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Abstract

Locality analysis is important since accessing memory is
much slower than computing. Compile-time locality analysis
can provide detailed program-level feedback for compilers
or runtime systems faster than trace-based locality analysis.

In this paper, we describe a new approach to locality anal-
ysis based on static parallel sampling. A compiler analyzes
loop-based code and generates sampler code which is run
to measure locality. Our approach can predict precise cache
line granularity miss ratio curves for complex loops with
non-linear array references and even branches. The preci-
sion and overhead of static sampling are evaluated using
PolyBench and a bit-reversal loop. Our result shows that by
randomly sampling 2% of loop iterations, a compiler can con-
struct almost exact miss ratio curves as trace based analysis.
Sampling 0.5% and 1% iterations can achieve good precision
and efficiency with an average 0.6% to 1% the time of trac-
ing respectively. Our analysis can also be parallelized. The
analysis may assist program optimization techniques such
as tiling, program co-location, cache hint selection and help
to analyze write locality and parallel locality.

CCS Concepts · Software and its engineering → Soft-

ware performance; Source code generation;
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1 Introduction

The gap between processor and memory speeds has been
growing since 1980 [8]. The recent Intel Core i7 processor has
4 ns compute latency but 100 to 200 ns memory latency [22].
The gap also exists on high-bandwidth accelerators such
as GPUs. On NVIDIA GPUs, global memory access latency
is around 600 ns on Fermi and around 300 ns on Kepler
though compute operations complete in about 10 ns. This
large gap between operation latency and memory access
latency limits performance. One way to bridge the gap is to
introduce a memory hierarchy and develop techniques to
maximize reuse in faster memory. The other way overlaps
computation with data movement. Both ways rely heavily
on data access locality to maximize hit ratio in fast memory
and minimize the bandwidth usage [18].

Locality is a program property that is useful to guide com-
piler optimization, runtime scheduling and hardware design.
There are two ways to analyze data locality: dynamic trac-
ing and static code analysis. Trace-based locality analysis
operates on a memory access trace collected by running the
program. With a memory access trace, locality metrics such
as reuse distance [33], footprint [46] and average eviction
time [26] can be obtained. Static code analysis analyzes ref-
erence indices and code structures to identify data access
and reuse. Example techniques include uniformly generated
set-based reuse analysis [44], reference group and loop cost
functions [27], static stack histogram [10], cache miss equa-
tions [23], reuse distance equation [4], and static reuse dis-
tance (for MATLAB) [12].

This paper presents Static Parallel Sampling (SPS), a new
technique for program locality analysis.
SPS is the first static analysis for working-set locality.

Previous techniques are often based on reuse distances and
require the measurement of reuse distance (LRU stack dis-
tance) for precise analysis [4, 10]. Expensive parametric
counting [2, 41] is often leveraged to derive reuse distance.
Recent work has shown that the working-set locality can
be measured using reuse time [26, 46], which is the number
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of accesses between two consecutive accesses to the same
cache block. Reuse time is more efficient to measure than the
reuse distance which counts the number of distinct accesses
instead.
SPS is statistical. It only looks at a subset of memory ac-

cesses. This does not affect program correctness (unlike, say,
dependence analysis which must examine all data accesses
to be sound). Although sampling has been used for trace
analysis, SPS is the first analysis to sample for locality at the
program level rather than the trace level. By sampling, SPS
can trade off accuracy for speed.

SPS can be parallelized. Sampling of different reuse times
can be done in parallel even when the target program is
inherently sequential.
Overall, SPS leverages the computational efficiency of

reuse time based locality modeling and can generate miss
ratio curves statically and efficiently. It reduces the complex-
ity and extends the applicability of static analysis. The main
contributions of the paper are as follows:
• We formulate the notion of compile-time enumerable
expressions (Section 2). SPS can be applied to any pro-
gram that is compile-time enumerable.
• We show how SPS uses the program structure in sam-
pling, by ensuring both sampling efficiency (Section 3.1)
and sampling correctness (Section 3.2).
• We show how SPS computes the reuse time in O(1)
time by combining compiler analysis with sampling
analysis (Section 3.4).

The organization of the paper is as follows: Section 2 in-
troduces the working-set locality and characterizes the code
structure targeted by SPS. Section 3 describes the new tech-
niques including static sampling for reuse times, symbolic
reuse time derivation and different sampling methodologies.
Section 4 compares SPS with existing work. Section 5 eval-
uates SPS on PolyBench and bit reversal (fft), its overhead
compared to tracing, and the speedup from parallel sampling.
Section 6 discusses possible applicable scenarios and future
directions.

2 Static Reuse Time Analysis

SPS measures the reuse time which is the number of mem-

ory accesses between the use and the next reuse of a memory

address.
Recent locality research relates this reuse time to cache

performance. In particular, using the histogram of reuse
times, a set of studies compute locality metrics including a
type of average working-set size called footprint [46], the
averaged eviction time (AET) [26], and write locality [14].
For example, the footprint is composable and can derive
shared cache miss ratios of a co-run program group from
per-program footprints [26, 45]. Footprint can also derive
performance for important cache organizations including
associativity [31] and exclusivity [48].

All aforementioned techniques use trace-based analysis.
The goal of SPS is to measure the reuse time histogram
statically without trace analysis, which can then be used to
compute locality metrics such as the footprint.
To compute the reuse time histogram from a trace, it is

straightforward to scan the trace and keep recording the
previous accessing time for each address. Static analysis,
however, examines memory references to deduce memory
accesses. The program structure, i.e. the surrounding loops,
branches, and reference subscript expressions determine the
memory accesses.
SPS analyzes the following class of programs:

• A program is a sequence of statements and loop nests.
The loops may be imperfectly nested. A statement is
treated as a degenerate loop with just one iteration.
• The program may have branches, i.e. structured if-
statements.
• The expressions of loop bounds, strides, branch pred-
icates, and array subscripts contain only loop index
variables and constants.

If an expression satisfies the third requirement, we say it
is compile-time enumerable. For example, if the variable i is
a loop index with constant lower and upper bounds, then
the expression i + 1 is compile-time enumerable. Compile-
time enumerable is a more general property than compile-
time constant. A constant expression is enumerable, but an
enumerable expression may not be constant.

Compile-time enumerable is more general than the Static
Control Part (SCoP) [3] defined in the polyhedral model. Ex-
pressions in a polyhedral model must be affine. An enumer-
able expression does not have to be affine. SPolly examined
the applicability of the Polly tool for polyhedral compila-
tion in the SPEC2000 benchmarks [19]. Of 1862 code regions
(single-entry, single-exit with at least one loop) surveyed
across nine benchmarks in SPEC2000, SCoP could analyze
275 regions (14.8%). In contrast, compile-time enumerable
can handle regions that SCoP could not due to non-affine
expression (1230 regions), non-affine loop bounds (840), non-
canonical induction variables (384, loops that do not start
at zero and are not incremented by one), overflow issues
from unsigned comparisons (199), presence of function calls
(532), and complex CFG (253, due to e.g. switch). But as in
the polyhedral model, compile-time enumerable cannot deal
with regions that contain aliasing (1093).

Listing 1 shows a bit reversal loop typically used in pro-
grams such as FFT. In this loop, for a constant n, variables
i , j and i2 are all enumerable, the expression i < j in the
if-branch is also enumerable. Hence, references a[i] and a[j]
are compile-time enumerable.
SPS assumes that all expressions determining memory

accesses are compile-time enumerable. This assumption per-
mits a compiler to generate the trace of all memory accesses.
Note that enumeration is not the same as running a program.
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Listing 1. Bit reversal loop

for (i=0, j=0, i2 = n >> 1; i<n−1; i++) {

if (i < j) swap(a[i], a[j]);

k = i2;

while (k <= j) {

j −= k;

k >>= 1;

}

j += k;

}

A compiler can enumerate all memory accesses but does not
have the values stored in the memory. Nor does the compiler
perform any computation on these values.

Locality analysis for a compile-time enumerable program
may be done by obtaining the trace of memory accesses
and performing trace-based reuse time analysis. Trace-based
analysis, however, does not utilize the program structure, i.e.
the rich static information in control flow and memory ref-
erence. Tracing is sequential and requires having the whole
trace. Instead, SPS combines program analysis and tracing
to enable parallel sampling.

3 Static Sampling of Reuse Time

SPS samples the reuse time for each reference ri by sampling
its Iteration Space (IS). First, it samples a subset of iteration
pointsvi from the IS of ri . Second, for each sampledvi , the IS
of all r j to the same array which may form a reuse is searched
to find the iteration point vj containing the next reuse. If no
such vj exists for all r j , there is no reuse period. However,
if vj exists, the reuse time is calculated from (vi ,vj ) and the
histogram is updated.

Although the analysis can be done inside the compiler (in
our case, LLVM [30]), our implementation uses a separate
autogenerated program-specific binary for the analysis. Es-
sentially, the LLVM compiler specializes the algorithm in
Alg. 1 as described next in the Section 3.1 for the program
being analyzed. We adopt this approach for two primary
reasons: one, it decouples our implementation from a spe-
cific compiler, and two, placed in a separate process, the
analysis is easier to parallelize. This autogenerated łsampler
programž accepts a sampling rate as input and outputs the
locality results (typically, the miss ratio) back to the program.

3.1 Specializing the Analysis

The algorithm for static sampling SPSAnalyzer() is shown in
Alg. 1. At a high level, the algorithm samples the iteration
space (without replacement) for a particular reference (ri )
and identifies all the other references (r j ∈ R) that may access
the same addresses (Lines 3ś4). Recall that we must scan all
these other references to find the first possible reuse of ri .

If the compiler can deduce that all the other references are
regular references, it can solve for the first reuse (lines 6ś11).
Essentially, the compiler specializes rtCalc (line 9) for each
reference pair ri , r j by generating a symbolic formula which
computes the reuse time given the actual iteration vectors
vi ,vj . The symbolic reuse time derivation is described in
Section 3.4.

The value of vj is obtained from SolveReuse(ri , r j ,vi ) for
regular subscripts ri and r j . The regularity is identified by
the SIV test [1] used in a modern compiler, which originally
concentrates on deriving distance vectors [28, 29]. These
array subscripts are separable affine expressions aI +b where
I is a loop induction variable, and a, b are constants. Each
dimension of vj can be derived by (ari Ivi + bri − br j )/ar j for
element granularity. By combining cache line size and stride
of Ir j , the cache line reuse iteration can be derived [13]. In
this case, only assignment statements need to be generated
for vj .
If the references are irregular, SearchReuse (Alg. 2) com-

pares addresses to identify any reuse in iterations that ex-
ecute later. In both cases, once the minimum reuse time
(rtMin) has been determined, rtHisto() accumulates the fre-
quency of reuse time rtMin in a hash table indexed by the
reuse time (line 15).

Algorithm 1: SPS analyzer main function

1 Function SPSAnalyzer():

2 for SamplinдCnt ∈ [0,MaxNUM) do

3 ri ,vi = дetSample();

4 R = {r |r may form reuse with ri };

5 if all R references are regular then

6 rtMin = IN F ;

7 for r j ∈ R do

8 vj = SolveReuse(ri , r j ,vi );

9 rt = rtCalc(ri ,r j ,vi ,vj );

10 rtMin =min(rt , rtMin);

11 end

12 else

13 rtMin = SearchReuse(ri ,vi ,R);

14 end

15 rtHisto(rtMin);

16 end

17 End

Alg. 2 shows the algorithm for searching the next reuse
for reference ri starting from iteration vi . It generates a
temporal variable rt in line 2 and records the number of
memory accesses that happen in each iteration in line 9.
Lines 3ś4 generate two loops which for every loop iteration
following vi checks every reference r j until they find the
next reuse. The reuse may be in a different loop. If the reuse
does not exist, the reuse time is infinite.
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Algorithm 2: Search for the next reuse

1 Function SearchReuse(ri ,vi ,R):

2 rt = 0;

3 for each iteration vj following vi do

4 for r j ∈ R do

5 if addr (ri ,vi ) == addr (r j ,vj ) then

6 return rt ;

7 end

8 end

9 rt+ = AcsPerIter (vj );

10 end

11 return rt;

12 End

3.2 Correctness

Static sampling is defined to be correct only when each reuse

time is sampled with equal probability. As reuses are not
uniformly distributed among references and loops, it is nec-
essary to carefully choose the way to perform sampling in
line 3 in Alg. 1.

Algorithm 3: Generating next sample

1 Function дetSample():

2 if #IS is known for all references then

3 Random sampling;

4 else

5 Stride sampling;

6 end

7 return ri ,vi ;

8 End

Alg. 3 shows the code template for generating next sam-
ple дetSample(). It uses either random sampling or stride
sampling. We also call the latter uniform sampling.
If #IS is known for all references, random sampling is

used, which enumerates each reference ri until the number
of samples is #ISri ∗ SRSR, where SRSR is the sampling rate.
For each sample, a random iteration vector vi is selected. In
stride sampling, the stride is computed from SRSR as 1

SRSR
.

Then it samples all iterations that are this stride apart in the
iteration space.
For the following cases, #IS is known for all references.

First, if all loop bounds are constants. Second, if the bounds
are affine expressions of the induction variables of the sur-
rounding loops with specific forms such as triangular loops,
#IS can be derived. In these cases, Alg. 3 uses random sam-
pling. In fact, both random and stride sampling can be used,
but Section 3.5 will show that random sampling is preferred.
Next, we prove the correctness of SPS analysis.

Correctness of Sampling For any reuse time rt with dis-
tribution P , the sampled distribution P ′ is statistically equiv-
alent to P .

Informal Proof Alg. 3 samples iteration points in the iter-
ation space with equal probability. As each sampled vi can
either contribute one reuse time or have no reuse. Sampling
vi is equivalent to sampling reuse time. The original distri-
bution P and sampled distribution P ′ can be calculated by
Equation 1:

P =

∑

r ∈Rr t cntr,r t
∑

r ∈R cntr

P ′ =

∑

r ∈Rr t cntr,r t ×
#Sr
#I Sr

∑

r ∈R cntr ×
#Sr
#I Sr

(1)

where Rr t is the set of all references that can produce reuses
with time distance rt , R the set of all references, cntr,r t the
number of reuses with reuse time rt contributed by reference
r , cntr the number of all reuses contributed by reference r ,
#Sr the number of samples taken for reference r , and #ISr
the size of the iterations space of reference r .

From Equation 1, the ratios #Sr
#I Sr

for all references r are

the same, so they are canceled out, and hence the sampling
is correct.

3.3 Analysis Optimizations

Several optimizations can be performed to improve the speed
of the analysis.

ReferenceGrouping Algorithm 1 falls back to SearchReuse
whenever irregular references are present. However, Sol-
veReuse which derives vj for r j based on the sampled ri and
vi (line 8 in Alg. 1) can be performed using only ri and r j and
no other reference. Thus, all references need not be regular.
Instead, we can partition references into two groups: regular
and irregular. The regular references are explored using lines
8ś10, while for the irregular set, SearchReuse is used.

Reference Filtering Line 7 in Alg. 1 checks all references
to the same array which can be avoided if we leverage control
flow information. Once a reuse time is found for r j , all the
references that happen after all accesses of r j can be filtered
out. This order can be extracted from the control flow. For
any two references to the same array, if one is reachable
from the other, but the reverse is not reachable. It means all
accesses of a reference must happen before any accesses of
the other reference. With this order information, reference
filtering can be performed after finding one reuse time in
line 9.

Regular Subscripts in IrregularReferences Irregular ref-
erences may contain regular subscripts. By separating the
regular subscripts from the irregular, we can use SolveReuse
on the regular subscripts and SearchReuse on irregular sub-
scripts to avoid enumerating regular references.

Bounded Search Since references are grouped into regular
and irregular. The temporary minimal reuse time rtMin in
Alg. 1 obtained from the regular references can be passed to
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Figure 1. An example of the tree abstraction

SearchReuse() to terminate the search when rt in line 9 in
Alg. 2 is larger than the temporary minimum.

Search Result Reuse In Alg. 2, samples from the same
reference may produce the same reuse time. The samples
following the first sample can use its search result to predict
vj without searching.

Parallelization For coarse-grained parallelism, each refer-
ence can be sampled independently. This may be too coarse-
grained when the number of arrays are less than the number
of hardware threads we have. For fine grained parallelism, all
the samples can be processed independently by parallelizing
the loop over different r j in line 6 of Alg. 1 and line 4 in Alg. 2.
The granularity can be adjusted according to the program
characteristics and the hardware. Of course, rtHisto(rtMin)

must accumulate reuse time in the histogram correctly (e.g.
by using atomics).

3.4 Symbolic Reuse Time Derivation

The generated SPS analyzer described in Section 3.1 solves
or searches reuse iteration vj of reference r j for each sam-
pled use iteration vi of reference ri . Given vi , ri and vj , r j ,
the naive solution to derive the reuse time from the itera-
tion vectors is to traverse all iterations from vi to vj while
counting the references in between. But this is inefficient as
overlapping iterations may exist between different vi , vj for
different (ri , r j ) pairs or even different vi , vj for the same ri .
To avoid traversing and redundant counting for the same it-
erations, we introduce a program abstraction and a symbolic
reuse time calculating expression construction algorithm for
reference pair (ri , r j ).
We abstract the program as a tree. Essentially, non-leaf

nodes represent loops and leaf nodes represent references.
The root is a dummy node representing the program entry.
Pre-order traversal of the tree yields nodes in program order.
A loop node contains loop info which is a list of induction
variables, their symbolic bounds [Li ,Ui ] and their strides. A
reference node stores reference information (array name and

index expression) and its reference order O , which is the local
order among references of the immediately enclosing loop.
Two types of references do not matter when determining the
reference order: references in different loop nests, and refer-
ences in the same loop nest but with a deeper nesting. This
tree is extracted after optimization before code generation
of the target program.

Fig. 1 shows an example tree abstraction. Three loop nodes
i , j, k where j, k are nested inside i . There are 6 reference
nodes, where A0 to A3 are in the j loop with reference order
from 0 to 3, A4 and A5 are in the k loop with reference order
0 and 1.

With this tree abstraction, for reference pair (ri , r j ) where
ri < r j in pre-order traversal, the reuse time calculation
expression can be derived by Alg. 4.
In initialization stage, each reference r can construct a

path from the root FuncEntry node to leaf RefNode in form
of [LoopNode1, LoopNode2, ..., LoopNoden , RefNodei ], where
each node in the list is a child node of the previous one. Paths
are calculated for references ri and r j in line 2ś3. Based on the
Paths, PrivatePath which excludes the shared loop nodes
between two Paths, RoPP the root of each private path and
lpRoPPri ,RoPPrj /rRoPPri ,RoPPrj the loop/reference nodes in the

same level but between two roots of private paths are derived
from line 4ś10. LCA is the lowest common ancestor.

After initialization, the reuse time calculating expression
rtCal can be derived by lines 12ś33. For the loop nodes that
shared by both Pathri and Pathr j , the iteration difference
is determined by difference of the induction variables of
the shared loops as line 12ś14 shows. Then InBetween is
derived in order to figure out the number of memory ref-
erences occurred between PrivatePathri and PrivatePathr j
in one iteration of the last level shared loop (FuncEntry can
be seen as loop with one iteration). Line 15ś18 is to find
the number of references happened in PrivatePath of ri .
Line 19ś22 is to find the number of references happened
in PrivatePath of r j . Lines 23ś28 find the number of the
memory references between the end of PrivatePathri and
start of PrivatePathr j . Lines 29ś33 finalize the construction
of reuse time calculating expression by adding or exclud-
ing the number of memory accesses in InBetween as rtCal
in their shared loops always counts the number of mem-
ory references by one entire iteration. This will either over
count or miscount the references in InBetween. For use at
ri , InBetween is miscounted because counting for the last
iteration of shared loops stops at the point where ri is in. As
ri < r j in pre-order traversal, the references from ri to r j in
the last iteration is not counted. For reuse at ri , InBetween
is over counted for the same reason.

Complexity The formula generated for ri , r j containsO(d)
operations, whered is the deepest nesting for ri , r j . Assuming
input programs have a constant bound on loop nesting, the
formula has O(1) time and space complexity.
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Algorithm 4: Symbolic reuse time calculating expres-
sion construction
input :Tree abstraction, ri , r j
output : rtCal: Symbolic reuse time

1 ▷ Initialization;

2 Pathri ← [lpi1 , ..., lpin , ri ]; ▷ lpik is the kth LoopNode for

memory reference ri
3 Pathr j ← [lpj1 , ..., lpjm , r j ]; ▷ lpjk is the kth LoopNode for

memory reference r j
4 PrivatePathri ← Pathri − Pathri ∩ Pathr j ;

5 PrivatePathr j ← Pathr j − Pathri ∩ Pathr j ;

6 RoPPri ← Root(PrivatePathri );

7 RoPPr j ← Root(PrivatePathr j );

8 Peers ← children(LCA(ri , r j )); ▷ Peers is a set of

LoopNodes/RefNodes which are immediate children of the

Lowest Common Ancestor of ri , r j
9 lpRoPPri ,RoPPrj ← {lp |lp ∈Peers ∧ RoPPri < lp<RoPPr j };

10 rRoPPri ,RoPPrj ← {r |r ∈Peers ∧ RoPPri <r <RoPPri };

11 ▷ Construction;

12 for lp ∈ Pathri ∩ Pathr j do

13 rtCal+=(lp.indvr euse − lp.indvuse ) ∗AcsPerIter (lp); ▷

AcsPerIter (lp) calculates the number of memory

accesses for each iteration within LoopNode lp;

14 end

15 for lp ∈ PrivatePathri do

16 InBetween+=(lp.U − lp.indv) ∗AcsPerIter (lp);

17 end

18 InBetween+=AcsPerIter (lprin .U ) −O(ri ); ▷

AcsPerIter (lprin .U ) is added when ri does not share all the

loops with r j , AcsPerIter(lp) where lp in the same level but

before ri should be substracted;

19 for lp ∈ PrivatePathr j do

20 InBetween+ = (lp.indv − lp.L) ∗AcsPerIter (lp) ;

21 end

22 InBetween+=O(r j ) ▷ AcsPerIter(lp) where lp in the same level

but before r j should be added;

23 for lp ∈ lpRoPPri ,RoPPrj do

24 InBetween+=(lp.U − lp.L) ∗AcsPerIter (lp);

25 end

26 for r ∈ rRoPPri ,RoPPrj do

27 InBetween+=1;

28 end

29 if ri is use then

30 rtCal = rtCal + InBetween;

31 else

32 rtCal = rtCal − InBetween;

33 end

An Example For example for the use at A2 and reuse at
A4 in Fig. 1, the reuse time formula constructed by Alg. 4
is shown in Equation 2. (ir euse − iuse ) ∗ AcsPerIter (i) cal-
culates iteration difference in the common loop in line 13.
AcsPerIter (i) can be derived by the loop stride and the bounds

void stencil (double∗ B, double∗ A) {

for ( int i = 1; i < 1025; i++) {

for ( int j = 1; j < 1025; j++) {

B0 = A0 + A1 + A2 + A3 + A4 ;

}

}

return;

}

A0 : A[i ∗ 1026 + j] A1 : A[i ∗ 1026 + j + 1]
A2 : A[i ∗ 1026 + j − 1] A3 : A[(i − 1) ∗ 1026 + j]
A4 : A[(i + 1) ∗ 1026 + j] B0 : B[i ∗ 1026 + j]

Figure 2. 5-point stencil program

of loop j and k. With stride 1, AcsPerIter (i) is (Uj − Lj ) ∗ 4+
(Uk − Lk ) ∗ 2. For InBetween, (Uj − juse ) ∗ 4 + 4 −O(A2) is
calculated in lines 13ś18 and (kr euse − Lk ) ∗ 2 + O(A4) is
calculated in lines 19ś22. No loops and references exist be-
tween loop j and loop k. Lines 23ś28 are not executed. Give
this reuse time formula, the SPS analyzer can calculate the
reuse time in constant time given vi ,vj .

rtCal =(ir euse − iuse ) ∗AcsPerIter (i)

+ (Uj − juse ) ∗ 4 + 4 −O(A2)

+ (kr euse − Lk ) ∗ 2 +O(A4)

(2)

With reuse time histogram, the miss ratio curve can be
derived by reuse time based locality models [26, 46].

3.5 Uniform versus Random Sampling

Although the correctness of SPS is ensured statistically by
using the same sampling rate, the samplingmethod can affect
its accuracy. We evaluate two sampling schemes using the
5-point stencil program shown in Fig. 2.
Uniform sampling (U) with rates 0.098% and 0.99% (1024

and 10404 iteration points per reference) and random sam-
pling (R) with rates 0.095% and 0.95% (1000 and 10000 iter-
ation points per reference) are compared in Table 1. Trace
based analysis result serves as a reference. rt is the reuse
time, P and P ′ are the original and predicted distributions.
The observations we have are: (1) for both uniform and ran-
dom sampling, increasing sampling rate improves precision,
(2) uniform sampling (unsurprisingly) fails to catch some of
the reuse times, (3) compared to uniform sampling, random
sampling yields better accuracy even with a lower sampling
rate. Comparing R 0.095% with U 0.99%, random sampling
even with 10x fewer samples can produce more accurate P ′

for most of the reuse times. For example, reuse time 6147 is
introduced by reuse pair (a[i ∗ 1026 + j], a[(i − 1) ∗ 1026 + j])
when i equals to 1024. None of the samples in uniform sam-
pling is from the last iteration of i as a constant stride is
taken during the uniform sampling loop of i .
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Table 1. Reuse time derived by tracing, static uniform sam-
pling and static random sampling (element granularity)

Trace SPS U SPS U SPS R SPS R
analysis 0.098% 0.99% 0.095% 0.95%

rt P (%) P ′(%)

5 25 25.2 25.06 24.975 25
8 25 25.2 25.06 25 25

6135 24.98 24.4 24.82 24.975 24.99
6139 24.98 24.4 24.82 24.975 24.97
6140 0.02 0.8 0.24 0.075 0.015
6147 0.02 0 0 0 0.012

3.6 Number of Random Sampling Runs

Random sampling is more likely to produce better predic-
tion than uniform sampling, but different randomly chosen
samples for different runs may lead to different results.
To quantify the random effect, we vary the number of

static sampling runs from 10 to 100 with random sampling
rate 0.95%. The mean and standard derivation of distribution
are measured from different runs. Then confidence inter-
vals (CI) are calculated. The test is performed on 5-point
stencil code shown in Fig. 2 for the cache line granularity
which has more complicated reuse patterns than the element
granularity has.
Fig. 3 shows the CI (95% confidence level) for each reuse

time entry rt in the histogram. For the rt with distribution
larger than 4.5% (1, 2, 4, 5, 6, 6117, 6121), the confidence inter-
val ranges from around 0.12 pp (percentage point) to 0.31 pp.
For the rt with distribution less than 0.02% (6127, 6129, 6133),
the confidence interval is around 0.01 pp. Although encoding
the cache line reuse makes the reuse time histogram more
complex, random sampling by SPS can still construct the
histogram precisely. As CI is stable when we increase the
number of sampling runs, the following experiments are all
done with only one static sampling run.

3.7 Per Array Analysis

The SPS framework presented so far targets all arrays in a
program. It is also possible to adjust the framework to get
reuse time histogram for arbitrary subset of arrays. This
can be used to guide array placement and loop distribution
or fusion. Only minor adjustments are needed to the static
sampling algorithm: (1) AcsPerIter must be maintained on
a per-array basis and the number of accesses to each array
counted separately, (2) when deriving the symbolic reuse
time calculating expression in Alg. 9, AcsPerIter (lp) should
be generated as the sum of the boolean variable for each array
times its access count:

∑

i (Boolarrayi ∗AcsPerIterarrayi (lp)).
Reference order can also be adjusted similarly. With the
adjustments, reuse time can be calculated for any selected
subset of arrays.
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Figure 3. Confidence interval (Confidence level 95%) for
each reuse time under different number of sampling runs
with sampling rate 0.95%)

Fig. 4 shows the per array analysis result for 5-point sten-
cil program in Fig. 2. Cache line granularity reuse time his-
togram (all the reuse times with distribution larger than 1%)
for array A, B, A & B separately in subfigures (1), (2) and (3).
By comparing (1), (2) and (3), we see that these two array
references interfere with each other’s reuses. For A, the reuse
times that cross iterations are increased by 1 for reuse times
3, 4, 5 and 1020 for reuse times 5097, 5101. For B, all reuse
time 1 are increased by 5. We see that the bars in the two-
array histogram (3) are not simply repositioning the bars
in single-array histograms (1) and (2). Subfigure (4) shows
the miss ratio curves for array A and A & B (B is not shown
since it drops to 0 with just 1 cache line). Compared to miss
ratio curve for A & B, miss ratio curve for A drops faster at
the beginning since the distribution for reuse times that are
less equal to 5 for A is larger. When miss ratio curves drop to
around 0.1 and become flat, miss ratios of A is slightly larger
than those of A & B because the distribution for reuse times
that are less equal to 6 for A is smaller. Finally, miss ratio
curve for A drops to 0 earlier than that for A & B because
the maximum reuse time for A is smaller than that of A & B.

4 Related Work

Locality analysis is difficult to perform statically due to the
limited compile-time information. It’s natural to limit the
analysis to certain scopes by assuming certain code structure.
Different assumptions and approaches exhibit different trade-
offs among algorithm complexity, code structure coverage
and applicability for different hardware (cache) architectures.
Below, we first highlight five of the prior techniques and then
summarize differences with SPS at the end.
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a. Loop cost functions [27] are formulated to predict the
total number of cache lines accessed by loop nests. It pro-
vides a cost model which counting the cache line accessed
in innermost loop and multiply the count by the number
of iterations of all other outer loops. It classifies the mem-
ory references into groups before prediction to avoid over
counting, as the same cache line may be accessed by dif-
ferent references in the same or different iterations of the
innermost loop.
b. Uniformly generated sets based analysis [44] is for-

mulated to measure the number of memory accesses per iter-
ation for localized space L (i.e., inner L loops). The indexing
functions for memory references are rewritten into the form
of H ∗

#»

i + #»c , where
#»

i is the vector of induction variables,
#»c is constant vector and H is the coefficient matrix. The
uniformly generated set is defined as the group of memory
references to the same array where H of the indexing func-
tions are the same. Four types of reuses are modeled in order
to count accesses precisely (the results are reuse vectors): Self
temporal reuse RST for each reference is simply the kernel of
H . Self spatial reuse RSS for each reference is calculated by
the kernel of HS where HS is H with all the elements in last

row replaced by 0. For example ifH is

[

1 0
0 1

]

,HS will be

[

1 0
0 0

]

and the kernel is span{(0, 1)}. Group temporal reuse RGT
is calculated for all reference pairs in the same uniformly
generated set by the solution #»r that H #»r = #»c1 −

#»c2 . Similarly,
group spatial reuse RGS is determined by the solution #»r so
that HS

#»r = #   »cS,1 −
#   »cS,2. With all the reuses quantified, the

number of memory accesses per iteration can be calculated
by summing all the unique accesses.

c. Cache miss equations (CME) [23] are formulated to
derive cache misses from reuse vectors [44] with considera-
tion of cache size, cache line sizes, cache associativities and
data size. The cold and replacement (i.e. conflict and capacity
resp.) cache misses along reuse vectors are defined by linear
equations. Two forms of code misses are formulated: (1) the
present access is the first access along the temporal or spatial
reuse vector, (2) two references along a spatial reuse vector
access different memory lines. Replacement miss is formu-
lated by assuming the memory lines are mapped to cache
lines in a modulo fashion. CME requires counting the solu-
tions of all equations. Sampling solutions of linear equations
are adopted to reduce the overhead [39, 40].
d. Static reuse distance histogram [10] is formulated

to derive reuse distance histogram for loop nests. A one pass
analysis of the program yields the reuse distance histogram
from which all cache size miss ratio curves can be generated.
It uses the dependence distance to compute the LRU stack
distance (reuse distance) histogram for nested loops. It first
partitions iteration space in a way that all the incoming
dependences for all iterations in that partition are the same.
Then the volume of data accessed for iterations spanned
by each dependence distance is calculated. With that, the
minimal distance is accumulated to construct a histogram.
e. Reuse distance equation [4] is formulated to derive

the reuse distance histogram for programs that can be rep-
resented by the polyhedral model. It is an integer set based
framework containing two phases: reuse analysis which ex-
tracts the iteration points where the reuse occurs for a ref-
erence pair, and distance analysis which maps the iteration
points to data space for all arrays to calculate the distance.
The reuse analysis is performed by checking the index expres-
sion and loop bounds. Four conditions should be satisfied:
(1) two references should happen within the iteration space,
(2) reuse should happen after use, (3) reuse and use access
the same memory location, and (4) no intervening accesses.
The distance is calculated by another mapping from iteration
space to data space based on the reuse set. For each element
(iteration points for use and reuse) in the reuse set, the num-
ber of iterations in between is first derived. Then combining
the data set that are touched for each iteration for each array,
the distance is derived.
Comparison with Static Locality Analysis: For code

structure coverage, a, b, c, and d above all target single loop
nests with linear expressions and can handle symbolic loop
bounds. However, d has stricter constraints as distance vec-
tors are required for all references to obtain a precise reuse
distance histogram. Given these constraints, SPS framework
can use these techniques to handle symbolic bounds with
SolveReuse and derive the symbolic reuse time histogram.
Loop forests with constant bounds and branches with linear
expression of the surrounding parameters are targeted by e.
SPS targets compile-time enumerable codes which includes
more code structures, such as non-linear subscripts.
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For locality measurement, a, b both predict the total data
usage measured by the number of data blocks. They can
distinguish cases when optimizations can reduce the data
usage to within the cache size. However, when the total
usage is greater than the cache size, the usage itself does not
predict the cache performance, i.e. the miss ratio. In contrast,
c predicts misses for a specific cache size. It provides detailed
cache performance but needs new prediction when cache
size changes. To be machine independent, d, e predict reuse
distance histograms. SPS predicts the reuse time histogram.
Both types of histograms can derive the miss ratio curve.

In terms of complexity, a and b are in the order of the num-
ber of loops or references which is usually a small number
while c, d, and e involve counting solutions of linear systems
whose complexity may be polynomial [2, 41] or exponen-
tial [15, 17]. SPS is based on the reuse time and does not use
solution counting. Using symbolic reuse time expressions,
only O(1) time is needed to compute a reuse time. In the
worst case, it searches all loop iterations, and the cost is
linear to the length of the program execution.
Trace-based Locality Sampling: Given an execution,

the reuse distance can be sampled by bursty sampling [49],
parallelization and sampling [37], and hardware support [9,
38] Reuse distance is accurate in predicting the LRU cache
miss ratio, but it is more costly to measure than the reuse
time. SPS is based on reuse time. Many techniques measure
the reuse time by sampling. They may be categorized by
sample selection and mechanism. Samples may be selected
by addresses [5], accesses [20, 26], or windows [25, 46]. The
sampling may be done using compiler support [5] or binary
instrumentation [25, 46]. Trace analysis precisely identifies
reuses at block granularity, but it requires a program input to
run, and its cost is proportional to the trace length. SPS also
analyzes at block granularity. It is more efficient than tracing
because (1) it enumerates data accesses and does not execute
any computation or access array data, (2) it separates data
at the program level and for example analyzes each array
separately, (3) it uses the loop structure and can calculate
the reuse time directly, and as a result (4) the analysis cost
is less dependent on the input size as the tracing cost does.
Next, we evaluate SPS and compare it with tracing.

5 Evaluation

Our implementation1 of static sampling is based on LLVM
4.0.0. It first extracts loop and reference information to con-
struct the tree representation of the program. Then it gener-
ates C++ static sampling code from the tree representation.
The generation adopts search reuse described in Alg 2 op-
timized with search result reuse. Parallelization is done by
generating C++ threads.

We evaluate our implementation on PolyBench [24] and fft
(bit reversal) [6]. For PolyBench, linear algebra benchmarks

1The tool is available at https://github.com/dongchen-coder/symFP

(3mm, gemm, atax, bicg, gemver, gesummv, mvt, syrk) and
stencil benchmarks (convolution-2d, convolution-3d) use in-
put size 10242 for two dimensional arrays and 2563 for three
dimensional arrays. The fft (bit reversal) benchmark uses
215 points as input. For fft (bit reversal), the loop contains
irregular control in branches in the loop body. Completely
unrolling the loop control is needed before sampling.

From the sampled reuse time histogram, we compute the
miss ratios using the footprint model, in particular the re-
cent technique by Hu et al. (based on a łkinetic" model
of cache and the average eviction time) [26]. It computes
the same miss ratios as the higher order theory of locality
(HOTL) [46]. These models in theory are not always accu-
rate, but the accuracy has been evaluated experimentally
for CPU caches (against hardware counter results) [46, 48]
and storage caches [43]. In this evaluation, we focus only
on the error of miss ratio curves introduced by the static
sampling compared with the full trace profiling. To evaluate
the precision, we compare the miss ratios converted from
the sampling and from full-trace profiling. Both conversions
use the same technique [26].
Only cache line granularity miss ratio curves are shown

as cache line granularity reuses are harder to capture than
element granularity. The cache line size is set to 64B, and
the data element size is 8B in our test programs.
The precision and overhead of static sampling are mea-

sured for different Static Random Sampling Rates (SRSRs)
and compared with trace-based analysis. Speedups of par-
allelized static sampling is measured by scaling the number
of working hardware threads. All evaluations are done on
Intel(R) Core(TM) i5-4260U CPU@ 1.40GHz with 4 GB mem-
ory and MacOS High Sierra (version 10.13).

5.1 Precision of Static Sampling

Five SRSRs range from 0.001 to 0.05 for each loop are tested,
and the resulting cache line granularity miss ratio curves
are shown in Fig. 5. As the loop iteration count is either
1024 or 256 for Polybench, the numbers of samples per loop
are either 1, 2, 5, 10, 20, 51 or 0, 0, 1, 2, 5, 12. The number
of samples per reference is the product of the number of
iteration samples of its surround loops. For fft (bit reversal), a
single loop is used with the iteration count 215. The numbers
of samples per reference are 32, 65, 163, 327, 655, 1638 for the
five SRSRs. We compare to the cache-line granularity miss
ratios measured by full-trace profiling.
At the lowest SRSR with one sample per loop for bench-

marks in PolyBench and 32 samples for fft (bit reversal), the
sampled miss ratio curves mostly match the shape of the
measured miss ratio curves. This shows the advantage of
static sampling as it is guided by the code structure. The
lowest-rate sampling shows similar sharp drops but not the
precise points of the drop, and it can have large errors in the
value of predicted miss ratios.
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Figure 5. Predicted MRC by static sampling vs. by trace analysis

For 9 of 11 benchmarks (except syrk and fft (bit reversal)),
the sampled miss ratio curve drops to zero earlier than the
measured miss ratio curve due long reuse times. Since long
reuse times account for a small portion of all reuses, they are
difficult to capture at a low sampling rate, and sampling fails
to detect misses at large cache sizes. In syrk and fft (bit rever-
sal), the sample curve drops to zero later than the measured
curve. In these two programs, sampling successfully obtains
the long reuse times but overestimates their proportion due
to insufficient number of samples.

When the number of samples doubles from 1 to 2 per loop
for benchmarks in PolyBench, sampling is mostly accurate

with just a few exceptions. For example, in syrk, the mea-
sured curve drops to zero, but it is not until 82MB more
cache later does the sampled miss ratio become zero. In con-

volution_2d, the sampled miss ratio is 5% higher than the
actual for cache sizes between 128B to 1KB. As the number
of samples increases, the predicted miss ratio curves become
more and more precise. When SRSR reaches 0.02, the pre-
dicted curves are nearly exact matches for their respective
measured curves.
In gemver, mvt, syrk and fft (bit reversal), there are parts

of the miss ratio curve that drop slowly (between sharp
drops). A gradual drop indicates a large number of different
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reuse times, which may happen even for one single refer-
ence. In such cases, it is not necessary to catch all different
reuse times. The prediction is approximately accurate as
long as we have sampled sufficient number of different reuse
times. Whether the correct gradual drop will be discovered
or whether the incorrect gradual drop will be corrected is
based on the sampling of the reuse times. Low sampling
rates cannot discover the gradual drop in gemver, mvt, fft (bit

reversal) and cannot correct it in syrk.

5.2 Overhead of Static Sampling

Although static sampling does not run the target programs
or require their inputs, its overhead may still be a problem
if we want to apply it to time-consuming analysis such as
auto-tuning or derive the miss ratio curve in online analysis.
The overhead of static sampling contains three parts: (1)

code generation time which is the time taken by our LLVM-
based tool to generate static sampling code from the source
code of benchmarks, (2) compilation time which is the time
taken by a standard C++ compiler to compile the static sam-
pling code into the executable, (3) static sampling time which
is the time of executing the sampler code to produce the miss
ratio curve. As compilation time is usually small and depends
on the compiler used, we do not to show it here. Fig. 6 shows
the code generation (codeGen) time and static sampling time.
For code generation, the overhead is determined by the

number of memory references that potentially introduce
reuses and depth of their surrounding loops. Among all the
benchmarks, convolution_2d and convolution_3d have the
most references to check (10 and 16 references) which leads
to larger code generation overhead. The maximum overhead
for code generation is 0.167s which may be larger than static
sampling time under small sampling rates. But generated

SPS code is parameterized by the sampling rates and does
not need to be regenerated when the sampling rate changes.

The static sampling time is measured with SRSR increasing
by a factor of 20 from 0.001 to 0.02. The rate 0.05 is excluded
because 0.02 can already produce nearly precise miss ratios.
As a reference, the overhead of trace based analysis is also
shown. Both static sampling and trace based analysis mea-
sure the miss ratios up to 20MB of cache. The execution time
of static sampling is much lower compared to trace based
analysis. On average, the time needed by static sampling is
just 0.057%, 0.194%, 0.602%, 1.016% and 3.06% of the time of
full trace analysis, when SRSR increases from 0.001 to 0.02.

The programs which have clusters of memory references
to the same array in single loop nests are more likely to incur
a higher overhead in static sampling, such as convolution_2d,
convolution_3d with high SRSR. Because static sampling is
performed for each reference, the number of samples for each
loop is the sum of all samples of the enclosing references.
Clustered references cause SPS to traverse the same loop
iteration multiple times.
The programs which have long reuses, such as syrk and

gemver, are more likely to incur higher overhead in static
sampling since searching for reuses traverses more iterations.

5.3 Data Size Scaling

The number of samples for static sampling is determined by
the complexity of reuse patterns which are a function of code
structure and not the data size. This can further improve per-
formance over tracing. To demonstrate, we scale the default
data size by 2, 4 and 8 times. Overall, the results in Table 2
show that performance gain increases as the data size grows
larger. In particular, we observe that the code containing
more expensive arithmetic operations, such as multiplica-
tion in 3mm and gemm, shows high speedups, since static
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Table 2. Speedups over tracing with data size scaling

benchmark orig. 2X 4X 8X

atax 18.33 18.24 24.81 33.48
bicg 27.82 28.04 28.11 42.79

convolution_2d 8.63 8.29 9.13 9.19
gemver 17.30 13.65 20.09 34.12
gesummv 17.43 21.68 24.61 32.51

mvt 8.87 10.06 13.87 21.30
3mm 350 894 3132 10218

convolution_3d 33.14 31.05 45.13 71.21
gemm 95.03 164.64 316.96 756.34
syrk 18.06 48.34 122.64 343.53

fft (bit reversal) 1.47 1.86 1.82 1.82

geometric mean 20.97 26.83 40.15 66.20

sampling removes all these operations that are not related
to the address calculation and program flow. Code that con-
tains clustered memory references in a single loop nest has
low speedups, such as convolution_2d and convolution_3d,
since clustered memory references need more checks per
loop iteration and may check the same iteration multiple
times. Finally, code containing irregular control flow, such
as fft, has low speedup since irregular control flow needs to
be statically executed and cannot be accelerated with static
information.

5.4 Parallel Sampling

The parallelization is performed by assigning one thread for
each reference ri in line 3 in Alg. 1. Fig. 7 shows the speedups
of static sampling with SRSR 0.02 when increasing the num-
ber of threads. On average, parallel static sampling achieves
1.68, 2.31 and 2.55 speedups with 2, 3 and 4 hardware threads
respectively. The amount of work per reference is irregular

as it is determined by the number of samples, the number of
surrounding loops, the search distance for each reuse, and
the success rate of search result reuse. This irregularity leads
to load imbalance limiting the speedup. Finer division of
work by parallelizing SPS within a reference may improve
scalability and make SPS more suitable for SIMD parallelism.
We leave these improvements for future work.

6 Optimization and Future Work

SPS produces reuse time histograms and miss ratio curves
precisely and efficiently during compilation, which can ben-
efit compiler optimizations that use them. We next discuss
this potential.
Tiling: Tiling is a compiler technique that improves the

cache performance by reorganizing the iteration space into
smaller chunks. The best tile size is usually selected based
on the cache size, for example in Esseghir’s tile size selection
algorithm [21], Coleman and McKinley’s TSS [16], Panda’s
selection algorithm [35]. With SPS, the tile size can be se-
lected based on the miss ratio.
Co-run program cache sharing: Till now, trace based miss

ratios curves [7, 42, 47] or hardware counter based miss
rates [34] are used to guide program symbiosis [42] or cache
partitioning [7, 34, 47]. These techniques improve cache shar-
ing by reducing the interference among co-run programs. For
example, the miss ratio curve can guide optimal cache parti-
tioning for 4-program co-run groups on average to reduce
total misses by 26% compared to free-for-all cache sharing
and 98% compared to equal cache partitioning [7]. As SPS
generates miss ratio curves at compile time with a low cost,
it may improve these techniques by providing the programs’
exact cache behavior before program scheduling or cache
partitioning.
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Generating cache hints: As SPS is a reference based anal-
ysis framework, it can provides reuse time histograms per
reference. This can indicate the possible cache behavior for
specific memory references. This gives us the opportunity to
generate cache hints for each memory references efficiently.
In [4], static cache hint selection achieves 10% speedup for
a set of regular loops with Open64-compiler and Itanium
processor.

SPS extracts reuse time during compile time. Reuse time is
not limited to predict cache misses, it can also predict write
backs [14]. Reuse time based model is composable [26, 46],
it is possible to encode parallelism.

Measuring write locality: The emerging Non-Volatile Mem-
ory (NVM) technology combined with existing DRAM tech-
nology makes it possible to build larger capacity, low access
latency and energy efficient memory systems by leveraging
the strength of each technology. Hybrid memory systems
are promising but need more sophisticated control of the
data to reduce the number of long latency writes to NVM
which can improve both NVM longevity and performance.
Write locality [14] predicts the write backs for all cache sizes
by combining reuse time with data access types (write/read).
With these predicted write back curves, guided cache par-
titioning achieves 12%, 27%, 35% write back reduction for
2, 3, 4-program co-runs. By combining SPS with read/write
information about data accesses, writebacks can be predicted
by static sampling.
Locality in parallel code: Locality of parallel programs is

hard to analyze due to non-determined interleaving of mem-
ory accesses introduced by parallel execution of the tasks
without dependences. To bypass this hardness, declarative
tuning [11, 36] for locality provides program scheduling
constructs which is decoupled with the algorithm descrip-
tion. But when the scheduling space is large, parallel-locality
model [32] is necessary to reduce the search space of sched-
uling. By combing SPS with parallel task dependences, it is
possible to quantify parallel-locality.
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