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Abstract

Large language models (LLMs) have revolutionized artificial intelligence, but their
performance on specific tasks is often limited by knowledge boundaries. While fine-
tuning techniques like low-rank adaptation (LoRA) aim to address this, they can
suffer from overfitting. We propose flexible low-rank adaptation (Flexora), a novel
method that automatically selects the most critical layers for fine-tuning to optimize
performance across diverse downstream tasks. Flexora formulates layer selection
as a hyperparameter optimization problem, employs unrolled differentiation for
efficient solving, and identifies the most impactful layers based on optimized
hyperparameters. Extensive experiments across various pre-trained models and
natural language tasks demonstrate that Flexora consistently outperforms existing
baselines. We provide theoretical insights and comprehensive ablation studies to
elucidate the effectiveness of Flexora. Therefore, Flexora offers a robust solution
to enhance LoRA fine-tuning for LLMs, potentially advancing the field of adaptive
language model optimization.

1 Introduction

The advent of large language models (LLMs) [1, 2] has revolutionized artificial intelligence, offering
unprecedented capabilities across various domains. However, this progress comes at a significant
cost: LLMs demand substantial computational resources due to their vast parameter sets and complex
functionalities [3, 4]. This challenge has spurred the development of parameter-efficient fine-tuning
(PEFT) methods [5, 6], with low-rank adaptation (LoRA) [7] emerging as a particularly promising
approach. LoRA’s innovation lies in its ability to freeze pre-trained parameters while introducing
trainable auxiliary parameters (∆W ) at each layer, dramatically reducing training costs while
maintaining impressive performance. However, despite its widespread adoption, LoRA is not without
limitations. It can underperform on certain tasks, likely due to overfitting issues, as evidenced
in benchmarks like GLUE [8], summary tasks [9], and complex reasoning tasks [10]. Existing
techniques to combat overfitting, such as dropout [11] and novel regularization strategies [12], often
yield performance comparable to or lower than vanilla LoRA and lack the flexibility to adapt across
different tasks. Moreover, current methods typically require manual hyperparameter tuning, limiting
their practical applicability in diverse scenarios. These challenges therefore underscore the urgent
need for an algorithm that delivers superior performance, enables automatic hyperparameter tuning,
and supports flexible training across various tasks.

To address these limitations, we introduce flexible low-rank adaptation (Flexora), a novel framework
designed to flexibly fine-tune LLMs using an automated layer-level policy. Our approach is inspired
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Figure 1: An overview of Flexora: (a) Initialization of hyperparameters α̂ and their integration with
LoRA parameters to produce the Trainable Model. (b) Simultaneous training of LoRA parameters
and hyperparameters α̂ using different datasets, minimizing empirical risk for both validation and
training datasets. The hyperparameter vector α̂ is then ranked based on magnitude. (c) Flexible
selection of layers to be trained, where higher-ranked layers are activated for training while others
remain frozen.

by hyperparameter optimization (HPO) and offers several key innovations. First, we demonstrate that
fine-tuning only the most critical layers can significantly reduce overfitting and enhance performance.
Second, we frame the layer selection problem as an HPO task and employ unrolled differentiation
(UD) to solve it efficiently. Third, we develop a three-stage process that automatically identifies
and focuses on the most important layers for downstream tasks. As illustrated in Figure 1, Flexora
operates through an initialization stage (Sec. 4.1) that injects defined hyperparameters into LoRA
parameters, a flexible layer selection stage (Sec. 4.2) that optimizes these hyperparameters using UD,
and a fine-tuning stage (Sec. 4.3) that selectively updates only the most crucial layers, significantly
reducing computational overhead. Our extensive empirical results (Sec. 5) demonstrate that Flex-
ora effectively reduces unimportant LoRA parameters, mitigates overfitting, and enhances overall
performance across a variety of tasks and model architectures.

In summary, our key contributions consist of: (a) the introduction of Flexora, a novel framework
for automatic layer selection in LoRA fine-tuning; (b) a formulation of layer selection as an HPO
task, efficiently solved using unrolled differentiation; (c) comprehensive validation through extensive
experiments on various LLMs and downstream tasks; and (d) theoretical insights into the performance
improvements achieved by Flexora, providing a deeper understanding of its effectiveness.

2 Related Work

Low-Rank Adaptation (LoRA) Low-rank adaptation (LoRA) methods are widely used to reduce
training parameters when fine-tuning large language models (LLMs) for specific applications. How-
ever, LoRA often suffers from overfitting, which can degrade performance on downstream tasks.
To mitigate this, various strategies have been proposed: LoRA-SP [8] randomly freezes half of the
LoRA parameters during fine-tuning to alleviate overfitting; LoRA-FA [13] freezes down-projection
weights while updating only up-projection weights; LoRA-drop [14] prunes less important parameters
based on layer output analysis; LoRAPrune [10] jointly prunes parts of the LoRA matrix and LLM
parameters based on gradients; and LoRAShear [15] employs knowledge-based structured pruning to
reduce computational costs while enhancing generalization. Despite their benefits, these methods
often (a) require significant design effort, (b) struggle to adapt across different tasks, and (c) can be
overly complex for practical application. In contrast, we introduce Flexora, a framework designed
for flexible LoRA fine-tuning across various tasks using a simple, automated layer-level policy.

Hyperparameter Optimization (HPO) HPO is widely applied across various domains. Specif-
ically, in the domain of neural architecture search, DARTS [16] conceptualizes the coefficients
defining the network architecture as hyperparameters. In the domains of feature learning, DS3L [17]
considers feature extractors as hyperparameters. In the field of data science, TPOT [18] employs
hyperparameters as weights to measure the importance of data. By minimizing the validation loss over
these hyperparameters, the optimal variables, e.g., the architectures in [16], the features in [17], and
the data in [18], are identified, leading to superior performance in their respective domains. Drawing
inspiration from these works, we initially formulated the layer selection in the LoRA method as an
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Figure 2: This figure depicts the relationship between the number of fine-tuning layers and model
accuracy across four distinct datasets: Hellaswag, PIQA, Winogrande, and RACE, with the latter
including two separate tasks, RACE-mid and RACE-high, which vary in difficulty. The x-axis
represents the number of fine-tuned layers, ranging from 0 to 32, where 0 corresponds to the base
model without fine-tuning. Selected configurations include 6, 12, 18, 24, and 32 randomly fine-tuned
layers. The full 32-layer configuration, representing the vanilla LoRA setup, is shown as a horizontal
dashed line in the plots. The y-axis indicates model accuracy as a percentage.

HPO problem. This involves optimizing hyperparameters to quantify the contributions of different
layers, aiming to achieve optimal performance on downstream tasks and thereby select the most
crucial layers for fine-tuning. This formulation subsequently led to the development of our Flexora.

3 Preliminaries

In this section, we first provide empirical insights showing that layer selection is crucial for improving
the performance of LLMs in Sec. 3.1, and then frame the layer selection problem as a well-defined
HPO problem in Sec. 3.2.

3.1 Empirical Insights

To study the impact of the number of LoRA fine-tuning layers on overall performance, we conducted
a preliminary study using Llama3-8B [19] across a range of downstream tasks. Here, we randomly
selected different subsets of layers for LoRA fine-tuning and assessed their performance on these
tasks. The findings, shown in Figure 2, reveal a clear trend: while increasing the number of fine-tuned
layers generally improves model performance, there is a critical point beyond which fine-tuning more
layers leads to potential overfitting and subsequent performance decline. This hence suggests that
selecting an optimal subset of layers for LoRA fine-tuning is crucial for maximizing performance,
which interestingly aligns with the previous empirical studies[20, 14, 15].

3.2 Problem Formulation

Inspired by the empirical insights above, we aim to identify the most critical layers in LoRA fine-
tuning to improve generalization performance across a variety of downstream tasks. Formally, we
consider an N -layer LLM with LoRA fine-tuning parameters θ ∈ Rd, and let the hyperparameter
α ∈ {0, 1}N denote the selection of fine-tuning layers, where a value of 1 indicates that a layer is
selected for fine-tuning. Given the test data distribution Dtest and the training dataset Strain, we then
define the expected test and training error as Rtest(θ, α) ≜ Ex∼Dtest [ℓ(x, θ;α)] and Rtrain(θ, α) ≜
Ex∼Strain [ℓ(x, θ;α)], respectively. Hence, to select the optimal LoRA fine-tuning layers for maximized
performance on downstream tasks, we aim to solve the following bilevel optimization problem:

min
α∈{0,1}N

Rtest(θ∗(α), α) s.t. θ∗(α) = argmin
θ∈Rd

Rtrain(θ, α) . (1)

This formulation follows a standard hyperparameter optimization (HPO) approach as demonstrated in
[21], where α serves as the hyperparameter. Thus, the layer selection problem for LoRA fine-tuning
in LLMs is framed as a well-defined HPO problem.

Unfortunately, it is typically infeasible to access the full test distributions, denoted by Dtest, for this
optimization. This expected test error can typically be approximated by the empirical validation error
based on the validation dataset Sval, which is defined as R̂val(θ, α) ≜ Ex∼Sval [ℓ(x, θ;α)] Therefore,
(1) can be simplified as:

min
α∈{0,1}N

R̂val(θ∗(α), α) s.t. θ∗(α) = argmin
θ∈Rd

Rtrain(θ, α) . (2)
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4 The Flexora Framework

To address the layer selection problem defined above, we propose our flexible low-rank adaptation for
LLMs (Flexora) framework in Figure 1. As illustrated in Figure 1, the Flexora framework consists
of three key stages: an initial stage (detailed in Sec. 4.1), a flexible layer selection stage (detailed in
Sec. 4.2), and a fine-tuning stage for the selected LoRA layers (detailed in Sec. 4.3).

4.1 Initial Stage

We begin by introducing a special formulation of LoRA, which incorporates the layer selection
hyperparameter α = (α(1), · · · , α(N)) ∈ {0, 1}N , as follows:

h(i) = Wz(i) + α(i)B(i)A(i)z(i), s.t. αi ∈ {0, 1} . (3)

Here, h(i) is the output of the i-th layer, where W is the original weight matrix, z(i) is the input, and
B(i) and A(i) are the low-rank adaptation matrices of LoRA. The hyperparameter α(i) determines
whether LoRA is applied for layer i. Specifically, if α(i) = 0, the equation simplifies to h(i) = Wz(i),
meaning the i-th layer reverts to standard computation without LoRA, implying that the additional
complexity of LoRA is unnecessary for layer i. Conversely, when α(i) = 1, the equation becomes
the standard LoRA form, h(i) = Wz(i) +B(i)A(i)z(i), indicating that LoRA significantly enhances
the performance of layer i by allowing the low-rank matrices to better capture complex patterns. So,
this dynamic adjustment allows the model to selectively apply LoRA when a specific layer is most
beneficial, thereby optimizing the fine-tuning process and mitigating the risk of overfitting.

However, due to the inherent difficulty of directly optimizing the discrete layer selection hyperpa-
rameter α, we adopt a continuous relaxation approach by replacing the α in (3) with its continuous
counterpart, α̂ = (α̂(1), · · · , α̂(N)):

h(i) = W0z
(i) + α̂(i)B(i)A(i)z(i), s.t. α̂(i) =

exp (α(i))∑
i∈[N ] exp (α

(i))
N . (4)

Notably, α ∈ RN now and α are typically initialized to zeros, providing a neutral starting point where
no layer is initially excluded from LoRA fine-tuning. Meanwhile, the constant scale N ensures that
when all layers are selected for fine-tuning, the scale of each selected layer for LoRA fine-tuning is
preserved, resulting in α̂(i) = 1 for all layers, aligning with the vanilla LoRA scale as shown above.

4.2 Flexible Layer Selection Stage

Optimization Strategy. Given the continuous relaxation α̂ defined above, we propose to solve
the well-defined HPO problem in Equation 2 using the widely applied unrolled differentiation (UD)
method [22–26]. The UD method typically involves two alternating optimization processes: (a)
the inner-level and (b) the outer-level optimization. In this paper, the inner-level optimization is
defined as argminθ∈Rd Rtrain(θ, α), in which the layer selection hyperparameter α is fixed, and the
LoRA parameters θ are updated using stochastic gradient methods (e.g., SGD [27] or AdamW [28])
on the training dataset Strain. This step focuses on optimizing model performance by adjusting the
parameters associated with the selected layers (line 3 in Algorithm 1). Meanwhile, the outer-level
optimization is argminα∈RN R̂val(θ, α), in which the layer selection hyperparameter α is updated
using stochastic gradient methods (e.g., SGD) based on the validation performance of the optimized
LoRA parameters θ from the inner-level process (lines 4–9 in Algorithm 1). This step intends to
maximize the validation performance of LoRA fine-tuning based on a subset of selected layers. These
two alternating processes therefore iteratively refine both the model parameters and the layer selection
criteria, making LoRA layer selection more computationally efficient in practice. After T iterations
of these alternating processes, the final iteration αT is output as the optimal layer selection denoted
as α∗ (line 10 in Algorithm 1).

Selection Strategy. To begin with, we introduce the following proposition:

Proposition 1. If α is initialized to zeros, then for any T ≥ 0 and K ≥ 0 in Alg. 1,
∑N

i=1 α
(i) = 0.

The proof of this proposition is provided in Appendix A.1. This result highlights that the mean value
of the hyperparameter α remains 0, indicating that after the layer selection stage, the elements in the
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Algorithm 1 The Flexora Framework
1: Input: Number of outer-level iteration K; Number of alternating iteration T ; Initialized LoRA

parameters θ0 and hyperparameter α0 = 0; Learning rate ηα and ηθ
2: for t = 0 to T − 1 do
3: θt+1 ← θt − ηθ∇θRtrain(θ, αt)|θ=θt
4: αt+1,0 ← αt

5: for k = 0 to K − 1 do
6: αt+1,k+1 ← αt+1,k − ηα∇αR̂val(θt+1, α)|α=αt+1,k

7: end for
8: αt+1 ← αt+1,K

9: end for
10: return α∗ = αT

optimized hyperparameter α∗ can take on both positive and negative values. We therefore propose
to determine the layers for LoRA fine-tuning by selecting those where α(i) > 0. That is, we focus
on layers where α̂(i) > 1 according to (4), as these layers are expected to contribute positively to
the final fine-tuning performance compared to the baseline scale of α̂(i) = 1 in the vanilla LoRA.
In contrast, layers where α̂(i) < 1 are considered less beneficial for LoRA fine-tuning. As a result,
this method not only facilitates automatic layer selection but also provides flexibility in adjusting the
number and specific layers for LoRA fine-tuning, helping to mitigate the potential overfitting and
improve overall performance in LLM fine-tuning.

4.3 Fine-Tuning Stage

During the fine-tuning stage, as illustrated in Figure 1c, we adopt a selective activation strategy. In this
phase, we freeze the layers not selected for fine-tuning, keeping their parameters unchanged, and focus
on retraining only the selected layers to enhance performance. This targeted approach concentrates
computational resources on the most critical layers for the downstream task. By retraining the LoRA
parameters from scratch in these layers, the model adaptively learns optimal representations, reducing
the risk of overfitting and improving performance, especially for simpler tasks. We will validate this
approach with the empirical results presented below.

5 Empirical Results

In this section, we present comprehensive experiments to support the effectiveness and efficiency
of our Flexora framework with datasets and experimental setup detailed in Sec. 5.1, main results
detailed in Sec. 5.2, and ablation studies detailed in Sec. 5.3.

5.1 Datasets and Setup

To evaluate the performance of our proposed Flexora method, we utilize benchmark datasets such
as Winogrande, RACE, PIQA, and Hellaswag, which cover various reasoning and comprehension
tasks, using accuracy as the metric. Winogrande [29] assesses commonsense reasoning with 44,000
questions, RACE [30] focuses on reading comprehension with nearly 100,000 questions, PIQA [31]
evaluates physics commonsense reasoning with over 16,000 Q&A pairs, and Hellaswag [32] tests
commonsense natural language reasoning with 70,000 questions. Our experimental setup includes
11 mainstream large-scale language models (LLMs), such as Llama3-8B [19], Chatglm3-6B [33],
Mistral-7B-v0.1 [34], and Gemma-7B [35]. Our Flexora is implemented on the Llama-factory [36]
framework and evaluated with the opencompass [37] framework. The baselines include pre-trained
models, Full FT, LoRA, AdaLoRA, LoRA-drop, LoRAShear, and others. The experimental setup is
detailed in Appendix B. All experiments are conducted on a single NVIDIA A100 GPU.

5.2 Main Results

In this section, we evaluate the performance improvement and training efficiency of Flexora on
Llama3-8B, and the results are listed in Table 1 (Accuracy) and Table 2 (Time and Parameter).
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Table 1: Comparison of accuracy across various common sense reasoning tasks using Llama3-8B.
The baseline experimental configuration is detailed in Appendix B. Here, "Pre-trained" refers to using
the base model for reasoning, "Full FT" indicates full parameter fine-tuning, and "Random (Greedy)"
represents the best result from randomly selected layers.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Pre-trained 48.55 67.08 59.91 67.02 63.35 61.18
Full FT 90.53 79.32 81.16 81.92 79.36 82.46
LLaMA Pro 90.03 76.23 80.32 82.68 80.96 82.04

LoRA 89.72 76.39 82.24 82.86 80.99 83.04
OLoRA 91.32 80.69 83.01 83.65 77.66 83.27
LoRA+ 90.62 77.92 83.06 83.69 81.80 83.42
PiSSA 91.33 77.77 83.72 84.35 82.15 83.86
VeRA 90.98 78.63 83.64 83.55 78.84 83.13
LoRAPrune (Ratio = 0.5) 88.42 77.12 81.23 82.96 80.42 82.03
AdaLoRA (r0 = 4) 90.17 80.20 77.19 83.15 77.93 81.73
LoRA-drop 91.86 77.91 76.46 77.30 75.24 79.75

Random (Greedy) 91.15 81.54 83.58 83.77 81.22 84.25
Flexora 93.62 85.91 85.79 84.61 82.36 86.46

Table 2: Comparison of training time and parameters, with the green font indicating the reduction
ratio, is conducted on a single NVIDIA A100 GPU using Llama3-8B. The time metric reflects the
wallclock time for the fine-tuning phase of LoRA and Flexora, excluding the layer selection phase.

Metrics Method Hellaswag PIQA Winogrande RACE

Time (h) LoRA 5.30 4.03 4.96 8.37
Flexora 4.71 (11.1%) 3.87 (4.0%) 3.84 (22.6%) 7.46 (10.9%)

# Params (M) LoRA 3.4 3.4 3.4 3.4
Flexora 2.00 (41.2%) 1.70 (50.0%) 1.70 (50.0%) 1.70 (50.0%)

Specifically, the experimental results using LoRAShear are detailed in Appendix C.3, while the
loss metrics are discussed in Appendix D.1. The results show that Flexora outperforms all baseline
methods. Specifically, compared with full fine-tuning, Flexora only fine-tunes 0.02% of the param-
eters while achieving superior performance. Compared with LoRA and enhanced LoRA methods,
Flexora fine-tunes about half of the parameters of these methods, but still outperforms all methods.
This shows that fine-tuning too many parameters will lead to overfitting, which not only fails to
improve the model performance on downstream tasks, but may also degrade the generalization of the
model due to the overfitting effect. Therefore, it is crucial to select the most relevant layers in the
downstream tasks for optimization. Flexible layer selection stage of Flexora is able to consider the
relationship between the pre-trained parameters of each LLM layer and the downstream tasks. This
stage effectively identifies the most critical layers for various downstream tasks, and minimizes the
risk of model overfitting by focusing on training these layers, thereby achieving excellent performance.
We also discuss the impact of different search samples on the training time and final performance
of our Flexible layer selection stage, detailed in Appendix C.4. In particular, Flexora surpasses
LoRA-drop, which always selects the last layers, by accurately identifying the most important layers.
In addition, Flexora shows strong generalization and scalability across different LLMs. As shown in
Figure 3 and detailed in Appendix C.1, almost all LLMs can leverage Flexora to significantly improve
performance with fewer fine-tuned parameters. In Appendix E, we compared Flexora with LoRA
using specific examples. The model fine-tuned with Flexora outperforms LoRA on challenging cases
and provides correct explanations for answers not seen in the training set, showcasing its robust
learning and generalization capabilities.

5.3 Ablation Studies

Effective Layer Selection in Flexora. In the first ablation experiment, we maintained the number
of layers selected by Flexora unchanged but chose different layers for fine-tuning, aiming to verify
whether Flexora selected the right layers. The experimental results are shown in Table 3. The
result underscores two key points: First, Flexora can precisely determine the number of layers for
fine-tuning. Even when the specific fine-tuning layers are chosen at random, the results continue to
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Figure 3: Comparison of the accuracy of various models (Llama-3-8B, ChatGLM3-6B, Mistral-
7B-v0.1, and Gemma-7B) across different tasks. Bars with green diagonal stripes represent LoRA
accuracy, while blue circles indicate Flexora accuracy. Notably, Flexora generally outperforms
LoRA in most tasks and models, demonstrating its effectiveness in enhancing performance.

Table 3: Comparison of the accuracy of different randomly selected fine-tuning layers with the same
number of fine-tuning layers. In this ablation study, we fixed the number of fine-tuning layers to
match the number selected by Flexora, ensuring that the number of fine-tuning parameters remained
constant while the layers were randomly selected for fine-tuning.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Random 1 92.97 82.91 80.98 83.98 81.10 84.39
Random 2 93.11 80.79 76.09 85.45 81.16 83.32
Random 3 92.52 80.47 83.50 84.54 81.93 84.59
Random (Avg.) 92.87 81.39 80.19 84.66 81.40 84.10
Flexora 93.62 85.91 85.79 84.61 82.36 86.46

outperform LoRA. The theoretical explanation for this result can be found in Sec. 6. Second, Flexora
can automatically and flexibly select the specific layers for fine-tuning, targeting the most important
layers to maximize performance and generalization. In Appendix C.5, we discuss the characteristics
of the specific layers Flexora have chosen. The loss metrics are discussed in Appendix D.2.

Flexible Layer Selection in Flexora. In the second ablation experiment, we manually determine
the number of fine-tuning layers and compare Flexora with random selection, highlighting the
flexibility of Flexora. The results in Table 4 show that it can achieve the best performance regardless
of the number of fine-tuning layers. The specific layers selected are shown in Table 12. The loss
metrics are discussed in Appendix D.3. A noteworthy observation is that Flexora usually chooses
the initial and final layers. An intuitive explanation is that the initial and final layers of the model
have a significant impact on the data. The initial layers directly contact the original input, while
the final layers are related to the model output, rendering them crucial. In addition, for the same
downstream task, the input of the initial layer is consistent and closely coupled to the task, and the
output of the final layer is also consistent. Focusing on optimizing these layers can improve learning
efficiency. This conclusion has also been confirmed by other studies. LoRAShear[15] observed that
the knowledge distribution in LLM is mainly concentrated in the initial and final layers. LASER[38]
demonstrated that the loss gradients of the initial and final layers are steep, which is beneficial to
the model during training. LISA[39] found that the weight norms of the initial and final layers are
hundreds of times higher than those of the intermediate layers, indicating their increased importance.

6 Theoretical Insights

In this section, we provide theoretical explanations for why Flexora (using only a subset of LoRA
layers) can achieve excellent results. We first introduce Theorem 1 below, and then simplify LoRA
layers as linear layers in multi-layer perceptron (MLP) to derive our Proposition 2, aiming to offer
insights for this question.
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Table 4: Comparison of the accuracy of fine-tuning a subset of layers. In this ablation study, we
standardized the number of layers to be fine-tuned and compared the performance of layers selected
by Flexora against those selected randomly.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Random (6 Layers) 59.79 70.25 46.32 54.54 53.45 56.87
Flexora (First 6 Layers) 60.04 (+0.25) 77.20 (+6.95) 57.54 (+11.22) 69.71 (+15.17) 58.35 (+4.90) 64.57 (+7.70)
Random (12 Layers) 81.90 77.82 57.35 78.41 72.16 73.53
Flexora (First 12 Layers) 88.85 (+6.95) 79.71 (+1.89) 65.82 (+8.47) 79.42 (+1.01) 72.33 (+0.17) 77.23 (+3.70)
Random (18 Layers) 91.15 81.54 83.58 83.77 81.22 84.25
Flexora (First 18 Layers) 91.31 (+0.16) 82.21 (+0.67) 84.69 (+1.11) 84.07 (+0.30) 81.53 (+0.31) 84.76 (+0.51)
Random (24 Layers) 90.58 80.90 82.16 82.19 79.22 83.01
Flexora (First 24 Layers) 91.01 (+0.43) 81.21 (+0.31) 82.87 (+0.71) 83.53 (+1.34) 80.22 (+1.00) 83.77 (+0.76)

Theorem 1 (Theorem 3.8 in [40]). Assume that f(·; z) ∈ [0, 1] is an L-Lipschitz and β-smooth loss
function for every sample z. Suppose that we run stochastic gradient method (e.g., SGD) for T steps
with monotonically non-increasing step sizes ηt ≤ c/t (t ∈ [T ]). In particular, omitting constant
factors that depend on β, c, and L, we haveRtest(θ, η) ≤ Rtrain(θ, η) + T 1−1/(βc+1)

m .

Theorem 1 reveals that if all the conditions except for β in Theorem 1 remain the same, a smaller
smoothness β will typically result in a smaller test errorRtest(θ, η), indicating a better generalization
performance in practice. The specific definition of smoothness β can be found in Appendix A.2. To
show how the number of LoRA layers is related to this β, we then follow the practice in [41] to prove
our Proposition 2 below.

Proposition 2. For an N -layer linear multi-layer perceptron (MLP): y(N) ≜
∏N

j=1 W
(j)x with

MSE function ℓ ≜ (y(N) − y)2/2 where y denotes the true label, let λ(i) =
∥∥W (i)

∥∥ for any i ∈ [N ],

we then have
∥∥∥∥ ∂ℓ

∂W
(i)
1

− ∂ℓ

∂W
(i)
2

∥∥∥∥ ≤ (∏N
j=1,j ̸=i λ

(j)
)2
∥x∥2

∥∥∥W (i)
1 −W

(i)
2

∥∥∥.

The proof of Proposition 2 is in Appendix A.3. Given Proposition 2, the block-wise smoothness β(N)
i

on layer i ∈ [N ] of an N -th layer MLP can be bounded by: β(N)
i ≤

(∏N
j=1,j ̸=i λ

(j)
)2
∥x∥2. From

this bound, we can see that as the number of layers N increases, the upper bound of β(N)
i will also

be increasing as λ(i) > 1 for i ∈ [N ]. Thus, shallow MLP of fewer layers are more likely to have
smaller overall smoothness β. Thanks to this smaller overall smoothness β, shallow MLP of fewer
layers are more likely to achieve a smaller generalization gap (i.e., the second term on the right-hand
side of Theorem 1) than deep MLP with more layers. When the training errorRtrain(θ, η) is the same,
that is, both shallow and deep MLPs are fully trained to converge, the shallower MLP may have a
lower test errorRtest(θ, η) and thus may exhibit better performance on downstream tasks.

Now, we can answer the question posed at the beginning of this section. When Flexora is fine-tuned
with a subset of LoRA layers, it theoretically transforms a network with a deeper architecture into
one with a shallower architecture. When sufficiently trained to convergence, the aforementioned
theory suggests that a network with a shallower architecture can exhibit better generalization and
performance on downstream tasks. In summary, the reason Flexora achieves excellent results is that
it makes the model more suitable for downstream tasks.

7 Conclusion and Future Work

We introduce Flexora, a method to enhance the efficiency and effectiveness of fine-tuning large
language models (LLMs) by automatically selecting the most critical layers, addressing overfitting,
and improving performance. By modeling layer selection as an HPO problem and using UD to solve
it, Flexora reduces computational overhead by updating only selected layers. Extensive experiments
show that Flexora decreases parameters, mitigates overfitting, and outperforms baselines, with a
theoretical explanation provided. Future work will explore the relationship between individual LLM
layers and their impact on downstream tasks, and investigate optimal fine-tuning schemes for Flexora,
particularly its integration with various LoRA-enhanced algorithms as detailed in Appendix C.2.
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A Theorems and proofs

We first prove Proposition 1, then introduce the theorems proposed by [42] and [40], which reveal the
properties of β-smooth, a necessary theoretical basis for proving Proposition 2. Finally, we prove
Proposition 2.

A.1 Proof of proposition 1

The proof of Proposition 1 is expressed as follows:

Proof. It is easy to verify that

∂α̂(j)

∂α(i)
=

{
α̂(j)(1− 1

n α̂
(j)), if j = i

− 1
n α̂

(j)α̂(i), if j ̸= i
.

Therefore, given that
∑n

i=1 α̂
(i) = n

n∑
i=1

∂R̂val

∂α̂(j)

∂α̂(j)

∂α(i)
=

∂R̂val

∂α̂(j)

α̂(j) − 1

n

(
α̂(j)

)2
− 1

n

n∑
i=1,i̸=j

α̂(j)α̂(i)


=

∂R̂val

∂α̂(j)

(
α̂(j) − α̂(j)

n

n∑
i=1

α̂(i)

)

= 0 .

When applying SGD to update α, we have

n∑
i=1

α(i) − η

n∑
i=1

n∑
j=1

∂R̂val

∂α̂(j)

∂α̂(j)

∂α(i)
=

n∑
i=1

α(i) .

That is, the updated α shares the same summation as the one before the updates, which therefore
concludes our proof.

A.2 Definition of β-Smooth

Definition 1. β-smooth refers to the Lipschitz continuity of the gradient of the loss function, that is,
for all w and w′:

∥∇f(w; z)−∇f(w′; z)∥ ≤ β∥w − w′∥

where ∥ · ∥ denotes the norm of the vector, and f(w; z) is the loss function with parameter w for
sample z.

Let fdeep(w) and fshallow(w) be the loss functions for deep and shallow architectures, respectively.
According to Definition 1, the relationship between βdeep and βshallow illustrates the relationship
between the generalization and performance of deep and shallow networks.

A.3 Proof of proposition 2

Abstract LLM into a layered network:[41] As shown in Figure 4, we abstract LLM into a hierar-
chical network, and the weight of each layer is represented by W (i). Figure 4 represents the general
case. The output of the i-th layer network is:

y =

n∏
j=1

W (j)x. (5)
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Decoder Layer 0

…

Decoder Layer n

…

Decoder Layer N - 1

output

Figure 4: We present LLM as a hierarchical network. In this context, all parameters of a Decoder
layer are represented as a weight matrix W for subsequent analysis.

Gradient analysis: For the abstract network, represented in Equation 5. The gradient of the loss
function ℓ with respect to the weight W (i) is:

∂ℓ

∂W (i)
=

 n∏
j=i+1

W (j)

 ∂ℓ

∂y(i)
x

i−1∏
j=1

W (j)

 . (6)

The proof of Proposition 2 is expressed as follows:

Proof. For the abstract network, we begin with Definition 1:∥∥∥∥∥ ∂ℓ

∂W
(i)
1

− ∂ℓ

∂W
(i)
2

∥∥∥∥∥
=

∥∥∥∥∥∥
 n∏

j=i+1

W (j)

( ∂ℓ

∂y
(i)
1

− ∂ℓ

∂y
(i)
2

)
x

i−1∏
j=1

W (j)

∥∥∥∥∥∥ .
(7)

Taking MSE Loss as an example, for one predictions y(N) and their corresponding true values y:

ℓ ≜ (y(N) − y)2/2, (8)
therefore:

∂ℓ

∂y(i)
=
(
y(N) − y

) N∏
j=i+1

W (j). (9)

We select the MSE loss function and calculat the i-th layer of N layers network, Substituting
Equation 9 into Equation 7:

∥∥∥∥∥ ∂ℓ

∂W
(i)
1

− ∂ℓ

∂W
(i)
2

∥∥∥∥∥ =

∥∥∥∥∥∥∥
 N∏

j=i+1

W (j)

2 (
y
(N)
1 − y − y

(N)
2 + y

)
x

i−1∏
j=1

W (j)
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≤

 1

λ(i)

 N∏
j=1

λ(j)

 N∏
j=i+1

λ(j)
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W (j)
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1 −W

(i)
2
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λ(j)
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(i)
2

)∥∥∥
≤

 N∏
j=1,j ̸=i
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2 ∥∥x2
∥∥∥∥∥W (i)

1 −W
(i)
2

∥∥∥ ,

(10)

which therefore concludes our proof.
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B Experimental setting

In the main experiment, we compared Flexora with the baseline. The datasets and experimental
parameters are as follows:

B.1 Dataset

We added new templates to the original dataset to ensure the model could complete the required tasks
and output formats. It is important to note that the added templates did not alter the original dataset,
and special processing was performed for different LLMs. The specific examples are as follows:

Dataset Format of Hellaswag

dataset: Hellaswag
dataset format:
{
"instruction ": "{ Article }\n
Question: {Question }\n
A. {Option A}\n
B. {Option B}\n
C. {Option C}\n
D. {Option D}\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n Answer:",
"output ": "{ Answer }"
}
example:
{
"instruction ": "A man is sitting on a roof. He\n
Question: Which ending makes the most sense?\n
A. is using wrap to wrap a pair of skis.\n
B. is ripping level tiles off.\n
C. is holding a Rubik ’s cube.\n
D. starts pulling up roofing on a roof.\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n Answer:",
"output ": "D"
}

Dataset Format of PIQA

dataset: PIQA
dataset format:
{
"instruction ": "There is a single choice question.
Answer the question by replying A or B.’\n
Question: {Question }\n
A. {Option A}\n
B. {Option B}\n
Answer:",
"output ": "{ Answer }"
}
example:
{
"instruction ": "There is a single choice question.
Answer the question by replying A or B.’\n
Question: When boiling butter , when it ’s ready , you can\n
A. Pour it onto a plate\n
B. Pour it into a jar\n
Answer:",
"output ": "B"
}
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Dataset Format of Winogrande

dataset: Winogrande
dataset format:
{
"instruction ": "There is a single choice question ,
you need to choose the correct option to fill in the blank.
Answer the question by replying A or B.’\n
Question: {Question }\n
A. {Option A}\n
B. {Option B}\n
Answer:",
"output ": "{ Answer }"
}
example:
{
"instruction ": "There is a single choice question ,
you need to choose the correct option to fill in the blank.
Answer the question by replying A or B.’\n
Question: Sarah was a much better surgeon than Maria so _ always got the
easier cases .\n
A. Sarah\n
B. Maria\n
Answer:",
"output ": "B"
}

Dataset Format of RACE

dataset: RACE
dataset format:
{
"instruction ": "{ Article}
{Question }\n
[ {Option A}, {Option B}\, {Option C}, {Option D}]",
"output ": "{ Answer }"
}
example:
{
"instruction ": "I am a psychologist. I first met Timothy , a quiet ,
overweight eleven -year -old boy , when his mother brought him to me to discuss
his declining grades. A few minutes with Timothy were enough to confirm that
his self -esteem and general happiness were falling right along with _ .
I asked about Timothy ’s typical day. He awoke every morning at six thirty
so he could reach his school by eight and arrived home around four thirty each
afternoon. He then had a quick snack , followed by either a piano lesson
or a lesson with his math tutor. He finished dinner at 7 pm, and then he sat
down to do homework for two to three hours. Quickly doing the math in my
head , I found that Timothy spent an average of thirteen hours a day
at a writing desk.\n
What if Timothy spent thirteen hours a day at a sewing machine instead of
a desk? We would immediately be shocked , because that would be called
children being horribly mistreated. Timothy was far from being mistreated ,
but the mountain of homework he faced daily resulted in a similar consequence
--he was being robbed of his childhood. In fact , Timothy had no time
to do anything he truly enjoyed , such as playing video games , watching
movies , or playing board games with his friends .\n
Play , however , is a crucial part of healthy child development.
It affects children ’s creativity , their social skills , and even their brain
development. The absence of play , physical exercise , and freefrom social
interaction takes a serious toll on many children. It can also cause
significant health problems like childhood obesity , sleep problems
and depression .\ nExperts in the field recommend the minutes children
spend on their homework should be no more than ten times the number
of their grade level./ nWhat did the writer think of Timothy after
learning about his typical day?/n
[’Timothy was very hardworking.’,
’Timothy was being mistreated.’,
’Timothy had a heavy burden.’,
’Timothy was enjoying his childhood .’]",
"output ": "C"
}
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Table 5: Detailed experimental parameters. This table lists the specific parameters we used in the
experiments for various methods. These parameters include the target module of LoRA (Lora Target),
the maximum sequence length (Max Length), the number of samples for supervised fine-tuning (SFT
Samples), the learning rate (LR), the number of search samples (Search Samples), the initial rank
(Init Rank), the target rank (Target Rank), and the ratio of pruning (Ratio). All other parameters not
listed here remain consistent across all experiments.

Methods LoRA Target Max Length SFT Samples LR Search Samples Init Rank Target Rank Ratio

LoRA q & v Proj 1024 20000 0.0001 - - - -

Flexora q & v Proj 1024 20000 0.0001 20000 - - -

AdaLoRA q & v Proj 1024 20000 0.0001 - 4 8 -

LoRA-drop q & v Proj 1024 20000 0.0001 20000 - - -

LoRAShear q & v Proj 1024 20000 0.0001 20000 - - 0.5

Dora q & v Proj 1024 20000 0.0001 20000 - - -

rsLoRA q & v Proj 1024 20000 0.0001 20000 - - -

LoRAPrune q & v Proj 1024 20000 0.0001 20000 - - 0.5

B.2 Specific experimental parameters

Based on the Llama3-8B model configuration, several adjustments were made to optimize model
performance. In the baseline model experiment, generation parameters were adjusted to ensure the
correct output. In the LoRA experiment, adjustments to the generation parameters were retained, and
LoRA-related parameters were adjusted. In the Flexora experiment, the size of the validation set was
adjusted to control the time required to search for the optimal layer. In the AdaLoRA experiment, the
initial rank size was modified to ensure that the fine-tuning parameters are consistent with Flexora. In
the LoRA-drop experiment, the number of fine-tuning layers was set to be consistent with Flexora to
ensure that the fine-tuning parameters are consistent. In the LoRAShear experiment, the pruning ratio
was modified, where the parameter amount with a pruning ratio of 50% is consistent with Flexora.
For specific experimental parameters, see the table 5.

B.3 Other LLMs experimental parameters

In order to explore the versatility and scalability of Flexora, we conducted experiments on multiple
different LLMs. The specific training parameters are shown in Table 6.

C More results

C.1 The results of other LLMs experiment

Wide Applicability of Flexora. According to the parameter settings in Table 6, the verification
results for various LLMs are presented in Table 7. The selected LLMs include Llama3-8B, Llama-
7B, Llama2-7B, ChatGLM3-6B, Mistral-7B-v0.1, Gemma-7B, Zephyr-7B-beta, Vicuna-7B-v1.5,
XuanYuan-6B, Qwen1.5-7B, and Yi-6B. These models demonstrate unique characteristics in terms
of training data, architecture design, and optimized training. First, the models utilize varied training
data, leading to differences in data distribution. Additionally, some models have enhanced attention
mechanisms: Mistral-7B-v0.1 employs grouped query attention (GQA) and sliding window attention
(SWA), while ChatGLM3-6B features a special attention design to support tool calling and code
execution capabilities. Activation functions vary across these models. Llama3-8B uses the SwiGLU
activation function, inspired by the PaLM model, to improve performance and convergence speed,
while ChatGLM3-6B uses the Swish activation function. Furthermore, differences in reasoning
optimization and multilingual capabilities contribute to varied reasoning abilities across fields. The
experimental result of each model is shown in Table 7, which presents the scores of each model
on different downstream tasks after LoRA and Flexora fine-tuning. It should be noted that all
models fine-tuned using LoRA will have a certain degree of overfitting, while Flexora can effectively
identify and analyze unnecessary layers in specific downstream tasks and prune them to reduce
model overfitting. After optimization by Flexora, these LLMs showed significant performance
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Table 6: Detailed LLM experiment parameters. This table provides a comprehensive overview of
the specific parameters used for different large language models (LLMs) in our experiments. These
parameters include the LoRA alpha value (LoRA Alpha), the dropout rate of LoRA (LoRA Dropout),
the rank used in LoRA (LoRA Rank), and the target module of LoRA (LoRA Target). In addition,
the table lists the specific templates used for each LLM, which are derived from Llama-factory
(Template). For experiments involving different downstream tasks using the same model, all other
parameters are kept consistent to ensure fair comparison and best performance.

LLM LoRA Alpha LoRA Dropout LoRA Rank LoRA Target Tamplate (From Llama-factory)

Llama3 16 0 8 q & v Proj llama3

Llama 16 0 8 q & v Proj defult

Llama2 16 0 8 q & v Proj llama2

chatglm3 16 0 8 query_key_value chatglm3

Mistral-v0.1 16 0 8 q & v Proj mistral

gemma 16 0 8 q & v Proj gemma

zephyr 16 0 8 q & v Proj zephyr

vicuna 16 0 8 q & v Proj vicuna

xuanyuan 16 0 8 q & v Proj xuanyuan

qwen1.5 16 0 8 q & v Proj qwen

yi 16 0 8 q & v Proj yi

improvements on downstream tasks. In particular, models that originally performed poorly on some
tasks, such as ChatGLM3-6B, experienced significant improvements, achieving more than a 15%
increase on the RACE-mid and RACE-high tasks. This improvement is attributable to the key
layer selection by Flexora and efficient model learning. In summary, Flexora is applicable across
Transformer models of various structures, excels in diverse tasks, and effectively enhances areas
where model capabilities are lacking.

C.2 The results of other LoRAs experiment

Strong Scalability of Flexora. Recently, as emphasized in the Introduction 1, numerous LoRA
improvement methods have been proposed, achieving excellent performance in specific fine-tuning
tasks. In this section, the potential for combining Flexora with other emerging LoRA algorithms is
explored. Two promising LoRA variants were selected from different approaches, each demonstrating
impressive performance. Specifically, DoRA (Weight-Decomposed Low-Rank Adaptation) achieves
low-rank adaptation through weight decomposition, and rsLoRA (Rank-Stabilized LoRA) addresses
the slow training speed of traditional LoRA by introducing a rank-stabilized scaling factor when
increasing rank. These methods primarily address the parameter overfitting problem within LoRA
parameters but overlook the overall overfitting issue. These methods were innovatively combined with
Flexora to first address the overall overfitting problem and then tackle the overfitting of the remaining
LoRA parameters, resulting in notable performance improvements. The specific experimental results
are shown in Table 8. The results indicate that Flexora integrates well with both DoRA and rsLoRA,
effectively mitigating the overfitting problem of LLMs and improving performance with training on
less than half of the parameters. The specific implementation entails replacing LoRA with DoRA
or rsLoRA for inner layer optimization during the flexible layer selection stage, with the outer
layer optimization remaining unchanged. These adjustments are achievable through straightforward
modifications. The results demonstrate that Flexora exhibits strong scalability when combined with
algorithms that enhance LoRA parameters, highlighting its significant potential.

C.3 Comparison with LoRAShear

Better Performance of Flexora. In this section, the accuracy of Flexora is compared with that
of LoRAShear across various datasets, with specific results presented in Table 9. Since LoRAShear
is not open source and poses challenges for direct experimentation, the comparison relies on the
experimental configurations and results reported in the LoRAShear paper. Notably, Flexora can
freely adjust the selected layers according to the dataset, achieving an average pruning parameter
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Table 7: Detailed comparison of the accuracy of different LLMs. This table presents a comprehensive
comparison of the accuracy results obtained by fine-tuning various mainstream Large Language
Models (LLMs) using Flexora and LoRA methods. The accuracy metrics are reported across multiple
benchmark datasets, including HellaSwag, PIQA, Winogrande, RACE-mid, and RACE-high. The
average accuracy across all datasets is also provided. The exact values of accuracy improvements for
each method, highlighted in red, indicate the performance gains achieved.

Methods Hellaswag PIQA Winogrande RACE-
mid

RACE-
high

Average

Llama3-8B-LoRA 89.72 73.72 75.14 79.89 77.79 79.25
Llama3-8B-Flexora 93.62

(+3.90)
85.91
(+12.19)

85.79
(+10.65)

84.61
(+4.72)

82.36
(+4.57)

86.46
(+7.21)

Llama-7B-LoRA 76.10 69.80 67.01 75.69 70.81 71.88
Llama-7B-Flexora 85.28

(+9.18)
71.93
(+2.13)

74.11
(+7.10)

81.62
(+5.93)

78.62
(+7.81)

78.31
(+6.43)

Llama2-7B-LoRA 79.60 75.90 78.60 79.32 75.07 77.70
Llama2-7B-Flexora 90.89

(+11.29)
81.72
(+5.82)

82.85
(+4.25)

84.89
(+5.57)

83.19
(+8.12)

84.71
(+7.01)

Chatglm3-6B-LoRA 83.02 70.62 69.93 63.43 59.46 69.29
Chatglm3-6B-Flexora 85.12

(+2.10)
74.81
(+4.19)

72.69
(+2.76)

79.18
(+15.75)

76.33
(+16.87)

77.63
(+8.33)

Mistral-7B-v0.1-LoRA 94.35 82.15 84.85 83.79 82.39 85.51
Mistral-7B-v0.1-Flexora 95.08

(+0.73)
86.89
(+4.74)

85.50
(+0.65)

85.72
(+1.93)

84.25
(+1.86)

87.49
(+1.98)

Gemma-7B-LoRA 94.85 83.19 80.19 85.73 83.96 85.58
Gemma-7B-Flexora 95.76

(+0.91)
87.54
(+4.35)

83.58
(+3.39)

89.62
(+3.89)

88.19
(+4.23)

88.94
(+3.35)

Zephyr-7B-beta-LoRA 93.77 75.03 78.37 83.45 82.25 82.57
Zephyr-7B-beta-Flexora 95.05

(+1.28)
85.58
(+10.55)

84.95
(+6.58)

86.19
(+2.74)

84.30
(+2.05)

87.21
(+4.64)

Vicuna-7B-v1.5-LoRA 87.64 69.48 63.85 67.30 73.90 72.43
Vicuna-7B-v1.5-Flexora 90.43

(+2.79)
79.49
(+10.01)

76.06
(+12.21)

82.94
(+15.64)

81.90
(+8.00)

82.16
(+9.73)

XuanYuan-6B-LoRA 82.38 74.16 65.27 78.04 72.11 74.39
XuanYuan-6B-Flexora 88.41

(+6.03)
79.43
(+5.27)

73.40
(+8.13)

84.89
(+6.85)

80.70
(+8.59)

81.37
(+6.97)

Qwen1.5-7B-LoRA 91.75 75.03 78.14 87.59 81.36 82.77
Qwen1.5-7B-Flexora 91.96

(+0.21)
84.33
(+9.30)

80.69
(+2.55)

89.90
(+2.31)

87.08
(+5.72)

86.79
(+4.02)

Yi-6B-LoRA 89.46 78.29 76.01 80.02 85.13 81.78
Yi-6B-Flexora 92.24

(+2.78)
84.82
(+6.53)

84.96
(+8.95)

88.72
(+8.70)

86.91
(+1.78)

87.53
(+5.75)
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Table 8: Detailed comparison of the accuracy of the combination of Flexora and different LoRA
algorithms on Llama3-8B. This table presents a detailed comparison of the accuracy results obtained
by integrating Flexora with various improved LoRA algorithms, including DoRA and rsLoRA, while
maintaining other experimental settings constant. The accuracy metrics are reported across multiple
benchmark datasets, including HellaSwag, PIQA, Winogrande, RACE-mid, and RACE-high, with the
average accuracy across all datasets also provided. The results are compared against those obtained
from direct fine-tuning without Flexora. The experimental findings indicate that the application of
Flexora can significantly reduce model overfitting and enhance overall performance.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

LoRA 89.72 76.39 82.24 85.86 80.99 83.04
Flexora (w/ LoRA) 93.62 85.91 85.79 84.61 82.36 86.46

rsLoRA 94.33 87.21 85.32 87.60 84.36 87.76
Flexora (w/ rsLoRA) 94.83 87.58 86.69 88.21 85.46 88.55

DoRA 93.62 85.75 84.77 86.77 83.39 86.86
Flexora (w/ DoRA) 94.10 86.05 86.32 87.12 84.45 87.61

Table 9: Detailed comparison of commonsense reasoning task accuracy. This table provides a
comprehensive comparison of the accuracy results for various methods applied to common sense
reasoning tasks, conducted on the Llama-7B model. The methods compared include the pre-trained
model, LoRA, LoRAShear with different pruning ratios (0.5), and Flexora. The accuracy metrics
are reported across multiple benchmark datasets, including BoolQ, PIQA, HellaSwag, Winogrande,
ARC-e, ARC-c, and OBQA. The average accuracy across all datasets is also provided. The “Ratio"
column represents the ratio of parameter pruning in LoRAShear.

Methods BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Pre-trained 57.98 60.94 34.35 52.25 31.82 27.30 35.80 42.92
LoRA 67.76 69.80 76.10 67.01 67.21 35.23 38.60 60.24
LoRAShear (Ratio = 0.5) 63.40 72.15 49.83 56.40 49.45 34.31 35.86 51.63
Flexora 73.54 71.93 85.28 74.11 71.22 45.64 39.86 65.94

rate of 50%. Consequently, under the same pruning rate, Flexora outperforms by 14% (Ratio = 0.5).
Experiments have shown that under the same pruning rate, Flexora can achieve better performance.

C.4 Different search sample

Flexibility of Flexora in search sample . In Flexora, search time is managed by adjusting the
maximum number of search samples (corresponding to the size of the validation dataset) to align with
the requirements of the downstream task. In Table 10, we explore the relationship between different
numbers of search samples, downstream task performance, and search time. For simpler datasets like
Hellaswag and PIQA, a 10-minute search with 1,000 samples significantly improves performance.
For more challenging tasks, at least 1 hour of search time is required for 5,000 samples. In more
difficult tasks, using too few samples can prevent validation loss from converging. To optimize
performance, it is recommended to dynamically adjust the number of search samples based on the
convergence of the validation loss. In summary, for simpler downstream tasks, Flexora can be rapidly
applied to reduce model overfitting significantly and enhance performance. For more challenging
downstream tasks, Flexora balances performance and training resources by adjusting the number of
search samples.

C.5 Selection of layers

For different LLMs and datasets, the layers chosen by Flexora vary due to the different parameters
learned in the pre-training stage and the diversity of downstream tasks. In Table 11, Table 12,
Table 13, Table 14, and Table 15, we show the layers chosen by Flexora in all experiments and the
corresponding training parameters. In this section, the preferences of the layers chosen by Flexora
are analyzed in detail, providing layer-wise insights for LLMs.
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Table 10: Detailed analysis of the impact of different numbers of search samples on the Flexora
accuracy of Llama3-8B. This table investigates how varying the number of search samples, i.e.,
different validation dataset sizes, affects the performance of Flexora. The accuracy metrics are
reported across multiple benchmark datasets, including HellaSwag, PIQA, Winogrande, RACE-mid,
and RACE-high, with the average accuracy across all datasets also provided. The number of search
samples tested includes 1000, 2000, 5000, 10000, and 200000. All experimental conditions remain
unchanged except for the size of the validation set, allowing for a focused analysis on the impact of
search sample size on model performance.

# Samples Hellaswag PIQA Winogrande RACE-mid RACE-high Average

1000 93.00 80.52 76.40 76.74 72.93 79.92
2000 92.29 81.98 74.11 80.15 78.82 81.47
5000 93.17 82.48 81.53 84.82 82.16 84.83
10000 93.47 84.07 83.11 84.17 81.56 85.28
20000 93.62 85.91 85.79 84.61 82.36 86.46

The Effectiveness of Flexora Comes from Reducing Overfitting. In Table 11, the layers and
parameter amounts selected by different LoRA methods are presented. A comparison between LoRA-
drop and Flexora reveals that Flexora is more effective. LoRA-drop tends to select the later layers,
as these outputs exhibit a larger two-norm, aligning with Proposition 2. This result suggests that
layers selected during fine-tuning should not concentrate in a specific range but rather be distributed
across various ranges, fully utilizing the extensive knowledge system of LLMs. Comparing LoRA
with DoRA and rsLoRA shows that LoRA selects more layers, requiring more training parameters
but yielding worse performance. This suggests a higher degree of overfitting when Flexora is
applied to LoRA compared to the other two methods. Therefore, using more advanced LoRA
improvement algorithms can significantly reduce overfitting and enhance performance, underscoring
the importance of the fine-tuning approach. Interestingly, certain layers are consistently fine-tuned in
the same downstream task, regardless of whether LoRA, DoRA, or rsLoRA is used. For example,
in Hellaswag, layers [0, 1, 2, 4, 14, 15, 19, 20, 21, 23, 26, 27, 28, 29, 31] are consistently selected,
suggesting these layers are crucial for this task or represent general knowledge layers (see the next
two paragraphs for details), closely related to the LLM itself .

General Knowledge Layers. In Table 12, the layers and parameters selected in the second ablation
study are shown. Observing the "Select first 6 layers by Flexora" row reveals that certain layers,
such as [27, 28], are crucial for any downstream task. These layers may store general knowledge,
suggesting that their fine-tuning could enhance the performance across most downstream tasks.

Downstream task-specific layers. Table 13 displays the layers and parameter amounts selected by
various LLMs for different downstream tasks. As evident from the table, the same model utilizes the
aforementioned general knowledge layers across different tasks. Additionally, unique layers for each
downstream task, termed downstream task-specific layers, are predominantly found in the first and
last layers. The distinction between general knowledge layers and downstream task-specific layers
can be attributed to the self-attention mechanism, which effectively differentiates these layers. In
the self-attention mechanism, similar knowledge is aggregated, leading to this layer differentiation.
Furthermore, concerning downstream task-specific layers, two conclusions are drawn: (a) Fewer
layers are selected for simpler datasets to minimize overfitting. (b) Typically, the initial and final layers
are selected for a given dataset. This selection pattern may stem from the initial layer processing the
original input and the final layer generating the model’s output representation. Given the consistent
and predefined input and output, learning these parameters is deemed effective.

Poor Effects with No Critical Layers Tables 14 and 15 serve as evidence for the existence of
downstream task-specific and general knowledge layers. Failure to select these layers, due to reasons
like random selection or lack of convergence, leads to poor performance.

In summary, it is evident that almost all LLMs feature downstream task-specific layers and general
knowledge layers. Fine-tuning these layers effectively mitigates model overfitting and enhances both
generalization and performance. Fortunately, Flexora accurately and efficiently identifies both the
downstream task-specific layers and the general knowledge layers.
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D Loss

This section presents the training, evaluation, and validation loss during the Flexora flexible layer
selection and fine-tuning stages, accompanied by intuitive explanations.

D.1 Effectiveness of Flexora.

Figure 5 plots the training and validation loss curves for Llama-8B during the flexible layer selection
stage across four different datasets over one epoch. Both inner and outer layer optimizations are
observed to converge well during the flexible layer selection stage, demonstrating the effectiveness of
Flexora.

D.2 Flexora can Correctly Identify Critical Layers.

Figures 6, 7, 8, and 9 depict the training and evaluation loss from the first ablation study. In all
experiments, the training loss converges effectively, demonstrating robust training performance.
However, variations in evaluation loss underscore the model’s generalization capabilities. Flexora
generally surpasses methods that randomly select an equivalent number of layers, demonstrating its
ability to accurately identify critical layers for more effective improvements.

D.3 Flexora can Reduce Overfitting.

Figures 10, 11, 12, and 13 present the training and evaluation loss from the sencond ablation study.
Consistent with previous experiments, the training loss converges, indicating a strong training effect
on the training set. Notably, the 24-layer (red) model consistently shows the lowest training loss,
suggesting optimal learning, whereas the 6-layer (blue) model consistently records the highest,
indicating poorer training performance. However, differences in evaluation loss reveal variations
in model generalization across different layers. The 18-layer (green) model consistently exhibits
the lowest evaluation loss, indicating superior generalization and downstream task performance,
corroborated by actual results. The 24-layer (red) model’s evaluation loss consistently exceeds that
of the 18-layer (green) model, suggesting significant overfitting. Similarly, the 6-layer (blue) model
consistently records the highest evaluation loss, indicative of underfitting.

In summary, too few training layers can lead to underfitting and poor performance, as seen in the
6-layer (blue) model. Conversely, too many layers can also result in overfitting, as evidenced by the
24-layer (red) model’s performance. However following the selection strategy of Flexora, choosing
the right number of layers can minimize overfitting and improve performance
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Figure 5: Training and validation loss during the flexible layer selection phase. The figure shows the
training and validation loss over 20,000 steps for four different datasets (Hellaswag, PIQA, RACE,
and Winogrande), where the batch size at each step is 1. The blue line shows the validation loss and
the orange line shows the training loss. These plots visually compare how the performance of the
models changes during the flexible layer selection phase, highlighting the convergence behavior.

Table 11: Comprehensive overview of layer selection strategies in main experiments. This table
presents a detailed breakdown of the layer selection strategies used in different experiments involving
the Llama3-8B model and its variants (Flexora, LoRA-drop, DoRA + Flexora, and rsLoRA +
Flexora). For each model, the specific datasets utilized (HellaSwag, PIQA, RACE, and Winogrande)
are listed along with the corresponding layers selected for each dataset. The “Layer selection" column
provides the indices of the layers chosen for each experiment, indicating the specific layers of the
model that were fine-tuned or modified. Additionally, the “Parameter(M)" column indicates the
total number of parameters (in millions) used in each configuration. This detailed breakdown allows
for a clear understanding of the experimental setup, the layer selection process, and the parameter
allocation across different models and datasets, facilitating a deeper analysis of the impact of these
strategies on model performance.
Methods Dataset Layer selection Parameter(M)

Llama3-8B + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31] 2.0
PIQA [1, 2, 3, 4, 5, 7, 8, 9, 14, 20, 25, 26, 27, 28, 29, 30] 1.7
RACE [0, 1, 2, 3, 4, 7, 8, 9, 12, 14, 25, 26, 27, 28, 29, 31] 1.7

Winogrande [0, 1, 2, 3, 4, 16, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Llama3-8B + LoRA-drop

Hellaswag [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.0
PIQA [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.7
RACE [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.7

Winogrande [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.7

Llama3-8B + DoRA + Flexora

Hellaswag [0, 1, 2, 4, 5, 14, 15, 19, 20, 21, 23, 26, 27, 28, 29, 31] 1.8
PIQA [0, 1, 2, 4, 7, 23, 24, 25, 26, 27, 28, 29, 31] 1.5
RACE [1, 3, 4, 7, 9, 12, 14, 23, 25, 27, 28, 29, 31] 1.3

Winogrande [0, 1, 2, 3, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Llama3-8B + rsLoRA + Flexora

Hellaswag [0, 1, 2, 4, 6, 14, 15, 19, 20, 21, 23, 25, 26, 27, 28, 29, 31] 1.8
PIQA [0, 1, 2, 3, 15, 20, 21, 25, 26, 27, 28, 29, 31] 1.3
RACE [0, 1, 2, 3, 7, 8, 12, 13, 25, 26, 27, 28, 29, 31] 1.5

Winogrande [1, 2, 3, 6, 14, 15, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.9
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Table 12: Detailed display of selected layers in the second ablation study. In the second ablation
experiment, we manually determined the number of fine-tuning layers and contrasted the performance
of Flexora with random layer selection strategies. This table presents the results of this experiment,
showcasing different configurations where a specific number of layers (6, 12, 18, and 24) were
selected for fine-tuning. For each configuration, the table compares the layers selected by Flexora
with those selected randomly. The datasets used in this experiment include HellaSwag, PIQA, RACE,
and Winogrande. The “Layer selection" column lists the indices of the layers chosen for fine-tuning
in each dataset, while the “Parameter(M)" column indicates the total number of parameters (in
millions) used in each configuration. This detailed breakdown provides insights into how different
layer selection strategies, with a manually determined number of fine-tuning layers, impact the
performance of model across different datasets, facilitating a comprehensive comparison between
Flexora and random selection methods.
Methods Dataset Layer selection Parameter(M)

Select first 6 layers by Flexora

Hellaswag [0, 26, 27, 28, 29, 31] 0.6
PIQA [2, 4, 26, 27, 28, 29] 0.6
RACE [0, 7, 12, 27, 28, 29] 0.6

Winogrande [22, 23, 24, 26, 27, 28] 0.6

Random selection 6 layers

Hellaswag [2, 4, 11, 19, 23, 25] 0.6
PIQA [2, 4, 11, 19, 23, 25] 0.6
RACE [2, 4, 11, 19, 23, 25] 0.6

Winogrande [2, 4, 11, 19, 23, 25] 0.6

Select first 12 layers by Flexora

Hellaswag [0, 2, 3, 14, 15, 21, 23, 26, 27, 28, 29, 31] 1.3
PIQA [1, 2, 3, 4, 7, 20, 25, 26, 27, 28, 29, 30] 1.3
RACE [0, 1, 3, 7, 8, 12, 13, 25, 27, 28, 29, 31] 1.3

Winogrande [0, 3, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.3

Random selection 12 layers

Hellaswag [1, 3, 4, 12, 14, 18, 20, 21, 22, 27, 29, 31] 1.3
PIQA [1, 3, 4, 12, 14, 18, 20, 21, 22, 27, 29, 31] 1.3
RACE [1, 3, 4, 12, 14, 18, 20, 21, 22, 27, 29, 31] 1.3

Winogrande [1, 3, 4, 12, 14, 18, 20, 21, 22, 27, 29, 31] 1.3

Select first 18 layers by Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 14, 15, 19, 21, 23, 26, 27, 28, 29, 30, 31] 1.9
PIQA [0, 1, 2, 3, 4, 5, 7, 8, 19, 20, 23, 25, 26, 27, 28, 29, 30, 31] 1.9
RACE [0, 1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 15, 25, 27, 28, 29, 30, 31] 1.9

Winogrande [0, 1, 3, 5, 7, 9, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.9

Random selection 18 layers

Hellaswag [1, 2, 5, 8, 9, 10, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 26, 30] 1.9
PIQA [1, 2, 5, 8, 9, 10, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 26, 30] 1.9
RACE [1, 2, 5, 8, 9, 10, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 26, 30] 1.9

Winogrande [1, 2, 5, 8, 9, 10, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 26, 30] 1.9

Select first 24 layers by Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31] 2.6
PIQA [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.6
RACE [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 23, 24, 25, 27, 28, 29, 30, 31] 2.6

Winogrande [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.6

Random selection 24 layers

Hellaswag [0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28, 30, 31] 2.6
PIQA [0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28, 30, 31] 2.6
RACE [0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28, 30, 31] 2.6

Winogrande [0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28, 30, 31] 2.6
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Table 13: Comprehensive overview of layer selection strategies and parameter allocation in various
experiments. This table provides an in-depth breakdown of the layer selection strategies employed
across different models and datasets in the experiments. The models tested include Llama3-8B,
Chatglm3-6B, Mistral-7B-v0.1 and others, all combined with Flexora. For each model, the specific
datasets used (HellaSwag, PIQA, RACE, and Winogrande) are listed along with the corresponding
layers selected for each dataset. The “Layer selection" column details the indices of the layers chosen
for each experiment, indicating the specific layers of the model that were fine-tuned or modified.
Additionally, the “Parameter(M)" column indicates the total number of parameters (in millions) used
in each configuration. This detailed breakdown allows for a clear understanding of the experimental
setup, the layer selection process, and the parameter allocation across different models and datasets,
facilitating a deeper analysis of the impact of these strategies on model performance.
Methods Dataset Layer selection Parameter(M)

Llama3-8B + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31] 2.0
PIQA [1, 2, 3, 4, 5, 7, 8, 9, 14, 20, 25, 26, 27, 28, 29, 30] 1.7
RACE [0, 1, 2, 3, 4, 7, 8, 9, 12, 14, 25, 26, 27, 28, 29, 31] 1.7

Winogrande [0, 1, 2, 3, 4, 16, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Chatglm3-6B + Flexora

Hellaswag [1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 16, 18, 20] 0.9
PIQA [0, 1, 2, 3, 5, 6, 7, 8, 9, 19, 21, 23, 25, 27] 1.0
RACE [2, 6, 8, 9, 10, 11, 14, 15, 16, 17, 18, 20, 23, 26] 1.0

Winogrande [0, 2, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 25, 26] 1.0

Mistral-7B-v0.1 + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 7, 14, 22, 26, 27, 30] 1.5
PIQA [6, 8, 14, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30] 1.7
RACE [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 30, 31] 1.7

Winogrande [0, 1, 2, 3, 4, 5, 6, 7, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.9

Gemma-7B + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 18, 20, 23, 27] 1.9
PIQA [0, 1, 8, 9, 10, 12, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27] 1.9
RACE [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 16] 1.4

Winogrande [0, 1, 2, 3, 4, 5, 6, 7, 8, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] 2.1

Vicuna-7B-v1.5 + Flexora

Hellaswag [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12] 1.6
PIQA [1, 2, 3, 5, 7, 8, 11, 12, 13, 14, 21, 31] 1.6
RACE [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] 1.6

Winogrande [0, 2, 3, 4, 6, 8, 9, 12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.6

Zephyr-7B-beta + Flexora

Hellaswag [1, 13, 15, 17, 18, 22, 23, 24, 25, 26, 27, 28, 30, 31] 1.5
PIQA [2, 3, 6, 7, 14, 15, 16, 17, 22, 26, 27, 28] 1.4
RACE [1, 2, 4, 6, 7, 9, 11, 13, 14, 17, 26, 30, 31] 1.4

Winogrande [1, 3, 5, 6, 8, 13, 27, 28, 29, 30, 31] 1.2

Yi-6B + Flexora

Hellaswag [0, 1, 2, 3, 4, 6, 8, 9, 10, 19, 20, 21, 22] 1.3
PIQA [1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 15, 16, 17, 18, 20, 23] 1.6
RACE [1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 17, 21] 1.2

Winogrande [0, 1, 2, 3, 5, 6, 7, 11, 23, 26, 27, 30, 31] 1.3

Llama-7B + Flexora

Hellaswag [0, 1, 2, 4, 5, 6, 8, 12, 16, 30, 31] 1.4
PIQA [2, 12, 14, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.1
RACE [4, 5, 6, 7, 8, 10, 11, 23, 30, 31] 1.3

Winogrande [0, 2, 3, 6, 7, 8, 10, 11, 13, 16, 23, 28, 29, 30, 31] 2.0

Llama2-7B + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 7, 8, 12] 1.3
PIQA [0, 1, 2, 3, 7, 8, 11, 13, 14, 21, 24, 29, 30, 31] 1.8
RACE [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16] 1.8

Winogrande [0, 1, 3, 4, 8, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30] 2.5

XuanYuan-6B + Flexora

Hellaswag [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 17] 1.7
PIQA [3, 4, 7, 8, 12, 14, 16, 17, 19, 21, 23, 25, 28, 29] 1.8
RACE [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 20, 21, 22, 25, 28, 29] 2.5

Winogrande [2, 3, 4, 8, 9, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] 2.5

Qwen1.5-7B + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 7, 9, 17] 1.3
PIQA [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 17] 1.8
RACE [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] 1.7

Winogrande [0, 1, 2, 3, 4, 5, 6, 7, 8, 21, 24, 25, 27, 28, 30] 2.0
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Table 14: Detailed display of selected layers in the first ablation study. This table presents the results
of the first ablation experiment, where the number of layers selected by Flexora was kept constant,
but different layers were chosen for fine-tuning. The table includes three different random layer
selection strategies (Random1, Random2, and Random3) applied to various datasets (HellaSwag,
PIQA, RACE, and Winogrande). For each random selection method, the “Layer selection" column
lists the indices of the layers chosen for fine-tuning in each dataset. The “Parameter(M)" column
indicates the total number of parameters (in millions) used in each configuration. This detailed
breakdown allows for a clear understanding of how different layer selection strategies impact the
performance of model across different datasets while maintaining a consistent number of layers for
fine-tuning.
Methods Dataset Layer selection Parameter(M)

Random1

Hellaswag [0, 1, 2, 3, 4, 6, 7, 8, 10, 11, 14, 18, 19, 20, 21, 25, 26, 27, 28] 2.0
PIQA [0, 2, 4, 10, 12, 16, 17, 18, 23, 24, 25, 26, 27, 28, 29, 30] 1.7
RACE [1, 2, 4, 7, 9, 11, 12, 14, 15, 18, 20, 23, 24, 26, 28, 30] 1.7

Winogrande [1, 2, 4, 5, 9, 10, 11, 13, 15, 17, 20, 21, 24, 26, 30, 31] 1.7

Random2

Hellaswag [0, 2, 3, 4, 5, 6, 10, 12, 13, 15, 17, 20, 21, 22, 23, 24, 28, 29, 30] 2.0
PIQA [0, 1, 3, 4, 8, 13, 14, 18, 19, 22, 24, 26, 28, 29, 30, 31] 1.7
RACE [5, 6, 7, 8, 9, 11, 12, 13, 15, 19, 20, 21, 25, 27, 28, 30] 1.7

Winogrande [2, 5, 6, 7, 8, 10, 11, 13, 14, 17, 18, 22, 25, 26, 28, 30] 1.7

Random3

Hellaswag [0, 1, 3, 4, 6, 9, 12, 13, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29] 2.0
PIQA [0, 3, 4, 9, 12, 13, 14, 15, 16, 24, 25, 26, 27, 28, 30, 31] 1.7
RACE [0, 1, 2, 9, 11, 12, 14, 18, 19, 20, 21, 23, 25, 26, 29, 30] 1.7

Winogrande [2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 20, 22, 23, 29, 30, 31] 1.7

Table 15: Detailed display of layer selection with varying numbers of searching samples. This
table presents the results of an experiment where different numbers of searching samples (1000,
2000, 5000, and 10000) were used to determine the layers for Flexora. The datasets involved in
this experiment include HellaSwag, PIQA, RACE, and Winogrande. For each number of searching
samples, the “Layer selection" column lists the indices of the layers chosen for fine-tuning in each
dataset. The “Parameter(M)" column indicates the total number of parameters (in millions) used in
each configuration. This detailed breakdown provides insights into how the number of searching
samples impacts the layer selection process and the performance of model across different datasets.
Methods Dataset Layer selection Parameter(M)

1000 searching samples

Hellaswag [0, 2, 4, 5, 6, 8, 10, 16, 21, 26, 27, 28, 30, 31] 1.5
PIQA [0, 1, 2, 3, 4, 16, 25, 26, 27, 28, 29, 30, 31] 1.4
RACE [0, 1, 2, 3, 4, 16, 21, 28, 29, 30, 31] 1.2

Winogrande [0, 1, 2, 3, 4, 16, 20, 25, 26, 27, 28, 29, 30, 31] 1.5

2000 searching samples

Hellaswag [1, 2, 3, 4, 8, 10, 11, 16, 30, 31] 1.0
PIQA [0, 1, 2, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.5
RACE [0, 1, 2, 3, 4, 10, 20, 23, 27, 28, 29, 30, 31] 1.4

Winogrande [0, 1, 2, 3, 4, 20, 25, 27, 30, 31] 1.0

5000 searching samples

Hellaswag [0, 1, 2, 3, 4, 8, 31] 0.7
PIQA [0, 2, 3, 4, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.6
RACE [1, 3, 4, 6, 9, 10, 11, 12, 14, 27, 28, 29, 30, 31] 1.5

Winogrande [1, 2, 3, 4, 6, 7, 8, 9, 26, 27, 30, 31] 1.3

10000 searching samples

Hellaswag [0, 1, 4, 10, 12, 14, 21, 24, 26, 27, 28, 29, 30, 31] 1.5
PIQA [0, 1, 3, 4, 7, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31] 1.7
RACE [1, 2, 7, 13, 14, 23, 25, 26, 27, 28, 29, 31] 1.3

Winogrande [6, 7, 9, 10, 15, 19, 20, 22, 26, 27, 30, 31] 1.3
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Figure 6: Comparison of train loss and evalu-
ation loss in the Hellaswag dataset during the
first ablation study. This figure presents the train
loss (left) and evaluation loss (right) over 20,000
steps for the Hellaswag dataset, where the batch
size at each step is 1. The performance of the
Flexora method is compared against three differ-
ent random layer selection strategies (Random
1, Random 2, and Random 3). The train loss
graph shows how the training performance of
model evolves, while the evaluation loss graph
highlights the generalization capability of model
on the validation set. This detailed comparison
provides insights into the effectiveness of Flex-
ora relative to random selection methods in terms
of both training and evaluation metrics.
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Figure 7: Comparison of train loss and evaluation
loss in the PIQA dataset during the first ablation
study. This figure presents the train loss (left) and
evaluation loss (right) over 20,000 steps for the
PIQA dataset, where the batch size at each step
is 1. The performance of the Flexora method
is compared against three different random layer
selection strategies (Random 1, Random 2, and
Random 3). The train loss graph shows how the
training performance of model evolves, while
the evaluation loss graph highlights the gener-
alization capability of model on the validation set.
This detailed comparison provides insights into
the effectiveness of Flexora relative to random
selection methods in terms of both training and
evaluation metrics.
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Figure 8: Comparison of train loss and evaluation
loss in the RACE dataset during the first ablation
study. This figure presents the train loss (left) and
evaluation loss (right) over 20,000 steps for the
RACE dataset, where the batch size at each step
is 1. The performance of the Flexora method
is compared against three different random layer
selection strategies (Random 1, Random 2, and
Random 3). The train loss graph shows how the
training performance of model evolves, while
the evaluation loss graph highlights the gener-
alization capability of model on the validation set.
This detailed comparison provides insights into
the effectiveness of Flexora relative to random
selection methods in terms of both training and
evaluation metrics.
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Figure 9: Comparison of train loss and evalua-
tion loss in the Winogrande dataset during the
first ablation study. This figure presents the train
loss (left) and evaluation loss (right) over 20,000
steps for the Winogrande dataset, where the batch
size at each step is 1. The performance of the
Flexora method is compared against three differ-
ent random layer selection strategies (Random
1, Random 2, and Random 3). The train loss
graph shows how the training performance of
model evolves, while the evaluation loss graph
highlights the generalization capability of model
on the validation set. This detailed comparison
provides insights into the effectiveness of Flex-
ora relative to random selection methods in terms
of both training and evaluation metrics.
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Figure 10: Training loss and evaluation loss dur-
ing fine-tuning of different numbers of layers in
the Flexora on the Hellaswag dataset. This fig-
ure presents the training loss (left) and evaluation
loss (right) over 20,000 steps for the Hellaswag
dataset. The performance is compared across four
different configurations where the first 6, 12, 18,
and 24 layers of the Flexora model are fine-tuned.
The training loss graph shows that the model with
24 layers (red) achieves the lowest training loss,
indicating it fits the training data very well. How-
ever, the evaluation loss graph reveals that the
model with 18 layers (green) achieves the lowest
evaluation loss, suggesting better generalization
to unseen data. This discrepancy highlights the
overfitting issue, where the model with 24 layers
performs well on the training data but does not
generalize as effectively as the model with 18 lay-
ers.
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Figure 11: Training loss and evaluation loss dur-
ing fine-tuning of different numbers of layers in
the Flexora on the PIQA dataset. This figure
presents the training loss (left) and evaluation loss
(right) over 20,000 steps for the PIQA dataset.
The performance is compared across four differ-
ent configurations where the first 6, 12, 18, and
24 layers of the Flexora model are fine-tuned.
The training loss graph shows that the model with
24 layers (red) achieves the lowest training loss,
indicating it fits the training data very well. How-
ever, the evaluation loss graph reveals that the
model with 18 layers (green) achieves the lowest
evaluation loss, suggesting better generalization
to unseen data. This discrepancy highlights the
overfitting issue, where the model with 24 layers
performs well on the training data but does not
generalize as effectively as the model with 18 lay-
ers.
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Figure 12: Training loss and evaluation loss dur-
ing fine-tuning of different numbers of layers in
the Flexora on the RACE dataset. This figure
presents the training loss (left) and evaluation loss
(right) over 20,000 steps for the RACE dataset.
The performance is compared across four differ-
ent configurations where the first 6, 12, 18, and
24 layers of the Flexora model are fine-tuned.
The training loss graph shows that the model with
24 layers (red) achieves the lowest training loss,
indicating it fits the training data very well. How-
ever, the evaluation loss graph reveals that the
model with 18 layers (green) achieves the lowest
evaluation loss, suggesting better generalization
to unseen data. This discrepancy highlights the
overfitting issue, where the model with 24 layers
performs well on the training data but does not
generalize as effectively as the model with 18 lay-
ers.
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Figure 13: Training loss and evaluation loss dur-
ing fine-tuning of different numbers of layers in
the Flexora on the Winogrande dataset. This fig-
ure presents the training loss (left) and evaluation
loss (right) over 20,000 steps for the Winogrande
dataset. The performance is compared across four
different configurations where the first 6, 12, 18,
and 24 layers of the Flexora model are fine-tuned.
The training loss graph shows that the model with
24 layers (red) achieves the lowest training loss,
indicating it fits the training data very well. How-
ever, the evaluation loss graph reveals that the
model with 18 layers (green) achieves the lowest
evaluation loss, suggesting better generalization
to unseen data. This discrepancy highlights the
overfitting issue, where the model with 24 layers
performs well on the training data but does not
generalize as effectively as the model with 18 lay-
ers.
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E Special cases

This section details the performance of Flexora and LoRA across four distinct datasets. The results
indicate that Flexora demonstrates superior comprehension and judgment on more challenging
questions within the test dataset, compared to LoRA. In certain instances, Flexora successfully
explains problems not previously encountered during training, showcasing its robust learning and
generalization capabilities.

Special cases of Hellaswag

dataset: Hellaswag
"1": {

"origin_prompt ": "A lady walks to a barbell. She bends down and grabs
the pole. The lady\n
Question: Which ending makes the most sense?\n
A. swings and lands in her arms.\n
B. pulls the barbell forward .\n
C. pulls a rope attached to the barbell .\n
D. stands and lifts the weight over her head.\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n
Answer:",
"Flexora prediciton ": " D",
"LoRA prediciton" : "B",
"gold": "D"

},
"2": {

"origin_prompt ": "Two women in a child are shown in a canoe while a man
pulls the canoe while standing in the water , with other individuals
visible in the background. The child and a different man\n
Question: Which ending makes the most sense?\n
A. are then shown paddling down a river in a boat while a woman talks .\n
B. are driving the canoe , they go down the river flowing side to side.\n
C. sit in a canoe while the man paddles .\n
D. walking go down the rapids , while the man in his helicopter almost
falls and goes out of canoehood .\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n
Answer:",
"Flexora prediciton ": " C",
"LoRA prediciton" : "B",
"gold": "C"

},
"3": {

"origin_prompt ": "The boy lifts his body above the height of a pole.
The boy lands on his back on to a red mat. The boy\n
Question: Which ending makes the most sense?\n
A. turns his body around on the mat.\n
B. gets up from the mat.\n
C. continues to lift his body over the pole.\n
D. wiggles out of the mat.\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n
Answer:",
"Flexora prediciton ": " B",
"LoRA prediciton" : "B",
"gold": "B"

}
"4": {

"origin_prompt ": "We see a person holding face wash then putting it on
their face. They rinse the face and add the face wash with a brush. We\n
Question: Which ending makes the most sense?\n
A. see a closing title screen .\n
B. see a black screen with the credits .\n
C. see an illustration on how to add the wash using a brush .\n
D. then see a replay then the person putting the face wash on.\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n
Answer:",
"Flexora prediction ": " C",
"LoRA prediciton" : "A",
"gold": "C"

},
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Special cases of PIQA

dataset: PIQA
"1": {

"origin_prompt ": "ice box\n
A. will turn into a cooler if you add water to it\n
B. will turn into a cooler if you add soda to it\n
Answer:",
"Flexora prediciton ": "A",
"LoRA prediciton" : "A",
"gold": "A"

},
"2": {

"origin_prompt ": "how do you put eyelashes on?\n
A. glue them on with mascara .\n
B. put eyelash glue on the fake eyelashes and then let it get tacky.
then , place it on top of your actual eyelashes and let it dry on.\n
Answer:",
"Flexora prediciton ": "A",
"LoRA prediciton" : "B",,
"gold": "B"

},
"3": {

"origin_prompt ": "How do I fill holes and tiny gaps in the concrete when
making a concrete countertop ?\n
A. Use a concrete slurry\n
B. Use a concrete brush\n
Answer:",
"Flexora prediciton ": "A",
"LoRA prediciton" : "B",
"gold": "A"

}
"4": {

"origin_prompt ": "When I’m deep frying a turkey , how defrosted
should it be?\n
A. It should be completely defrosted , otherwise the oil may
boil over and start a fire.\n
B. It should be completely frozen , otherwise the oil may boil
over and start a fire.\n
Answer:",
"\ours{} prediction ": " A\nExplanation: A turkey should be completely
defrosted before deep frying. If it is not , the oil may boil over
and start a fire.",
"Flexora prediciton" : "A",
"LoRA prediciton" : "B",
"gold": "A"

},
"5": {

"origin_prompt ": "How do you properly prepare a steak .\n
A. Take the steak out of warm storage and let come to room temperature ,
generously add salt and pepper to both sides and let sit
for 10 minutes .\n
B. Take the steak out of cold storage and let come to room temperature ,
generously add salt and pepper to both sides and let sit
for 10 minutes .\n
Answer:",
"Flexora prediction ": " B\nExplanation: B. Taking the steak
out of cold storage and letting it come to room temperature is
the correct answer. The steak should be at room temperature before
cooking. The steak should be generously salted and peppered on both
sides and let sit for 10 minutes.",
"LoRA prediciton" : "B",
"gold": "B"

},
"6": {

"origin_prompt ": "To cream butter and sugar together , you can\n
A. Place it in a bowl and use a hand warmer\n
B. Place in a bowl and use a hand mixer\n
Answer:",
"Flexora prediction ": " B\nExplanation: B. Place in a bowl and
use a hand mixer\nExplanation: To cream butter and sugar together ,
you can place it in a bowl and use a hand mixer.",
"LoRA prediciton" : "B",
"gold": "B"

},
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Special cases of RACE

dataset: RACE
"1": {

"origin_prompt ": "Read the article , and answer the question by replying A,
B, C or D.\n\n
Article :\nThe rain had continued for a week and the flood
had created a big river which were running by Nancy Brown ’s
farm. As she tried to gather her cows to a higher ground ,
she slipped and hit her head on a fallen tree trunk.
The fall made her unconscious for a moment or two. When she came to ,
Lizzie , one of her oldest and favorite cows , was licking her face. \n
At that time , the water level on the farm was still rising.
Nancy gathered all her strength to get up and began walking
slowly with Lizzie. The rain had become much heavier ,
and the water in the field was now waist high. Nancy ’s pace
got slower and slower because she felt a great pain in her head.
Finally , all she could do was to throw her arm around Lizzie ’s
neck and try to hang on. About 20 minutes later , Lizzie managed
to pull herself and Nancy out of the rising water and onto
a bit of high land , which seemed like a small island in
the middle of a lake of white water. \n
Even though it was about noon , the sky was so dark and the rain
and lightning was so bad that it took rescuers more than
two hours to discover Nancy. A man from a helicopter
lowered a rope , but Nancy couldn ’t catch it. A moment later ,
two men landed on the small island from a ladder in the helicopter.
They raised her into the helicopter and took her to the school gym ,
where the Red Cross had set up an emergency shelter.
\nWhen the flood disappeared two days later , Nancy immediately
went back to the \" island .\" Lizzie was gone. She was one of
19 cows that Nancy had lost in the flood. \"I owe my life to
her ,\" said Nancy with tears .\n\n
Q: What did Nancy try to do before she fell over?\n\n
A. Measure the depth of the river\n
B. Look for a fallen tree trunk\n
C. Protect her cows from being drowned\n
D. Run away from the flooded farm\n",

",
"Flexora prediciton ": "D",
"LoRA prediciton" : "B",
"gold": "D"

}

30



Special cases of Winogrande

dataset: Winogrande
"1": {

"origin_prompt ": "Question: Sarah was a much better surgeon
than Maria so _ always got the easier cases.\n
A. Sarah\n
B. Maria\n
Answer:",
"Flexora prediciton ": "B",
"LoRA prediciton" : "B",
"gold": "B"

},
"2": {

"origin_prompt ": "Question: Sarah was a much better surgeon
than Maria so _ always got the harder cases.\n
A. Sarah\n
B. Maria\n
Answer:",
"Flexora prediciton ": "B",
"LoRA prediciton" : "B",
"gold": "A"

},
"3": {

"origin_prompt ": "Question: They were worried the wine would ruin
the bed and the blanket , but the _ was ’t ruined .\n
A. blanket\n
B. bed\n
Answer:",
"Flexora prediciton ": "B",
"LoRA prediciton" : "A",
"gold": "B"

},
"4": {

"origin_prompt ": "Question: Terry tried to bake the eggplant
in the toaster oven but the _ was too big.\n
A. eggplant\n
B. toaster\nAnswer:",
"Flexora prediction ": " A\nExplanation: The eggplant was
too big to fit in the toaster oven.",
"LoRA prediciton" : "B",
"gold": "A"

},
"5": {

"origin_prompt ": "Question: At night , Jeffrey always stays up
later than Hunter to watch TV because _ wakes up late.\n
A. Jeffrey\n
B. Hunter\n
Answer:",
"Flexora prediciton ": "A",
"LoRA prediciton" : "B",
"gold": "A"

},
"6": {

"origin_prompt ": "Question: The cat of Sarah has some mouth problems ,
so she takes it to see Maria. _ is a responsible cat owner .\n
A. Sarah\n
B. Maria\n
Answer:",
"Flexora prediction ": " A\nExplanation: A is a responsible cat
owner because she takes her cat to see a veterinarian .",
"LoRA prediciton" : "B",
"gold": "A"

},
"7": {

"origin_prompt ": "Question: Benjamin was chosen instead of Brett to
be the makeup artist for the play because _ was less experienced .\n
A. Benjamin\n
B. Brett\n
Answer:",
"Flexora prediction ": " B",
"LoRA prediciton" : "A",
"gold": "B"

},
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