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Abstract

Lipschitz continuity characterizes the worst-case sensitivity of neural networks to small
input perturbations; yet its dynamics (i.e. temporal evolution) during training remains
under-explored. We present a rigorous mathematical framework to model the temporal evo-
lution of Lipschitz continuity during training with stochastic gradient descent (SGD). This
framework leverages a system of stochastic differential equations (SDEs) to capture both
deterministic force (i.e. gradient expectations) and stochastic force (i.e. gradient noise).
Our theoretical analysis identifies three principal factors driving the evolution: (i) the pro-
jection of gradient flows, induced by the optimization dynamics, onto the operator-norm
Jacobian of parameter matrices; (ii) the projection of gradient noise, arising from the ran-
domness in mini-batch sampling, onto the operator-norm Jacobian; and (iii) the projection
of the gradient noise onto the operator-norm Hessian of parameter matrices. Furthermore,
our theoretical framework sheds light on such as how noisy supervision, parameter initial-
ization, batch size, and mini-batch sampling trajectories, among other factors, shape the
evolution of the Lipschitz continuity of neural networks. Our experimental results demon-
strate strong agreement between the theoretical implications and the observed behaviors.
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Figure 1: Optimization-induced dynamics. During the training, the network parame-
ters, starting from 6y, moves towards a solution 8 4 or @5 as shown in the loss landscape @,
driven by optimization process. Accordingly, this dynamics, driven by the optimization, in-
duces the evolution of the network Lipschitz continuity, starting from Ky to K4 or Kp, as
shown in the Lipschitz landscape @ The trajectories in the loss landscape @ and the
Lipschitz landscape @ are visualized on the same parameter space «OfB. The a and 3 are
two randomly-chosen orthogonal directions in the parameter space.

1 Introduction

Recent advancements in deep learning have led to models that excel across a broad range
of domains, from vision to language. Their vulnerability to input perturbations remains
a significant challenge for establishing trustworthy learning systems (Szegedy et al., 2014
(Goodfellow et al,[2014; Madry et al,[2017). Lipschitz continuity (Definition [1)) measures the
worst-case sensitivity of the output of a network to small input perturbations. Furthermore,
several fundamental properties, including robustness to perturbation (Luo et al.,2024) and
generalization capability, are closely linked to network Lipschitz continuity (Shalev-Shwartz|
land Ben-David|, 2014} [Bartlett et al), 2017, [Yin et al., 2019; [Zhang et all, 2021)). Networks
with lower Lipschitz constants tend to be more resilient to input perturbations (e.g. adver-
sarial perturbations) and exhibit improved generalization capabilities (Zhang et all, [2022}
[Fazlyab et al.l 2023; Khromov and Singh, 2024).

Definition 1 (Globally K-Lipschitz Continuous (Tao, 2006} Yosidal, [2012)) Let f :
X — Y be a function, where X C R and Y C R®. The function f is said to be globally
K-Lipschitz continuous if there exists a constant K > 0 such that:

1f(w) = F(v)lla < Klfu = v[l2, Yu,veX (1)

upper-bounds the function f.

Gradient-based optimization methods, such as stochastic gradient descent (SGD) and its
variants (Robbins and Monro, (1951} |Hinton et al., [2012; Kingma and Ba, 2017), are funda-
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(a) Numerical validation on CIFAR-10

(b) Numerical validation on CIFAR-~100

Figure 2: Numerical validation of our mathematical framework. The theoretical Lip-
schitz constants computed using our framework closely agree with empirical observations. To
validate our framework, we train a five-layer ConvNet on CIFAR-10 and CIFAR-100 across
multiple configurations for 30, 000 steps (200 epochs). We collect the instance-wise gradients
over time for all layers. Using Theorem |15 Theorem |16, Theorem (17| and Theorem |18, we
are able to theoretically compute the predicted Lipschitz continuity. The inset plots zoom
in on the first 50 steps, and demonstrate that the trends of Lipschitz constants do
not necessarily grow monotonically. Results with more regularization configurations
on CIFAR-10 are provided in Appendix [C|

mental to training deep learning models by iteratively minimizing the loss function through
parameter updates with gradients. The optimization dynamics in a neural network induce
the corresponding dynamics of its Lipschitz continuity, which we refer to as optimization-
induced dynamics. As illustrated in Figure [1, every optimization trajectory in the loss
landscape induces a corresponding trajectory in the Lipschitz landscape. Although the dy-
namics (i.e. temporal evolution) of SGD has been extensively explored in the literature,
including topics such as: (i) continuous-time/SDE modeling (Li et al., 2019; Malladi et al.,
2022; [Welling and Teh, [2011}; Zhu et al| 2018); (ii) edge-of-stability and implicit bias (Li
et al., 2021; Damian et al., 2022} |Xing et al., [2018; Jastrzebski et al., 2017)); (iii) convergence
analysis (Li and Yuan, 2017); (iv) sharp versus flat minima and generalization (Keskar et al.),
2016; |Chaudhari et al.l 2019; Zhang et al., [2021]), a comprehensive understanding of how
the Lipschitz constant evolves over time during training remains lacking.

This gap motivates us to establish a rigorous theoretical framework for modeling the dy-
namics of Lipschitz continuity, induced by optimization dynamics. Equipped with the toolkit
from stochastic differential equations (SDEs) (Applebaum), 2009; |Karatzas and Shreve, 2012}
Oksendal, |2013) and operator perturbation theory (Kato, |2012, 2013} Luo et al.l 2025)), we
can rigorously analyze the evolution of the matrix operator norm (i.e. matrix Lipschitz con-
stant), induced by the optimization process, within an SDE framework. Our framework
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can capture both the deterministic and stochastic forces driving the temporal evolution of
Lipschitz constants. The effectiveness of our mathematical framework is empirically verified
in Figure 2, where the theoretical implications derived using our framework (Theorem |17
and Theorem [18)) are closely aligned with the observations. Furthermore, our theoretical
framework sheds light on questions such as how batch size, parameter initialization, mini-
batch sampling trajectories, label noise, etc., shape the Lipschitz continuity evolution during
optimization.

1.1 Contributions

We highlight the key contributions below:

1. Theoretical Framework (Section 2:6). We present a rigorous mathematical frame-
work that models the dynamics of Lipschitz continuity, leveraging an SDE system
driven by Wiener processes. This SDE-based framework captures both determinis-
tic and stochastic forces, providing a comprehensive understanding of the dynamics
of Lipschitz continuity. To ensure practical applicability, we also develop a low-rank
approximation method for modeling gradient noise in Section 4} enabling efficient
computation of these dynamics.

2. Principal Driving Forces (Section 6.2:6.4). Our theoretical analysis (Theorem |17))
identifies three principal forces governing the dynamics: (i) the projection of gradient
flows, induced by the optimization dynamics, onto the operator-norm Jacobian of
parameter matrices; (ii) the projection of gradient noise, arising from the randomness
in mini-batch sampling, onto the operator-norm Jacobian; and (iii) the projection
of the gradient noise onto the operator-norm Hessian of parameter matrices. In the
evolution of Lipschitz continuity, forces (i) and (iii) act as deterministic forces, while
force (ii) modulates the stochasticity of the dynamics.

3. Framework Validation and Theoretical Implications (Section |7-8). Firstly,
we validate our theoretical framework under multiple configurations, including batch
normalization, dropout, weight decay, mizup, auto-augment, label smoothing and ad-
versarial training. Furthermore, we test the theoretical implications derived from our
framework, as detailed in Section [8], including parameter initialization, noisy gradient
regularization, uniform label corruption, batch size, and mini-batch sampling trajecto-
ries shape the evolution of Lipschitz continuity. The results show a strong agreement
between the theoretical implications and observed behaviors.

2 Preliminaries

We define the notation used in our theoretical analysis. Let f : R — R be a function.
For a time-dependent function g, we use g to denote its value at discrete time step k, and
g(t) for its value at continuous time t. For a random variable £, e.g., representing data
sampling, gradient noise, Wiener process, and filtration (Oksendal, 2013), we consistently
use subscripts, such as & or &, for brevity. A function written as ¢(¥) indicates that ¢ is the
£-th layer of a neural network. We use I,, to denote a n x n identity matrix; 1, to denote
an n-dimensional all-ones vector.
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Mini-Batch Sampling. Let D := {(z;, %)}, € X x ) denote a dataset consisting of
N samples, where (z;,y;) represents the i-th data point and its corresponding target. Let
& = {(xtj,ytj)}j]\/il C X x Y denote a mini-batch sampled from D at time point ¢, where
M (M < N) is the size of the mini-batch. The sequence {&;}!_, up to time ¢ is referred
to as a sampling trajectory from D. The o-algebra F; = 0{50,51, e ,{t}, defined on mini-
batch sampling, is referred to as the filtration generated by the sampling trajectory {&}!_,
(Oksendal, |2013). In stochastic analysis, F; represents that the information accumulates up
to time ¢ (i.e. history). Any history up to a time point ¢; contains the history up to a time
point ¢; for all ¢, >, i.e. Fy, C Fy,.

Feed-Forward Network. Let () € R™*" denote the parameter matrix of the /-th
layer of an L-layer feed-forward network. Let 6 := {0(1),0(2), e ,O(L)} € © denote the
collection of all L parameter matrices. Let fg : R¢ — RC represent a feed-forward network
parameterized by 6. Let Vec(O(e)) € R™™ denote the vectorized 8 with column-major
convention (Horn and Johnson, 2012).

Remark 2 The explicit use of the vec(-) operator is essential for rigorous spectral analysis
of parameter matrices beyond the usual context of parameter updates in SGD optimization.

Instance and Population Loss. Let /£(6;2,y) : © x X x ) — R denote the instance loss
for fg. Let L(6;&) denote the population loss over a mini-batch &:

1
L7(0:8) = 7 > L0 miyi).
i,y €8

Let L7(0) denote the population loss over the dataset D:
L(0) = E(y, y)~p [Lr(0; 75, y:)] -
Unbiased Gradient Estimator. For brevity, we use:
VOLHO) =V Ls(0), and VL) :=VeLls(0),

to denote the gradient with respect to the f-th layer parameter matrix, and the gradient
with respect to the collective parameter matrices, respectively. Note that VL;(0;€) is an
unbiased gradient estimator for V.L;():

E[VL(6:6)] = E[VLs(6)] = E[VL4(8: 2.y

3 Vectorized SDE for Continuous-Time SGD

SGD and its variants (e.g. Adam) (Robbins and Monro, (1951} Hinton et al., [2012; |Kingma,
and Bal [2017)) serve as cornerstone optimization algorithms widely used for training deep
neural networks. Formally, at a time point k, the SGD-based update regarding the parameter
6\ with a mini-batch & can be formulated by:

9221 = Bﬁf) — VL (O &), (2)
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where 7 is the learning rate. Some studies (Mandt et al 2015; Su et al., [2016; [Stephan
et al., [2017) view SGD as a deterministic process with a deterministic ordinary differential
equation (ODE) as:

de¥ (¢)
dt

=-vOL.(0t)),

where t =~ kn and dt =~ n — 0.

However, the inherent stochasticity in the population gradients V(Z)Ef(ek;fk), arising
from the randommess in mini-batch sampling &, is not accounted for by ODE methods.
The layer-wise batch gradient noise (i.e. batch gradient fluctuations) (Welling and Teh),
2011; [Keskar et al., 2016; |(Chaudhari et al.| [2019; Zhang et al, [2021)), defined as a positive
semi-definite (PSD) matrix:

1
Z,(f) := Var {vec (v“)[,f(ak;gk))} = MVar {vec (V(Z)Ef(Ok;x,y)ﬂ € Remexmene - (3)
induced by mini-batch sampling, can influence the optimization trajectory. It remains
under-explored in the literature how such stochasticity affects the evolution of
Lipschitz continuity of neural networks over time.

Assumption 3 (Collective Gradient Noise Structure Assumption) For tractability,
we assume that gradient-noise covariances between different layers are negligible. Equiva-
lently, > has block-diagonal structure:

Et = diag(zz(fl)a 2152)7 Tty EﬁL))a

so that we model batch gradient noise on a per-layer basis only. This layer-wise approrima-
tion is common in large-scale SDE analyses, e.g. (Grosse and Martens, |2016; | Malladi et al.,
2022; |Simsekli et all, |2019).

To address the limitations of ODE methods, SDE methods (Li and Yuan, |2017; Jas-
trzebski et all 2017; Zhu et al., [2018; |Chaudhari et al., 2019) extend ODE methods by
accounting for gradient noise. SDE-based methods capture the stochasticity inherent in
mini-batch updates and its effects on the optimization trajectory. The multivariate Central
Limit Theorem (CLT) states that the population gradient estimator:

1
VOLH Ok &) = i Z VOl (O 21, 1),
(ii,yi)eﬁk
distributionally converges to a normal distribution in R™¢™¢:
vee (VOL(01:6)) S N (vee(VOL(01)), 5(") |
as M — oo, where the samples (z;,y;) are i.i.d. Therefore, SGD can be modeled as an It6

process, which provides a more accurate representation of the dynamics by considering the
continuous-time SDEs (Mandt et al., 2015} |Stephan et al., 2017).
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Definition 4 (Vectorized SDE for Continuous-Time SGD) Under Assumption|3, and
the assumption that V(Z)Cf(Ot) and 2@ satisfy global Lipschitz and linear-growth conditions

(Oksendal, |2013; |Karatzas and Shreve, |2012), the SGD update for the parameter ng) with
a mini-batch & at time t can be formulated as a matriz-valued It6’s SDE by:

dvec (9@ (t)> = —vec [v@mf(e(t))} dt + /7 [zgﬂ : aBY, (4)

1/2
where the batch gradient noise [29} € Rmuenexmuene gatisfies:

1 177
(560 (5] =580t w as? 0 Dt

represents the infinitesimal increment of a Wiener process (standard Brownian motion)
adapted to the filtration F; in R™"e,

4 Estimating batch gradient noise

The covariance of gradient noise structure reflects how neurons interact with each other.
Capturing the full structure of gradient noise for numerically analyzing the spectra of net-
work parameters (Stewart) 1990; [Horn and Johnson, [2012; Katol [2013) is shaped by the
stochasticity arising from mini batch sampling. However, modeling the full gradient noise
covariance is computationally prohibitive: accurately estimating batch gradient noise re-
quires sampling all gradient trajectories over the entire dataset, which leads to intractable
storage and computational costs (Mandt et al., |2015; |Li et al., 2019; Chaudhari and Soatto),
2018)).

SDE-based models often have strong assumptions regarding the structure of gradient
noise. For example, in the literature (Welling and Teh| 2011; |Stephan et al. 2017 |Jas-
trzebski et all [2017), the gradient noise is reduced into a constant scalar. Under this
assumption, the SDE reduces to an Ornstein-Uhlenbeck process (Oksendal, [2013; Karatzas
and Shreve, 2012)). However, this simplification overlooks the covariance structures inherent
in mini-batch sampling. To address this, some literature assumes a diagonal structure for
the gradient noise (Jastrzebski et al., 2018} Simsekli et al., [2020). While this approxima-
tion captures varying variances across parameters, it neglects potential correlations between
them.

In practice, Mandt et al.] compute the exact 2 x 2 covariance matrix for a low-dimensional
logistic-regression problem; |Zhu et al.| estimate the full noise covariance — solely to extract
its leading eigenpairs — in an MLP with several hundred parameters (Zhu et al.| |2018).
Nonetheless, these methods do not scale to modern deep networks, where the number of
parameters can be on the order of millions. In the remaining part of this section, we aim to
develop experiment-friendly method for tracking full structure of gradient noise.
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4.1 Unbiased batch gradient noise estimator

To capture the complex interactions among neurons, we model the complete structure of

the gradient noise. However, by Equation (3, the exact Zgz) is given by at time point ¢:

Eg) := Var :vec (v(’%f(at; 59)} (5)
= % ar [Vec (V(z)ff(ek;x,y)ﬂ (6)

- %E _{vec (V(e)ﬁf(ek;% y)) - E[vec (V(f)éf(ek; O y))} }

{Vec (V(f)ﬁf(ek;m,y)) — E[VGC (V(e)ﬁf(ek;x, y))} }T] , (7)

which suggests that the ZEZ) requires the evaluation of
vec (va(ek; x, y)) and E [vec (V(Wf(ak; x, y))} (8)

over the entire dataset for each time point t. Therefore, the computational cost of Zg)
poses a challenge to the applicability of our framework. This computation remains highly
demanding, even when using state-of-the-art GPUs. To overcome this, we develop a low-rank
approximation method. We now seek to estimate 25@) without bias.

Proposition 5 (Unbiased Batch Gradient Noise Estimator) Starting from Equation|3,
the batch gradient noise at time t is estimated by:

w 1 1 0 . , .
=0~ e 2 {vee [VOus(0(t); 21, ) — VL5 (0(1): )] |
Tty Ye; €& ~-
@HT
N
{vee |[VOLHO(1)s 0 30) = VO L5 (00 6] }
al¥
4 T ¢
il 2
= i # Qt2 # QtQ :i(ﬂ(f))’l'ﬂ(f) (9)
M| VvM-1| : M—1| : MU
o NG
2% tar

where ﬂg) 1s the point-wise gradient fluctuation:

()T = vee |VOL(O(t); w1,y 01,) — VOL(O(1): &)] € R,
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and ng) 1s batch-wise gradient fluctuation:

.
) vee [VOUH(0(1); 2 n) = VOLs(0(0):6)]
Qo _ L (@ T | vee [V (00w pr) - VOLO(): )
' M-1| : M—1 :
¢ T
ngz& vec [V(Wf(g(t)% xtM7th) - V(Z)Ef(e(t)Q &)]

4.2 Estimating variance and covariance

To study the contributions of variances (diagonal elements) and covariances (off-diagonal
elements) of gradient noise to the dynamics, we decompose the gradient noise into variance
and covariance components using Proposition (6.

Proposition 6 (Diagonal and Off-Diagonal Elements of Batch Gradient Noise) The

diagonal variance 2@ lvar and the off-diagonal covariance 2?) lcov are computed, respec-
tively, by:

(

1 T
2t ) ’Var% M (Qg) © Qg)) 1M’ and 254) |COV% ng) - ng) |Var7

where © denotes Hadamard product. Note that Zy) lcov s not necessarily a PSD matrix.

Proof Starting from Equation |9, this can be obtained by:

(E’g) yvar)i,i - <2§€)>m ~ % <(Q§£))TQ£€)>' - J\Zi <(QEE))T)Z}J' Qg?

0,8

L x5 0@00® — LS (00 - o 1 © ~ 0O\
=y alall - =3 (e oo ).,=M<(ﬂt o0) 1M> .
j=1

]:1 J,t )

4.3 Computing square root

Direct computation of (Zg))l/2 by
1
1 2
(zgf))% ~ |:M(Q§5))TQ§£):| c ngnng[ng

is computationally infeasible for large parameter matrices. Note that

1
Mﬂgf)(ﬂgz)ﬂ e R M < myny,
has low-rank structure and the same spectrum of Eg). We seek an efficient method by

exploiting the low-rank SVD in L0 (Q))T.
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Proposition 7 (Square Root Approximation of Covariance Matrix) Suppose @\ /vM
admits SVD:

o

Y4 ATNES l
— U (A (viINT,

2

where Ag) and Uge) are the eigenvalues and eigenvectors of ﬁﬂg)(ﬂge))—r. Then:

¢ ¢ ¢ 017
()T o) u

VM VM

Proof Starting from Equation |9, this can be obtained by:

N[

()3 ~ (AL~

1 ¢ 013
(9§4>)Tﬂ§6>]2= @) o oy 2 ]

(ONT 25
\/M Ut (Ut )

v M
¢ ¢ ¢ ¢
@) o ADV-1AOYAD Lo)Tal
(A7) 2(A7) (A7) 2
M VM

1
2

Set:

and note:

is orthonormal.
Hence:

1 _1 _1
(=2 ~ | (A2 (A (AL) 2

10
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5 Temporal evolution of Lipschitz upper bound

Suppose that an L-layer feed-forward neural network f is the composition of L layers, each
comprising a linear unit with an activation unit, expressed as:

f= (,O(L)o ¢<L>) oo (p<2>o ¢><2>) ° <p<1)o ¢<1))

where (p(e) o ¢(g)) represents the /-th layer consisting of the linear unit w(E)(,) and the acti-
vation unit p(e)(~). Let the Lipschitz constants of p® and ¢ be A® and K® | respectively.
The upper bound of the network Lipschitz constant of f then is the product of A® and
KW across all layers, as shown in Proposition |8 (Miyato et al., 2018} [Fazlyab et al.l 2019;
Virmaux and Scaman, 2018; |Gouk et al 2021; Virmaux and Scaman| 2018]).

Proposition 8 (Lipschitz Continuity Bound in Feed-Forward Network) Let K(t) be
the Lipschitz constant of a feed-forward neural network f without skip connections. The net-
work Lipschitz constant K (t) is upper-bounded by:

K(t) = sup M < K(t) := ﬁA(E) . ﬁK(@(t),

vugy  fu—vl I=1 =1

This upper bound is useful in robust certification and theoretical analysis of deep models with
complez topologies (Fazlyab et al., |2019; \Gouk et al., |2021; |\ Virmaux and Scaman, |2018).
We refer to K(t) as Lipschitz continuity or Lipschitz constant for brevity.

Since most activation functions, such as ReLU, Leaky ReLU, Tanh, Sigmoid, etc, have 1-
Lipschitz continuity (Virmaux and Scaman), 2018), we set A) = 1 for brevity in theoretical
analysis. Note that Proposition |§ does not take into account skip connections.

Proposition 9 (Operator Norm of Linear Unit) Suppose the ¢¥)(t) is a linear unit
with matrix multiplication or convolution:

oW (t)(2) = 6 (1)(2) +b(1), (11)

where 0O (t) and b (t) are the (-th layer parameter matriz and bias, respectively. Then,
the operator norm of ¢ (t) (i.e. spectral norm) admits:

169 )lop = 169 1)[lop = o\ (8),

where O';Z) (t) is the largest singular value of 0 (t) (Miyato et all, |2018; |Sedghi et all,|2018;
Yoshida and Miyatol, |2017).

Definition 10 (Stochastic Dynamical System of Lipschitz Continuity Bound) Collect:
1. Definition |4: Vectorized SDE for Continuous-Time SGD;
2. Proposition |8: Lipschitz Continuity Bound in Feed-Forward Network;

3. Proposition|9: Operator Norm of Linear Unit,

11
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so that the dynamics of Lipschitz continuity bound for a feed-forward neural network is
characterized by a system of SDEs:

/

dvec(89)(t)) = —vec [v%f(a(t))] dt + /1 [zgﬂé aBY
KO(t) = 169(t)]op

L
Z(t) =Y log K(t)
=1

K(t) = e?®

adapted to the filtration F;, where: (i) KO (t) governs the (-th layer dynamics of Lips-
chitz continuity; (i) K(t) governs the network dynamics of Lipschitz continuity bound; and
(iii) Z(t) is the logarithmic Lipschitz constant to facilitate theoretical deductions. This
stochastic dynamical system characterizes the dynamics of the Lipschitz conti-
nuity bound induced by the optimization dynamics.

6 Theoretical analysis

Note that the equation system in Definition [10]is driven by a Wiener process, which consists
of stochastic differential equations (SDEs), and is adapted to the filtration F;, with time-
dependent parameters 6()(t). We leverage Ité’s Lemma (Itol [1951; |(Oksendal, 2013) to
analyze this SDE system. We aim to analyze the dynamics of Z(¢) and K (t). The sketch
for theoretical analysis is:

1. Layer-Specific Dynamics (Section 6.2). We derive the SDE for th(Z) by applying
Ito’s Lemma to the process dvec [9(5) (t)] This step establishes a direct connection
between parameter-level updates driven by the optimization process and the layer-wise
operator norm.

2. Network-Specific Dynamics (Section 6.3). Building on the layer-specific analysis,
we derive the network-level SDE for dZ(t) by applying It6’s Lemma to the processes
dK®(t) across L layers. The process Z(t) captures the logarithmic, network-level
dynamics of Lipschitz continuity. Finally, we obtain the dynamics of K(t) from dZ(t)
via [t6 calculus.

3. Statistical Characterization (Section 6.4). We analyze the statistical properties
of Z(t) and K (t), including their expectations and variances. These results provide
insight into the asymptotic behavior of the system near convergence.

6.1 First- and second-order operator-norm derivatives

Stochastic spectral analysis regarding the parameter matrices requires the first-order and
second-order derivatives of the largest singular values with respect to parameter matrices.
The first-order operator-norm derivative is well-known in the literature (Luo et al.| 2025}
Kato, 2013; Horn and Johnson, 2012; Magnus and Neudecker, 2019)) (Lemma [12). The

12
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Layer noise-modulation intensit Layer noise-curvature entro roduction
Layer optimization-induced drift xloy 3 Y 4 x10-1 PYP
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- — linear_2
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o

0.8-
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t t t t

(a) Layer-specific dynamics

(b) Network-specific dynamics (differential)

(c¢) Network-specific dynamics (integral)

Figure 3: Dynamics near convergence. We profile both layer-specific and network-specific
dynamics over 344,370 steps (1766 epochs) on CIFAR-10. At the end of training, the
final training loss and test loss are 9.75 x 1073 and 2.22, respectively; the final training
accuracy and test accuracy are 0.99996 and 0.68540, respectively. To investigate how the
variances (i.e. diagonal elements) and covariances (i.e. off-diagonal elements) of the gradient
noise affect the dynamics, the dynamics are computed with respect to variances (3yar)
and covariances (X¢oy) respectively, using Theorem The results indicate that: (i) the
optimization-trajectory drift plays the primary role in shaping Lipschitz continuity over
time; (ii) the covariances dominate the noise contributions; and (iii) the noise-curvature
entropy production kz(t) remains significant near convergence, leading to a gradual and
steady increase in Lipschitz continuity. The inset plot zooms in on 100 steps at ¢ = 330, 000.
The moving averages are computed over a window of 500 steps.

second-order operator-norm derivative can be derived through perturbation theory
2013} [Luo et all, [2025). Lemma [13]is deducted in the literature (Luo et al) 2025)) based on
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perturbation theory for linear operators (Katol, 2012, |2013). Let 0(5)(t) admit a SVD:

T

0" =3 o Ou 07, o) > ol (1) > - > 00(t), v = rank(6O(1)),
=1

under the Assumption [11

Assumption 11 (Spectral Differentiability) We assume the singular values of parame-
ter matrices are simple: al@) #* a](.e), for alli # j. This assumption guarantees 01(6), ugz)7 UEK) €
C™ (i.e. differentiable at arbitrary integer order) (Kato, 2015, 2012).

Lemma 12 (Operator-Norm Jacobian) The operator-norm Jacobian of |0 (t)|op with

respect to vec [0(5) (t)} is given by:

¢
JO () = 916 (%) lop

() (0) men
op (1) = = vy () @uy (1) € R™™,
. 0 vec {0(5) (t)} ' '

where @ denotes Kronecker product (i.e. tensor product) (Luo et al.,|2025;|Kato, 2015; |Horn
and Johnson, |2012; Magnus and Neudecker|, |2019).

Lemma 13 (Operator-Norm Hessian (Luo et al., 2025)) The operator-norm Hessian
of 109 (t)||op with respect to vec [9(6) (t)} is given by:

P BICSIGIE maneXmen,
Holt) = dvee [0(1)] ]Vecl Haawg(iy)‘ p] = HY)(t) + HR (1) + HE (1) € Rmmomen,
vec op
where:

el (t) == v () @ u (1),

/1’7.7
G
O _ oy (1) G ) T
0= '#12; otz — a@(t)gel’i B e el
1#£1 i <my 7
)
O/ _ oy (1) ) @) (T
= -¢12-< ot (t)? —a@(t)er’l(t) e
J JSNe J

OIS pp U
c\t)= 7 7 €
e, o (02 — o (1)

and r¢ = rank (0 (t)).

Remark 14 Note that the function ay) () : 09 (t) — R is convex. Since the Hessian of a
convex function is PSD, it follows that ng) (t) is PSD.

14
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6.2 Layer-specific dynamics

Theorem 15 (Layer-Specific Dynamics) The layer-specific dynamics of Lipschitz con-
tinuity is given by:
dK @ (t)

Ko@) (90) + xO@) dt+ A0 (1) T B, (12)

where ngZ) ~ N(0,1,,,,,dt) represents the increment of a standard Wiener process in
R™eme - and:

pO(t) = (gt) <Jg? (t), —vec [V(E)Lf(o(t))] > )
1

op

1N T
N0 = (=) I, IX@IE = AO0TAO 0 > o

Oy =—1 (HO®),=O) >0
K ) ) - Y
20%2) (t) < Y ! >

where we refer to:
1. 1O(t) as layer optimization-induced drift, representing the contribution of the
gradient flow V(g)ﬁf(e(t)) — induced by the optimization process — to the expectation
of Lipschitz continuity. This term corresponds to the projection of the negative gradient

expectation onto the principal subspace (i.e. largest singular value) of the parameter
matriz, and acts as a deterministic drift in the evolution of the Lipschitz constant.

2. A0 (t) as layer diffusion-modulation intensity, representing the contribution of

the gradient moise Eg) — arising from the randommness in mini-batch sampling —
to the stochasticity of Lipschitz continuity. This term modulates the stochasticity of
Lipschitz continuity and governs the uncertainty of temporal evolution.

3. Kk (t) as layer noise-curvature entropy production, representing the non-negative,

irreversible contribution of the gradient noise EEO to the deterministicity of Lipschitz
continuity. Intuitively, the dynamical system baths in the stochastic gradient fluctua-

tions captured by Zy), arising from mini-batch sampling. The stochastic fluctuations

“dissipate” into the system via the curvature of the operator-norm landscape H (()? (1),
driving an irreversible increase in the Lipschitz constant and entropy.

Proof Start with Definition [10:
1
dvec ((9(@) (t)) = —vec [v@cf(a(t))} dt + /1 [2?’} 24BY (13)
KO() = 1090)]lop = o1 (¢) (14)
Using Lemma [12| and Lemma |13, we apply [t6’s Lemma on Equation [14:

dKO(t) = JE @) Tdvee (09(1)) +% (avec(@® (t))T HO(t) dvec(0(1)).  (15)

A B

Compute A and B.

15
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1. Substitute Equation [13|into A:
A=J9®) dvec (0@ (t))

9T [_Vec [VOLy )] at+ i [gy)}% ngf)}

[V

- <J(’3) (t), —vec [v@cf(e(t))} > dt+ I8 7 [29] dBY.  (16)

op
2. Use trace identity tr(XY Z) = tr(Y ZX):
1 O gO ©
B=3 (d vec(8 (t)) HY) (t)dvec(89)(#))
op

_ %tr {H (1) dvee(@©(1)) (dvec(8® (t)ﬂ '

Substituting Equation [13|into B, we obtain:
1 © © ©n) "
B =5 tr [HY)(t)dvee(0) (1) <dvec(0 (t))
1 © O} [T5013 | 15 1 (OT
:§tr H,,)(t)n [Et } [Et } dB;"(dB; ")
1 © 0] 2 (072 !
= Sntr [HY() [zt } [zt } dt

n (HY(), =) dt, (17)

1 ¢
=5 tr {H(()Q (t)E,ﬁ )} dt = op
by dropping higher-order infinitesimal terms, as o ((d¢)?) — 0 and o (dtngé)> — 0.

Combine A + B. Combine expanded A and B:

dK O (t) 1 . e
= T (), —vee [VOL(O())] ) + HO@, 50N | ar

KO@) |04 (75 Vs 0)]) 205%)< 0), =)

M(Z)(t) n<2)r(t)
1
i z o
g 1] an. "
o (t)
AT

16
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6.3 Network-specific dynamics

Theorem 16 (Logarithmic Network-Specific Dynamics) The logarithmic, network-specific
dynamics of Lipschitz continuity is given by:

dZ@)ZZ(MZ@)++ﬁﬂﬂ‘—;AZ@V>(ﬁ-FAZ@)dWQa (19)

where dW; ~ N(0,dt) represents the increment of a standard Wiener process adapted to the
filtration Fy in R by:

VI

L )
Zru“)(wu%] zw GBO A,
/=1

1
2

L L
=S 1OW eR, rz()) =S k() €Ry, A [Zw HJem
/=1

where we refer to: (i) pz(t) as network optimization-induced drift; (ii) A\z(t) as net-
work diffusion-modulation intensity; and (iii) kz(t) as network noise-curvature
entropy production, respectively.

Proof Consider the differentials:
oz(t) 1 027 (t) 1

— d = — . 20
aKO(1) — KO@) ™ k@12 T T KO@)? (20

We apply Ité’s Lemma on dK© across all layers to derive the dynamics of:

L
= Z log K
I=1

so that:

L Z(t) 1 9%Z(t 2
42() _d<zlogKZ) > 2 8K()t z(t)+28_l{(f)((t))2(dK(£)(t)>

=1

C D
Derive C and D.

1. Derive C:
A0 0 CdKO@) ® ” © T 1 0@
C_Wf)(t)dff (t)_K(f)(t)_(” (t) + K (t)) dt + A0 (1) "B},
2. Derive D:
L_o°Z(t) O @) 1 O = _Lia® @2
D—zmwmme‘®>——ﬂwmy@K (1) =—5IAOW]3a,

by dropping higher-order infinitesimal terms as o((dt)?) — 0 and o(dtngg)) -0

17
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Combine C + D. Hence:

<Zu (1) + (1) - ||V><>||2)dt+zx<f (' aB}”

=1
= (MZ(t) + ﬁz(t) — 2)\2(t)2> dt + )\Z(t)th

where dW; ~ N(0,dt) represents the increment of a Wiener process in R.

Theorem 17 (Integral-Form Dynamics of Lipschitz Continuity) Using [t6’s calcu-
lus, the integral-form dynamics of Lipschitz continuity is stated as:

Z(t):Z(O)+/0 [uz(s)+mz(s)—;)\z(s)z] ds+/0 Az (s) AW
K(t) =exp{Z(t)}

where Z(0) is the initial value of Z(t).

6.4 Statistical characterization

Theorem 18 (Statistics of Lipschitz Continuity) Let K(0) be the initial Lipschitz con-
tinuity bound, and hence Z(0) = log K (0). The expectation and variance of K(t) are given
as:

E[K (t)] = eE[ZOH3VarlZ()] — k() - olo 1z(9)ds | [ kz(s)ds (21)
Var[K ()] = E[K (1)]2 (V1201 - 1) — B[R (8)]? (o 227 — 1), (22)
where:
E[Z(t)] = Z(0) —i—/o [uz(s) + kz(s) — ;)\Z(s)z] ds (23)
Var[Z(t)] = /0 Ms(s)2ds. (24)

Remark 19 The expectation of Lipschitz continuity is dominated only by three factors:

i Parameter initialization K(0). The parameter initialization determines the net-
work Lipschitz continuity. We discuss the details in Section 8.2,

it Optimization-induced drift juz(t). The projection of gradient expectations on the
operator-norm Jacobian, induced by optimization process, drive the evolution of Lips-
chitz continuity;

i1t Noise-curvature entropy production rkz(t). The gradient fluctuations, arising
from mini-batch sampling, has a deterministic, non-negative and irreversible increase
in the Lipschitz continuity.

18
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The uncertainty of Lipschitz continuity is determined by two factors:

i Lipschitz continuity expectation E[K(t)]. The uncertainty is proportional to the
current Lipschitz constant bound. Larger Lipschitz constant bound leads to larger un-

certainty of the evolution;

it Diffusion-modulation intensity \z(t). The projection of the gradient fluctuations
on the operator-norm Jacobian modulates the diffusion process of Lipschitz continuity,

hence dominates the uncertainty of the evolution.

Proof

Lemma 20 (Moment-Generating Function of Z(t)) Consider Z(t):

Z(t) ~ N (E[Z(t)], Var [Z(1)]),

then the MGF of Z(t) is given as:

so that:

E [ek%)] _ HELZ()+ k2 Var(Z(t)]
Set k =1:
E[K(t) =E [ez(t)} _ EEO1 3 VarlZ(0)] _ O+ [{nz(s) trz(o)ds
(E[K(1)])? = (E [ez(t)D2 _ 2ELZW+VarlZ()] _ 2200+ [ 2uz(s)+262())ds
Set k = 2:
E[K(t)?] =E [ezz(t)} _ 2ELZ()] 42 VarlZ(1)]
Hence:

Var [K (1) = E[K(t)] - (E[K (@) = E[K (D) (V20 1)

7 Framework validation

1. Datasets. To validate the effectiveness of our framework across various datasets,

(25)

(26)

Experimental Settings. We conduct numerical experiments to validate our framework,
using a five-layer ConvNet (details in Table|l|in the Appendix), optimized with SGD (with-
out momentum). Experimental details are as follows:

the

ConvNet is trained on CIFAR-10 and CIFAR-100 respectively, for 39,000 steps (200

epochs) with a learning rate of 1073 and a batch size of 256.
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Regularizers. To validate the effectiveness of our framework under various regular-
ization configurations (see Table 3 in Appendix), the ConvNet is trained with multiple
regularizers, including batch normalization, mizup, and label smoothing. Additional re-
sults with dropout, weight decay, auto-augment, and adversarial training are presented
in the Appendix.

Experimental Results. Figure [2a) presents the results on CIFAR-10, and Figure 2b|shows
the corresponding results on CIFAR-100. These experiments demonstrate that our mathe-
matical framework closely captures the dynamics of Lipschitz continuity across a range of
regularizers.

8 Theoretical implications

Our theoretical framework provides a unified perspective for analyzing and interpreting the
evolution of Lipschitz continuity in neural networks. Specifically, it enables us to answer the
following questions:

1.

Section [8.1: Key factors. What are the key factors governing the temporal evolution
of Lipschitz continuity during training?

. Section |8.2: Parameter initialization. How does parameter initialization affect the

temporal evolution of Lipschitz continuity?

. Section [8.3} Unbounded growth near convergence. What dynamics emerge as

the network approaches convergence, particularly in the regime where the training loss
approaches zero?

. Section 8.4: Noisy gradient regularization. How does gradient noise regulate the

temporal evolution of Lipschitz continuity?

. Section 8.5: Uniform label corruption. How does uniform label corruption implic-

itly regularize the dynamics of Lipschitz continuity?

. Section [8.6: Batch size. What role does batch size play in shaping the temporal

evolution of Lipschitz continuity?

Section |8.7; Mini-batch sampling trajectory. What impact does mini-batch sam-
pling have on the temporal evolution of Lipschitz continuity?

8.1 Key factors driving dynamics

Principal driving factors. Theorem |15 and Theorem 16| identify four principal factors
driving the evolution of Lipschitz continuity at both the layer and network levels:

(i) Gradient-principal-direction alignment. The alignment between the gradient ex-

pectations and the principal directions of parameter matrices determines optimization-
induced drift the pz(t). As shown in Figure |3, this force dominates the drift of the
Lipschitz continuity (see Theorem |15/ and Theorem |16).
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(ii) Directional gradient noise. The directional projection of gradient fluctuations,
arising from mini-batch sampling, on the principal directions of parameter matrices
determines the diffusion-modulation intensity Az (t) arises from. As shown in Figure 3|
this factor modulates the diffusion of the Lipschitz continuity.

(iii) Deterministic effect of gradient noise. The interaction between the gradient
fluctuations, arising from mini-batch sampling, and the operator-norm curvatures de-
termines the noise-curvature entropy production kz(t). Our theoretical framework
suggests that this term gives a deterministic, non-negative, and irreversible increase
contributing to the drift of the dynamics.
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(iv) Gradient noise amplification effect. Lemma |13/ and Theorem (15 suggest that the
inverted principal spectral gaps in parameter matrices, defined as |:0'§€) (t)? — a](.z) (t)?

for all j # 1, can amplify the gradient noise. Thus smaller spectral gaps amplifies gra-
dient noise, contributing to larger noise-curvature entropy production kz(t).

8.2 Parameter initialization

According to Theorem (18, the network initialization K (0) affects both the expectation and

uncertainty of Lipschitz continuity in the evolution. Suppose that the entries of a pa-

rameter () € R™*™ are sampled from N (0, s%) According to the Tracy-Widom limit-

ing distribution (Tracy and Widom) 1994; Taol 2012), the largest singular value limit is
by (v/mu + /1) - s, if mg - ny is sufficiently large. For a network with L layers,

L
0) = [ (vVme + V) - se,
/=1

hence a larger network has a larger Lipschitz continuity. For the case of Kaiming initializa-
tion, sy = /2/n. (He et al 2015).

8.3 Unbounded growth near-convergence
Suppose a negative-log-likelihood loss:
Lp(0(t); 2, y) = —log gy (y | x)
near convergence:
Lr(0(t);2,y) — 0.

Under Assumption 3, the Fisher information matrix (FIM) of pgq(y | ) with respect
to parameters 0) (¢) (Martens, 2020) is defined as

]
FO(0) =€ |vec [Ty )] vee [Ty 0 )] | = a1 2(7,

as L¢(0;x,y) — 0, where M is the batch size (Jastrzebski et al., 2017; [Stephan et al. |2017}
Li et al) 2021} [Jastrzebski et al., 2017, Martens, |2020)). This will serve as a foundation for
our later theoretical analysis of the near-convergence dynamics.

Proposition 21 (Unbounded Growth Near-Convergence) Consider the terms in the
dynamics (Theorem |15)):

1O t) = (g(t) <Jg§,> (t), —vec [v@cf(a(t))D ~ 0,
91
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so that Lipschitz continuity is not bounded in expectation:

lim E [K ()] = lim oZ )+ [5lnz()+rz()lds _ iy, ¢Z(0)+[g rz(s)ds _y 0,
t—0 t—0 t—0

and uncertainty:

lim Var [K (t)] = lim E [K ()] (Jar[Z(tﬂ - 1) = oo,
t—0 t—0

as t — oo. This result demonstrates that the Lipschitz continuity bound monotonically

increases as optimization progresses. This phenomenon has been noted in literature (Yoshida

and Miyato, |2017; |Bartlett et al., |2017; |Sedght et all, |2018; |Gamba et al., |2025).

Experimental Results. We extend the training of the five-layer ConvNet on CIFAR-10
without regularization to 344, 370 steps (1766 epochs) for observing the long range dynamics
near convergence. Figure 3ajshows the layer-specific dynamics; Figure 3¢/ shows the network-
specific dynamics. The observations are as follows:

(i) Unbounded growth. We train the network for up to 344,370 steps, near conver-
gence. The gradual increase driven by rz(t) persists throughout the training, with
no observable indication of stopping, suggesting that the dynamics do not admit a
finite-time steady state.

(ii) Non-negligible contribution of gradient noise. Although the magnitude of kz(t)
is typically one order smaller than that of uz(t) in our experiments, its cumulative
effect on the growth of Lipschitz continuity near-convergence is non-negligible and
persists throughout training.

(iii) Four Phases. We observe that kz(t) exhibits four distinct phases: (i) phase 1 —
a rapid initial increase at the beginning of training, (ii) phase 2 — large fluctuations
prior to overfitting, (iii) phase 3 — a steady decline, and (iv) phase 4 — convergence
to a non-negative constant.

8.4 Noisy gradient regularization

Prior work shows that injecting noise into gradients during training can improve robustness
(Laskey et al., [2017; |Welling and Teh| 2011) and help escape local minima (Neelakantan
et al.l 2015). Our theoretical framework elucidates the mechanism by which gradient noise
serves as a regularizer for Lipschitz continuity. Consider a loss ¢, with noisy supervision
consists of a signal loss £y and a noisy loss £,,:

C(0;2,y) = /p-Lp(0;2,9) + /1 = p-L,(0;2,y), (31)

where p € [0,1]. The corresponding batch loss is:
VOL.(0:8) = - VILsH0:€) + /1= p-VILL(6;0),

and the gradient noise covariance is:

E(Z)v* =p- Z(Z)vf + (1 — p) . E(@JL'
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If the noise is sampled from N (0,02), 2" = 52 1, the dynamics has the changes:

() = ouO(1),

and

(0) @ Ui (0) 271\ ~ ()
ks () =p- k() + (1 —p)- H, ) (t),0°1) ~p- ‘().
(t) ( 20§€)(L‘) < p( ) >

variance is negligible

The variance contribution from H g? (t) is neglected, as experimental results indicate it is

negligible (see Figure [3)). According to Theorem |18, by ignoring \z(t), we have:

E[K(t)] ~ oZ(0)+ [y /pruz(s)ds+ [y prz(s)ds _ K(0) [ef(f uz(S)dS} G [ef(f HZ(S)dSr' (32)

Although the integral fg uz(s)ds and fg kz(s)ds are unlikely to be computed, it provides in-
sight how gradient magnitude affects the evolution of Lipschitz continuity bound. This result
shows higher gradient magnitude leads larger Lipschitz continuity bound. This framework
can be used to analyze the uniform label corruption (see Section 8.5).

Experimental Results. We train a MLP (see Table 2) on the MNIST with a batch size
of 128 and a learning rate of 0.01, using SGD without momentum. During training, the
gradients are scaled by ,/p, and additive noise is injected sampled from: (i) a Gaussian
distribution N(0,1); (ii) a uniform distribution U[—0.5,0.5]; and (iii) zero noise, scaled by
/1= p. As shown in Figure |6} the Lipschitz constant decreases monotonically as p decreases.

8.5 Uniform label corruption

Suppose a classifier with a negative-log-likelihood loss function £¢(0;x,y) := —logps(y|x).
Further suppose that the label corruption probability is € € [0, 1] with a uniform distribution
U(Y), while the label remains intact with a probability 1 — e. Therefore the gradient with
label corruption can be expressed as (Natarajan et al.,|2013; Sukhbaatar et al.,|2014; Patrini
et al., 2017; \Ghosh et all 2017):

1 -
E v<f>zf(9;x7y)] = (1—€)-Eyy [VO [—logpg(y|x)]]+e'Ez vmm 3 [~ logpa(ila)]| .
g~U (V)

where g ~ U()). Literature (Natarajan et all 2013; Sukhbaatar et al., 2014; Ghosh et al.,
2017) assume that the loss component with label noise contributes only a constant, hence
zero gradient:

(1), vee [~V OE, 5 [ log pp(7l2)]]) — 0.

According to Equation 31, we can treat the label noise as ¢,,. By using Equation [32|
note p = (1 — €)2, then we have:

E [K/(t)] ~ K(0) - [efot “Z(S)ds} e . [efot fiz(s)ds} (1-¢)? .

24



OPTIMIZATION-INDUCED DYNAMICS OF LIPSCHITZ CONTINUITY IN NEURAL NETWORKS

Experimental Results. We train a MLP (see Table 2) on the MNIST with a batch size
of 128 and a learning rate of 0.01, using SGD without momentum. We inject uniform label
noise into the dataset with a level from 0 to 1. As shown in Figure |7}, the Lipschitz constant
decreases monotonically as label noise level increases.

8.6 Batch size

Suppose that the batch size M in mini-batch sampling affects only the gradient noise ¥(t),
and does not affect the expectations of gradients VL¢(#). Therefore, the batch size M
affects only the diffusion term (Theorem [18). We analyze the effect of mini-batch size.

Proposition 22 (Uncertainty Under Large Batch) Let the batch size be M and suffi-
ciently large, then:

C
Var [K ()] ~ E[K(1)]* 7.

where C is a constant given as:

/0 é) QJSQ (t)Var [vec (vwf(e(t); z, y))} JO®)T ds

=101

Proof
Substitute Equation [3|into Theorem [18:

Var[z(t)]:/t)\z(s)zds:/ ZHA ||2d5_/ Z e) t)

L Var [vec (vwf(a(t); z, y))] JOMT ds

O=O@)TO @) ds

op

0 M op
- /0 l;‘ e T8 (t)Var [vee (VOO 2,9)) | TE )T ds = 1o

a constant

Hence:
Var [K (£)] = E [K (1)) (eVM{Z@] - 1) — E[K (1)) (e% - 1) .

Suppose M — oo:

Var [K (t)] = E [K(t))? (eg - 1) ~ E[K (1) <1 + % - 1) = E[K()] % S %

Experimental Results. We train the five-layer ConvNet (Table |I|in the Appendix), opti-
mized with SGD without momentum. The batch size is varied from 32 to 384 in increments
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of 32, and each configuration is trained for 39,000 steps. During training, we profile and col-
lect the dynamics to compute the uncertainty of Lipschitz continuity Var [K(¢)]. As shown
in Figure 5, the observed effect of batch size aligns closely with the theoretical prediction in
Proposition 22.

8.7 Mini-batch sampling trajectory

According to Proposition [22] if the batch size is sufficiently large, the effect from various
mini-batch sampling trajectories can be neglected since:
5 C

Var [K ()] ~ E[K (1)) 77 = 0,

as batch size M is sufficiently large.

Experimental Results. We train the five-layer ConvNet (Table |1 in the Appendix),
optimized with SGD without momentum. The parameter initialization random seed is fixed
to 1, while the random seed for mini-batch sampling is varied from 1 to 5. As shown in
Figure [4, the sampling trajectories have a negligible effect on the evolution of Lipschitz
continuity.

9 Limitations and future work

While our mathematical framework shows strong agreement with empirical results, it has
several limitations:

1. Layer-wise noise assumption. The simplification in Assumption [3| neglects inter-
layer interactions among neurons; this may pose as a challenging for studying large
models.

2. Distributional assumption. We assume that the gradient noise follows a time-state-
dependent normal distribution varying smoothly. However, this assumption may not
hold for small batch sizes, where the noise distribution can deviate significantly from
Gaussian.

3. Continuous—discrete error. Our framework models gradient dynamics in contin-
uous time, whereas SGD operates in discrete steps. This discrepancy may introduce
non-negligible errors, particularly when modeling long-range dynamics.

10 Conclusions

We present a mathematical framework that models the dynamics of Lipschitz continuity in
neural networks through a system of SDEs. This theoretical framework not only identifies
the key factors governing the evolution of Lipschitz continuity, but also provides insight into
how it is implicitly regularized during training. Beyond its analytical value, the framework
offers a foundation for future research and development. Our experiments further validate
the effectiveness of the proposed framework and the predicted effects of the theoretical
implications.
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Appendix A. Network configuration

Function Block | # of Layer | Module
1 nn.Conv2d(3, 32, kernel_size=3, padding=1)
Block #1 2 nn.ReLUQ)
3 nn.MaxPool2d(kernel_size=2, stride=2)
4 nn.Conv2d(32, 64, kernel_size=3, padding=1)
, 5 (%) nn.Dropout (p=0.2)
Block 72 6 nn.ReLU(Q)
7 nn.MaxPool2d (kernel_size=2, stride=2)
8 nn.Conv2d (64, 128, kernel_size=3, padding=1, stride=2)
‘ 9 (*) nn.Dropout (p=0.2)
Block #
ock #3 10 (*) nn.BatchNorm2d (128, track_running_stats=False)
11 nn.ReLU(Q)
12 nn.Linear(128 * 4 x 4, 256)
. 13 nn.ReLU(Q)
lassifi
Classifier 14 (%) nn.Dropout (p=0.3)
15 nn.Linear (256, num_classes)

)

Table 1: ConvNet configuration. The layer marked as ‘(*)’ is configurable with respect to
experimental needs. There are five parameterized layers (i.e. # 1, # 4, # 8, # 12 and #
15).

# of Layer | Module

nn.Linear (28%28, 512)
nn.ReLU()

nn.Linear (512, 256)
nn.ReLU()

nn.Linear (256, 10)

Y| W N~

Table 2: MLP configuration. There are three parameterized layers (i.e. # 1, # 3, and # 5).

Appendix B. Regularization configuration

Regularization Configuration
mixup a=04
label smoothing e=0.1
adversarial training w/ FGSM | € = 0.03
weight-decay A =0.001
AutoAugment (policy=AutoAugmentPolicy.CIFAR10)
auto-augment Aut oAuiEent (iolic§=Aut oAuimentPolicz _CIFAR100)

Table 3: Regularization configuration.
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Appendix C. Full validation experiment

Results of full validation experiments are shown as in Figure |8

Figure 8: Full numerical validation of our mathematical framework on CIFAR-10.
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