2η0α
∑T

t=1
Rqtσ

2
t , ERUBmin ≤ O

(
κα

κα+ η0

(
κα

κα+ η0
IT≤T̂ + IT>T̂

))
.

Discussion. Theoretically, the dynamic schedule is more influential in vanilla gradient descent
methods than the momentum variant. The result is mainly attributed to the averaging operation. The
moving averaging, (1 − β)

∑t
i=1 β

t−igi/(1 − βt), increase the influence of the under-presented
initial steps and decrease the one of the over-sensitive last steps. Counterintuitively, the preferred
dynamic schedule should be increasing since qt decreases when t ≤ T̂ .

4.3 PRIVATE STOCHASTIC GRADIENT DESCENT (NEW SECTION ON REBUTTAL)

Though PGD provides a guarantee both for utility and privacy, computing gradients of the whole
dataset is impractical for large-scale problems. For this sake, studying the convergence of Private
Stochastic Gradient Descent (PSGD) is meaningful. The Algorithm 1 can be easily extended to
PSGD by subsampling n gradients where the batch size n � N . According to (Yu et al., 2019),
when privacy is measured by zCDP, there are two ways to account for the privacy cost of PSGD
depending on the batch-sampling method: sub-sampling with or without replacement. In this paper,
we focus on the random subsampling with replacement since it is widely used in deep learning in
literature, e.g., (Abadi et al., 2016; Feldman et al., 2020). Accordingly, we replace N in the definition
of α by n because the term is from the sensitivity of batch data (see Eq. (1)). For clarity, we assume
that T is the number of iterations rather than epochs and that ∇̃t is mean stochastic gradient.

When a batch of data are randomly sampled, the privacy cost of one iteration is cp2/σt where c
is some constant, p = n/N is the sample rate, and 1/σ2

t is the full-batch privacy cost. Details of
the sub-sampling theorems are referred to the Theorem 3 of (Yu et al., 2019) and their empirical
setting. Threfore, we can replace the privacy constraint

∑
t p

2/σ2
t = R by

∑
t 1/σ2

t = R′ where
R′ = R/p2 = N2

n2 R. Remarkably, we omit the constant c because it will not affect the results
regarding uniform or dynamic schedules. Notice N2R in the α is replaced by n2R′ = N2R. Thus,
the form of α is not changed which provides convenience for the following derivations.

Now we study the utility bound of PSGD. To quantify the randomness of batch sampling, we define a
random vector ξt with E[ξt] = 0 and E ‖ξt‖2 ≤ D such that ∇̃t ≤ ∇t + σgξt/n for some positive
constant σg. Because ξt has similar property to the privacy noise νt, we can easily extend the PGD
bounds to PSGD bounds by following theories.
Theorem 4.7 (Utility bounds of PSGD). Let α, κ and γ be defined in Eq. (2), and ηt = 1

M . Suppose
f(θ;xi) is G-Lipschitz and f(θ) is M -smooth satisfying the Polyak-Lojasiewicz condition. For
PSGD, when batch size satisfies n = max{N

√
R, 1}, the following holds:

ERUB = γT + αgσ
2
g +R′

∑T

t=1
qtσ

2
t , where qt , γT−tα,

∑
t

1/σ2
t = R′. (14)

where αg = D
2µN2R(f(θ1)−f(θ∗)) .

8
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Theorem 4.8 (PSGD with momentum). Let αg = D
2µN2R(f(θ1)−f(θ∗)) . Suppose assumptions in

Theorem 4.4 holds. When batch size satisfies n = max{N
√
R, 1}, the U3(σ, T ) has to be replaced

by
Ũ3 = Ug3 + U3, with αR′Ug3 ≤ αgσ2

g (15)
when PSGD is used.

As shown above, the utility bound of PSGD differs from the PGD merely by αgσ2
g . Note αg =

O( D
N2R ) which fits the order of dynamic-schedule bounds. In addition, α and other variables are not

changed. Hence, the conclusions w.r.t. the dynamic/uniform schedules maintain the same.

5 EXPERIMENTS

We empirically validate the properties of privacy schedules and their connections to learning algo-
rithms. In this section, we briefly review the schedule behavior on quadratic losses under varying
data sensitivity. Details of experimental setups and empirical results are available in Appendix D.

We first show the estimated influence of step noise qt (by retraining the private learning algorithms,
ref. Appendix D) in Fig. 2 Left. We see the trends of influence are approximately in an exponential
form of t. This obvervation motivates the use of exponential decay schedule in practice.

We then show the trends on the variance of influence (dashed lines with the right axis) and relative
final losses (solid lines with the left axis) in the Middle Pane, where uni denotes the uniform schedule
baseline, exp is an exponential schedule, dyn denotes the dynamic schedule minimizing the ERUB.
The influences increases steeply when the data scale is large and therefore have a large variance.
Meanwhile, dynamic schedules show improvements of the final loss when the variance is large. It
reveals the connection between the influence and the dynamic advantage (refer to Lemma 4.1).

We lastly evaluate the impacts from momentum in the Right Pane, using a Deep Neural Network
(DNN) with 2 layers and 100 hidden units. Because of time costs of training deep networks, we do
not estimate the influence by retraining and then compute schedules. Instead, we grid-search for the
schedule hyper-parameters to find the best one. We see that influence modeled by an exponential
function (expinfl) has comparable performance of the influence modeled by linear combination of two
reverse exponential functions (momexpinfl). The latter only shows advantage in the setting that data
scale is 25 and the number of iteration is only 100, which is expected by our analysis Theorems 4.5
and 4.6. The inherent reason is that the dynamic schedule is more effective when T is larger.
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Figure 2: Comparison of dynamic schedule and uniform schedule on different data scale. Left pane
is the influence by iteration estimated by retraining. The rest two are the relative loss by varying
data scale (left axis with solid lines) and the variance of influence (right axis with dashed lines). The
middle is on the MNIST35 dataset consisting of 1000 digit 3 and 5 images using quadratic regression.
The right is the final loss on subsampled MNIST dataset of 1000 training samples and 50, 000 test
samples when using DNN and momentum methods.

6 CONCLUSION

When a privacy budget is provided for a certain learning task, one has to carefully schedule the
privacy usage through the learning process. Uniformly scheduling the budget has been widely used
in literature whereas increasing evidence suggests that dynamically schedules could empirically
outperform the uniform one. This paper provided a principled analysis on the problem of optimal
budget allocation and connected the advantages of dynamic schedules to both the loss structure and
the learning behavior. We further validated our results through empirical studies.
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A COMPARISON OF ALGORITHMS

Table 2: Comparison of empirical excess risk bounds. The algorithms are T -iteration 1
2R-zCDP or

equivalently (ε, δ)-DP under the PL condition (unless marked with * for convexity). The O notation
in this table drops other ln terms. All algorithms in the second part terminate at step T = O(ln N2R

D ).
Assume loss functions are 1-smooth and 1-Lipschitz continuous, and all parameters satisfy their
numeric assumptions. Key notations: Op – bound occurs in probability p; D – feature dimension; N
– sample size; R – privacy budget; ci – constant.

Algorithm Schedule (σ2
t ) Utility Upper Bd.

*GD+Adv (Bassily et al., 2014) O
(

ln(N/δ)
Rε,δ

)
O
(
D ln3 N
NRε,δ

)
GD+MA (Wang et al., 2017) O( T

Rε,δ
) O

(
D ln2 N
N2Rε,δ

)
*GD+Adv+BBImp (Cummings et al., 2018) O

(
n2 ln(n/δ)
Rε,δ

)
Op

(
D2 ln2(1/p)

Rε,δN
1−c

)
Adam+MA (Zhou et al., 2020) O( T

Rε,δ
) Op

(√
D ln(NDε/(1−p))

NRε,δ

)
GD, Non-Private 0 O

(
D
N2R

)
GD+zCDP, Static Schedule T

R
O
(
D lnN
N2R

)
GD+zCDP, Dynamic Schedule O

(
γ(t−T )/2

R

)
O
(

D
N2R

)
Momentum+zCDP, Static Schedule T

R
O
(

D
N2R

(c+ lnNIT>T̂ )
)

Momentum+zCDP, Dynamic Schedule O
(
c1γ

T+t+c2γ
(T−t)/2

R

)
O
(

D
N2R

(1 + cD
N2R

IT>T̂ )
)

We present Table 2 as an sumpplementary to the Table 1. Asymptotic upper bounds are achieved
when sample size N approaches infinity. Both R and Rε,δ with Rε,δ < R are the privacy budgets
of corresponding algorithms. Specifically, Rε,δ = ε2/ ln(1/δ) < R when the private algorithm is
(ε, δ)-DP with ε ≤ 2 ln(1/δ).

PGD+Adv. Adv denotes the Advanced Composition method (Bassily et al., 2014). The method
assumes that loss function is 1-strongly convex which implies the PL condition and optimized variable
is in a convex set of diameter 1 w.r.t. l2 norm.

PGD+MA. MA denotes the Moment Accoutant (Abadi et al., 2016) which improve the composed
privacy bound versus the Advanced Composition. The improvement on privacy bound lead to a
enhanced utility bound, as a result.

PGD+Adv+BBImp. The dynamic method assumes that the loss is 1-strongly convex and data
comes in stream with n ≤ N samples at each round. Their utility upper bound is achieved at some
probability p with any positive c.

Adam+MA. The authors prove a convergence bound for the gradient norms which is extended to loss
bound by using PL condition. They also presents the results for AdaGrad and GD which are basically
of the same upper bound. Out theorems improve their bound by using the recursive derivation based
on the PL condition, while their bound is a simple application of the condition on the gradient norm
bound.

GD, Non-Private. This method does not inject noise into gradients but limit the number of iterations.
With the bound, we can see that our utility bound are optimal with dynamic schedule.

GD+zCDP. We discussed the static and dynamic schedule for the gradient descent method where the
dynamic noise influence is the key to tighten the bound.

Momemtum+zCDP. Different from the GD+zCDP, momentum methods will have two phase of
utility upper bound. When T is small than some positive constant T̂ , the bound is as tight as the
non-private one. Afterwards, the momentum has a bound degraded as the GD bound.
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Table 3: Comparison of true excess risk bounds. The algorithms are T -iteration 1
2R-zCDP or

equivalently (ε, δ)-DP under the µ-strongly-convex condition. The O notation in this table drops
other ln terms. Assume loss functions are 1-smooth and 1-Lipschitz continuous, and all parameters
satisfy their numeric assumptions. * marks the method with convex assumption.

Algorithm Utility Upper Bd. T

GD+Adv (Bassily et al., 2014) O1−p

(√
D ln2 N ln(1/p)
pµNRε,δ

)
N2

SVRG+MA (Wang et al., 2017) O
(

D lnN
µN2Rε,δ

)
O(ln

N2Rε,δ
D

)

SSGD+zCDP (Feldman et al., 2020) O
((

1√
N

+ 2
√
D√
RN

)
lnN

)
N2

16D/R2+4N

* SGD+MA (Bassily et al., 2019) O
(
max

{ √
D

N
√
Rε,δ

, 1√
N

})
min{N

8
,
N2Rε,δ
32D

}

GD+zCDP, Static Schedule O1−p

(
G2

µN

(√
D ln(N) ln(1/p)

NR
+ 4

p

))
O(ln N2R

D
)

GD+zCDP, Dynamic Schedule O1−p

(
G2

µN

(√
D ln(1/p)
NR

+ 4
p

))
O(ln N2R

D
)

Momentum+zCDP, Static Sch. O1−p

(
G2

µN

(√
D ln(1/p)
NR

(c+ lnNIT>T̂ ) +
4
p

))
O(ln N2R

D
)

Momentum+zCDP, Dynamic Sch. O1−p

(
G2

µN

(√
D ln(1/p)
NR

(1 + cD
N2R

IT>T̂ ) +
4
p

))
O(ln N2R

D
)

GD, Non-Private O
(

D
N2R

)
O(ln N2R

D
)

GD+zCDP, Static Schedule O
(
D lnN
N2R

)
O(ln N2R

D
)

GD+zCDP, Dynamic Schedule O
(

D
N2R

)
O(ln N2R

D
)

Momentum+zCDP, Static Sch. O
(

D
N2R

(c+ lnNIT>T̂ )
)

O(ln N2R
D

)

Momentum+zCDP, Dynamic Sch. O
(

D
N2R

(1 + cD
N2R

IT>T̂ )
)

O(ln N2R
D

)

A.1 COMAPRISON OF GENERALIZATION BOUNDS

In addition to the empirical risk bounds in Table 2, in this section we study the true risk bounds, or
generalization error bounds. True risk bounds characterize how well the learnt model can generalize
to unseen samples subject to the inherent data distribution. By leveraging the generic learning-theory
tools, we extend our results to the True Excess Risk (TER) for strongly convex functions as follows.
For a model θ, its TER is defined as follows:

TER , Ex∼X [E[f(θ;x)]]−minθ̂ Ex∼X [f(θ̂;x)],

where the second expectation is over the randomness of generating θ (e.g., the noise and stochastic
batches). Assume a dataset d consist of N samples drawn i.i.d. from the distribution X . Two
approaches could be used to extend the empirical bounds to the true excess risk: One is proposed by
Shalev-Shwartz et al. (2009) where the true excess risk of PGD can be bounded in high probability.
For example, Bassily et al. (2014) achieved a ln2N

N bound with N2 iterations. Alternatively, instead
of relying on the probabilistic bound, Bassily et al. (2019) used the uniform stability to give a tighter
bound. Later, Feldman et al. (2020) improve the efficiency of gradient computation to achieve a
similar bound. Both approaches introduce an additive term to the empirical bounds. In this section,
we adopt both approaches to investigate the two types of resulting true risk bounds.

(1) True Risk in High Probability. First, we consider the high-probability true risk bound. Based
on Section 5.4 from (Shalev-Shwartz et al., 2009) (restated in Theorem A.1), we can relate the EER
to the TER.
Theorem A.1. Let f(θ;x) be G-Lipschitz, and f(θ) be µ-strong convex loss function given any
x ∈ X . With probability at least 1− p over the randomness of sampling the data set d, the following
inequality holds:

TER(θ) ≤

√
2G2

µN

√
f(θ)− f(θ∗) +

4G2

pµN
, (16)
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where θ∗ = arg minθ f(θ).

To apply the Eq. (16), we need to extend EER, the expectation bound, to a high-probability bound.
Following (Bassily et al., 2014) (Section D), we repeate the PGD with privacy budgetR/k for k times.
Note, the output of all repetitions is still of R budget. When k = 1, let the EER of the algorithm be
denoted as F (R). Then the EER of one execution of the k repetitions is F (R/k) where privacy is
accounted by zCDP. When k = log2(1/p) for p ∈ [0, 1], by Markov’s inequality, there exists one
repetition whose EER is F (R/ log2(1/p)) with probability at least 1 − 1/2k = 1 − p. Combined
with Eq. (16), we use the bounds of uniform schedule and dynamic schedules in Section 4.1.3 to
obtain:

TERuniform ≤ Õ

(
G2

µN

(√
D ln(N) ln(1/p)

NR
+

4

p

))
, (17)

TERdynamic ≤ Õ

(
G2

µN

(√
D ln(1/p)

NR
+

4

p

))
, (18)

where we again ignore the κ and other constants. Similarly, we can extend the momentum methods.

(2) True Risk by Unfirom Stability. Following Bassily et al. (2019), we use the uniform stability
(defined in Definition A.1) to extend the empirical bounds. We restate the related definition and
theorems as follows.
Definition A.1 (Uniform stability). Let s > 0. A randomized algorithm M : DN → Θ is s-
uniformly stable w.r.t. the loss function f if for any neighor datasets d and d′, we have:

supx∈X E[f(M(d);x)− f(M(d′);x)] ≤ s,
where the expectation is over the internal randomness ofM.
Theorem A.2 (See, e.g., (Shalev-Shwartz & Ben-David, 2014)). Suppose M : DN → Θ is a
s-uniformly stable algorithm w.r.t. the loss function f . LetD be any distribution from over data space
and let d ∼ DN . The following holds true.

Ed∼DN [E[f(M(d);D)− f(M(d); d)]] ≤ s,
where the second expectation is over the internal randomness ofM. f(M(d);D) and f(M(d); d)
represent the true loss and the empirical loss, respecitvely.
Theorem A.3 (Uniform stability of PGD from (Bassily et al., 2019)). Suppose η < 2/M for M
smooth, G-Lipschitz f(θ;x). Then PGD is s-uniformly stable with s = G2Tη/N .

Combining Theorems A.2 and A.3, we obtain the following:

TER ≤ EER +G2 ηT

N
.

Because EER in this paper compresses a γT or similar exponential terms, unlike (Bassily et al., 2019),
we cannot directly minimize the TER upper bound w.r.t. T and η in the presence of a polynomial
form of γT and T . Therefore, we still use T = O(ln N2R

D ) and η for minimizing EER. Note that

G2 ηT

N
≤ O(

G2

MN
ln
N2R

D
) ≤ O

(
G2

M

)
where we assume N � D and use lnN ≤ N . Because the term O

(
G2/M

)
is constant and

independent from dimension, we follow (Bassily et al., 2019) to drop the term when comparing the
bounds. After dropping the additive term, it is obvious to see that the advantage of dynamic schedules
still maintains since TER ≤ EER. A similar extension can be derived for (Wang et al., 2017).

We summarize the results and compare them to prior works in Table 3 where we include an additional
method: Snowball Stochastic Gradient Descent (SSGD). SSGD dynamically schedule the batch size
to achieve an optimal convergence rate in linear time.

Discussion. By using uniform stability, we successfully transfer the advantage of our dynamic
schedules from empirical bounds to true risk bounds. The inherent reason is that our bounds only
need lnN iterations to reach the preferred final loss. With uniform stability, the logarithmic T
reduce the gap caused by transferring. Compared to the (Feldman et al., 2020; Bassily et al., 2019),
our method has remarkably improved efficiency in T from N or N2 to ln(N). That implies fewer
iterations are required for converging to the same generalization error.
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B PRELIMINARIES

B.1 PRIVACY

Lemma B.1 (Composition & Post-processing). Let two mechanisms be M : Dn → Y and M ′ :
Dn × Y → Z . Suppose M satisfies (ρ1, a)-zCDP and M ′(·, y) satisfies (ρ2, a)-zCDP for ∀y ∈ Y .
Then, mechanism M ′′ : Dn → Z (defined by M ′′(x) = M ′(x,M(x))) satisfies (ρ1 + ρ2)-zCDP.

Definition B.1 (Sensitivity). The sensitivity of a gradient query∇t to the dataset {xi}Ni=1 is

∆2(∇t) = max
n

∥∥∥∥ 1

N

∑N

j=1,j 6=n
∇(j)
t −

1

N

∑N

j=1
∇(j)
t

∥∥∥∥
2

=
1

N
max
n

∥∥∥∇(n)
t

∥∥∥
2

(19)

where∇(n)
t denotes the gradient of the n-th sample.

Lemma B.2 (Gaussian mechanism (Bun & Steinke, 2016)). Let f : Dn → Z have sensitivity ∆.
Define a randomized algorithm M : Dn → Z by M(x)← f(x) +N (0,∆2σ2I). Then M satisfies
1

2σ2 -zCDP.

Lemma B.3 ((Bun & Steinke, 2016)). If M is a mechanism satisfying ρ-zCDP, then M is (ρ +

2
√
ρ ln(1/δ), δ)-DP for any δ > 0.

By solving ρ+ 2
√
ρ ln(1/δ) = ε, we can get ρ = ε+ 2 ln(1/δ) + 2

√
ln(1/δ)(ε+ ln(1/δ).

B.2 AUXILIARY LEMMAS

Lemma B.4. If maxn ‖xn‖2 = 1 and 1
N

∑
n xn = 0, then the gradient sensitivity of the squared

loss will be

∆2(∇) = max
i

1

N

√
2f(θ;xi) ‖xi‖2 ≤

1

2
(DM ‖θ‖2 + 1),

where ΘM is the set of all possible parameters θt generated by the learning algorithmM.

Proof. According to the definition of sensitivity in Eq. (19), we have

∆2(∇) = max
i

∥∥∥∇(i)
∥∥∥
2

= max
n

1

n

∥∥∥A(i)θ − xi
∥∥∥
2

where we use i denotes the index of sample in the dataset. Here, we assume it is constant 1. We may
get ∥∥∥A(i)θ − xi

∥∥∥2
2

=
∥∥xi(x>i θ − 1)

∥∥2
2

= (x>i θ − 1)2 ‖xi‖22 = 2f(θ;xi) ‖xi‖22

where f(θ;xi) = 1
2 (x>i θ − 1)2. Thus,

∆2(∇) = max
i

1

N

√
2f(θ;xi) ‖xi‖2

Since ‖xn‖2 ≤ 1 and 1
N

∑N
n=1 xn = 0,

f(θ) =
1

2N

N∑
n=1

[(x>n θ)
2 − 2x>n θ + 1] ≤ 1

2N

N∑
n=1

[(‖xn‖ ‖θ‖)2 + 1] ≤ 1

2
(DM ‖θ‖2 + 1)

Lemma B.5. Assume assumptions in Theorem 4.4 are satisfied. Given variables defined in Theo-
rem 4.4, the following inequality holds true:

T∑
t=1

γT−t
2(1− β)ηt

bt

∑t

i=1
βt−i ‖∇t −∇i‖2 ≤

η30βγ

2M(1− β)3(γ − β)2

T−1∑
i=1

γT−i ‖vi+1‖2 .
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Proof. We first handle the inner summation. By smoothness, the inequality ‖∇f(x)−∇f(y)‖ ≤
M ‖x− y‖ holds true. Thus,

∑t

i=1
βt−i ‖∇t −∇i‖2 ≤M2

∑t

i=1
βt−i ‖θt − θi‖2

= M2
∑t−1

k=0
βk ‖θt − θt−k‖2

= M2
∑t−1

k=0
βk
∥∥∥∥∑t−1

i=t−k
ηivi+1/bi

∥∥∥∥2
≤M2

∑t−1

k=0
βk
(∑t−1

j=t−k
η2j /b

2
j

)(∑t−1

i=t−k
‖vi+1‖2

)

where the last inequality is by Cauchy-Schwartz inequality. Because 1
bt

= 1
1−βt ≤

1
1−β and

ηt = η0
2M ,

∑t

i=1
βt−i ‖∇t −∇i‖2 ≤

η20
4(1− β)2

∑t−1

k=0
βkk

∑t−1

i=t−k
‖vi+1‖2

=
η20

4(1− β)2

∑t−1

k=0
βkk

∑t−1

i=1
‖vi+1‖2 I(i ≥ t− k)

=
η20

4(1− β)2

∑t−1

i=1
‖vi+1‖2

∑t−1

k=0
βkkI(k ≥ t− i)

=
η20

4(1− β)2

∑t−1

i=1
‖vi+1‖2

∑t−1

k=t−i
βkk (20)

where I(·) is the indicating function which output 1 if the condition holds true, otherwise 0.

Denote the left-hand-side of the conclusion as LHS. We plug Eq. (20) into LHS to get

LHS ≤
T∑
t=1

γT−t
1

bt

η30
4M(1− β)

∑t−1

i=1
‖vi+1‖2

∑t−1

k=t−i
βkk

≤ η30
4M(1− β)2

T∑
t=1

γT−t
∑t−1

i=1
‖vi+1‖2

∑t−1

k=t−i
βkk

where we relax the upper bound by 1
bt

= 1
1−βt ≤

1
1−β . Using Lemma B.6 can directly lead to the

conclusion:

LHS ≤ η30βγ

2M(1− β)3(γ − β)2

T−1∑
i=1

γT−i ‖vi+1‖2 .

Lemma B.6. Given variables defined in Theorem 4.4, the following inequality holds true:

T∑
t=1

γT−t
∑t−1

i=1
‖vi+1‖2

∑t−1

k=t−i
kβk ≤ 2βγ

(γ − β)2(1− β)

T−1∑
i=1

γT−i ‖vi+1‖2 .
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Proof. We first derive the summation:

U1(t, i) ,
∑t−1

k=t−i
βkk =

∑t−1

k=t−i

∑k

j=1
βk

=
∑t−1

k=t−i

∑t−1

j=1
βkI(j ≤ k)

=
∑t−1

j=1

∑t−1

k=max(t−i,j)
βk

=
∑t−1

j=1

βmax(t−i,j) − βt

1− β

=
1

1− β

(
(t− i)βt−i +

βt−i+1 − βt

1− β
− β − βt

1− β

)
=

1

1− β

(
(t− i)βt−i +

βt−i+1 − β
1− β

)

Now, we substitute U1(t, i) into LHS and replace t− i by j, i.e., t = j + i, to get

LHS =

T∑
t=1

γT−t
t−1∑
i=1

‖vi+1‖2
1

1− β

(
(t− i)βt−i +

βt−i+1 − β
1− β

)

=

T−1∑
i=1

‖vi+1‖2
T∑

t=i+1

γT−t
1

1− β

(
(t− i)βt−i +

βt−i+1 − β
1− β

)

=

T−1∑
i=1

‖vi+1‖2
T−i∑
j=1

γT−(j+i)
1

1− β

(
jβj +

βj+1 − β
1− β

)

=

T−1∑
i=1

γT−i ‖vi+1‖2
T−i∑
j=1

γ−j
1

1− β

(
jβj +

βj+1 − β
1− β

)

≤ 1

1− β

T−1∑
i=1

γT−i ‖vi+1‖2
T−i∑
j=1

(
j

(
β

γ

)j
+

β

1− β

(
β

γ

)j)

Let a = β/γ, we show

T−i∑
j=1

jaj =

T−i∑
j=1

j∑
o=1

aj

=

T−i∑
o=1

T−i∑
j=o

aj

=

T−i∑
o=1

(
ao − aT−i+1

1− a
)

=
a− aT−i+1

(1− a)2
− (T − i)a

T−i+1

1− a

≤ a

(1− a)2
.
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Thus,

LHS ≤ 1

1− β

T−1∑
i=1

γT−i ‖vi+1‖2
 a

(1− a)2
+

β

1− β

T−i∑
j=1

aj


≤ 1

1− β

T−1∑
i=1

γT−i ‖vi+1‖2
(

a

(1− a)2
+

β

1− β
a

1− a

)

≤ a

(1− a)2(1− β)

T−1∑
i=1

γT−i ‖vi+1‖2

Because γ < 1, β < a = β/γ and

a

(1− a)2
+

β

1− β
a

1− a
≤ 2a

(1− a)2
.

Therefore,

LHS ≤ 2a

(1− a)2(1− β)

T−1∑
i=1

γT−i ‖vi+1‖2 =
2βγ

(γ − β)2(1− β)

T−1∑
i=1

γT−i ‖vi+1‖2

Lemma B.7. Suppose γ ∈ (0, 1) and β ∈ (0, 1). Define

T̂ = max t s.t. γt−1 ≥ 1− β
1− βt

.

If t ≤ T̂ , 1−β
1−βt ≤ γ

t−1 for t = 1, . . . , T . If t > T̂ , 1−β
1−βt < γT̂−1.

Proof. Define h(t) = γt−1(1− βt) whose derivatives are

h′(t) = γt−1(1− βt) ln γ + γt−1(−βt) lnβ

= γt−1
[
ln γ − βt(ln γ + lnβ)

]
= γt−1

[
1− βt(1 + logγ β)

]
ln γ.

Simple calculation shows 1− βt(1 + logγ β)
∣∣
t=0

= − logγ β < 0 and limt→+∞ 1 − βt(1 +

logγ β) = 1. When t = − logβ(1 + logγ β) denoted as t0, 1 − βt(1 + logγ β) = 0. Be-
cause 1 − βt(1 + logγ β) is monotonically increasing by t and γt−1 ln γ is negative, h′(t) ≥ 0
if t ≤ t0. Otherwise, h′(t) < 0. Therefore, h(t) is a concave function. Because h(1) = 1− β and
h(T̂ ) = γT̂−1(1 − βT̂ ) ≥ 1 − β > 0, h(t) ≥ 1 − β for t = 1, . . . , T̂ . Thus, for all t ∈ [1, T̂ ], we
have 1−β

1−βt ≤ γ
t−1.

For t > T̂ , because 1−β
1−βt monotonically increases by t, we have 1−β

1−βt <
1−β
1−βT̂

≤ γT̂−1.

C PROOFS

Proof of Theorem 3.1. Because all sample gradient are G-Lipschitz continuous, the sensitivity of the
averaged gradient is upper bounded by G/N . Based on Lemma B.2, the privacy cost of gt is 1

2σ2
t

1.

Here, we make the output of each iteration a tuple of (θt+1, vt=1). For the 1st iteration, because θ1
does not embrace private information by random initialization, the mapping,[

v2
θ2

]
=

[
g1

θ1 − η1g1

]
,

1For brevity, when we say the privacy cost of some value, e.g., gradient, we actually refer to the cost of
mechanism that output the value.
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is ρ̂1-zCDP where ρ̂1 = 1
2σ2
t

.

Suppose the output of the t-th iteration, (θt, vt), is ρ̂t-zCDP. At each iteration, we have the following
mapping (θt, vt)→ (θt+1, vt+1) defined as[

vt+1

θt+1

]
=

[
φ(vt, gt)

θt − ηtφ(vt, gt)

]
.

Thus, the output tuple (θt+1, vt+1) is (ρ̂t + 1
2σ2
t
)-zCDP by Lemma B.1.

Thus, the recursion implies that (θT+1, vT+1) has privacy cost as

ρ̂T+1 = ρ̂T +
1

2σ2
T

= · · · =
T∑
t=1

1

2σ2
t

=
1

2

T∑
t=1

ρt ≤
1

2
(R−RT ) ≤ 1

2
R.

Let ρ = ρ̂T+1. Then we can get the conclusion.

C.1 GRADIENT DESCENTS

Proof of Theorem 4.1. With the definition of smoothness in Definition 3.3 and Eq. (1), we have

f(θt+1)− f(θt) ≤ −ηt∇>t (∇t +Gσtνt/N) +
1

2
Mη2t ‖∇t +Gσtνt/N‖2

= −ηt(1−
1

2
Mηt) ‖∇t‖2 − (1−Mηt)ηt∇>t Gσtνt/N +

1

2
Mη2t ‖Gσtνt/N‖

2

≤ −2µηt(1−
1

2
Mηt)(f(θt)− f(θ∗))− (1−Mηt)ηt∇>t Gσtνt/N

+
1

2
Mη2t ‖Gσtνt/N‖

2
.

where the last inequality is due to the Polyak-Lojasiewicz condition. Taking expectation on both
sides, we can obtain

E[f(θt+1)]− E[f(θt)] ≤ −2µηt(1−
M

2
ηt)(E[f(θt)]− f(θ∗)) +

M

2
(ηtGσt/N)2E ‖νt‖2

which can be reformulated by substacting f(θ∗) on both sides and re-arranged as

E[f(θt+1)]− f(θ∗) ≤
(

1− 2µηt(1−
M

2
ηt)

)
(E[f(θt)]− f(θ∗)) +

M

2
(ηtGσt/N)2D

Recursively using the inequality, we can get

E[f(θT+1)]− f(θ∗) ≤
T∏
t=1

(
1− 2µηt(1−

M

2
ηt)

)
(E[f(θ1)]− f(θ∗))

+
MD

2

T∑
t=1

T∏
i=t+1

(
1− 2µηi(1−

M

2
ηi)

)
(ηtGσt/N)2.

Let ηt ≡ 1/M . Then the above inequality can be simplified as

E[f(θT+1)]− f(θ∗) ≤ γT (E[f(θ1)]− f(θ∗)) +R

T∑
t=1

γT−t
MD

2R

(
ηtG

N

)2

σ2
t

= γT (E[f(θ1)]− f(θ∗)) +R

T∑
t=1

γT−tασ2
t (E[f(θ1)]− f(θ∗))

=

(
γT +R

∑T

t=1
qtσ

2
t

)
(f(θ1)− f(θ∗))
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Proof of Theorem 4.2. The minimizer of the upper bound of Eq. (3) can be written as

T ∗ = arg min
T

γT + ακ(1− γT )T (21)

where we substitute σ2 = T/R in the second line. To find the convex minimization problem, we
need to vanishing its gradient which involves an equation like TγT = c for some real constant c.
However, the solution is Wk(c) for some integer k where W is Lambert W function which does not
have a simple analytical form. Instead, because γT > 0, we can minimize a surrogate upper bound as
following

T ∗ = arg min
T

γT + ακT =
1

ln(1/γ)
ln

(
ln(1/γ)

κα

)
, if κα+ ln γ < 0 (22)

where we use the surrogate upper bound in the second line and utilize γ = 1 − 1
κ . However, the

minimizer of the surrogate objective is not optimal for the original objective. When κ is large, the
term, −ακγTT , cannot be neglected as we expect. On the other hands, T suffers from explosion if
κ→∞ and meanwhile 1/γ →+ 1. The tendency is counterintuitive since a small T should be taken
for sharp losses. To fix the issue, we change the form of T ∗ as

T ∗ =
1

ln(1/γ)
ln

(
1 +

ln(1/γ)

α

)
, (23)

which gradually converges to 0 as κ→∞.

Now we substitute Eq. (23) into the original objective function, Eq. (21), to get

ERUBuniform =
1

1 + ln(1/γ)/α

[
1 + κ ln

(
1 +

ln(1/γ)

α

)]
. (24)

Notice that

ln(1/γ) = ln(κ/(κ− 1)) = ln(1 + 1/(κ− 1)) ≤ 1

κ− 1
≤ 1

cκ

because κ ≥ 1
1−c > 1 for some constant c ∈ (0, 1). In addition,

ln(1/γ) = − ln(1− 1/κ) ≥ 1/κ.

Now, we can get the upper bound of Eq. (24) as

ERUBuniform ≤ κ

κ+ 1/α

[
1 + κ ln

(
1 +

1

cκα

)]
≤ c1

κ

κ+ 1/α
κ

[
ln

(
1 +

1

κα

)
+ ln(

1

c
))

]
≤ c1c2

κ2

κ+ 1/α
ln

(
1 +

1

κα

)
for some constants c1, c2 and large enough 1

α . Also, we can get the lower bound

ERUBuniform ≥ cκ

cκ+ 1/α

[
1 + κ ln

(
1 +

1

κα

)]
≥ c κ2

κ+ 1/α
ln

(
1 +

1

κα

)
.

where we use the condition c ∈ (0, 1). Thus, ERUBuniform = Θ
(

κ2

κ+1/α ln
(
1 + 1

κα

))
.

Proof of Lemma 4.1. By
∑T
t=1 σ

−2 = R and Cauchy-Schwarz inequality, we can derive the achiev-
able lower bound as

R
∑
t

qtσ
2
t =

∑
t

1

σ2
t

∑
t

qtσ
2
t ≥

(
T∑
t=1

√
qt

)2

20



Under review as a conference paper at ICLR 2021

where the inequality becomes equality if and only if s/σ2
t = qtσ

2
t , i.e., σt = (s/qt)

1/4, for some
positive constant s. The equality

∑T
t=1 σ

−2
t = R immediately suggests

√
s = 1

R

∑T
t=1

√
qt. Thus,

we get the σt.

Notice

T

T∑
t=1

qt −
(∑T

t=1

√
qt

)2

= T 2 1

T

T∑
t=1

(
√
qt −

1

T

T∑
i=1

√
qi

)2

= T 2 Var[qt] (25)

where the variance is w.r.t. t.

Proof of Theorem 4.3. The upper bound of Eq. (3) can be written as

ERUBdyn = γT +
∑T

t=1
γT−tαRσ2

= γT + α

(∑T

t=1

√
γT−t

)2

= γT + α

(
1− γT/2

1−√γ

)2

where we make use of Lemma 4.1. Then, the minimizer of the ERUB is

T ∗ = arg min
T

γT + α

(
1− γT/2

1−√γ

)2

= 2 logγ

(
α

α+ (1−√γ)2

)
. (26)

We can substitute Eq. (26) into ERUBdyn to get

ERUBdyn
min =

(
α

α+ (1−√γ)2

)2

+ α

(
1

1−√γ

)2(
1− α

α+ (1−√γ)2

)2

=

(
α(1−√γ)−2

α(1−√γ)−2 + 1

)2

+
α(1−√γ)−2(

α(1−√γ)−2 + 1
)2

=
α(1−√γ)−2

α(1−√γ)−2 + 1

Notice that
(
1−√γ

)−2
= κ2 + κ2 − κ + 2κ

√
κ(κ− 1) = κ(2κ − 1 + 2

√
κ(κ− 1)) and it is

bounded by

κ(2κ− 1 + 2
√
κ(κ− 1)) ≤ 4κ2,

κ(2κ− 1 + 2
√
κ(κ− 1)) ≥ κ(2κ− (3κ− 2) + 2

√
(κ− 1)(κ− 1)) = κ(−κ+ 2 + 2κ− 2) = κ2.

Therefore, κ ≤
(
1−√γ

)−1 ≤ 2κ, with which we can derive

ERUBdyn
min ≤ 4

κ2α

κ2α+ 1
,

ERUBdyn
min ≥

κ2α

4κ2α+ 1
≥ 1

4

κ2α

κ2α+ 1
.

Thus, ERUBdyn
min = Θ

(
κ2α
κ2α+1

)
.
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C.2 GRADIENT DESCENTS WITH MOMENTUM

Proof of Theorem 4.4. Without loss of generality, we absorb the Cσt/N into the variance of νt such
that νt ∼ N (0,

Cσ2
t

N I) and gt ← ∇t + νt. Define bt = 1− βt.
By smoothness and Eq. (1), we have

f(θt+1)− f(θt) ≤ ∇>t (θt+1 − θt) +
1

2
M ‖θt+1 − θt‖2

= −ηt
b2t
bt∇>t vt+1 +

1

2
M
η2t
b2t
‖vt+1‖2

=
ηt
b2t

(
‖bt∇t − vt+1‖2 − ‖bt∇t‖2 − ‖vt+1‖2

)
+

1

2
M
η2t
b2t
‖vt+1‖2

=
ηt
b2t
‖bt∇t − vt+1‖2︸ ︷︷ ︸

U1(t)

−ηt ‖∇t‖2 −
ηt
b2t

(1− 1

2
Mηt) ‖vt+1‖2 , (27)

where only the U1(t) is non-negative. Specifically, U1(t) describes the difference between current
gradient and the average. We can expand vt+1 to get an upper bound:

U1(t) = ‖bt∇t − vt+1‖2

=
∥∥∥(1− β)

∑t

i=1
βt−i∇t − (1− β)

∑t

i=1
βt−igi

∥∥∥2
= (1− β)2

∥∥∥∑t

i=1
βt−i(∇t − gi)

∥∥∥2
= (1− β)2

∥∥∥∑t

i=1
βt−i(∇t −∇i) +

∑t

i=1
βt−i(∇i − gi)

∥∥∥2
≤ 2(1− β)2

[∥∥∥∑t

i=1
βt−i(∇t −∇i)

∥∥∥2 +
∥∥∥∑t

i=1
βt−i(∇i − gi)

∥∥∥2]

≤ 2(1− β)

bt∑t

i=1
βt−i ‖∇t −∇i‖2︸ ︷︷ ︸

U2(t) (gradient variance)

+(1− β)
∥∥∥∑t

i=1
βt−iνi

∥∥∥2︸ ︷︷ ︸
noise variance



where we use ‖x+ y‖2 ≤ (‖x‖+ ‖y‖)2 ≤ 2(‖x‖2 + ‖y‖2). The last inequality can be proved by
Cauchy-Schwartz inequality for each coordinate.

We plug the U1(t) into Eq. (27) and use the PL condition to get

f(θt+1)− f(θt) ≤
ηt
b2t
U1(t)− ηt ‖∇t‖2 −

ηt
b2t

(1− 1

2
Mηt) ‖vt+1‖2

≤ −ηt ‖∇t‖2 +
ηt
b2t

2(1− β)

[
btU2(t) + (1− β)

∥∥∥∑t

i=1
βt−iνi

∥∥∥2]
− ηt
b2t

(1− 1

2
Mηt) ‖vt+1‖2

≤ −2µηt(f(θt)− f(θ∗)) +
2(1− β)ηt

bt
U2(t) +

2(1− β)2ηt
b2t

∥∥∥∑t

i=1
βt−iνi

∥∥∥2
− ηt
b2t

(1− 1

2
Mηt) ‖vt+1‖2 .
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Rearranging terms and taking expectation to show

E[f(θt+1)]− f(θ∗) ≤ γ(E[f(θt)]− f(θ∗)) +
2(1− β)2ηt

b2t

∑t

i=1
βt−iE ‖νi‖2

+
2(1− β)ηt

bt
E[U2(t)]− ηt

b2t
(1− 1

2
Mηt)E ‖vt+1‖2

= γ(E[f(θt)]− f(θ∗)) +
2(1− β)2ηt

b2t

∑t

i=1
β2(t−i)C

2Dσ2
t

N2

+
2(1− β)ηt

bt
E[U2(t)]− ηt

b2t
(1− 1

2
Mηt)E ‖vt+1‖2

where γ = 1− η0/κ = 1− 2µηt. The recursive inequality implies

E[f(θT+1)]− f(θ∗) ≤ γT (f(θ1)− f(θ∗)) +

T∑
t=1

γT−t
2(1− β)2ηt

b2t

∑t

i=1
β2(t−i)C

2Dσ2
t

N2

+

T∑
t=1

γT−t
2(1− β)ηt

bt
E[U2(t)]−

T∑
t=1

γT−t
ηt
b2t

(1− 1

2
Mηt)E ‖vt+1‖2

=

(
γT + 2η0αR

∑T

t=1
γT−t

(1− β)2

b2t

∑t

i=1
β2(t−i)σ2

t︸ ︷︷ ︸
U3

)
(f(θ1)− f(θ∗))

+

T∑
t=1

γT−t
2(1− β)ηt

bt
E[U2(t)]−

T∑
t=1

γT−t
ηt
b2t

(1− 1

2
Mηt)E ‖vt+1‖2︸ ︷︷ ︸

U4(t)

.

where we utilize α = DC2

2MN2R
1

f(θ1)−f(θ∗) and ηt = η0
2M .

By Lemma B.5, we have
T∑
t=1

γT−t
2(1− β)ηt

bt
U2(t) ≤ η30βγ

2M(1− β)3(γ − β)2

T−1∑
i=1

γT−i ‖vi+1‖2 .

Thus, by 1
bt
≥ 1,

U4(t) ≤ η30βγ

2M(1− β)3(γ − β)2

T−1∑
i=1

γT−iE ‖vi+1‖2 −
η0

2M
(1− η0

4
)

T∑
t=1

γT−tE ‖vt+1‖2

= − η0
2M

ζ

T∑
t=1

γT−tE ‖vt+1‖2

where

ζ = 1− 1

4
η0 −

βγ

(γ − β)2(1− β)3
η20 = 1− 1

4
η0 −

β/γ

(1− β/γ)2(1− β)3
η20

When a small enough η0, e.g., Specifically,

η0 ≤
(γ − β)2(1− β)3

8βγ

[√
1 +

64βγ

(γ − β)2(1− β)3
− 1

]

=
8√

1 + 64βγ(γ − β)−2(1− β)−3 + 1

We can have ζ ≥ 0.

By the definition of U3(T, σ), we can get

E[f(θT+1)]− f(θ∗) ≤
(
γT + 2η0αRU3(T, σ)

)
(f(θ1)− f(θ∗))− η0

2M
ζ

T∑
t=1

γT−tE ‖vt+1‖2 .
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Proof of Theorem 4.5. Since σt is static, by definition of U3 in Theorem 4.4,

U3 =
∑T

t=1
γT−t

(1− β)2

(1− βt)2
∑t

i=1
β2(t−i)σ2

= σ2
∑T

t=1
γT−t

(1− β)2

(1− βt)2
∑t

i=1
β2(t−i)

= σ2
∑T

t=1
γT−t

(1− β)2

(1− βt)2
1− β2t

1− β2

= σ2
∑T

t=1
γT−t

1− β
1− βt

1 + βt

1 + β
.

Because 1−β
1−βt

1+βt

1+β ≤ 1, the U3 will be smaller than the corresponding summation in GD with
uniform schedule.

By Lemma B.7, when T > T̂ , we can rewrite U3 as

U3 ≤ σ2
∑T

t=1
γT−t

1− β
1− βt

= σ2
∑T̂

t=1
γT−t

1− β
1− βt

+ σ2
∑T

t=T̂+1
γT−t

1− β
1− βt

≤ σ2
∑T̂

t=1
γT−tγt−1 + σ2

∑T

t=T̂+1
γT−tγT̂−1

= σ2γT−1T̂ + σ2γT̂−1
∑T−T̂

t=1
γT−T̂−t

= σ2γT−1T̂ + σ2 γ
T̂−1 − γT−1

1− γ

=
T

γR
γT

(
T̂ +

γT̂−T − 1

1− γ

)
where we use σ2 = T/R in the last line. Without assuming T > T̂ , we can generally write the upper
bound as

U3 ≤
T

γR
γT

(
min{T̂ , T}+ max{γ

T̂−T − 1

1− γ
, 0}

)
.

By Theorem 4.4, because ζ ≥ 0, we have

ERUB ≤ γT + 2Rη0αU3

= γT (1 +
α′

γ
T

(
min{T̂ , T}+ max{γ

T̂−T − 1

1− γ
, 0}

)
)

where α′ = 2η0α.

First, we consider T ≤ T̂ . Use T = 1
ln(1/γ) ln

(
1 + η0

κα

)
=
⌈
O
(
κ
η0

ln
(
1 + η0

κα

))⌉
to get

ERUB ≤
(

α

α+ η0/κ

)(
1 + α′γ−1(

2

ln(1/γ)
ln
(

1 +
η0
κα

)
)2
)

≤
(

α

α+ η0/κ

)(
1 +

8κ2α

η0γ
ln2
(

1 +
η0
κα

))
≤ O

(
κ

κ+ η0/α

(
1 +

8κ2α

η0γ
ln2
(

1 +
η0
κα

)))
= O

(
κ

κ+ η0/α

(
1 +

4κ

γ

))
= O

(
κ2

κ+ η0/α

)
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where we used ln(1/γ) ≥ η0/κ and ln(1 + x) ≤
√
x for any x > 0.

Second, when T > T̂ ,

ERUB ≤ γT (1 +
α′

γ
T

(
T̂ +

γT̂−T − 1

1− γ

)
)

≤ O
(
γT +

2α′

γ
Tκ(γT̂ − γT )

)
.

Make use of T =
⌈

1
ln(1/γ) ln

(
1 + η0

κα

)⌉
to show

ERUB ≤ O
(

κ

κ+ η0/α
+

4κ2α

η0γ
(γT̂ − κ

κ+ η0/α
) ln
(

1 +
η0
κα

))
≤ O

(
κ2

κ+ η0/α
γT̂−1 ln

(
1 +

η0
κα

))
.

Proof of Theorem 4.6. By Lemma B.7, we can rewrite U3 as

U3 =
∑T

t=1
γT−t

(1− β)2

(1− βt)2
∑t

i=1
β2(t−i)σ2

i

≤
∑T̂

t=1
γT−tγ2(t−1)

∑t

i=1
β2(t−i)σ2

i +
∑T

t=T̂+1
γT−tγ2(T̂−1)

∑t

i=1
β2(t−i)σ2

i

≤ γT−T̂
∑T̂

t=1
γT̂−tγ2(t−1)

∑t

i=1
β2(t−i)σ2

i︸ ︷︷ ︸
V1

+γ2(T̂−1)
∑T

t=T̂+1
γT−t

∑t

i=1
β2(t−i)σ2

i︸ ︷︷ ︸
V2

We derive V1 and V2 separately.

For V1, we can obtain the upper bound by

V1 =
∑T̂

t=1
γT̂−tγ2(t−1)

∑t

i=1
β2(t−i)σ2

i

= γT̂−2
∑T̂

t=1
γt
∑t

i=1
β2(t−i)σ2

i

= γT̂−2
∑T̂

i=1
β−2iσ2

i

∑T̂

t=i

(
γβ2

)t
= γT̂−2

∑T̂

i=1
β−2iσ2

i

(
γβ2

)i − (γβ2
)T̂+1

1− γβ2

= γ2T̂−3
∑T̂

i=1

γi−T̂−1 − β2(T̂+1−i)

1− γβ2
σ2
i

= γ2T̂−3
∑T̂

i=1

1− (γβ2)T̂+1−i

1− γβ2
γi−T̂−1σ2

i

≤ γT̂

γ2(1− γβ2)

∑T̂

i=1
γiσ2

i

≤ γT̂

γ(γ − β2)

∑T̂

i=1
γiσ2

i

For V2, we can derive

V2 =
∑T

t=T̂+1
γT−t

∑t

i=1
β2(t−i)σ2

i

=
∑T

t=1
γT−t

∑t

i=1
β2(t−i)σ2

i −
∑T̂

t=1
γT−t

∑t

i=1
β2(t−i)σ2

i

=
∑T

t=1
γT−t

∑t

i=1
β2(t−i)σ2

i − γT−T̂
∑T̂

t=1
γT̂−t

∑t

i=1
β2(t−i)σ2

i .
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We first consider the first term∑T

t=1
γT−t

∑t

i=1
β2(t−i)σ2

i

=
∑T

i=1
σ2
i

∑T

t=i
γT−tβ2(t−i)

=
∑T

i=1
γTβ−2iσ2

i

∑T

t=i
γ−tβ2t

=
∑T

i=1
γTβ−2iσ2

i

(β2/γ)i − (β2/γ)T+1

1− (β2/γ)

=
∑T

i=1

γT+1−i − β2(T+1−i)

γ − β2
σ2
i .

Similarly, we have

γT−T̂
∑T̂

t=1
γT̂−t

∑t

i=1
β2(t−i)σ2

i

= γT−T̂
∑T̂

i=1

γT̂+1−i − β2(T̂+1−i)

γ − β2
σ2
i

=
∑T̂

i=1

γT+1−i − γT−T̂β2(T̂+1−i)

γ − β2
σ2
i .

Thus,

V2 =
∑T

i=1

γT+1−i − β2(T+1−i)

γ − β2
σ2
i −

∑T̂

i=1

γT+1−i − γT−T̂β2(T̂+1−i)

γ − β2
σ2
i

=
∑T

i=T̂+1

γT+1−i − β2(T+1−i)

γ − β2
σ2
i +

∑T̂

i=1

γT−T̂ − β2(T−T̂ )

γ − β2
β2(T̂+1−i)σ2

i

≤
∑T

i=T̂+1

γT+1−i − β2(T+1−i)

γ − β2
σ2
i +

∑T̂

i=1

γT−T̂

γ − β2
β2(T̂+1−i)σ2

i .

Substitute V1 and V2 into U3 to get

U3 ≤ γT
1

γ(γ − β2)

∑T̂

i=1
γiσ2

i + γ2T̂−2
∑T

i=T̂+1

γT+1−i − β2(T+1−i)

γ − β2
σ2
i

+
∑T̂

i=1

γT+T̂−2

γ − β2
β2(T̂+1−i)σ2

i

≤
(

γT

γ(γ − β2)

∑T̂

i=1
(γi + γT̂−1β2(T̂+1−i))σ2

i + γ2T̂−2
∑T

i=T̂+1

γT+1−i − β2(T+1−i)

γ − β2
σ2
i

)
≤
(

2γT

γ(γ − β2)

∑T̂

i=1
γiσ2

i + γ2T̂−2
∑T

i=T̂+1

γT+1−i − β2(T+1−i)

γ − β2
σ2
i

)
=
∑T

t=1
qtσ

2
t

where

qt =
2

γ(γ − β2)
γT+tIT≤T̂ + γ2(T̂−1)

γT+1−i − β2(T+1−i)

γ − β2
γT−tIT>T̂

≤ c1γT+tIT≤T̂ + γT̂−1c2γ
T−tIT>T̂

where c1 = 2
γ(γ−β2) and c2 = γ2T̂

γ−β2 .
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When T > T̂ , by Lemma 4.1, the lower bound of R
∑T
t=1 qtσ

2
t is(∑T

t=1

√
qt

)2

= γT
(∑T̂

t=1

√
c1γt +

∑T

t=T̂+1

√
γT̂−1c2γ−t

)2

= γT

(
√
c1γ

1− γT̂ /2

1−√γ
+
√
c2

1− γ(T̂−T−1)/2
√
γ − 1

)2

= γT

(
√
c1γ

1− γT̂ /2

1−√γ
+
√
c2
γ(T̂−T−1)/2 − 1

1−√γ

)2

≤ O

c2{γ(T̂−1)/2 − γT/2
1−√γ

}2


which is achieved when

σ2
t =

1

R

∑T

i=1

√
qi
qt
.

By Theorem 4.4, because ζ ≥ 0, we have

ERUB ≤ γT + 2Rη0αU3

= γT + 2η0α
∑T

t=1
Rqtσ

2
t .

And the minimum of the upper bound is

ERUBmin = γT + α′O

{γ(T̂−1)/2 − γT/2
1−√γ

}2


where α′ = 2η0c2α. Let T = 2
ln(1/γ) ln

(
1 + η0

κα

)
. Then,

ERUBmin = O

( κα

κα+ η0

)2

+
α′

(1−√γ)2

{
γ(T̂−1)/2 − (1− γ(T̂−1)/2)κα

κα+ η0

}2


≤ O

( κα

κα+ η0

)2

+
2η0c2α

(1−√γ)2

{
γ(T̂−1)/2

κα+ η0

}2


= O
(

κα

(κα+ η0)2

(
κα+

2η0c2/κ

(1−√γ)2
γ(T̂−1)

))
= O

(
κα

(κα+ η0)2
(κα+ c3η0)

)
≤ O

(
κα

κα+ η0

)
where c3 is some constant.

When T ≤ T̂ ,

U3 ≤ γT−T
∑T

t=1
γT−tγ2(t−1)

∑t

i=1
β2(t−i)σ2

i︸ ︷︷ ︸
V1

≤ γT−2

1− γβ2

∑T

i=1
γiσ2

i

with which we obtain
ERUB ≤ γT + 2Rη0αU3

≤ γT + 2η0α
γ−2

1− γβ2

∑T

t=1
Rqtσ

2
t .
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where we let qt = γT+t. By Lemma 4.1,

∑T

i=1
Rqtσ

2
i ≥

(∑T

t=1

√
qt

)2

= γT
(∑T

t=1
γt/2

)2

= γT+1

(
1− γT/2

1−√γ

)2

.

Thus,

ERUBmin ≤ γT + 2η0α
γT−1

1− γβ2

(
1− γT/2

1−√γ

)2

= γT

(
1 + 2η0γc1α

(
1− γT/2

1−√γ

)2
)

Let T =
⌈

2
ln(1/γ) ln

(
1 + η0

κα

)⌉
. Then,

ERUBmin ≤
(

κα

κα+ η0

)2(
1 +

2η0γc1α

(1−√γ)2
(

1

κα+ 1
)2
)

≤
(

κα

κα+ η0

)2(
1 +O(

1

κα+ 1
)

)
≤ O

(
κα

κα+ η0

)2

.

In summary,

ERUBmin ≤ O
(

κα

κα+ η0

(
IT≤T̂

κα

κα+ η0
+ IT>T̂

))

C.3 STOCHASTIC GRADIENT DESCENTS

Proof of Theorem 4.7. Let ∇̃t be the stochastic gradient of the step t. By the smoothness, we have

f(θt+1)− f(θt) ≤ −ηt∇>t (∇̃t +Gσtνt/n) +
1

2
Mη2t

∥∥∥∇̃t +Gσtνt/n
∥∥∥2

= −ηt∇>t (∇t + σgξt/n+Gσtνt/n) +
1

2
Mη2t ‖∇t + σgξt/n+Gσtνt/n‖2 .

Note that E(σgξt/n+Gσtνt/n) = 0 and E(σgξt/n+Gσtνt/n)2 = σ2
g + (Gσt/n)2. Without loss

of generality, we can write σgξt + Gσtνt as σ̃tζt where σ̃t ,
√
σ2
g + (Gσt)2 and ζt is a random

vector with Eζt = 0 and E ‖ζt‖2 ≤ D. Therefore,

f(θt+1)− f(θt) ≤ −ηt∇>t (∇t + σ̃tζt/n) +
1

2
Mη2t ‖∇t + σ̃tζt/n‖2

= −ηt(1−
1

2
Mηt) ‖∇t‖2 − (1−Mηt)ηt∇>t σ̃tζt/n+

1

2
Mη2t ‖σ̃tζt/n‖

2

≤ −2µηt(1−
1

2
Mηt)(f(θt)− f(θ∗))− (1−Mηt)ηt∇>t σ̃tζt/n

+
1

2
Mη2t ‖σ̃tζt/n‖

2
.
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Then following the same proof of Theorem 4.1, we can get

E[f(θT+1)]− f(θ∗) ≤ γT (E[f(θ1)]− f(θ∗)) +R′
T∑
t=1

γT−tα
1

G2
σ̃2
t (E[f(θ1)]− f(θ∗))

=

[
γT +R′

T∑
t=1

γT−tα(
1

G2
σ2
g + σ2

t )

]
(E[f(θ1)]− f(θ∗))

=

[
γT +R′α

1

G2
σ2
g

1− γT

1− γ
+R′

T∑
t=1

γT−tασ2
t

]
(E[f(θ1)]− f(θ∗))

≤

[
γT +

R′κα

G2
σ2
g +R′

T∑
t=1

γT−tασ2
t

]
(E[f(θ1)]− f(θ∗)).

where R′κα
G2 = D

2µ(f(θ1)−f(θ∗))
1
n2 = D

2µ(f(θ1)−f(θ∗)) min{ 1
N2R , 1} ≤

D
2µ(f(θ1)−f(θ∗))

1
N2R .

Proof of Theorem 4.8. Without loss of generality, we can write σgξt + Gσtνt as σ̃tζt where σ̃t ,√
σ2
g + (Gσt)2 and ζt is a random vector with Eζt = 0 and E ‖ζt‖2 ≤ D. Therefore, we replace νt

by ζt and σ2
t by σ̃2

t /G
2 = σ2

g/G
2 + σ2

t . Now, we only need to update U3(σ, T ) as

Ũ3 =
1

G2

∑T

t=1
γT−t

(1− β)2

(1− βt)2
∑t

i=1
β2(t−i)σ̃2

i

=
∑T

t=1
γT−t

(1− β)2

(1− βt)2
∑t

i=1
β2(t−i)(

1

G2
σ2
g + σ2

t )

= Ug3 + U3

where we define

Ug3 ,
1

G2
σ2
g

∑T

t=1
γT−t

(1− β)2

(1− βt)2
∑t

i=1
β2(t−i).

We can upper bound Ug3 by

Ug3 =
1

G2
σ2
g

∑T

t=1
γT−t

(1− β)2

(1− βt)2
1− β2t

1− β2

=
1

G2
σ2
g

∑T

t=1
γT−t

1− β
1− βt

1 + βt

1 + β

≤ 1

G2
σ2
g

∑T

t=1
γT−t

≤ 1

G2
σ2
g

1

1− γ

=
1

G2
κσ2

g .

Combine with the factors of U3 in the PGD bounds:

αR′Ug3 ≤
αR′

G2
κσ2

g =
αR′

G2
κσ2

g =
Dσ2

g

2µn2(f(θ1)− f(θ∗))
≤

Dσ2
g

2µN2R(f(θ1)− f(θ∗))
.

D EXPERIMENTS

Dataset. (1) Synthetic data. We generate a 100-dimensional dataset including linearly separable
data points using sckit-learn package. The data points are distributed in two points in the
hyper-cubic with Euclidean distance of 10. In total, 1000 samples are generated for training with the
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logistic loss. (2) Real data. We create a subset of the MNIST dataset (Lecun et al., 1998) including
1000 handwritten images of digit 3 and 5 (MNIST35). Compared to the original dataset (70, 000
samples), the small set will be more vulnerable to attack and the private learning will require larger
noise (see the 1/N factor in Eq. (1)). Following the preprocessing in (Abadi et al., 2016), we project
the vectorized images into a 60-dimensional subspace extracted by PCA.

Setup. The samples are first normalized so that
∑N
n=1 xn = 0 and the standard deviation is 1. Then

the sample norms are scaled such that maxn ‖xn‖ = 10 (i.e., data scales). We fix the learning rate
to 0.1 based on the corresponding experiments of non-private training (same setting without noise).
The total privacy budget is 0.1963-zCDP (equal to (4, 10−8)-DP) which implies R = 0.3927. To
control the sensitivity of the gradients, we clip gradients by a clipping norm fixed at 4. Formally, we
scale down the sample gradients to length 4 if its norm is larger than 4. Because the schedule highly
depends on the iteration number T , we grid search the best T for compared methods. Therefore, we
ignore the privacy cost of such tuning in our experiments which protocol is also used in previous
work (Abadi et al., 2016; Wu et al., 2017). All the experiments are repeated 100 times and metrics
are averaged afterwards.
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Figure 3: Experiments with Logistic loss on synthetic data and squared, Logistic loss and DNN on
MNIST35 by rows. (left) The final loss is fitted by a quadratic function formulated as c2σ2

t + c0.
(middle) The influence values are estimated using the Hessian eigenvalues (squared loss) and by
retraining (logistic loss). The larger is the data scale, the larger the influence variance. (right) The
relative final training losses versus the data scale where uniform schedule (uni), dynamic schedule
(dyn) and exponential-decaying schedule (exp) are compared. The relative loss is computed w.r.t. the
losses of the uniform schedule. For example, if the dynamic loss is e1 and the uniform loss is e0, then
the relative loss is (e1 − e0)/e0. The dashed lines are with the right axis to present influence-related
term.
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Estimate of influences by retraining. In the left pane of Fig. 3, we estimate the influence of σt by
retraining multiple times. When keeping σi for i 6= t fixed (as the fine-tuend uniform schedule σ),
the value of σt is varied from 20 to 200. Then we fit a quadratic function of σt where the coefficient
is treated as estimation of qt. Repeating the estimation for all t in range 1 to 100 could provide us the
trend of influence in the middle pane.

Results. In the left pane of Fig. 3, the squared final loss (i.e., f(θT+1)) is approximately a
quadratic function of the σt with small relative variance (i.e., the variance divided by the mean
value, 0.14, 0.032, 0.016 for t = 10, 60, 90, respectively). When σt increases, the frequency of
clipping increases as well which leads to more variance in the final losses. We use the least square
method to fit the relation shown as the solid lines. The final logistic loss is more sensitive to the noise
because of the additional uncertainty from the changing Hessian. We still fit a quadratic function
on σt. It turns out the relative variances of the quadratic coefficient (approximately the influence) is
small which are 0.025, 0.024, 0.027 for t = 10, 60, 90, respectively.

The middle pane shows the relationship between the estimated qt and learning steps. The qt of
squared loss is computed by analytical solution using the Hessian eigen values. The qt of logistic
loss is computed by retraining based on uniform schedule. Both loss functions show an increased
influence as learning continues, which indicates that the dynamic schedule should be decreasing
accordingly. The squared loss has a rather steep trend while the logistic has a relative flatten one.
The reason is that the logistic loss has a larger variance in the gradient norm and therefore clipping
happens more frequently (approximately more than 80% gradients are clipped). As a result, the
variance of influence will be relative small for logistic losses. Moreover, we vary the data scale (scale
all samples uniformly such that all sample norms are less than a specific value), changing the variance
of influence, as seen in the figures.

The last pane compares uniform, dynamic and exponential decay schedules Yu et al. (2019) using
final losses relative to the uniform schedule. We set the exponential decay schedule to approximate
the dynamic schedule by fitting σ̂t = σ0 exp(−kt) using the least squares method. The final losses
are picked by grid searching the best T ∈ [1, 100]. We see that the advantage of the dynamic
schedule over the uniform one increases when data scales less than 15. But we also notice some loss
gaps decrease, suggesting that the data scale is not the inherent reason for the dynamic advantage.
According to Lemma 4.1, the advantage should be proportional to T 2 Var(qt) which is shown to be
decreasing when the data scale is larger than 15. When the data scale continues to increase, gradient
clipping will change the curvature of the loss function. Therefore, a increasing Var(Tqt) is witnessed.
Meanwhile, the loss gap decreases.

In the last row of Fig. 3, the DNN is experimented with the same setting. Though the influence
increases by t, the variance is small and less dependent on the data scale in comparison to shallow
models. Though the dynamic schedule estimated by retraining influences does not performs stably,
the exp method still decreasingly depends on the variance of influence as expectation.
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