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ABSTRACT

Incorporating flexibility and dynamics of protein targets is a frontier of computa-
tional drug design. A machine learning model that jointly generates ligands and
bound conformations of binding pockets holds promise to access a larger chem-
ical space by removing unnecessary structural constraints, and opens the door to
design campaigns in which only the unbound structure of the therapeutic target
is known. Here we report on progress we made towards this goal and present
two models: DrugFlow, a new generative model for structure-based drug design
with static protein structures that shows strong performance compared to previous
methods, and FlexFlow, an extension of this model that also predicts side chain
torsion angles together with preliminary empirical data.

1 INTRODUCTION
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Figure 1: The geometry of unbound ligand binding pockets
(orange) differs from their bound state (green). This leads
to significantly weaker docking scores when ligands are re-
laxed in pockets with repacked side chains (Wilcoxon rank-
sum test with p-value of 3.5× 10−4).

Despite a growing importance of bi-
ologics, chemical entities are still the
predominant class of FDA-approved
drugs with a share of 85% (San-
tos et al., 2017). Furthermore,
over 95% of known drugs target hu-
man or pathogen proteins (Santos
et al., 2017). At the same time
cost and duration of the develop-
ment of new drugs are skyrocket-
ing (Simoens & Huys, 2021), which
explains the growing interest in com-
putational design of small molecular
compounds that bind specifically to
disease-associated proteins. In recent
years, the machine learning commu-
nity has contributed a plethora of gen-
erative tools tackling the so-called
structure-based drug design problem.
Some of these models generate molecules unconditionally without knowledge about the target pro-
tein. They either create molecular graphs (Jo et al., 2022; Vignac et al., 2022), 3D atomic point
clouds (Gebauer et al., 2019; Garcia Satorras et al., 2021; Hoogeboom et al., 2022) or both Vignac
et al. (2023). More closely related to the work presented here, another family of models attempts
to generate novel chemical matter conditioned on three-dimensional context, typically a structural
model of a target protein. Among these most of the models sample atom positions and types without
providing explicit information about covalent bonds (Liu et al., 2022; Ragoza et al., 2022; Schneu-
ing et al., 2022; Igashov et al., 2022; Guan et al., 2023a; Lin et al., 2022; Xu et al., 2023). Others
generate the full molecular graph structure and binding pose jointly (Peng et al., 2022; Guan et al.,
2023b; Zhang et al., 2023). Notably, most recent structure-based drug design models belong to the
family of diffusion probabilistic models (Schneuing et al., 2022; Guan et al., 2023a; Lin et al., 2022;
Xu et al., 2023; Guan et al., 2023b; Weiss et al., 2023).

∗These authors contributed equally.
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Even though these approaches have shown promising performance on computational benchmarks,
all of them make the important assumption of static proteins. However, this assumption only holds
in few cases, and incorporating the dynamics and flexibility of protein structures is one of the key
open challenges for structure-based drug design (Fraser & Murcko, 2024). What is more, drug
design methods are typically trained and tested on protein structures in complex with known ligands,
thereby making the additional assumption that the bound conformation of the pocket is available (or,
to be more precise, one of several possible bound conformations). If medicinal chemists target new
sites on proteins without previously known binder even this requirement may be too strict as the drug
design campaign might be launched from a structural model that is not amenable to ligand binding
without a rearrangement of the pocket residues.

To illustrate this, we relaxed 100 small molecules from the CrossDocked dataset (Francoeur et al.,
2020) and computed the Vina docking score (McNutt et al., 2021). Then, we repacked the side
chains of all pocket residues in absence of the molecules and repeated relaxation and scoring. The
data in Figure 1 shows that even this minor structural change with a fixed protein backbone leads to
significantly worse predicted binding affinity of the same ligands.

Based on these findings we set out to develop a structure-based drug design model that permits full
side chain flexibility while keeping backbone atoms fixed. Such a model will sample probabilistic
ensembles of possible binding modes and enable drug design for targets in unbound conformation
as long as they have a relatively stable backbone structure.

To this end we first introduce DrugFlow, a new generative model for structure-based drug de-
sign. Our method combines Euclidean flow matching for atom coordinates and a Markov bridge
model (Igashov et al., 2023) for atom and bond types. We then extend our model to the flexible side
chain scenario and introduce FlexFlow which additionally utilizes Riemannian flow matching to op-
erate on side chain torsion angles. While DrugFlow demonstrates strong empirical performance in
the rigid setting, FlexFlow is currently still struggling to create high-quality residue conformations
and protein-ligand interactions.

2 METHODS

2.1 GENERATIVE MODELING

In this work, we use flow matching methods for all continuous data types, that is atom coordinates
and side chain torsion angles, because they are conceptually simple for Euclidean data and can be
easily adapted to manifolds like the hypertorus of the torsion angles. Flow matching has already
found some biomolecular applications (Stärk et al., 2023; Yim et al., 2023a; Bose et al., 2023) but
has not been well explored as a tool for small molecule design. To generate the discrete molecular
graphs, we use Markov bridge models Igashov et al. (2023). More details about these generative
modeling frameworks are presented in Appendix A.1.

2.2 SIDE CHAIN RECONSTRUCTION

To provide the full-atomic information more explicitly, we convert the side chain dihedral angles
back to atom positions in every training and sampling step. This operation is performed efficiently
using the Natural Extension Reference Frame (NERF) algorithm (Parsons et al., 2005; Alcaide et al.,
2022) in parallel for each residue.

2.3 COMPUTATIONAL ASPECTS

Input graph definition While the computational graph of the generated small molecule must
necessarily be complete so that bond types can be generated freely, we improve the computational
efficiency by removing edges between pocket residues or between residues and ligand atoms based
on a predefined cutoff distance (10Å).

Nodes in this graph correspond either to a ligand atom or a pocket residue. Both node types are
passed through separate neural encoders before being processed jointly with a GVP-GNN (Jing
et al., 2020; 2021). To retain the full atomic information while adopting this coarse-grained repre-
sentation for the protein pocket (one computational node per residue), we include difference vectors
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Figure 2: (left) Randomly picked four molecules that pass all the filters from Table 1 and have be-
tween 15 and 25 heavy atoms. (right) Overall performance of the methods. While TargetDiff better
captures interactions, it remarkably underperforms in molecular quality and generative capabilities.
On the other hand, Pocket2Mol demonstrates competitive results in terms of the two latter aspects
but underperforms in the quality of interactions. DrugFlow is the most balanced method that suc-
cessfully optimizes all three directions, as reflected by the area S of its triangle.

to each atom of the residue in addition to the Cα coordinate and amino acid type as node features
similar to Zhang et al. (2023).

Featurization We consider the atom types {C, N, O, S, B, Br, Cl, P, I, F, NH, N+, O-} where +/-
indicate charges and NH is a nitrogen atom with explicit hydrogen. In all other cases, hydrogens are
assumed to be implicit following normal valence assumptions. Furthermore, DrugFlow generates
single, double, triple, aromatic, and “None” as bond types. FlexFlow additionally outputs five tor-
sion angles {χ1, χ2, χ3, χ4, χ5} for each residue. Since not all angles are present in every residue
we mask predictions where appropriate.

We also use two extra input features. (1) As a rudimentary way to encode information about protein
dynamics, we endow the residue nodes with normal vectors from an anisotropic network model
using ProDy Zhang et al. (2021). (2) For ligand nodes we include node-level cycle counts up to size
5 following (Vignac et al., 2022; Igashov et al., 2023).

Self-conditioning Self-conditioning (Chen et al., 2022) is a sampling strategy in which the neural
network takes its previous prediction as additional input during iterative sampling. Like previous
works (Yim et al., 2023b; Stärk et al., 2023) we observe significant performance improvements
using this technique.

Size prediction Both DrugFlow and FlexFlow generate molecules of prespecified size. To decide
on the number of heavy atoms we generate we consider two strategies. (1) We compute the categor-
ical distribution p(N |M) (histogram) of molecule sizes N given the number of residues M in the
target pocket based on the training set, and sample from it. (2) We train a simple classifier on the
same training set to predict the molecule size given a coarse-grained Cα representation of the pocket
and sample from its output after applying a softmax activation. The DrugFlow results presented
in this paper were obtained with the neural size predictor whereas the work-in-progress FlewFlow
model uses the histogram approach.

3 RESULTS

Dataset & Baselines We use the CrossDocked dataset (Francoeur et al., 2020) with 100,000 high-
quality protein-ligand pairs for training and 100 proteins for testing, following previous works
(Luo et al., 2021; Peng et al., 2022). The data split was done by 30% sequence identity using
MMseqs2 (Steinegger & Söding, 2017). We compare DrugFlow with an autoregressive method,
Pocket2Mol (Peng et al., 2022), and two diffusion-based methods, TargetDiff (Guan et al., 2023a)
and DiffSBDD (Schneuing et al., 2022). We generated 50 samples for each target with DrugFlow
and selected only molecules that passed validity and connectivity filters. As Pocket2Mol generates
connected molecules by design, and DiffSBDD outputs only valid molecules, applying these filters
to our samples before evaluation enables a fair comparison. Because DrugFlow produces n < 50
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Table 1: Evaluation metrics that assess the ability of the models to learn the training distribution,
to sample physically and chemically plausible molecules, and to build strong interactions with the
target protein. Top-2 results for each metric are highlighted in bold.

Generative Capabilities Molecular Quality Interactions

Method FCD ↓ Ring Coverage ↑ Diversity ↑ Physics ↑ MedChem ↑ Clashes ↑ Docking ↑

DiffSBDD 12.016 0.522 0.725 0.501 0.121 0.699 0.444
TargetDiff 14.371 0.477 0.716 0.575 0.123 0.883 0.582
Pocket2Mol 13.323 0.617 0.840 0.939 0.494 0.919 0.225
DrugFlow 5.383 0.681 0.676 0.866 0.289 0.867 0.499

valid and connected molecules (out of 50 samples for each target), we randomly select the same
amount of samples from other methods to ensure equal sample sizes for all targets and baselines.

Metrics An open problem in computational drug discovery is the lack of high-quality metrics
that adequately assess the quality of the generated compounds. While several attempts have been
recently made to standardize the evaluation procedures (Buttenschoen et al., 2024; Harris et al.,
2023), there are still fundamental issues with the robustness of the existing scoring functions and
quality of the heuristics commonly used for approximating different molecular properties such as
drug-likeness or synthetic availability. Moreover, in our task we aim to optimize several orthogonal
properties that can be formulated as follows,

• Generative capabilities: how well does the model learn the training distribution?
• Molecular quality: how “good” are the generated molecules?
• Interactions: how do the molecules interact with the target?

3.1 DE NOVO MOLECULE GENERATION

Generative capabilities To assess how well the model learns the training distribution, we compute
the Fréchet ChemNet Distance Preuer et al. (2018) (FCD) and Jensen-Shannon distance between
the histograms of ring systems (Walters, 2022; 2021) in the training set and generated samples
(ring coverage). The FCD computes the distance between the latent representations of the reference
molecules (from the training set) and those of the generated molecules. These latent representations
are obtained from the penultimate activation layer of the ChemNet model (Goh et al., 2018), which
is trained to predict chemical and biological activity. FCD is given as the Wasserstein-2 (Fréchet)
distance between the two distributions. Lower FCD values indicate that the generated molecules
are more similar to the reference molecules in the high-dimensional space defined by ChemNet’s
features, suggesting that the model has effectively learned the distribution of the training data. As
provided in Table 1, DrugFlow remarkably outperforms other methods in both metrics.

Molecular quality To estimate the overall quality of the generated molecules, we use different
filters that assess the geometric and physical relevance of the molecules as well as their suitability as
a drug candidate (MedChem). For geometric and physical relevance, we compute the fraction of the
samples that pass all PoseBusters intramolecular filters (Buttenschoen et al., 2024). To assess the
chemical relevance of the samples, we compute the fraction of the samples that are better than the
reference molecules in terms of drug-likeness (QED), synthetic accessibility (SA), and Lipinski’s
rule of five, and report it as the MedChem ratio. As shown in Table 1, DrugFlow performs better
than most baselines except Pocket2Mol.

Interactions To assess the quality of interactions between the molecules and target pockets, we
consider two aspects. First, we report the fractions of the samples that pass PoseBusters inter-
molecular filters (Buttenschoen et al., 2024) that account for steric clashes and volumetric overlaps
between molecule and protein atoms. Next, we compute the fractions of the samples that improve
Vina scores compared to the reference molecules. While TargetDiff and Pocket2Mol produce fewer
clashes than DrugFlow, after minimization our molecules improve docking scores more often than
Pocket2Mol samples (Table 1).
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Figure 3: Side chain root-mean-square deviation
(RMSD) for relaxed pockets in absence of the lig-
and (left), random samples from the model’s prior
(middle), and FlexFlow-generated side chain con-
formers for a fixed ligand structure (right).

Overall performance Structure-based drug
discovery is a multi-objective task where one
aims to optimize various chemical and phys-
ical properties of a drug candidate as well
as its interactions with the target protein.
We summarize the performance of DrugFlow,
Pocket2Mol, and TargetDiff in these three di-
rections in Figure 2. While both TargetDiff
and Pocket2Mol strongly perform in one spe-
cific direction, both show a considerable im-
balance in the overall performance. On the
contrary, DrugFlow achieves competitive per-
formance in each of the three evaluation direc-
tions and demonstrates the highest performance
balance across all of them. The overall perfor-
mance can be quantified by the area of the trian-
gle on the diagram, and according to this met-
ric DrugFlow outperforms other methods by a
large margin.

3.2 FLEXIBLE DESIGN

Table 2: Evaluation on repacked targets.

Method Docking Clashes

Pocket2Mol −5.123± 1.567 0.898
DrugFlow −6.204± 2.496 0.837
FlexFlow −6.179± 2.820 0.551

In this section, we provide preliminary results on
sampling side chain torsion angles and molecules
for repacked CrossDocked pockets as a proxy for
unbound protein structures. We repacked side
chains with the Rosetta repack protocol (Conway
et al., 2014) and achieved an RMSD of about 2Å
for side chain heavy atoms (Figure 3, left). As a
first test, we sampled 10 sets of side chain torsion
angles per target with FlexFlow while keeping the
ligand fixed, i.e. using the ground truth vector field instead of the predicted vector field for all ligand-
related variables. Figure 3 shows that the model samples pocket structures close to the original bound
conformations. This is expected because fixing the ligand binding pose substantially constrains the
space of feasible solutions. For comparison, we also include the distribution of RMSD values that
results from simply taking random angles from the prior distribution (Figure 3, middle). Next, we
generated 50 samples for repacked pockets with Pocket2Mol, DrugFlow and FlexFlow, and selected
only valid and connected molecules. We report Vina docking scores and PoseBusters intermolec-
ular metrics in Table 2. While FlexFlow performs on par with DrugFlow according to most of the
molecular and generative metrics, it underperforms its rigid counterpart in terms of docking score
and introduces markedly more steric clashes than both static baselines. This result is particularly
surprising as it contradicts our assumption that the flexible side chain model will discover better
bound configurations that lead to improved binding. For these experiments, we adapted a DrugFlow
model without increasing the number of trainable weights. While there may be a fundamental lim-
itation due to our side chain modeling approach, we speculate that improved performance might be
achieved by purely scaling up its capacity to match the increased complexity of the problem.

4 CONCLUSION & OUTLOOK

In this work, we introduce DrugFlow, a generative model for structure-based drug design that con-
sistently demonstrates state-of-the-art performance across various orthogonal metrics. We further
extend our method to the flexible side chain scenario and introduce FlexFlow. The work on FlexFlow
is still in progress, and our goal is to demonstrate the effectiveness of the generative process with the
flexible protein side chains over the rigid modeling in cases when only unbound protein structures
are available. Another interesting question for further research is the ability of FlexFlow to recover
bound side chain conformations and to sample side chains according to the rotamer distributions of
natural binders. Encouraging preliminary results are included in Figure 3 and Appendix Figure 8.
Finally, we note that drug design with flexible side chains is the first step toward full-fledged in-
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duced fit modeling which often involves backbone movements. In future work, we aim to address
this modality and extend FlexFlow to operate on the protein backbone atoms as well.
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A APPENDIX

A.1 GENERATIVE MODEL

Flow matching Flow matching describes a class of deep generative models that approximate a
time-dependent vector field ut(x) which generates a sequence of probability distributions {pt : t ∈
[0, 1]} pushing a prior p0 towards the data distribution p1. This learned vector field describes an
ordinary differential equation (ODE) that can be integrated to transform a sample from the prior into
a sample from the data distribution

d

dt
ψt(x) = ut(ψt(x)). (1)

Efficient training of flow matching models is only possible because we do not need to define the
true vector field ut(x) but can instead match the conditional flow ut(x|x1) which is much easier to
parameterize (Lipman et al., 2022) based on a data point x1. Thus, the conditional flow matching
loss amounts to

LCFM(θ) = Et,q(x1),pt(x|x1)∥vθ(t, x)− ut(x|x1)∥2 (2)

= Et,q(x1),p(x0)∥vθ(t, xt)− ẋt∥2. (3)

For sampling, we obtain a sample ψ0(x) = x0 from the prior and simulate the ODE in equation 1
replacing the true vector field with the learned vector field vθ(t, xt).

In this work, we build on a variant called Independent-coupling Conditional Flow Matching
(ICFM) (Albergo & Vanden-Eijnden, 2022; Tong et al., 2023) and consider a Gaussian conditional
probability path

pt(x|x1) = N (x|µt(x1), σt(x1)
2) (4)

with generating vector field

ut(x|x1) =
σ′
t(x1)

σt(x1)
(x− µt (x1)) + µ′

t(x1). (5)

We use this setup with
µt(x1) = tx1 + (1− t)x0, σt(x1) = σ (6)

to model the flow for ligand coordinates. This results in a constant velocity vector field ẋt =
x1−xt

1−t = x1 − x0 and the flow matching loss:

Lcoord(θ) = Et,q(x1),p(x0)∥vθ(t, xt)− (x1 − x0)∥2 (7)

Riemannian conditional flow matching (RCFM) For side chain torsion angles, we need to define
a flow on the torus [−π, π)N . Fortunately, all components of the flow matching framework can be
computed in a simulation-free manner on this simple manifold. We use the explicit RCFM loss
derived by Chen & Lipman (2023):

LRCFM(θ) = Et,q(x1),p(x0)∥vθ(t, xt) + d(x0, x1)
∇xt

d(xt, x1)

∥∇xt
d(xt, x1)∥2g

∥2g (8)

which in our case with premetric d(x, y) = |w(y − x)| amounts to

Lχ(θ) = Et,q(x1),p(x0)w(∥vθ(t, xt)− w(x1 − x0)∥)2 (9)

where function w(α) = ((α+ π) mod 2π) − π wraps values within the range [−π, π) as in Wu
et al. (2022). The norm ∥ · ∥g on the tangent space to M is induced by the standard inner product
⟨u, v⟩g = ⟨u, v⟩, u, v ∈ TxM in this particular case. Here, the learned vector field vθ(t, xt) outputs
vectors on the tangent plane.

We obtain xt as a point on the geodesic connecting x0 and x1 in closed-form using the exponential
and logarithm maps (Chen & Lipman, 2023)

xt = expx0

(
t logx0

(x1)
)

(10)

with expx(u) = w(x+ u) and logx(y) = atan2(sin(y − x), cos(y − x)) 1.
1x, y ∈ M and u, v ∈ TxM.

10
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Markov Bridges The molecular graph consists of discrete entities (node and edge types) and
can therefore not be easily modeled in the flow matching framework. While discrete diffusion
formulations (Austin et al., 2021; Vignac et al., 2022) can be used in principle, we decided to employ
the Markov bridge model (Igashov et al., 2023) instead which is conceptually more similar to the
flow matching scheme used for the continuous variables.

The Markov Bridge Model captures the stochastic dependency between two discrete-valued spaces
X and Y . It defines a Markov process between fixed start and end points z0 = x and z1 = y,
respectively, through a sequence of N + 1 random variables (zt=i/N )Ni=0 for which

p(zt|z0, z0+∆t, ..., zt−∆t, z1 = y) = p(zt|zt−∆t, z1 = y) (11)

with ∆t = 1/N . Additionally, since the process is pinned at its end point, we have

p(z1 = y|z1−∆t, y) = 1. (12)

Each transition is given by

p(zt+∆t|zt, z1 = y) = Cat(zt+∆t;Qtzt) (13)

where zt ∈ {0, 1}K is a one-hot representation of the current category and Qt is a transition matrix
parameterised as

Qt := Qt(y) = βtI + (1− βt)y1
T
K . (14)

Any intermediate state of the Markov chain can be probed in closed form:

p(zt|z0, z1) = Cat(zt; Q̄t−∆tz0) (15)

with
Q̄t = QtQt−∆t...Q0 = β̄tI + (1− β̄t)y1

T
K . (16)

In this work, we choose a linear schedule for β̄ = 1 − t which implies βt = β̄t/β̄t−∆t = (1 −
t)/(1− t+∆t).

The neural network predicts ŷ = φθ(zt, t) so that we can sample from the Markov bridge without
knowing the true final state. It is trained by maximizing the following lower bound of the log-
likelihood

log qθ(y|x) ≥ −T · Et,zt∼p(zt|x,y)DKL(p(zt+1|zt, y)||qθ(zt+1|zt))
=: −LMBM. (17)

Our overall loss function is a weighted sum of the previously introduced loss terms:

L = Lcoord + λχLχ + λaLMBM, atom + λbLMBM, bond (18)

11
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Figure 4: Detailed PoseBusters results on the original CrossDocked dataset.
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Figure 5: Detailed PoseBusters results on the repacked CrossDocked dataset.

vina_score gnina_score minimisation_rmsd
metric

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

va
lu
e

Docking

DiffSBDD
TargetDiff
Pocket2Mol
DrugFlow

Figure 6: Detailed docking results on the original CrossDocked dataset.
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Figure 7: Detailed docking results on the repacked CrossDocked dataset.
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Figure 8: Distributions of χ1 and χ2 angles for the 14 amino acids that have at least two side chain
torsion angles. We compare FlexFlow samples to the bound pocket conformations from the test set.
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