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Abstract
Natural Language to Visualization (NL2VIS)001
seeks to convert natural-language descriptions002
into visual representations of given tables, em-003
powering users to derive insights from large-004
scale data. Recent advancements in Large005
Language Models (LLMs) show promise in006
automating code generation to transform tab-007
ular data into accessible visualizations. How-008
ever, they often struggle with complex queries009
that require reasoning across multiple tables.010
To address this limitation, we propose a col-011
laborative agent workflow, termed NVAGENT,012
for NL2VIS. Specifically, NVAGENT com-013
prises three agents: processor for database014
processing and context filtering, composer for015
planning visualization generation, and valida-016
tor for code translation and output verification.017
Comprehensive evaluations on the VisEval018
benchmark demonstrate that NVAGENT con-019
sistently surpasses state-of-the-art baselines,020
achieving 7.88% and 9.23% improvements in021
single- and multi-table scenarios. Qualita-022
tive analyses further highlight that NVAGENT023
maintains nearly a 20% performance margin024
over previous methods, underscoring its ca-025
pacity to produce high-quality visual repre-026
sentations from complex, heterogeneous data027
sources.*028

1 Introduction029

“Turning data into insight”, has long been a key030

goal in our increasingly data-rich, information-031

driven society (Fiorina). To achieve this, Natural032

Language to Visualization (NL2VIS) plays a cru-033

cial role in transforming natural-language descrip-034

tions into visual representations (e.g., charts, plots,035

and histograms) grounded on tabular data (Sah036

et al., 2024). This approach enables users to inter-037

act with data intuitively, facilitating the extraction038

*All datasets and source code are available at: https:
//anonymous.4open.science/r/nvAgent-60A1. A demo
video is also provided. We strongly recommend giving a try
to visualize multi-table data using chat-style NL instructions
with NVAGENT.

Show all the faculty ranks and the number of 

students advised by each rank in a bar chart.
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Figure 1: An example to illustrate the NL2VIS task.
Formerly “One Forward” workflow struggled with
multi-table queries due to its complex and heteroge-
neous structure, which could easily cause an error.
NVAGENT uses a collaborative agent-based workflow
for iterative interaction with data and validation to en-
sure accurate and valid visualization.

of patterns and insights from large and complex 039

datasets (Yin et al., 2024; Vartak et al., 2017). 040

Recently, Large Language Models (LLMs) have 041

demonstrated promising performance in NL2VIS 042

tasks, excelling in various stages such as pre- 043

processing (Li et al., 2024b) and code generation 044

for visualization (Maddigan and Susnjak, 2023). 045

These models effectively generate readable visu- 046

alizations for individual datasets or databases (Li 047

et al., 2024a). However, existing approaches en- 048

counter challenges when processing queries in- 049

volving multiple tables due to incorrect joins or 050

mis-filtering conditions, leading to visualization 051

errors (Maddigan and Susnjak, 2023; Dibia, 2023; 052

Chen et al., 2024c). These limitations severely 053

restrict their applicability in real-world scenarios 054

where data is typically distributed across multiple 055

related tables (Khan, 2024; Lu et al., 2024). 056
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Figure 1 shows an example to illustrate the mo-057

tivation of our study. Given a natural-language058

(NL) query such as “Show all the faculty ranks059

and the number of students advised by each rank060

in a bar chart”, the system must understand that061

“faculty” information corresponds to the column062

“Advisor” and “FacID” across two tables. These063

complex cross-table visualization highlights the064

challenge between NL queries and databases, re-065

quiring a framework that can preprocess metadata,066

think “step-by-step” with plans, and iterative val-067

idation to ensure correctness.068

These observations inspire our NVAGENT,069

a collaborative agent workflow for NL2VIS.070

NVAGENT follows the “divide-and-conquer”071

paradigm, consisting of three specialized LLM072

agents: a processor agent for database process-073

ing and context filtering, a composer agent for074

planning visualization generation, and a validator075

agent for code translation and output verification.076

This collaborative workflow provides a more sys-077

tematic approach that can effectively handle multi-078

table scenarios while maintaining visualization ac-079

curacy and quality.080

To validate the effectiveness of NVAGENT, we081

conducted extensive experiments on the VisEval082

benchmark (Chen et al., 2024c), which includes083

two scenarios: the single-table scenario, involving084

generating visualizations from individual tables,085

and the multi-table scenario, which entails inte-086

grating information from multiple tables. The re-087

sults demonstrate that NVAGENT outperforms all088

baseline methods, achieving a 7.88% higher pass089

rate in single- and 9.23% in multi-table scenarios090

compared to the state-of-the-art method. Our ab-091

lation study that breakdown every module within092

NVAGENT provide solid evidence of our frame-093

work design. Qualitative analyses further high-094

light that NVAGENT maintains 3.64% and 18.15%095

margin in single- and multi-table over previous096

frameworks, underscoring its efficacy in produc-097

ing high-quality visual representations from com-098

plex, heterogeneous data sources.099

In summary, this paper makes the following100

key contributions: (1) We propose NVAGENT, a101

collaborative agent-based workflow for complex102

NL2VIS tasks, which decomposes the visualiza-103

tion generation process into manageable subtasks.104

(2) Extensive experiments and analysis are per-105

formed to validate the effectiveness divide-and-106

conquer strategy of NVAGENT for NL2VIS.107

2 Problem Formulation 108

A typical workflow of NL2VIS tasks involves 109

assembling queries along with tabular data as 110

input, and automatically generating code based 111

on established visualization libraries (e.g., Mat- 112

plotlib (Barrett et al., 2005), Seaborn (Waskom, 113

2021)) to be executed in a sandboxed environ- 114

ment to obtain the final chart image. However, 115

directly generating visualization code often leads 116

to errors due to the complexity of visualization re- 117

quirements and the semantic gap between natural 118

language and programming constructs. 119

Following previous works (Luo et al., 2021b; 120

Wu et al., 2024b), we introduce Visualization 121

Query Language (VQL) as an intermediate rep- 122

resentation that bridges natural language queries 123

and visualization code. As exemplified below, 124

VQL combines SQL-like syntax for data oper- 125

ations with visualization-specific constructs (i.e., 126

VisType and Binning), making the generation pro- 127

cess more controllable and reliable while main- 128

taining simplicity in structure. 129

VisType: VISUALIZE BAR
Data: SELECT Date_Stored, COUNT(Document_ID)
FROM ALL_Documents GROUP BY Date_Stored
Binning: BIN Date_Stored BY WEEKDAY

130

Formally, given a natural language query q 131

about a database schema S comprising multiple 132

tables T and columns C, the objective of NL2VIS 133

is to generate a visualization query v as an inter- 134

mediate step, which is then translated into a visu- 135

alization V that accurately represents the data in S 136

to answer the user’s query. 137

3 NVAGENT: Our Approach 138

3.1 An Overview 139

Figure 2 shows an overview of NVAGENT, which 140

is composed of three specialized agents: proces- 141

sor, composer, and validator, working collabora- 142

tively to transform natural language queries into 143

accurate visualizations. Starting with a user query 144

q and schema S, our approach first leverages the 145

processor to filter schema S′ and generate ad- 146

ditional context including augmented explanation 147

and query complexity classification. The com- 148

poser then generates a VQL query as an intermedi- 149

ate representation through reasoning step by step. 150

Finally, the validator ensures correctness via iter- 151

ative validation and refinement until a valid visu- 152

alization is produced. 153
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Figure 2: The overall pipeline of NVAGENT. We recommend a “Zoom in” to view its detailed design: (1) The
processor agent performs schema filtering and context augmentation; (2) The composer agent generates structured
VQL representations through sketch-and-fill reasoning; (3) The validator agent ensures visualization correctness
via iterations of execution-guided validation and error-based refinement.

3.2 Processor Agent154

To handle massive data and complex queries effec-155

tively, we design a processor agent that prepares156

and enriches input data. Specifically, the proces-157

sor agent consists of four steps:158

Database Description. The processor first con-159

structs a comprehensive database description,160

which includes table and column schemas, with161

representative value examples. This provides the162

foundation for LLMs to understand the data struc-163

ture and relationships. For instance, when pro-164

cessing a “Products” table, it extracts column de-165

tails like “product_id”, and “product_category”,166

along with their value examples (e.g., “Choco-167

late”, “Book”).168

Schema Filtering. Subsequently, building on169

this foundation, the agent performs schema filter-170

ing to identify and extract tables and columns rel-171

evant to the user query (e.g., filtering out unrelated172

columns like “product_category”), effectively re-173

ducing noise and preventing information overload.174

Explanation Augmentation. To enable more175

accurate query interpretation, inspired by the self-176

augmented strategy (Sui et al., 2024), the proces-177

sor generates augmented explanations for the fil-178

tered schema like “Key points: (1) product_id in179

the table Products serves as a foreign key link-180

ing to the table Complaints”. These explana-181

tions bring insights that provide additional context182

about table relationships and column semantics.183

Query Classification. Finally, the agent classi- 184

fies query complexity as either single or multiple 185

based on the number of tables involved and the op- 186

erations required. This classification guides sub- 187

sequent agents in choosing appropriate strategies 188

(e.g., the multiple scenario requires join operations 189

across tables or complex aggregations). 190

By providing a focused, well-explained schema 191

and classification, the processor agent establishes 192

a strong foundation of complex data understand- 193

ing for the subsequent stages in our framework. 194

3.3 Composer Agent 195

The composer agent is designed to bridge the 196

gap between natural language queries and visual- 197

ization code, generating structured VQL queries 198

through a step-by-step reasoning approach. 199

Strategy Decision. Based on the query classifi- 200

cation from the processor agent, different strate- 201

gies are adopted to plan the visualization gener- 202

ation. For example, single queries focus on ba- 203

sic aggregations, while multiple scenarios require 204

more complex join operations. 205

Chain-of-Thought Reasoning. During the gen- 206

eration stage, the composer agent employs a 207

chain-of-thought (Wei et al., 2022a) approach to 208

break down the visualization process into man- 209

ageable steps. This approach is complemented 210

by providing few-shot examples for In-Context 211

Learning, enhancing the model’s adaptability to 212

diverse query types. 213
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Sketch-and-Fill Process. The reasoning pro-214

cess follows the “sketch-and-fill” paradigm and is215

structured into three steps, including sketch con-216

struction, data components filling, and final VQL217

composition (prompt shown in Appendix F).218

Taking the query “List the name of all prod-219

ucts along with the number of complaints that they220

have received in a bar chart.” (shown in Fig-221

ure 2) as an example, the composer initially de-222

termines the specific elements (i.e., visualization223

type “Bar”) and constructs a VQL sketch (e.g.,224

“Visualize bar SELECT _, COUNT(_) FROM _225

JOIN _ ON _”). Subsequently, it fills the data226

components (e.g., the column “product_name” )227

into the sketch and then combines them to produce228

the complete VQL representation.229

3.4 Validator Agent230

The validator agent ensures the accuracy and ex-231

ecutability of generated VQL queries through an232

iterative execution-guided validation and error-233

based refinement process.234

Translation and Execution. When receiving a235

VQL representation, the validator first translates236

the query into executable Python code using vi-237

sualization libraries like “Matplotlib”. The gener-238

ated code is then executed in a sandboxed environ-239

ment, where the agent captures either successful240

execution results or potential error messages.241

Pass or Error. During the execution phase, the242

validator monitors the return information from the243

execution environment. If successful, it renders244

and returns the final visualization; otherwise, if er-245

rors occur (e.g., syntax errors, or invalid column246

names), the agent captures specific error messages247

and routes them back to the composer agent, trig-248

gering the refinement process.249

As illustrated in Figure 2(c), when the valida-250

tor translates the VQL query “VISUALIZE bar ...251

ON t1.product_id = t2.product_id” into Python252

code and executes, it encounters an error message253

“lack a ‘group by’ clause”. This error message254

is then sent back to the composer agent, which re-255

fines the VQL query by adding “GROUP BY prod-256

uct_name” to ensure proper data aggregation.257

Iterative Refinement. The composer agent iter-258

atively refines its output based on feedback from259

the validator agent until a valid visualization is260

produced. If any errors are detected during vali-261

dation, it receives error information and adjusts its262

output accordingly, ensuring the final VQL query 263

is correct. Notably, we design the system to re- 264

fine VQL query instead of Python code due to its 265

simpler syntax for better correction. 266

4 Experiments and Analysis 267

4.1 Experimental Setup 268

Dataset. VisEval (Chen et al., 2024c) is a bench- 269

mark designed based on nvBench (Luo et al., 270

2021a) to assess the capabilities of LLMs in 271

the NL2VIS task. It consists of 1,150 dis- 272

tinct visualizations (VIS) and 2,524 (NL, VIS) 273

pairs across 146 databases, with accurately labeled 274

ground truths and meta-information detailing fea- 275

sible visualization options. The dataset is divided 276

into single-table scenario and multi-table scenario. 277

Moreover, visualizations are classified into four 278

distinct levels of hardness: easy, medium, hard, 279

and extra hard. Cases across different hardness 280

levels can be found in Appendix E. 281

Baselines. We conduct our experiments com- 282

pared with three formerly SOTA baselines†: 283

Chat2Vis (Maddigan and Susnjak, 2023), which 284

uses prompt engineering to generate visualizations 285

from natural language descriptions; LIDA (Dibia, 286

2023), which employs a four-step process for 287

incrementally translating natural language inputs 288

into visualizations; and CoML4Vis (Zhang et al., 289

2023), which applies a few-shot prompt method 290

integrating multiple tables for visualization tasks. 291

More details can be found in Appendix B. We im- 292

plement our approach and baselines using three 293

different backbone models: GPT-4o (OpenAI, 294

2024b), GPT-4o-mini (OpenAI, 2024a), and GPT- 295

3.5-turbo (OpenAI, 2022). 296

Evaluation Metrics. We evaluate the perfor- 297

mance using both rule-based and model-based 298

metrics for quantitative and qualitative assess- 299

ment. Invalid Rate and Illegal Rate represent the 300

percentages of visualizations that fail to render or 301

meet query requirements, respectively. Pass Rate 302

measures the proportion of valid and legal visual- 303

izations in the evaluation set. Readability Score is 304

the average score ranging from 0 to 5 assigned by 305

MLLM-as-a-Judge (Chen et al., 2024a; Ye et al., 306

†We try the vanilla baseline similar to the GPT-4o with
code interpreter in https://platform.openai.com/docs/
assistants/tools/code-interpreter. Due to the API
still in the beta stage and often failing, we do not include
it as a baseline.
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Method Single-Table Multi-Table
Invalid(↓) Illegal(↓) Pass(↑) Read.(↑) Qual.(↑) Invalid(↓) Illegal(↓) Pass(↑) Read.(↑) Qual.(↑)

GPT-4o

CoML4Vis 0.67% 24.14% 75.17% 3.42 2.58 1.87% 26.27% 71.84% 3.45 2.48
LIDA 1.13% 21.20% 77.66% 2.53 1.99 14.80% 83.56% 1.62% 3.62 0.06
Chat2Vis 0.86% 21.37% 77.75% 3.87 3.02 38.74% 59.84% 1.40% 3.76 0.05
NVAGENT 0.72% 13.63% 85.63% 3.66 3.13 1.34% 17.57% 81.07% 3.61 2.93
∆ -0.05% +7.57% +7.88% -5.42% +3.64% +0.53% +8.70% +9.23% -3.98% +18.15%

GPT-4o-mini

CoML4Vis 0.36% 25.74% 73.88% 3.33 2.47 10.01% 33.06% 56.92% 3.24 1.86
LIDA 9.09% 23.04% 67.85% 3.10 2.12 17.61% 80.86% 1.51% 3.10 0.04
Chat2Vis 2.14% 25.92% 71.92% 3.81 2.76 35.78% 61.93% 2.27% 2.30 0.05
NVAGENT 1.97% 22.86% 75.16% 3.67 2.77 8.15% 25.99% 65.85% 3.66 2.42
∆ -1.61% +0.18% +1.28% -3.67% +0.36% +1.86% +7.07% +8.93% +12.96% +30.11%

GPT-3.5-turbo

CoML4Vis 6.17% 29.28% 64.54% 3.33 2.18 13.92% 30.09% 55.98% 3.37 1.93
LIDA 47.32% 15.84% 36.83% 3.32 1.23 62.57% 36.56% 0.86% 3.50 0.03
Chat2Vis 3.90% 28.11% 67.98% 3.03 2.08 40.77% 57.66% 1.55% 3.31 0.05
NVAGENT 2.98% 20.93% 76.08% 3.58 2.72 7.18% 28.51% 64.29% 3.61 2.32
∆ +0.92% -5.09%† +8.10% +7.51% +24.77% +6.74% +1.58% +8.11% +3.14% +20.21%

* ∆ represents the percentage improvement or decrease of NVAGENT compared to the best-performing baseline for each metric.
For the first three columns, ∆ is calculated using absolute differences, while for the last two columns, it is calculated as the relative change.
†: NVAGENT actually performs best, while LIDA has a lower Illegal due to its high Invalid rate.

Table 1: Performance of our approach with baselines using different backbone models.

2024) to assess their visual clarity for legal visual-307

ization. We assess MLLM-scoring by calculating308

the similarity of GPT-4o-mini and GPT-4o with309

human-annotated scores in a subset with 500 sam-310

ples. Empirically, we select GPT-4o-mini as the311

vision model for judgment. More details are re-312

ferred to the Appendix B. Quality Score is 0 for313

invalid or illegal visualizations, otherwise equal to314

the readability score.315

4.2 Overall Performance316

Table 1 shows the performance across different317

methods and backbone models. Generally, our318

proposed method, NVAGENT, demonstrates sig-319

nificant improvements over existing approaches320

across all metrics in both single- and multi-table321

scenarios, particularly on pass rate and quality322

score. Furthermore, NVAGENT achieves an im-323

pressive 85.63% pass rate and a quality score324

of 3.13 in single-table scenarios using GPT-4o,325

surpassing all baseline methods. In more com-326

plex multi-table scenarios, NVAGENT maintains327

strong performance, significantly outperforming328

other approaches. Specifically, using GPT-4o, our329

method attains an 81.07% pass rate and a qual-330

ity score of 2.93 for multi-table queries, exceeding331

the previous state-of-the-art by 18.15%. The min-332

imal performance gap between single- and multi-333

CoML4Vis LIDA Chat2Vis nvAgent30
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67.98%
71.92%

77.75% 76.08%75.16%

85.63%

GPT-3.5-turbo GPT-4o-mini GPT-4o

Figure 3: Integrating better LLMs as backbones (i.e.,
GPT-4o) can bring higher pass rates.

table scenarios (85.63% vs. 81.07% pass rate) un- 334

derscores NVAGENT’s consistency and adaptabil- 335

ity across varying query complexities, a crucial 336

advantage in real-world applications where multi- 337

table queries are common. 338

4.3 Effectiveness of Each Agent 339

To evaluate the effectiveness of each component 340

in NVAGENT, we conducted comprehensive abla- 341

tion experiments. We perform agent workflow ab- 342

lation studies with GPT-4o to assess the contribu- 343

tions of each agent, as shown in Table 2. From this 344

table, we observe that the composer is the most 345

critical component, as its removal leads to signif- 346

icant drops in the overall pass rate—22.39% with 347

GPT-3.5-turbo and 59.81% with GPT-4o. The val- 348

idator also proves vital, as its absence leads to a 349
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Method Single-Table Multi-Table Average
Invalid Illegal Pass Invalid Illegal Pass Pass Rate

GPT-4o

NVAGENT(4-shot) 0.72% 13.63% 85.63% 1.34% 17.57% 81.07% 83.80%
w/o Processor 0.62% 14.27% 85.09% 1.26% 16.42% 82.31% 83.97%
w/o Composer 1.20% 74.56% 24.22% 2.34% 74.00% 23.64% 23.99%
w/o Validator 5.80% 12.22% 81.96% 7.01% 15.95% 77.02% 79.98%

GPT-3.5-turbo

NVAGENT(4-shot) 2.98% 20.93% 76.08% 7.18% 28.51% 64.29% 71.35%
w/o Processor 3.01% 20.15% 76.82% 9.38% 31.01% 59.60% 69.92%
w/o Composer 18.78% 30.97% 50.24% 25.02% 27.92% 47.05% 48.96%
w/o Validator 18.04% 17.50% 64.45% 22.64% 21.40% 55.94% 61.04%

Table 2: Ablation results of each agent within NVAGENT.

Method Single-Table Multi-Table Average
Invalid Illegal Pass Invalid Illegal Pass Pass Rate

nvAgent(4-shot) 2.98% 20.93% 76.08% 7.18% 28.51% 64.29% 71.35%

w/o schema filtering 3.36% 20.09% 76.53% 12.08% 30.14% 57.77% 69.01%
w/o aug. explanation 3.23% 20.69% 76.06% 7.10% 30.87% 62.01% 70.44%
w/o complex. classifi. 4.77% 21.42% 73.79% 7.50% 29.80% 62.69% 69.34%
w/o CoT 15.81% 16.91% 67.27% 17.73% 24.40% 57.86% 63.50%
w/o ICL 26.80% 24.92% 48.27% 31.91% 28.41% 39.66% 44.82%

Table 3: Ablation results of each module within NVAGENT’s agentic workflow.
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Figure 4: More examples for in-context learning bring
higher pass rate, using GPT-3.5-turbo.

3.82% decrease for GPT-4o and a sharper decrease350

of 10.31% using GPT-3.5-turbo, primarily due to351

increased invalid rate, confirming the effectiveness352

of the post-processing stage.353

Interestingly, while the processor’s removal354

shows only a slight overall performance decline355

(1.43%), its impact varies across scenarios: a356

marginal improvement in single-table cases but357

a notable decrease (4.69%) in multi-table scenar-358

ios. This pattern is particularly pronounced when359

using GPT-3.5-turbo, highlighting the processor’s360

critical role in handling complex database infor-361

mation. However, more capable models like GPT-362

4o may occasionally find this additional process-363

ing step redundant, as similarly observed in “The364

Death of Schema Linking” (Maamari et al., 2024). 365

4.4 Impact of LLM Backbones 366

Figure 3 illustrates the performance of different 367

methods across three backbone LLMs in single- 368

table scenarios. It can be observed that the pass 369

rate positively correlates with the capacity of the 370

backbone LLMs. However, an intriguing phe- 371

nomenon was noted: using GPT-4o-mini resulted 372

in a slight decrease in performance compared to 373

GPT-3.5-turbo. This unexpected outcome sug- 374

gests potential limitations in GPT-4o-mini’s rea- 375

soning abilities for this specific task, despite its 376

overall advancements. 377

4.5 Impact of Prompting Techniques 378

Further ablation results of individual prompting 379

techniques within each agent using GPT-3.5-turbo 380

are demonstrated in Table 3. From this table, 381

we observe that all three techniques in processor 382

show similar results. However, the schema filter- 383

ing proves more beneficial for multi-table scenar- 384

ios (6.52%), while complexity classification ben- 385

efits single-table scenarios (2.29%). In the com- 386

poser agent, the sharp decrease (26.53%) upon re- 387

moval of in-context learning demonstrates the crit- 388

ical role of example-based prompts in task com- 389
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Setting Invalid Illegal Pass Tokens

VQL Refine 4.66% 23.97% 71.36% 1179
Code Refine 4.11% 25.51% 70.35% 1365

Table 4: Exploration study of Python code refinement.
Tokens represent the usage in the refinement stage.

Method Single-Table Multi-Table

Elo 95% CI Elo 95% CI

NVAGENT 1538.27 +2.95/-2.95 1529.86 +2.83/-2.84
CoML4Vis 1506.71 +3.00/-3.00 1514.96 +3.00/-3.00
Chat2Vis 1496.71 +3.05/-3.05 1499.44 +3.01/-3.01
LIDA 1458.31 +2.85/-2.85 1455.74 +2.94/-2.93

Table 5: Elo rankings on single- and multi-table test
sets. NVAGENT scores the highest in both scenarios.

prehension, and the significant increase in Invalid390

Rate also highlights the step-by-step VQL gener-391

ation. Moreover, as shown in Table 4, we con-392

duct an exploration study for validator to refine393

Python code directly and find that the pass rate de-394

creased by 1.01%, indicating the effectiveness of395

using VQL for correction. We also include several396

exploration experiments in Appendix C.397

We carefully design diverse examples including398

various visualization types (e.g., grouping scatter)399

and binning operations (e.g., Year, Weekday) for400

prompting LLM, and Figure 4 illustrates the im-401

pact of increasing the number of examples in the402

prompt. The observed improvement in pass rate403

suggests that the language model effectively lever-404

ages knowledge from few-shot prompts.405

4.6 Qualitative Analysis406

ELO Score. We adopt the ELO rating sys-407

tem (Elo and Sloan, 1978), a widely-used method408

for calculating relative skill levels, to evaluate409

model performance. We conduct this experiment410

in 1000 example pairs from single- and multi-table411

datasets with equal weights for different models,412

using human judgments to assess the accuracy of413

natural language queries. The results in Table 5414

show that our NVAGENT outperforms other base-415

lines, highlighting its capability to manage com-416

plex queries and produce relevant visualizations.417

Implementation details are in Appendix B.418

Case Study. Figure 6 presents three cases illus-419

trating NL queries and their visualizations gen-420

erated by NVAGENT and baseline models. The421

examples showcase NVAGENT’s superior perfor-422

mance. In the first case, NVAGENT correctly423

Easy Medium Hard Extra Hard Total

Bar

Line

Pie

Scatter

SB

GL

GS

Total

3.72 9.99 14.79 28.38 11.82

14.29 42.19 40.00 46.15 37.40

4.55 6.76 6.41 0.00 5.53

7.84 18.75 100.00 75.00 22.50

0.00 12.50 72.73 34.21 42.86

100.00 66.67 66.67 80.00 76.00

26.47 43.48 0.00 100.00 34.48

6.43 12.30 18.50 32.07 14.03
0
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40
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(a) Error distribution of NVAGENT.

Easy
Medium Hard

Extra Hard

CoML4Vis

LIDA

Chat2Vis

nvAgent

12.58 27.52 28.38 46.15

13.08 20.51 22.97 34.62

8.94 22.80 27.03 36.54

6.62 12.48 32.43 36.54

Bar Line Pie
Scatter SB GL GS

Total

23.26 32.18 5.03 19.30 46.94 57.89 63.83 22.53

16.57 20.69 9.40 26.32 32.65 52.63 72.34 18.38

17.15 34.48 6.04 21.05 38.78 36.84 61.70 18.38

10.08 39.08 4.36 19.30 38.78 68.42 23.40 12.90
0

20

40

60

80

100

(b) Errors of different models in single-table dataset.

Figure 5: Error distributions with hardness and chart
type. SB, GL, and GS refer to Stacked Bar, Grouping
Line, and Grouping Scatter, respectively.

orders data by the X-axis, while Chat2Vis and 424

CoML4Vis use the Y-axis. The second case high- 425

lights NVAGENT’s accurate grouping in a stacked 426

bar chart, unlike the baselines. In the third case, 427

involving a multi-table query, NVAGENT effec- 428

tively joins tables and groups data for a line chart, 429

whereas Chat2Vis struggles with the structure, and 430

CoML4Vis overlooks the where condition. 431

Error Analysis. As shown in Figure 5, 432

NVAGENT’s performance varies significantly 433

across chart type and difficulty level, particularly 434

with rare queries in temporal data, such as line 435

charts. Our error analysis reveals that failures 436

stem from insufficient handling of temporal 437

information and an imperfect translate func- 438

tion for time-series binning operations. These 439

challenges related to chart complexity and task 440

difficulty underscore the need for better tabular 441

data understanding in LLMs. Our future work can 442

be focused on improving the reasoning abilities of 443

LLMs in temporal information in tabular data. 444

5 Related Work 445

NL2VIS. NL2VIS research has evolved from 446

rule-based systems (Narechania et al., 2020; Srini- 447

vasan and Stasko, 2017; Yu and Silva, 2019; 448

Gao et al., 2015; Luo et al., 2018) and neu- 449

ral network-based approaches (Markel et al., 450

2002; Luo et al., 2021c; Song et al., 2022), to 451

most recently to generated model enhanced sys- 452

tems (Hong et al., 2024). Current LLM-based 453

approaches can be broadly categorized into two 454
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Find the number of 
professors with a PhD 
degree in each 
department Show bar 
chart, and I want to 
sort x-axis in desc 
order.

Show me about the 
distribution of  
date_address_from and 
the sum of 
monthly_rental , and 
group by attribute 
other_details and bin 
date_address_from by 
weekday in a bar chart.

What are the actual 
delivery dates of orders 
with quantity 1, and 
count them by a line 
chart?

NL Query Chat2Vis

Readability Score: 5
Doesn't sort with department 

code in descending order.

Doesn't sort with department 

code in descending order.

Readability Score: 5

Readability Score: 5

{"field_x": "Mon", "field_y": 

1032.8717, "field_classify": 

"apartment"} not found.

NV-Agent (Ours) CoML4Vis

The data on the charts can 

not be understood.

{"field_x": "1990-11-14", 

"field_y": 1} not found.

{"field_x": "Mon", "field_y": 

1032.8717, "field_classify": 

"apartment"} not found.

Figure 6: Case study of visualization performed by NVAGENT and other baselines. The first two cases are from
single-table dataset and the third from multi-table dataset. NVAGENT performed well in most complex cases (e.g.,
stacked bar charts), while other baselines failed.

groups: (1) those utilizing prompt engineering455

techniques, such as Chat2Vis (Maddigan and Sus-456

njak, 2023), Prompt4Vis (Li et al., 2024b), Mir-457

ror (Xu et al., 2023), LIDA (Dibia, 2023), and458

Data Formulator (Wang et al., 2024b), and (2)459

those involving fine-tuning of models specifically460

for NL2VIS tasks, like TableGPT (Zha et al.,461

2023; Su et al., 2024), ChartLlama (Han et al.,462

2023) and DataVis-T5 (Wan et al., 2024). This463

evolution marks significant progress in making464

data visualization more accessible and intuitive.465

LLM for Tabular Data. LLM-based ap-466

proaches push the performance of tabular data467

processing to a new boundary (Liu et al.,468

2024). The emergent in-context learning capa-469

bility (Dong et al., 2022) and chain-of-thought470

reasoning (Wei et al., 2022b) have significantly471

enhanced LLMs’ ability to handle complex tabu-472

lar tasks by mimicking examples and encouraging473

step-by-step thinking (Min et al., 2022; Zhang474

et al., 2022; Wu et al., 2024a). These advance-475

ments have been particularly impactful in several476

key tasks such as TableQA (Qiu et al., 2024;477

Xu et al., 2024), Text2SQL (Wu et al., 2024c;478

Pourreza and Rafiei, 2024), NL2Formula (Zhao479

et al., 2024) and NL2VIS (Yang et al., 2024; Li480

et al., 2024b; Tian et al., 2024).481

Agentic Workflow. Agentic workflow leverages 482

multiple LLM-based agents, each assigned differ- 483

ent roles to tackle complex problems (Talebirad 484

and Nadiri, 2023). These systems employ various 485

interaction modes, such as collaboration (Chan 486

et al., 2023; Li et al., 2023; Wu et al., 2023) or 487

competition (Zhao et al., 2023), showing remark- 488

able success in database query tasks (Wang et al., 489

2024a; Zhu et al., 2024; Cen et al., 2024), soft- 490

ware development (Hong et al., 2023; Islam et al., 491

2024; Huang et al., 2024) and mathematical rea- 492

soning (Chen et al., 2024b). This success stems 493

from the synergy of specialized agents working 494

together to overcome individual limitations and 495

solve complex tasks efficiently. 496

6 Conclusion 497

In this paper, we have proposed NVAGENT, a 498

collaborative agent-based workflow to solve the 499

challenging mult-table NL2VIS task and provide 500

a “turnkey solution” for users. NVAGENT de- 501

composes the process into atomic modules such 502

as database preprocessing, visualization planning, 503

and iterative optimization. Experimental results 504

show that NVAGENT outperforms state-of-the-art 505

baselines by 7.88% in single-table and 9.23% in 506

multi-table scenarios, demonstrating the efficacy 507

of NVAGENT. 508
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Limitations509

While NVAGENT demonstrates significant im-510

provements in NL2VIS tasks, we acknowledge511

several limitations. Our reliance on proprietary512

APIs may constrain the system’s reproducibility513

and adaptability. Additionally, utilizing large lan-514

guage models as both backbone and evaluator in-515

troduces potential biases that could affect output516

quality and evaluation accuracy. Moreover, our517

error analysis finds insufficient handling of tem-518

poral information, which underscores the need for519

better tabular data understanding capabilities of520

LLMs. Our prompting strategy and evaluation521

metrics may not fully capture the nuances of com-522

plex visualizations or semantic correctness. The523

current framework employs a simple function to524

translate VQL into Python code, which can be525

further optimized for better readability. Future526

work should address these limitations by explor-527

ing open-source alternatives, developing more so-528

phisticated prompting and evaluation techniques,529

and integrating advanced tools like retrieval aug-530

mented generation to enhance the system’s capa-531

bilities and mitigate biases.532
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A Framework Details847

Our framework is described in Algorithm 1, and848

compared with former baselines in Table 6. Dis-849

tinct with several methods generating Python code850

for visualization directly, we use VQL as an in-851

termediate representation to bridge natural lan-852

guage queries and visualization code. Addition-853

ally, our framework can be easily optimized by854

adding some useful tools such as Retrieval Aug-855

mented Generation. Moreover, our method sup-856

ports handling multi-table data and the visual-857

ization can be customized according to humans’858

preferences. Our framework utilizes the agent-859

based collaborative workflow, which consists of860

data preprocessing, generation, and error correc-861

tion, organized with the modular design.862

Algorithm 1 NVAGENT Framework
1: function NL2VIS(Q, S)
2: Initialize Mem← {Q,S}
3: (S′, A)← PROCESSOR(Mem)
4: Mem.update(S′, A)
5: V ← COMPOSER(Mem)
6: Mem.update(V )
7: Chart, isV alid← VALIDATOR(Mem)
8: while not isV alid do
9: V ← REFINE(Mem)

10: Mem.update(V )
11: Chart, isV alid← VALIDATOR(Mem)
12: end while
13: return Chart
14: end function

B Detailed Experiment Setups863

Baselines. We implemented our experiment864

compared with three recent baselines. (We also865

tried to use Code Interpreter as a baseline, but866

due to the rate limit of API constraint, the eval-867

uation failed to generate visualizations via direct868

.csv files)869

• Chat2Vis (Maddigan and Susnjak, 2023): This870

approach generates data visualizations by lever-871

aging prompt engineering to translate natural872

language descriptions into visualizations. It uses873

a language-based table description, which in-874

cludes column types and sample values, to in-875

form the visualization generation process.876

• LIDA (Dibia, 2023): This tool structures visual-877

ization generation as a four-step process, where878

each step builds on the previous one to incre-879

mentally translate natural language inputs into880

visualizations. It uses a JSON format to describe881

column statistics and samples, making it adapt- 882

able across various visualization tasks. 883

• CoML4Vis (Zhang et al., 2023): Building 884

on a data science code generation framework, 885

CoML4Vis utilizes a few-shot prompt that in- 886

tegrates multiple tables into a single visualiza- 887

tion task. It summarizes data table information, 888

including column names and samples, and then 889

applies a few-shot prompt to guide visualization 890

generation. 891

Metrics. Our evaluation framework involves 892

five main metrics: 893

• Invalid Rate represents the percentage of visu- 894

alizations that fail to render due to issues like 895

incorrect API usage or other code errors. 896

• Illegal Rate indicates the percentage of visual- 897

izations that do not meet query requirements, 898

which can include incorrect data transforma- 899

tions, mismatched chart types, or improper vi- 900

sualizations. 901

• Readability Score is the average score (range 902

1-5) assigned by a vision language model, like 903

GPT-4V, for valid and legal visualizations, as- 904

sessing their visual clarity and ease of interpre- 905

tation. 906

• Pass Rate measures the proportion of visualiza- 907

tions in the evaluation set that are both valid 908

(able to render) and legal (meet the query re- 909

quirements). 910

• Quality Score is set to 0 for invalid or illegal 911

visualizations; otherwise, it is equal to the read- 912

ability score, providing an overall assessment of 913

visualization quality factoring in both function- 914

ality and clarity. 915

Following metrics are detailed evaluations of each 916

metric above: 917

• Code Execution Check verifies that the Python 918

code generated by the model can be success- 919

fully executed. 920

• Surface-form Check ensures that the gener- 921

ated code includes necessary elements to pro- 922

duce a visualization like function calls to dis- 923

play the chart. 924

• Chart Type Check verifies whether the ex- 925

tracted chart type from the visualization 926

matches the ground truth. 927
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Framework
System Features Visualization Capabilities Agentic Workflow

VQL as Extensible Multi-Table Customizable Data Modular Error-
Thoughts Optimization Support Styling Preprocess Design Correction

Chat2VIS (Maddigan and Susnjak, 2023) ✘ ✘ ✘ ✘ ✔ ✘ ✘

Mirror (Xu et al., 2023) ✘ ✘ ✘ ✘ ✘ ✔ ✘

LIDA (Dibia, 2023) ✘ ✔ ✘ ✔ ✔ ✔ ✘

CoML4VIS (Zhang et al., 2023) ✘ ✘ ✔ ✘ ✔ ✘ ✘

Prompt4VIS (Li et al., 2024b) ✔ ✘ ✔ ✘ ✔ ✔ ✘

CoT-Vis (Yang et al., 2024) ✔ ✘ ✘ ✘ ✔ ✘ ✘

NVAGENT (Ours) ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 6: Comparison of Different NL2VIS Frameworks.

• Data Check assesses if the data used in the928

visualization matches the ground truth, tak-929

ing into consideration potential channel swaps930

based on specified channels.931

• Order Check evaluates whether the sorting of932

visual elements follows the specified query re-933

quirements.934

• Layout Check examines issues like text over-935

flow or element overlap within visualizations.936

• Scale & Ticks Check ensures that scales and937

ticks are appropriately chosen, avoiding uncon-938

ventional representations.939

• Overall Readability Rating integrates various940

readability checks to provide a comprehensive941

score considering layout, scale, text clarity, and942

arrangement.943

For all evaluation results, these metrics are av-944

eraged across the dataset to provide an overarch-945

ing view of model performance. These metrics946

collectively ensure that visualizations are not only947

correct in terms of execution but also effective in948

communicating the intended data narratives.949

Model P-corr P-value

GPT-4o-mini 0.6503 0.000
GPT-4o 0.5648 0.000

Table 7: The Pearson correlations of GPT-4o-mini and
GPT-4o with human judgments on readability scores.

Implement Details. Our system is implemented950

in Python 3.9, utilizing GPT-4o (OpenAI, 2024b),951

GPT-4o-mini (OpenAI, 2024a), and GPT-3.5-952

turbo (OpenAI, 2022) as the backbone model953

for all approaches, with the temperature set to954

0 for consistent outputs. GPT-4o-mini serves as955

the vision language model for readability eval-956

uation. We interact with these models through957

the AzureOpenAI API. The specific prompt tem-958

plates for each agent, crucial for guiding their re-959

spective roles in the visualization generation pro- 960

cess, are detailed in Appendix F. Token usages of 961

NVAGENT and baselines are demonstrated in Ta- 962

ble 8, and usage for each agent in our NVAGENT 963

is shown in Table 9. Additionally, our evaluations 964

are conducted in VisEval Benchmark (with MIT 965

licsense). 966

Human Annotation. The annotation is con- 967

ducted by 5 authors of this paper independently. 968

As acknowledged, the diversity of annotators 969

plays a crucial role in reducing bias and enhanc- 970

ing the reliability of the benchmark. These an- 971

notators have knowledge in the data visualization 972

domain, with different genders, ages, and educa- 973

tional backgrounds. The educational backgrounds 974

of annotators are above undergraduate. To en- 975

sure the annotators can proficiently mark the data, 976

we provide them with detailed tutorials, teaching 977

them how to judge the quality of data visualiza- 978

tion. We also provide them with detailed criteria 979

and task requirements in each annotation process 980

shown in Figure 9. Two experiments requiring hu- 981

man annotation are detailed as follows: 982

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
ty

Score Distribution Comparison
gpt-4o-mini
gpt-4o
Human Score

Figure 7: Comparison of score density distribution be-
tween GPT-4o, GPT-4o-mini and human average score.

• Pearson Correlation of Visual Language 983

Model. We conduct human annotation frame- 984
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Method
Single Table Multiple Tables

prompt response total prompt response total

LIDA 1386.23 237.90 1624.13 N/A
Chat2VIS 414.35 451.30 865.65 N/A
CoML4VIS 2614.76 279.86 2894.62 3069.62 307.67 3377.29
NVAGENT 5122.99 777.63 5900.62 5613.96 1014.10 6628.06

Table 8: Token usage comparison for different methods. N/A indicates that LIDA and Chat2Vis cannot handle
multiple table scenarios.

Agent #Input #Output #Total

Processor 1486.07 569.58 1755.65
Composer 3268.32 221.74 3490.07
Validator 1051.82 127.85 1179.67

Table 9: Token usage of three agents in NVAGENT.

works to compare the ability of the visual lan-985

guage model for MLLM-as-a-Judge, providing986

the readability score. Our annotation framework987

is shown in Figure 9. The final Pearson scores988

are demonstrated in Table 7, with its density dis-989

tribution in Figure 7. The detailed instructions990

can be found in Figure 10.991

• Qualitative comparison to calculate ELO992

Scores. We conduct human-judgments evalua-993

tions to compare which visualization generated994

by different models meets the query require-995

ment more precisely. The leaderboard is shown996

in Table 5, and Figure 11 shows the judgment997

framework. Each model starts with a base ELO998

score of 1500. After each pairwise comparison,999

the scores are updated based on the outcome1000

and the current scores of the models involved.1001

The hyperparameters are set as follows: the K-1002

factor is set to 32, which determines the max-1003

imum change in rating after a single compari-1004

son. We conducted two sets of evaluations: one1005

for single-table queries and another for multiple-1006

table queries, with 1000 bootstrap iterations for1007

each set to ensure statistical robustness. The1008

evaluation process involved presenting human1009

judges with a query and two visualizations, ask-1010

ing them to select the one that better meets the1011

query requirements. This process was repeated1012

across all model pairs and queries in our test set.1013

The detailed guidance provided to the human1014

evaluators can be found in Figure 12, which out-1015

lines the criteria for judging visualization quality1016

and relevance to the given query.1017

CoML4Vis LIDA Chat2Vis nvAgent20
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ta
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67.98%
65.03%

76.08% 74.36%

Matplotlib Seaborn

Figure 8: Performance of different models using Mat-
plotlib and Seaborn library, using GPT-3.5-turbo.

C Additional Experiment Results 1018

We also conducted a comparison experiment of 1019

different methods using matplotlib or seaborn li- 1020

brary. Figure 8 demonstrates the results, in- 1021

dicating that our method outperforms obviously 1022

other baselines not only with matplotlib but also 1023

seaborn. 1024

In addition, we test techniques in the Validator 1025

Agent, such as Chain-of-Thought. As is shown 1026

in Table 10, integrating Chain-of-Thought reason- 1027

ing, may affect its performance badly, likely due 1028

to the simple refining task with complex reason- 1029

ing. Moreover, using the original schema to check 1030

for false schema filtering seems to be useless in 1031

this case. 1032

D Evaluation Results with Detailed 1033

Metrics 1034

We demonstrated the main results in Table 1, and 1035

here we reported more detailed results of other 1036

metrics in Table 11, which underscored the error 1037

rates for each stage, including Invalid, Illegal, and 1038

Low Readability. 1039

E Case Study 1040

Figure 13 shows an example of a natural language 1041

query with its corresponding VQL representation. 1042

The output Python code for visualization and the 1043

final bar chart are demonstrated in Figure 14 and 1044
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Invalid Rate Illegal Rate Pass Rate

NVAGENT 4.66% 23.97% 71.35%
w. CoT for Validator 5.82% 23.39% 70.78%
w. original schema for Validator 4.80% 24.22% 70.97%

Table 10: Additional exploration for Validator (using GPT-3.5-turbo)

Figure 9: Screenshot of human annotation process in providing readability score.

Figure 15, respectively. Furthermore, we pro-1045

vide a case study of NVAGENT performance on1046

four hardness-level NL2Vis problems in VisEval1047

in Figure 16.1048

16



Readability Scoring Instruction
Scoring Instructions: Please evaluate the charts based on the following criteria, with a score range from 1 to 5, where
1 indicates very poor quality and 5 indicates excellent quality. You should focus on the following aspects:

1. Chart Colors:

• Are the colors clear and natural, effectively conveying the information?

• Color blindness accessibility: Are the color combinations easy to distinguish, especially for users with color
blindness?

2. Title and Axis Labels:

• Ensure the chart has a clear title.

• Do the X-axis and Y-axis labels exist, and are they complete?

• Check if the labels are difficult to read, e.g., are they written vertically instead of horizontally?

• The title should not be a direct question; instead, it should describe the data or trends being presented.

3. Legend Completeness:

• Is the legend complete, and does it clearly indicate the color labels for different data series?

• Ensure each color has a corresponding legend, making it easy for users to understand what the data represents.

Scoring Scale:

• 1 Point: Very poor, unable to understand or severely lacking information.

• 2 Points: Poor quality, multiple issues present, difficult to extract information.

• 3 Points: Fair, conveys some information but still has room for improvement.

• 4 Points: Good, generally clear charts with minor areas for improvement.

• 5 Points: Excellent, outstanding chart design with clear and effective information presentation.

Please consider the above factors when assessing the charts and provide the appropriate score. Thank you for your
cooperation and effort!

Figure 10: Human Annotation Readability Scoring Instructions.

17



Figure 11: Screenshot of ELO Score Evaluation Framework for Human-as-a-Judge
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Visualization Comparison Guidance
Welcome to the visualization comparison evaluation. Your task is to judge which model-generated visualization better
meets the requirements of the natural language query.

Evaluation criteria:

1. Appropriateness of chart type: Check if the selected chart type is suitable for expressing the data and relation-
ships required by the query.

2. Data completeness: Ensure the chart includes all necessary data required by the query.

3. Readability: Assess the clarity of the chart, accuracy of labels, and overall layout.

4. Aesthetics: Consider if the chart’s color scheme, proportions, and overall design are visually pleasing.

5. Information conveyance: Judge if the chart effectively conveys the main information or insights required by
the query.

Evaluation process:

1. Carefully read the natural language query.

2. Observe the visualization results generated by two models.

3. Based on the above criteria, choose the better visualization or select a tie if they are equally good.

4. If neither visualization satisfies the query requirements well, please choose the relatively better one.

Remember, your evaluation will help us improve and compare different visualization models. Thank you for your
participation!

Figure 12: Visualization Comparison Evaluation Instructions.

An Example of Natural Language Query and Corresponding VQL

Natural Language Query:
How many documents are stored? Bin the store date by weekday in a bar chart.

Corresponding VQL:
Visualize BAR
SELECT Date_Stored, COUNT(Document_ID)
FROM All_Documents
GROUP BY Date_Stored
BIN Date_Stored BY WEEKDAY

Figure 13: The natural language query case and its corresponding output VQL representation.
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Method Dataset Invalid Illegal Low Readability
Execution Surface. Decon. Chart Type Data Order Layout Scale&Ticks

GPT-4o

CoML4Vis
All 1.15 0.00 0.26 1.75 14.28 10.36 32.02 32.55
Single 0.67 0.00 0.43 1.93 13.54 10.16 31.08 32.76
Multiple 1.87 0.00 0.00 1.48 15.39 10.66 33.43 32.23

LIDA
All 6.61 0.00 1.60 3.24 40.53 4.07 32.68 15.77
Single 1.13 0.00 2.11 0.89 12.26 6.79 53.93 26.22
Multiple 14.80 0.00 0.79 8.51 80.53 0.00 1.24 0.21

Chat2Vis
All 16.05 0.00 0.62 3.99 30.14 5.96 2.37 20.88
Single 0.86 0.00 0.75 2.30 10.78 9.73 3.97 34.63
Multiple 38.74 0.00 0.43 6.51 59.08 0.32 0.00 0.34

nvAgent
All 0.97 0.00 0.08 1.28 11.07 4.05 5.07 40.03
Single 0.72 0.00 0.14 1.27 9.88 3.60 3.92 39.36
Multiple 1.34 0.00 0.00 1.30 12.84 4.73 6.79 41.03

GPT-4o-mini

CoML4Vis
All 4.23 0.00 0.20 2.31 16.64 11.83 35.23 29.35
Single 0.36 0.00 0.26 2.32 13.80 11.67 35.92 32.22
Multiple 10.01 0.00 0.10 2.31 20.87 12.07 34.19 25.05

LIDA
All 12.50 0.00 0.40 4.92 40.02 5.80 27.87 17.05
Single 9.09 0.00 0.44 2.53 12.91 9.68 45.69 28.32
Multiple 17.61 0.00 0.33 8.51 80.53 0.00 1.24 0.21

Chat2Vis
All 15.45 0.17 0.17 4.21 31.90 8.20 2.14 18.97
Single 2.14 0.29 0.41 2.53 11.99 9.68 45.69 28.32
Multiple 35.78 0.00 0.00 6.70 61.66 0.00 0.92 0.32

nvAgent
All 5.14 0.00 0.00 2.40 16.33 10.61 41.06 27.00
Single 1.97 0.00 0.14 2.97 15.21 7.49 39.30 32.39
Multiple 8.15 0.00 0.00 2.31 20.87 12.07 34.19 25.05

GPT-3.5-turbo

CoML4Vis
All 9.28 0.00 0.62 1.91 15.83 12.86 25.09 27.73
Single 6.17 0.00 0.89 2.50 14.71 13.20 26.10 29.93
Multiple 13.92 0.00 0.21 1.04 17.51 12.36 23.57 24.43

LIDA
All 53.43 0.00 1.27 3.56 22.33 0.53 14.90 6.62
Single 47.32 0.00 1.91 2.81 13.03 0.89 24.43 11.05
Multiple 62.57 0.00 0.32 4.68 36.23 0.00 0.65 0.00

Chat2Vis
All 18.68 0.00 0.28 3.66 32.47 7.20 25.45 20.15
Single 3.90 0.00 0.47 2.78 15.62 12.01 41.74 33.38
Multiple 40.77 0.00 0.00 4.97 57.66 0.00 1.12 0.37

nvAgent
All 4.66 0.00 0.08 3.06 18.24 5.64 5.25 35.34
Single 2.98 0.00 0.14 2.84 15.08 5.69 3.62 37.57
Multiple 7.18 0.00 0.00 3.38 22.95 5.56 7.69 32.02

Table 11: Detailed Error Rates (%) for Different Methods and Models
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1 import matplotlib.pyplot as plt
2 import pandas as pd
3 import os
4 import duckdb
5
6 # Set data folder path
7 data_folder = 'E:/visEval_dataset/databases/cre_Doc_Tracking_DB'
8
9 # Connect to database

10 con = duckdb.connect(database=':memory:')
11
12 # Read all CSV files and create view
13 csv_files = [f for f in os.listdir(data_folder) if f.endswith('.csv')]
14 for file in csv_files:
15 table_name = os.path.splitext(file)[0]
16 con.execute(f"CREATE VIEW {table_name} AS SELECT * FROM read_csv_auto('{os.path.join(data_folder, file)}')")
17
18 # Execute SQL query
19 sql = f'''
20 SELECT Date_Stored, COUNT(Document_ID) AS count_Document_ID
21 FROM All_Documents
22 GROUP BY Date_Stored
23 '''
24 df = con.execute(sql).fetchdf()
25 con.close()
26
27 # Rename columns
28 df.columns = ['Date_Stored','count_Document_ID']
29
30 # Apply binning operation
31 flag = True
32 df['Date_Stored'] = pd.to_datetime(df['Date_Stored'])
33 df['Date_Stored'] = df['Date_Stored'].dt.day_name()
34
35 # Group by and calculate count
36 if flag:
37 df = df.groupby('Date_Stored').sum().reset_index()
38
39 # Ensure all seven days of the week are included
40 weekday_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
41 'Friday', 'Saturday', 'Sunday']
42 df = df.set_index('Date_Stored').reindex(weekday_order, fill_value=0).reset_index()
43 df['Date_Stored'] = pd.Categorical(df['Date_Stored'],
44 categories=weekday_order, ordered=True)
45 df = df.sort_values('Date_Stored')
46
47 # Create visualization
48 fig, ax = plt.subplots(1, 1, figsize=(10, 4))
49 ax.spines['top'].set_visible(False)
50 ax.spines['right'].set_visible(False)
51 ax.bar(df['Date_Stored'], df['count_Document_ID'])
52 ax.set_xlabel('Date_Stored')
53 ax.set_ylabel('count_Document_ID')
54 ax.set_title(f'BAR Chart of count_Document_ID by Date_Stored')
55 plt.xticks(rotation=45)
56 plt.tight_layout()
57 plt.show()

Figure 14: Python Code for Visualization
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21



Examples of NVAGENT performance on different hardness levels

Hardness Level: Easy

Dataset: Single
Input Tables: basketball_match
Input Query: Show the relation between
acc percent and all_games_percent for each
ACC_Home using a grouped scatter chart.

Response:

Hardness Level: Medium
Dataset: Multiple
Input Tables: car_makers, car_names,
cars_data, continents, countries, model_list
Input Query: Display a pie chart for
what is the name of each continent and
how many car makers are there in each one?

Response:

Hardness Level: Hard

Dataset: Multiple
Input Tables: advisor, classroom, course,
department, instructor, prereq, section,
student, takes, teaches, time_slot
Input Query: Find the number of courses
offered by Psychology department in each
year with a line chart.

Response:

Hardness Level: Extra Hard

Dataset: Multiple
Input Tables: Accounts, Documents,
Documents_with_Expenses, Projects, Ref-
_Budget_Codes, Ref_Document_Types,
Statements
Input Query: How many documents are
created in each day? Bin the document date
by weekday and group by document type
description with a stacked bar chart, I want
to sort Y in desc order.

Response:

Figure 16: Examples of NVAGENT performing the different hardness levels, including Easy, Medium, Hard, and
Extra Hard.
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F Prompts Details 1049

We provide detailed prompt design of our NVAGENT. 1050

Prompt template for Processor Agent

You are an experienced and professional database administrator. Given a database schema and
a user query, your task is to analyze the query, filter the relevant schema, generate an optimized
representation, and classify the query difficulty.

Now you can think step by step, following these instructions below.
[Instructions]
1. Schema Filtering:

- Identify the tables and columns that are relevant to the user query.
- Only exclude columns that are completely irrelevant.
- The output should be {{tables: [columns]}}.
- Keep the columns needed to be primary keys and foreign keys in the filtered schema.
- Keep the columns that seem to be similar with other columns of another table.

2. New Schema Generation:
- Generate a new schema of the filtered schema, based on the given database schema and your

filtered schema.

3. Augmented Explanation:
- Provide a concise summary of the filtered schema to give additional knowledge.
- Include the number of tables, total columns, and any notable relationships or patterns.

4. Classification:
For the database new schema, classify it as SINGLE or MULTIPLE based on the tables number.

- if tables number >= 2: predict MULTIPLE
- elif only one table: predict SINGLE

==============================
Here is a typical example:
[Database Schema]
[DB_ID] dorm_1
[Schema]
# Table: Student
[

(stuid, And This is a id type column),
(lname, Value examples: [’Smith’, ’Pang’, ’Lee’, ’Adams’, ’Nelson’, ’Wilson’].),
(fname, Value examples: [’Eric’, ’Lisa’, ’David’, ’Sarah’, ’Paul’, ’Michael’].),
(age, Value examples: [18, 20, 17, 19, 21, 22].),
(sex, Value examples: [’M’, ’F’].),
(major, Value examples: [600, 520, 550, 50, 540, 100].),
(advisor, And this is a number type column),
(city code, Value examples: [’PIT’, ’BAL’, ’NYC’, ’WAS’, ’HKG’, ’PHL’].)

]
# Table: Dorm
[

(dormid, And This is a id type column),

1051
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(dorm name, Value examples: [’Anonymous Donor Hall’, ’Bud Jones Hall’, ’Dorm-plex 2000’,
’Fawlty Towers’, ’Grad Student Asylum’, ’Smith Hall’].),

(student capacity, Value examples: [40, 85, 116, 128, 256, 355].), (gender, Value examples:
[’X’, ’F’, ’M’].)
]
# Table: Dorm_amenity
[

(amenid, And This is a id type column),
(amenity name, Value examples: [’4 Walls’, ’Air Conditioning’, ’Allows Pets’, ’Carpeted

Rooms’, ’Ethernet Ports’, ’Heat’].)
]
# Table: Has_amenity
[

(dormid, And This is a id type column),
(amenid, And This is a id type column)

]
# Table: Lives_in
[

(stuid, And This is a id type column),
(dormid, And This is a id type column),
(room number, And this is a number type column)

]

[Query]
Find the first name of students who are living in the Smith Hall, and count them by a pie chart

Now we can think step by step
[Filtered Schema]
{
"Student": ["stuid", "fname"],
"Dorm": ["dormid", "dorm name"],
"Lives_in": ["stuid", "dormid"]
}

[New Schema]
# Table: Student
[
(stuid, And This is a id type column),
(fname, Value examples: [’Eric’, ’Lisa’, ’David’, ’Sarah’, ’Paul’, ’Michael’].),
]
# Table: Dorm [
(dormid, And This is a id type column),
(dorm name, Value examples: [’Anonymous Donor Hall’, ’Bud Jones Hall’, ’Dorm-plex 2000’,
’Fawlty Towers’, ’Grad Student Asylum’, ’Smith Hall’].),
]
# Table: Lives_in
[
(stuid, And This is a id type column),
(dormid, And This is a id type column),
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]
[Augmented Explanation]
The filtered schema consists of 3 tables (Student, Dorm, and Lives_in) with a total of 6 relevant
columns. There is a many-to-one relationship between Student and Dorm through the Lives_in
junction table. The query involves joining these three tables to find students living in a specific
dorm (Smith Hall).

Key points:
1. The Lives_in table acts as a bridge between Student and Dorm, allowing for the association of
students with their dorms.
2. The ’dorm name’ column in the Dorm table is crucial for filtering the specific dorm (Smith
Hall).
3. The ’fname’ column from the Student table is required for the final output.

[Classification]
MULTIPLE

==============================
Here is a new question:

[DB_ID] {db_id}
[Database Schema]
{db_schema}

[Query]
{query}

Now give your answer following this format strictly without other explanation:

[Filtered Schema]

[New Schema]

[Augmented Explanation]

[Classification]

1053

Prompt template for multiple classification

Given a [Database schema] with [Augmented Explanation] and a [Question], generate a valid
VQL (Visualization Query Language) sentence. VQL is similar to SQL but includes visualization
components.

Now you can think step by step, following these instructions below.
[Background]
VQL Structure:
Visualize [TYPE] SELECT [COLUMNS] FROM [TABLES] [JOIN] [WHERE] [GROUP BY]
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[ORDER BY] [BIN BY]

You can consider a VQL sentence as "VIS TYPE + SQL + BINNING"
You must consider which part in the sketch is necessary, which is unnecessary, and construct a
specific sketch for the natural language query.

Key Components:
1. Visualization Type: bar, pie, line, scatter, stacked bar, grouped line, grouped scatter
2. SQL Components: SELECT, FROM, JOIN, WHERE, GROUP BY, ORDER BY
3. Binning: BIN [COLUMN] BY [INTERVAL], [INTERVAL]: [YEAR, MONTH, DAY,
WEEKDAY]

When generating VQL, we should always consider special rules and constraints:
[Special Rules]
a. For simple visualizations:

- SELECT exactly TWO columns, X-axis and Y-axis(usually aggregate function)
b. For complex visualizations (STACKED BAR, GROUPED LINE, GROUPED SCATTER):

- SELECT exactly THREE columns in this order!!!:
1. X-axis
2. Y-axis (aggregate function)
3. Grouping column

c. When "COLORED BY" is mentioned in the question:
- Use complex visualization type(STACKED BAR for bar charts, GROUPED LINE for line

charts, GROUPED SCATTER for scatter charts)
- Make the "COLORED BY" column the third SELECT column
- Do NOT include "COLORED BY" in the final VQL

d. Aggregate Functions:
- Use COUNT for counting occurrences
- Use SUM only for numeric columns
- When in doubt, prefer COUNT over SUM

e. Time based questions:
- Always use BIN BY clause at the end of VQL sentence
- When you meet the questions including "year", "month", "day", "weekday"
- Avoid using window function, just use BIN BY to deal with time base queries

[Constraints]
- In SELECT <column>, make sure there are at least two selected!!!
- In FROM <table> or JOIN <table>, do not include unnecessary table
- Use only table names and column names from the given database schema
- Enclose string literals in single quotes
- If [Value examples] of <column> has ’None’ or None, use JOIN <table> or WHERE <column>
is NOT NULL is better
- Ensure GROUP BY precedes ORDER BY for distinct values
- NEVER use window functions in SQL

Now we could think step by step:
1. First choose visualize type and binning, then construct a specific sketch for the natural language
query
2. Second generate SQL components following the sketch.
3. Third add Visualize type and BINNING into the SQL components to generate final VQL
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==============================
Here is a typical example:
[Database Schema]
# Table: Orders, (orders)
[

(order_id, order id, And this is a id type column),
(customer_id, customer id, And this is a id type column),
(order_date, order date, Value examples: [’2023-01-15’, ’2023-02-20’, ’2023-03-10’].),
(total_amount, total amount, Value examples: [100.00, 200.00, 300.00, 400.00, 500.00].)

]
# Table: Customers, (customers)
[

(customer_id, customer id, And this is a id type column),
(customer_name, customer name, Value examples: [’John’, ’Emma’, ’Michael’, ’Sophia’,

’William’].),
(customer_type, customer type, Value examples: [’Regular’, ’VIP’, ’New’].)

]
[Augmented Explanation]
The filtered schema consists of 2 tables (Orders and Customers) with a total of 7 relevant columns.
There is a one-to-many relationship between Customers and Orders through the customer_id
foreign key.

Key points:
1. The Orders table contains information about individual orders, including the order date and
total amount.
2. The Customers table contains customer information, including their name and type (Regular,
VIP, or New).
3. The customer_id column links the two tables, allowing us to associate orders with specific
customers.
4. The order_date column in the Orders table will be used for monthly grouping and binning.
5. The total_amount column in the Orders table needs to be summed for each group.
6. The customer_type column in the Customers table will be used for further grouping and as the
third dimension in the stacked bar chart.

The query involves joining these two tables to analyze order amounts by customer type and
month, which requires aggregation and time-based binning.

[Question]
Show the total order amount for each customer type by month in a stacked bar chart.

Decompose the task into sub tasks, considering [Background] [Special Rules] [Constraints], and
generate the VQL after thinking step by step:

Sub task 1: First choose visualize type and binning, then construct a specific sketch for
the natural language query
Visualize type: STACKED BAR, BINNING: True
VQL Sketch:
Visualize STACKED BAR SELECT _ , _ , _ FROM _ JOIN _ ON _ GROUP BY _ BIN _ BY
MONTH
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Sub task 2: Second generate SQL components following the sketch.
Let’s think step by step:
1. We need to select 3 columns for STACKED BAR chart, order_date as X-axis,
SUM(total_amout) as Y-axis, customer_type as group column.
2. We need to join the Orders and Customers tables.
3. We need to group by customer type.
4. We do not need to use any window function for MONTH.

sql
“‘sql
SELECT O.order_date, SUM(O.total_amount), C.customer_type
FROM Orders AS O
JOIN Customers AS C ON O.customer_id = C.customer_id
GROUP BY C.customer_type
“‘

Sub task 3: Third add Visualize type and BINNING into the SQL components to generate
final VQL
Final VQL:
Visualize STACKED BAR SELECT O.order_date, SUM(O.total_amount), C.customer_type
FROM Orders O JOIN Customers C ON O.customer_id = C.customer_id GROUP BY
C.customer_type BIN O.order_date BY MONTH

==============================
Here is a new question:

[Database Schema]
{desc_str}

[Augmented Explanation]
{augmented_explanation}

[Query]
{query}

Now, please generate a VQL sentence for the database schema and question after thinking
step by step.
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Prompt template for single classification

Given a [Database schema] with [Augmented Explanation] and a [Question], generate a valid
VQL (Visualization Query Language) sentence. VQL is similar to SQL but includes visualization
components.

Now you can think step by step, following these instructions below.
[Background]
VQL Structure:
Visualize [TYPE] SELECT [COLUMNS] FROM [TABLES] [JOIN] [WHERE] [GROUP BY]
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[ORDER BY] [BIN BY]

You can consider a VQL sentence as "VIS TYPE + SQL + BINNING"
You must consider which part in the sketch is necessary, which is unnecessary, and construct a
specific sketch for the natural language query.

Key Components:
1. Visualization Type: bar, pie, line, scatter, stacked bar, grouped line, grouped scatter
2. SQL Components: SELECT, FROM, JOIN, WHERE, GROUP BY, ORDER BY
3. Binning: BIN [COLUMN] BY [INTERVAL], [INTERVAL]: [YEAR, MONTH, DAY,
WEEKDAY]

When generating VQL, we should always consider special rules and constraints:
[Special Rules]
a. For simple visualizations:

- SELECT exactly TWO columns, X-axis and Y-axis(usually aggregate function)
b. For complex visualizations (STACKED BAR, GROUPED LINE, GROUPED SCATTER):

- SELECT exactly THREE columns in this order!!!:
1. X-axis
2. Y-axis (aggregate function)
3. Grouping column

c. When "COLORED BY" is mentioned in the question:
- Use complex visualization type(STACKED BAR for bar charts, GROUPED LINE for line

charts, GROUPED SCATTER for scatter charts)
- Make the "COLORED BY" column the third SELECT column
- Do NOT include "COLORED BY" in the final VQL

d. Aggregate Functions:
- Use COUNT for counting occurrences
- Use SUM only for numeric columns
- When in doubt, prefer COUNT over SUM

e. Time based questions:
- Always use BIN BY clause at the end of VQL sentence
- When you meet the questions including "year", "month", "day", "weekday"
- Avoid using window function, just use BIN BY to deal with time base queries

[Constraints]
- In SELECT <column>, make sure there are at least two selected!!!
- In FROM <table> or JOIN <table>, do not include unnecessary table
- Use only table names and column names from the given database schema
- Enclose string literals in single quotes
- If [Value examples] of <column> has ’None’ or None, use JOIN <table> or WHERE <column>
is NOT NULL is better
- Ensure GROUP BY precedes ORDER BY for distinct values
- NEVER use window functions in SQL

Now we could think step by step:
1. First choose visualize type and binning, then construct a specific sketch for the natural language
query
2. Second generate SQL components following the sketch.
3. Third add Visualize type and BINNING into the SQL components to generate final VQL
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==============================
Here is a typical example:
[Database Schema]
# Table: course, (course)
[

(course_id, course id, Value examples: [101, 696, 656, 659]. And this is an id type column),
(title, title, Value examples: [’Geology’, ’Differential Geometry’, ’Compiler Design’, ’Interna-

tional Trade’, ’Composition and Literature’, ’Environmental Law’].),
(dept_name, dept name, Value examples: [’Cybernetics’, ’Finance’, ’Psychology’, ’Account-

ing’, ’Mech. Eng.’, ’Physics’].),
(credits, credits, Value examples: [3, 4].)

]
# Table: section, (section)
[

(course_id, course id, Value examples: [362, 105, 960, 468]. And this is an id type column),
(sec_id, sec id, Value examples: [1, 2, 3]. And this is an id type column),
(semester, semester, Value examples: [’Fall’, ’Spring’].),
(year, year, Value examples: [2002, 2006, 2003, 2007, 2010, 2008].),
(building, building, Value examples: [’Saucon’, ’Taylor’, ’Lamberton’, ’Power’, ’Fairchild’,

’Main’].),
(room_number, room number, Value examples: [180, 183, 134, 143].),
(time_slot_id, time slot id, Value examples: [’D’, ’J’, ’M’, ’C’, ’E’, ’F’]. And this is an id type

column)
]
[Augmented Explanation]
The filtered schema consists of 2 tables (course and section) with a total of 11 relevant columns.
There is a one-to-many relationship between course and section through the course_id foreign key.

Key points:
1. The course table contains information about individual courses, including the course title,
department, and credits.
2. The section table contains information about specific sections of courses, including the
semester, year, building, room number, and time slot.
3. The course_id column links the two tables, allowing us to associate sections with specific
courses.
4. The dept_name column in the course table will be used to filter for Psychology department
courses.
5. The year column in the section table will be used for yearly grouping and binning.
6. We need to count the number of courses offered each year, which requires aggregation and
time-based binning.

The query involves joining these two tables to analyze the number of courses offered by
the Psychology department each year, which requires aggregation and time-based binning.

[Question]
Find the number of courses offered by Psychology department in each year with a line chart.

Decompose the task into sub tasks, considering [Background] [Special Rules] [Constraints], and
generate the VQL after thinking step by step:
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Sub task 1: First choose visualize type and binning, then construct a specific sketch for
the natural language query
Visualize type: LINE, BINNING: True
VQL Sketch:
Visualize LINE SELECT _ , _ FROM _ JOIN _ ON _ WHERE _ BIN _ BY YEAR

Sub task 2: Second generate SQL components following the sketch.
Let’s think step by step:
1. We need to select 2 columns for LINE chart, year as X-axis, COUNT(year) as Y-axis.
2. We need to join the course and section tables to get the number of courses offered by the
Psychology department in each year.
3. We need to filter the courses by the Psychology department.
4. We do not need to use any window function for YEAR.

sql
“‘sql
SELECT S.year, COUNT(S.year)
FROM course AS C
JOIN section AS S ON C.course_id = S.course_id
WHERE C.dept_name = ’Psychology’
“‘

Sub task 3: Third add Visualize type and BINNING into the SQL components to generate
final VQL
Final VQL:
Visualize LINE SELECT S.year, COUNT(S.year) FROM course C JOIN section S ON
C.course_id = S.course_id WHERE C.dept_name = ’Psychology’ BIN S.year BY YEAR

==============================
Here is a new question:

[Database Schema]
{desc_str}

[Augmented Explanation]
{augmented_explanation}

[Query]
{query}

Now, please generate a VQL sentence for the database schema and question after thinking
step by step.

1061

Prompt template for Validator Agent

As an AI assistant specializing in data visualization and VQL (Visualization Query Language),
your task is to refine a VQL query that has resulted in an error. Please approach this task
systematically, thinking step by step.
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[Background]
VQL Structure:
Visualize [TYPE] SELECT [COLUMNS] FROM [TABLES] [JOIN] [WHERE] [GROUP BY]
[ORDER BY] [BIN BY]

You can consider a VQL sentence as "VIS TYPE + SQL + BINNING"

Key Components:
1. Visualization Type: bar, pie, line, scatter, stacked bar, grouped line, grouped scatter
2. SQL Components: SELECT, FROM, JOIN, WHERE, GROUP BY, ORDER BY
3. Binning: BIN [COLUMN] BY [INTERVAL], [INTERVAL]: [YEAR, MONTH, DAY,
WEEKDAY]

When refining VQL, we should always consider special rules and constraints:
[Special Rules]
a. For simple visualizations:

- SELECT exactly TWO columns, X-axis and Y-axis(usually aggregate function)
b. For complex visualizations (STACKED BAR, GROUPED LINE, GROUPED SCATTER):

- SELECT exactly THREE columns in this order!!!:
1. X-axis
2. Y-axis (aggregate function)
3. Grouping column

c. When "COLORED BY" is mentioned in the question:
- Use complex visualization type(STACKED BAR for bar charts, GROUPED LINE for line

charts, GROUPED SCATTER for scatter charts)
- Make the "COLORED BY" column the third SELECT column
- Do NOT include "COLORED BY" in the final VQL

d. Aggregate Functions:
- Use COUNT for counting occurrences
- Use SUM only for numeric columns
- When in doubt, prefer COUNT over SUM

e. Time based questions:
- Always use BIN BY clause at the end of VQL sentence
- When you meet the questions including "year", "month", "day", "weekday"
- Avoid using time function, just use BIN BY to deal with time base queries

[Constraints]
- In FROM <table> or JOIN <table>, do not include unnecessary table
- Use only table names and column names from the given database schema
- Enclose string literals in single quotes
- If [Value examples] of <column> has ’None’ or None, use JOIN <table> or WHERE <column>
is NOT NULL is better
- ENSURE GROUP BY clause cannot contain aggregates
- NEVER use date functions in SQL

[Query]
{query}

[Database info]
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{db_info}

[Current VQL]
{vql}

[Error]
{error}

Now, please analyze and refine the VQL, please provide:

[Explanation]
[Provide a detailed explanation of your analysis process, the issues identified, and the changes
made. Reference specific steps where relevant.]

[Corrected VQL]
[Present your corrected VQL here. Ensure it’s on a single line without any line breaks.]

Remember:
- The SQL components must be parseable by DuckDB.
- Do not change rows when you generate the VQL.
- Always verify your answer carefully before submitting.
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