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Abstract

Transformers trained on huge text corpora exhibit a remarkable set of capabilities.
Given the inherent compositional nature of language, one can expect the model to
learn to compose these capabilities, potentially yielding a combinatorial explosion
of what operations it can perform on an input. Motivated by the above, we aim to
assess in this paper “how capable can a transformer become?”. In this work, we
train Transformer models on a data-generating process that involves compositions
of a set of well-defined monolithic capabilities and show that: (1) Transformers
generalize to exponentially or even combinatorially many functions not seen in
the training data; (2) Transformers that generate the intermediate outputs of the
composition are more effective at generalizing to unseen compositions; (3) The
training data has a significant impact on the model’s ability to compose functions
(4) Attention layers in the latter half of the model seem critical to compositionality.

1 Introduction

Large Language Models (LLMs) showcase an impressive spectrum of capabilities [Radford et al.,
2018, 2019, Brown et al., 2020, Wei et al., 2022a, 2021, Thoppilan et al., 2022, Touvron et al., 2023,
Hoffmann et al., 2022], such as generating coherent and contextually relevant text over extended
passages or answering complex questions based on provided context. Acquiring such a diverse set of
capabilities is crucial to developing artificial intelligence systems that are both general and flexible.

However, true generality is not simply a by-product of accumulation, but emerges when these
capabilities are combined in novel ways. Learning a set of monolithic capabilities, and composing
them together could potentially lead to a combinatorial explosion of what operations can be performed
on an input. Although LLMs have shown initial “sparks” [Bubeck et al., 2023] of compositional
behavior, the underlying mechanisms and limits of this behavior remains elusive.

Studying compositionality directly in language models is difficult because it is (i) hard to precisely
control what set of capabilities are learnable via the training data and (ii) difficult to train a language
model once, let alone multiple times. This motivates us to consider a minimal synthetic setup that
allows us to study compositionality and characterize phenomena relating to it. The goal of this work
is similar in spirit to recent works that study transformers on synthetic datasets [Garg et al., 2022,
Liu et al., 2022, Allen-Zhu and Li, 2023a, Li et al., 2023b].

We introduce the synthetic task of applying a sequence of mathematical operations, such as bijections
and permutations, to an input to obtain accurate outputs. Our contributions with this framework are:
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What is the sum of the digits of the square of the cube of 8. What is the sum of the digits of the square of the cube of 8.
Give the answer step-by-step. Give the answer directly.

@ Cube of 8: @ The sum of the digits of the square of the cube of 8 is 1.
8"3=8*8*8=512

Now, find the square of 512:
51272 =512 * 512 = 262,144

Tell my friend that | am going to the mall. Write it in legalese.

To find the sum of the digits of this answer, add up the @ Dear [Friend's Name],
individual digits: | hereby notify you, in accordance with applicable legal
2+6+2+1+4+4=19 standards, that | shall be departing for the shopping
center forthwith.
So, the sum of the digits of the square of the cube of 8 is 19. Sincerely,
v [Your Name] v

Figure 1: Signatures of compositionality in large language models. ChatGPT correctly answers
prompts that we would categorize as compositional in nature, even if the exact prompt is unlikely to be
in the training data. However, the compositions do not always succeed, like in the top-right example.
This motivates us to study the extent to which transformers display compositional generalization and
characterize the conditions under which it occurs.

1. A synthetic setup and the advantages of stepwise composition. We propose a minimal
synthetic setup to study compositions of capabilities in transformers. We define two dif-
ferent types of compositions and find that step-by-step compositions seem to generalize
compositionally in more scenarios compared to direct compositions.

2. Demonstration of exponential explosion of capabilities. We find that transformers com-
positionally generalize to exponentially or even combinatorially many functions — which
would be considered "out-of-distribution".

3. Mechanistic study of attention layers. Attention layers between layers 6-10 show a large
increase in probe accuracy, suggesting their importance in compositional generalization.

2 Preliminaries

To make progress on the question of how capable a Transformer become, we aim to evaluate its
ability to compose skills acquired via pretraining. To this end, we first present a definition of
compositionality, categorize different types of compositionality and describe the data generating
process that we will use to understand compositionality in transformers.

2.1 Definitions

For precision, we first note that the term capability in our setup will refer to the ability of a model to
accurately implement a function f : X* + X* that maps a sequence of tokens x € X* to another
sequence in the same domain, i.e., an automorphism. This is motivated by the fact that the input
and output of language models is the same. We would like to understand the set of capabilities—or
the set of functions—that a Transformer can implement by composing together such capabilities.
As noted in Sec. 4, the notion of compositionality most relevant to our work systematicity and
productivity [Fodor, 1975], i.e., a model is compositional if it can accurately compute a set of
functions F and also compose them together (in a mathematical sense). We formalize this as follows.

Definition 1 (Compositional model) We define a model M : F* x X* — X* to be compositional
if for any sequence of functions (f;)L_, € FL, the model M satisfies

M((f1, f2,-- fr),®) = fro fr—10---0 fi(z).

Consider a family of functions F containing N x L different functions. Each function in this set is

uniquely indexed by U where n € {1,...N}andlevell € {1...,L}. We would like to select L
functions from this family to compose together. We define two different ways to compose L functions
together: in-order and out-of-order (fig. 2).

An in-order composition is a sequence of L functions denoted by ( ,Ll], ceey f][L_l], fi[L]) such that
the I element in the tuple is selected from one of the NV different choices available to it from the
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Figure 2: Data generating process for in-order and out-of-order compositions. (a) Each of the

L = 5 levels is associated with N = 4 functions fi[l] , in addition to an identity function, resulting
in a total of 5 x 4 4+ 1 = 21 basis functions for composition. (b) The in-order compositions select
functions within the same level [ while (c) out-of-order compositions allow for selecting functions
across levels. Each level also include the identity function since it allows us to compute compositions
of fewer than L = 5 functions. In the examples presented in (c), displaced functions are surrounded
by a black line, and we then count the number of displaced functions.

set { f,[ll ) }N_, . An out-of-order composition is a sequence of L functions, where each element in the
sequence is allowed to be any element from F.

Definition 2 (In-order Generalization) A model is said to generalize in-order if the model general-
izes to a test dataset with both the training and test datasets constructed with in-order compositions

of functions adhering to the structure offi[L] o fJ[L_I] o...0 ,[Cl], wherei,j,.... k€ {1,2,...,N}.

Definition 3 (Out-of-order Generalization) A model is said to generalize out-of-order if it gener-
alizes to a test set constructed using out-of-order compositions and a training set with in-order

compositions, i.e., the test contains out-of-order compositions of the form fim o fJ[l Io o f,gl ],
where I,1',1" € {1,2,...,L}.

Note that if the set of functions at every level I € {1,...,L} are identical, then in-order and
out-of-order compositions correspond to the same set.

Per the definitions above, if a Transformer with IV capabilities can perform in-order generalization,
its set of capabilities will in fact grow to exponentially many functions—N* of them to be precise.
Further, the ability to compose and generalize out-of-order can increase this set combinatorially, i.e.,
proportional to (N x L)*, growing even more quickly compared to the set of in-order compositions.
Such an “explosion of capabilities” would imply perfect knowledge of what all tasks a pretrained
model can perform is rather difficult to characterize, especially since its pretraining data is generally
unknown and hence it is hard to characterize even what monolithic capabilities a model possesses.
Our synthetic setup described in Sec.2.2 however endows us the ability to characterize the model’s
ability to compose. We thus define the following notion of displacement, which serves as a useful
tool in our discussion.

Definition 4 (Displacement) The displacement of an out-of-order composition, represented by an
L-tuple (f1,..., f1), is defined as the number of elements f; that do not belong to the set { f,[f] N

n=1-
2.2 Data Generating Process

We consider two types of functions f : X* — X* that map from a sequence of tokens to another of
tokens: bijections and permutations. The rationale for this choice is that both these functions form
groups with composition as the group operator. The co-domain and range of functions are guaranteed
to match and the composition of functions will always yield a member of the group.

The vocabulary consists of two types of tokens, task tokens denoted by X and the regular tokens
denoted by the set X. The task tokens specify the composition of functions to apply on the input
r € X*. We consider two types of prompts to test compositionality in transformers (see fig. 3).
The first is the step-by-step composition prompt that consists of a sequence of task tokens, the input
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(a). Step-by-step composition:

S fiafoa f5.3 XeX5XeXaX6Xg [X0X7X0X5X0X8 XgXeXaXoXgX3 X3X7X3XgX3X4 X1X2X1X4X1X6] X9X7X9X4X9X0
step-by-step intermediate outputs

(b). Direct composition:
S f}: f2,4 fyg X6X5X5X4X5X9 X9X7X9X4X9XO

Figure 3: Step-by-step composition v.s. Direct composition. (a) Transformers can compose
functions while generating intermediate outputs. (b) Alternately, the model can compose the functions
without the intermediate outputs.

which is an element from X*, followed by the output of every intermediate step of the function
compositions. The second is the direct composition prompt consists of a sequence of task tokens,
the input which is an element from X*, followed by the final output of the composition of all he
functions—without the intermediate steps.

3 Results

In this section, we systematically investigate the capabilities of a transformer trained on synthetic
tasks with compositional structure. Broadly, we would like to understand how this structure in the
data manifests in the network. We answer the following questions: 1. Do transformers generalize to
functions not present in the training data and to what extent do they exhibit in-order and out-of-order
generalization? 2. How do properties of the training data influence in-order and out-of-order general-
ization? 3. Is there a difference between direct and step-by-step composition? 4. Do Transformers
first learn to compose fewer functions before learning to compose many of them? 5. What is the role
of attention and does it help the Transformer compose different functions?

3.1 Combinatorial explosion and exponential growth in capabilities

Do transformers only generalize to functions present in the training data or do they reflect compo-
sitional structure present in data? In fig. 4 we train on data consisting of a small subset of in-order
compositions of functions, in the step-by-step prompt format.

We consider two scenarios which both consider the composition of 5 functions (or 5 levels) in figs. 4a
and 4b. The composition of functions at each level can be one of 4 choices, with the 4 choices at
each level being different in fig. 4a and the same in fig. 4b. In addition, any of the levels can also
assume the identity function.

The training data for fig. 4 has two major variations. The set of functions random, considers a
random set of compositions of functions from the set of all possible in-order compositions. The set of
functions 21 base, considers the 4 functions at each of the 5 levels and the identity function totalling
to 21 functions. The set 21 base excludes all compositions of 2 or more functions. In other words,
it considers all compositions such that at least 4 of the 5 levels of the composition are the identity
function. Note that set of bijections form a group with composition as the group operator and 21
base forms a basis for this group.

We find that Transformers capture the compositional structure in data and generalize to an
exponential and combinatorial set of functions in figs. 4a and 4b, despite being trained on
a small subset of function compositions. A transformer trained on just 30-100 compositions of
bijections generalizes to 3125 unseen compositions of these bijections almost perfectly. This could
explain why language models show signatures of compositionality.

3.2 In-order vs. Out-of-order generalization

Are Transformers capable of in-order and out-of-order generalization and how does it depend on
the nature of training data? For the functions in fig. 4a, the number of in-order compositions is
5% = 3125 and the number of out-of-order compositions is a whopping (21)> = 4084101; most of
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Figure 4: Transformers can generalize to an exponential (a) or combinatorial (b) number of new
functions. We plot the accuracy averaged over all compositions of 5 bijections, where each level of
composition has 4+1 choices — with one of them being the identity function. Each curve corresponds
to training data generated by a different subset of functions and the Transformer is trained using
the step-by-step prompt format. (a) The choice of 5 functions are different at different levels of
composition — there are 21 different functions (1 identity) which can be composed (in-order) in 3125
different ways. (b) The choice of 5 functions are identical across all 4 levels of compositions which
means there are 3125 different ways to compose them; only 1365 of them are unique. Both figures
are evidence that one can train on a small number of compositions of functions (around 31-100) and
generalize to exponentially (a) and combinatorially (b) many functions that would be considered
"out-of-distribution".
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Figure 5: The training data determines if the Transformer generalizes to an exponential (in-
order generalization) or combinatorial (out-of-order generalization) number of functions.
Each sub-plot uses a different subset of bijections to generate the training and evaluate them on
combinatorial set of functions generated from 20+1 functions (one of them being identity). The x-axis
varies the number of levels of compositions that consider out-of-order functions and the y-axis varies
the number of compositions — equivalently the number of functions that aren’t identity. We make the
following observations: (1) A Transformer trained on just 31 functions (top-middle) generalize to
nearly exponentially many or 3125 compositions of functions. (2) All the above configurations do
not generalize perfectly to the entire combinatorial set. They however partially generalize to nearly 4
million compositions of functions. The generalization is worse if we decrease the number of identity
functions or the number of displacements in the out-of-order composition. (see fig. 2 for pictorial
description of displacements)



these functions are different from the ones seen in the training data. Like in section 3.1, we only
consider Transformers trained with the step-by-step prompt format.

In fig. 5, we consider the training data to have functions from 21 base, some in-order and out-of-order
compositions. We fail to see in-order or out-of-order generalization unless the data also includes
in-order or out-of-order compositions respectively. However, a small number of in-order (10 of
them) or out-of-order compositions (100 of them) in the training data is enough for in-order
generalization and limited out-of-order generalization.

Finally, all scenarios in fig. 5 do not fully generalize to out-of-order compositions. This indicates that
out-of-order compositions may require a lot more data compared to in-order compositions.

3.3 Different types of compositions

Both sections 3.1 and 3.2 use step-by-step compositions but do these results also hold for direct
composition? Figures 6a and 12 answer this question in the negative.

In fig. 6a, we consider the setup identical to fig. 4a and train on a different number of random func-
tions. Transformers fail to generalize to new in-order compositions with direct compositions
when we consider compositions of bijections. We observe this failure even if we train of 2000 of
the 3125 possible in-order compositions of functions. In contrast, in fig. 4a, 100 compositions in the
step-by-step format suffices to generalizes to all possible in-order compositions of functions.
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Figure 6: Compositional generalization is less frequently seen in the direct prompt format
compared to the step-by-step prompt format. (a) We train a Transformer on 20+1 bijections with
5 levels of compositions with 4 choices at each level. The Transformer fails to generalize to all 3125
compositions even if it trained on 2000 such functions. (b) We train the Transformer on a composition
of two functions, with one function being one of 25 bijections and the other function being one of 25
permutations (totalling to 625) compositions. The Transformer is able to compose previously unseen
combinations of functions when trained on 250 of these functions in this scenario.

On the other hand, we see in-order generalization if the Transformer is trained on a composition
of a bijection and a permutation. In fig. 6b, we train on a composition of one of 25 bijections, with
one of 25 permutations and find 250 compositions in the training data is enough for the Transformer
to generalize to all 625 possible compositions of the bijections and permutations. We note that
bijection and permutations operate on orthogonal features of the input: bijections operate on the value
of the token while permutations operate on the position of the token.

Direct compositions occur less frequently compared to step-by-step compositions and this could
be indicative of why chain-of-thought is a popular prompting strategy [Nye et al., 2021, Wei et al.,
2022b]. A precise answer when such direct compositions succeed or fail remains unclear though.

Why is out-of-order generalization harder for direct compositions? We believe that direct
compositions are unlikely to generalize to the out-of-order compositions or at least require more
samples. For example, consider functions f and g and consider a Transformer that computes the
function g o f. Since g o f is computed using a single forward pass through the transformer for direct
compositions, g must occur in a layer after f (as shown in fig. 9b). As a result, the Transformer cannot
generalize to f o g since f occurs after g in the layers of the transformer. Hence, the Transformer
may have to learn copies of f and g at multiple layers of the transformer if it is going to generalize to
fogandgo f.



Probing the layers In fig. 7, we use a linear probe (frozen to the last linear layer of the transformer)
to analyze the importance of attention layers and contrast them with the MLP layers. We use a
Transformer trained on 100 random in-order compositions of 5 functions identical to the model
in fig. 4a. We find that attention in layers 5-10 have high linear prove accuracy and we hypothesize
that they are critical to compositionality in Transformers.
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Figure 7: Attention layers between layers 6-10 see a high increase in probe accuracy, hinting at
its importance in compositional generalization. We compute the linear probe accuracy — averaged
over all in-order compositions of functions — after the MLP and attention layers at every layer of the
Transformer. (a) The accuracy increases sharply at layers 6 and around layers 8-10. (b) The increase
in accuracy shows that the MLP is important around layer 9-10. The attention layers have a larger
contribution to an increase in accuracy. While these plots are not conclusive evidence, they indicate
that the attention is important for compositional generalization.

Training dynamics In fig. 10, we consider a fine-grained version of fig. 4a to understand if the
Transformer generalizes to composition of fewer functions before it generalizes compositions of
many functions. We find that the answer depends on the nature of the training data.

If the training data consists of 21 base and very few in-order compositions, then the Transformer
generalizes to fewer compositions (more identities) first before generalizing to compositions of multi-
ple functions. On the other hand, if the Transformer is trained on 25 random in-order compositions,
then the Transformer is better at generalizing to more complex compositions of these functions; this
trend is lost when we train on 50 random in-order compositions.
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Figure 8: A Transformer trained on a random subset of functions generalizes first to a com-
position of more functions before it generalizes to a composition of few of them. Each line is
the average accuracy over all composition of k£ functions and each subplot is a Transformer trained
on a different subset of functions. The 21 base is trained on the individual functions and these
Transformers learn to compose a smaller set of functions (more functions in composition are identity)
before learning to compose many of them. The opposite is true when the Transformer is trained on a
random subset of 25 compositions of functions.
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4 Related Work

Capabilities in a Transformer. Prior work evaluating language models pretrained on large-scale,
web-crawled text datasets demonstrate very general capabilities, often achieving highly competitive
performance on a variety of tasks such as primitive arithmetic, question answering, commonsense
knowledge, stylistic transformation of a piece of text, and even multimodal reasoning Radford
et al. [2018, 2019], Brown et al. [2020], Bubeck et al. [2023], Wei et al. [2022a, 2021], Rae et al.
[2021], Chowdhery et al. [2022], Austin et al. [2021], Chen et al. [2021], [FAIR], Bommasani et al.
[2021]. However, this generality can come at the cost of a model also learning capabilities that
are undesirable Bommasani et al. [2021], Tamkin et al. [2021], Chan et al. [2023], e.g., producing
sensitive, biased, or toxic outputs in the pursuit of solving a task Weidinger et al. [2021], McGuffie
and Newhouse [2020], Garrido-Mufioz et al. [2021], Lin et al. [2021], Jiang et al. [2021], Abid et al.
[2021], Parrish et al. [2021], Xu et al. [2021], Huang et al. [2019], Sheng et al. [2019], Gehman et al.
[2020], Xu et al. [2020], Tamkin et al. [2021]. We are in fact motivated by this latter position in the
current work. For example, if a model possesses the capability to produce biased text, can it compose
that capability with the ability to perform reasoning and yield biased reasoning? To get a hold on this
question, we argue first an evaluation that demonstrates the extent to which a model can compose its
capabilities is necessary—our work is focused on making progress on this front.

Compositionality. While compositionality has been debated since Fodor’s hypothesis on its im-
plications in human intelligence [Fodor, 1975], there are several related notions that the term now
sees use for both in and outside the purview of machine learning [Valvoda et al., 2022, Johnson
et al., 2017, Hosseini et al., 2022, Lepori et al., 2023, Frankland and Greene, 2020, Phillips and
Wilson, 2010, Goodman et al., 2008]. However, we specifically highlight the work by Hupkes et al.
[2020], who ground two important notions that relate to our work: systematicity and productivity.
Systematicity is akin to “out-of-distribution” generalization, whereby structured variations of data
should affect a system’s outputs predictably; e.g., changing the color of a dog should still lead the
system to predict that it is a dog. Meanwhile, productivity is closer to the mathematical notion of
chaining two functions, provided their domain and co-domain match.

Understanding transformers via synthetic tasks. Several intriguing works have recently utilized
synthetic tasks to assess the limits of Transformers trained on autoregressive, distribution modeling
tasks such as learning formal grammars, hidden markov models, and even board games [Allen-Zhu
and Li, 2023b, Liu et al., 2022, 2023, Zhao et al., 2023, Hahn and Goyal, 2023, Nanda et al., 2023, Liu
etal., 2022, Xie et al., 2021, Valvoda et al., 2022, Liu et al., 2023, Li et al., 2023a]. We emphasize that
such works, including ours, do not aim to unveil accurate justifications for the success of large-scale
models; instead, the goal is to develop mechanistic and behavioral hypotheses that can be useful to
develop grounded theories or tools to capture relevant phenomenology seen in large-scale models,
hopefully leading to progress on characterizing the models at-scale themselves [Lieberum et al., 2023,
Wau et al., 2023, Eldan and Li, 2023].

5 Discussion

In this work, we explored whether transformers are capable of generalizing to a combinatorial or
exponential number of functions not present in the training data by exploiting the compositional
structure in data. We conducted a systematic study of compositionality using synthetic data and
provide credence to the hypothesis that languages models could generalize to novel compositions of
functions not seen in the training data through compositionality.

Understanding transformers Our work raises questions about why transformers exhibit composi-
tionality. While we find preliminary evidence for the importance of attention layers, future directions
include further mechanistic interpretability analysis to elucidate the circuit-level mechanisms that
drive compositionality. Another unanswered question in this work is a precise understanding of which
types of functions can transformers learn to compose, both through direct composition and through
step-by-step composition. We find that Transformers with direction compositions are able to compose
bijections and permutations but not bijections with other bijections and it would be interesting to
understand why this is the case. Apart from studying different functions, another related direction for
exploration is to verify if compositionality is seen across different prompt formats, like the one used
in Garg et al. [2022].
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Caveats to using Synthetic data Synthetic data offers a promising approach to quickly (and
cheaply) falsify or verify potential hypotheses. It allows us to work with a precise set of claims since
the properties of the data are interpretable and controllable unlike natural language data. However,
synthetic setups also present a number of challenges that need to be acknowledged. The primary
challenge is to build faithful setups that correctly reproduce the phenomena observed at scale.

Implications for large language models The fact that Transformers can potentially generalize to
combinatorial or exponentially many functions implies that language models are capable of doing the
same. However, it is hard to characterize compositionality in natural language data which makes it
hard to verify that language models exhibit compositional behavior of any kind. Overall, this study
establishes a foundational framework for further precise and systematic studies of compositional
generalization in Transformer-based autoregressive models.

6 Step-by-step vs Direct Compositions
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Figure 9: Step-by-step composition v.s. Direct composition. (a) Transformers can compose
functions while generating intermediate outputs. (b) Alternately, the model can compose the functions
without the intermediate outputs.

7 Experimental Details

Data The inputs contains a sequence of elements from a vocabulary X of size 10. Each input
x € X% is a sequence of 6 elements. When generating prompts, x is generated by sampling 6
elements from X uniformly at random and with replacement. Similarly, the sequence of task-tokens
are draw uniformly at random from the set of functions seen during training.

The training data consists of 100,000 sequences for all training datasets. Each training data point is
generated according to the format described in section 2.2.

When evaluating the trained Transformers, we evaluate on 100 different inputs for every single
function. Since fig. 5 requires us to evaluate on a combinatorial set of functions, we sampled 1000
functions (or the total number of functions, whichever was lower) from each cell and compute the
accuracy averaged of those functions to populate the cell.

Transformer architecture We train nanoGPT using an auto-regressive next-token prediction
objective on the entire sequence. The transformer consists of 12 layers and 12 heads with an
embedding dimension of 120. The input is tokenized to be a one-hot vector and the context size is at
most 64. The model makes use of no dropout and no biases in the Layer norm layers. Finally, we
make use of mixed-precision training (bf16 in torch) to speedup training.

Optimizer The transformers are typically trained for 100 epochs with a cosine-annealed scheduled
with warmup. We use an initial learning rate of 3e-4 annealed eventually to 6e-5. We use AdamW as
the optimizer with weight decay le-3 and a batch-size of 512. We also make use of gradient clipping
with a magnitude of 1.
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Linear probe Due the weight tying, the initial and final layer of the transformer share their weights.
We make use of these weights to compute the linear probe accuracy after every attention and MLP
layer. Note that the linear probe is applied to the output of the attention or MLP layer summed with
the output from the residual connection.

8 Additional Experiments

8.1 Analyzing trained Transformers

Training dynamics In fig. 10, we consider a fine-grained version of fig. 4a to understand if the
Transformer generalizes to composition of fewer functions before it generalizes compositions of
many functions. We find that the answer depends on the nature of the training data.

If the training data consists of 21 base and very few in-order compositions, then the Transformer
generalizes to fewer compositions (more identities) first before generalizing to compositions of multi-
ple functions. On the other hand, if the Transformer is trained on 25 random in-order compositions,
then the Transformer is better at generalizing to more complex compositions of these functions; this
trend is lost when we train on 50 random in-order compositions.
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Figure 10: A Transformer trained on a random subset of functions generalizes first to a
composition of more functions before it generalizes to a composition of few of them. Each
line is the average accuracy over all composition of k£ functions and each subplot is a Transformer
trained on a different subset of functions. The 21 base is trained on the individual functions and these
Transformers learn to compose a smaller set of functions (more functions in composition are identity)
before learning to compose many of them. The opposite is true when the Transformer is trained on a
random subset of 25 compositions of functions.
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9 More Experiments
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Figure 11: This is a fine-grained version of fig. 4a. Model trained on 50 random compositions
generalizes poorly compositions of small number of functions while a model trained on the 21
base generalizes poorly to composition of 4 or 5 functions.
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Figure 12: Another failure of direct compositions. The curve depicts the accuracy over all 625
in-order compositions of two bijections (25 choices for each bijection) when trained on different
subsets of in-order compositions. The model is trained with direct composition. Even if we train
on 500 such compositions, the model fails to generalize to the remaining 125 compositions. This is
additional evidence that the model is incapable composing bijections through direction composition.
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Figure 13: We plot the inner product between all pairs of word embeddings of the tokens. The task
tokens are orthogonal to the set of input tokens. Different functions in the same level, i.e. {f/},
for a fixed [, form a block-diagonal in theis matrix.

15



21 base + 21 base + 21 base +
0 random functions 5 random functions 10 random functions

o 79 o 91 93 89 93
8779 ~ 98 91 96 81

0

1

~ ~ 86 «~ 92 88 94 95
c
S o o 80 © 93 90 95 92 — 100
‘B
9 « <« 79 78 79 |k <« 93 93 93 92 e 50
€
o
8 o 1 2 3 0o 1 2 3 0o 1 2 3 60
£ 25 random functions 50 random functions 100 random functions
il 40
co ) 81 ) 98 99 97 99 o 100 100 100 100
o - 83 84 [ZER 83 - 99 99 97 98 ~ 100 100 100 100 20
©
2 « 80@79 N 99 98 98 99 ~ 100 100 100 100
|_

o 78 77 » 99 99 98 96  © 100 100 100 100 ~couracy

<~ 83 E 88 88 < 99 99 99 99 <~ 100 100 100 100

Function identifier

Figure 14: Systematicity. We consider trained models from fig. 4a. We analyze the accuracy of each
of the 20 functions when averaged all instances in which a particular function was used to compute
some composition. Models typically learn all functions equally well.
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Figure 15: Training different numbers of random functions. We train on a different number of
random functions ranging from 5-70 in steps of 5. These plots are the accuracies averaged over all
in-order compositions of 5 bijections over the course of training.
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Figure 16: Number of compositions in the data. The figure plots the accuracy on all in-order
compositions against the number of training iterations. Each sub-plot considers compositions of size
exactly 2, 3, 4, 5, respectively in the training data. The model is able to generalize to most in-order
compositions only if the training data consists of compositions of size at least 3 (bottom-right).
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Figure 17: We consider 3 different metrics for evaluating the models. The left column considers
the average accuracy when the model generates The choice of metric doesn’t change qualitative
trends. Each sub-plot considers compositions of only size 2, 3, 4, 5, respectively. In each plot, we
vary the number of such functions that are present int he training data. One exception is when we
train on compositions of size 2. In this case, the guided generation accuracy is high, but the free
generation accuracy is not.
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