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Abstract
In recent years, an increasing amount of work
has focused on differentiable physics simulation
and has produced a set of open source projects
such as Tiny Differentiable Simulator, Nimble
Physics, diffTaichi, Brax, Warp, Dojo and Dif-
fCoSim. By making physics simulations end-
to-end differentiable, we can perform gradient-
based optimization and learning tasks. A ma-
jority of differentiable simulators consider colli-
sions and contacts between objects, but they use
different contact models for differentiability. In
this paper, we overview four kinds of differen-
tiable contact formulations - linear complemen-
tarity problems (LCP), convex optimization mod-
els, compliant models and position-based dynam-
ics (PBD). We analyze and compare the gradi-
ents calculated by these models and show that
the gradients are not always correct. We also
demonstrate their ability to learn an optimal con-
trol strategy by comparing the learned strategies
with the optimal strategy in an analytical form.
The codebase to reproduce the experiment re-
sults is available at https://github.com/
DesmondZhong/diff_sim_grads.

1. Introduction
With rapid advances and development of machine learning
and automatic differentiation tools, a family of techniques
emerge to make physics simulation end-to-end differen-
tiable (Liang & Lin, 2020). These differentiable physics
simulators make it easy to use gradient-based methods for
learning and control tasks, such as system identification
(Zhong et al., 2021; Le Lidec et al., 2021; Song & Boularias,
2020a), learning to slide unknown objects (Song & Boular-
ias, 2020b) and shape optimization (Strecke & Stueckler,
2021; Xu et al., 2021). These applications demonstrate the
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potential of differentiable simulations in solving control and
design problems that are hard to solve by traditional tools.
Compared to black-box neural networks counterparts, dif-
ferentiable simulations utilize physical models to provide
more reliable gradient information and better interpretabil-
ity, which is beneficial to various learning tasks involving
physics simulations.

A crucial challenge of making physics simulation differ-
entiable is the non-smoothness of contact events. In the
literature, different techniques have been proposed to com-
pute gradients in dynamics involving contact events. A
detailed comparison of these techniques is necessary for
researchers to understand their pros and cons.

In this paper, we first overview four kinds of differentiable
contact formulations - linear complementarity problems
(LCP), convex optimization models, compliant models and
position-based dynamics (PBD). Even though differentiable
simulation and contact models has been studied for de-
formable objects (Rojas et al., 2021; Qiao et al., 2021a;
Du et al., 2021a) and cloth (Liang et al., 2019; Li et al.,
2021), we focus on collisions between rigid bodies in our
benchmark experiments. We seek to answer a simple yet
important question - do these differentiable contact formula-
tions compute the correct gradients w.r.t. position, velocity
and control? We implement different types of differentiable
simulations on two examples where the analytical gradients
can be derived in a closed form. By comparing the gradi-
ents computed by simulations with analytical gradients, we
observe that not all the computed gradients are correct and
the gradients computed by different open source implemen-
tations do not agree. Our results reveal the limitation of
current differentiable simulators and open up new research
opportunities to develop more reliable physics simulators.

2. Differentiable Physics Simulation with
Contacts

In this section, we overview different kinds of differentiable
contact models and discuss how the gradients through the
contact events are derived and calculated. We start with
linear complementarity problems and convex optimization
models, both of which treat contact events as instantaneous
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velocity changes during simulation. The goal of these two
families of methods is to solve velocity impulses.

2.1. Linear Complementarity Problems

Solving velocity impulses in a frictional contact event can be
formulated as a nonlinear complementarity problem (NCP),
where the friction cone constraint is nonlinear. A recent
differentiable simulator Dojo (Howell et al., 2022) designs
a customized solver to solve the NCP problem, and lever-
ages the implicit-function theorem to derive the gradients.
Most of existing works, however, approximate the NCP by
a linear complementarity problem (LCP), where the friction
cone is approximated by a polyhedral cone (Anitescu &
Potra, 1997). The purpose of the approximation is to guar-
antee a solution with any number of contacts and contact
configuration. Different methods have been proposed to
compute the gradients of the solution of a LCP w.r.t. input
parameters.

de Avila Belbute-Peres et al. (2018) derive these gradients
using implicit differentiation in a similar way as in Opt-
Net (Amos & Kolter, 2017). They show that the derived
gradients enable end-to-end learning of unknown physics
parameters such as the mass of objects.

Heiden et al. (2021b); Degrave et al. (2019); Qiao et al.
(2021b) also solve collision responses based on LCP, but
the LCP is solved using a projected Gauss-Seidel (PGS)
method. Here the constraints of LCP are not guaranteed to
hold at the end of PGS iterations, so the gradients derived
by implicit differentiation might not be valid. Heiden et al.
(2021b); Degrave et al. (2019) leverage existing automatic
differentiation frameworks to get gradients through the PGS
solver. However, significant overhead is introduced in trac-
ing the computation graph. To improve efficiency, Qiao et al.
(2021b) propose a reverse version of the PGS solver using
the adjoint method.

Different from these approaches, Nimble (Werling et al.,
2021) efficiently computes analytical gradients through the
LCP by exploiting the sparsity of the LCP solution. Nimble
also shows that analytically correct gradients might prevent
an optimizer from finding a good solution and proposes an
exploratory heuristic called “complementarity-aware gradi-
ent” to help optimization escape saddle points.

DiffPD (Du et al., 2021b) supports a limited LCP model
which can handle only static friction. The gradients are
derived analytically and sparsity is leveraged for efficiency.
DiffCloth (Li et al., 2021) extends DiffPD by deriving ana-
lytical gradients of LCP with an implicit integration scheme.

2.2. Convex Optimization Models

Mujoco simulator formulates the problem of solving fric-
tional contact impulses as a convex optimization problem

(Todorov, 2011; Todorov et al., 2012; Todorov, 2014). The
idea is based on maximum dissipation principle - the kinetic
energy would be maximally dissipated after an inelastic col-
lision. Then the contact impulses are solved by minimizing
the post-collision kinetic energy. This is a different family
of models since the complementarity condition can be vio-
lated in this formulation, i.e., the force and velocity along
the contact normal direction can be simultaneously positive.
In other words, LCP treats contact surfaces as hard surfaces,
while convex optimization formulation treats them as soft
surfaces.

With the recent progress of differentiable optimizations such
as CvxpyLayer (Agrawal et al., 2019), we can easily com-
pute the gradients of the solution of the convex optimization
problem w.r.t input parameters. Zhong et al. (2021) imple-
ment this idea and demonstrate its application in end-to-end
simultaneous learning of system properties, e.g., mass and
potential energy, and contact properties, e.g., coefficient of
friction and restitution.

2.3. Compliant Models

Compliant models assume contact surfaces can deform,
which will produce elastic forces to push collided objects
away from each other. Since the contact constraints are not
strictly satisfied due to the soft surface assumption, com-
pliant models are also referred to as penalty-based models
from an optimization perspective. Compliant models use
spring-damper systems to resolve interpenetration between
surfaces. The interpenetration is usually resolved in mul-
tiple consecutive time steps and the number of time steps
depends on the stiffness of the spring. In addition to normal
forces, lateral friction forces are computed using either a
nonlinear or a relaxed friction model for frictional contacts.
In order to have a stable simulation of contact and collisions,
one needs to carefully tune the parameters such as spring
stiffness, and these parameters could be hard to tune in a
contact-rich scenario.

Since the forces from the spring-damper system are con-
tinuously differentiable functions of position and velocity,
the trajectories of position and velocity are also continuous
and differentiable. This makes compliant models easy to
implement using existing automatic differentiation tools. A
number of works have explored differentiable simulation
with compliant models, including (Giftthaler et al., 2017),
(Carpentier & Mansard, 2018), (Xu et al., 2022), Neural-
Sim (Heiden et al., 2021b), gradSim (Murthy et al., 2021),
ADD (Geilinger et al., 2020), IPC (Li et al., 2020), DiSECt
(Heiden et al., 2021a), DiffPD (Du et al., 2021b), Warp
(Macklin, 2022) and the legacy implementation of Brax
(Geilinger et al., 2020).
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2.4. Position-based Dynamics

To resolve contacts, compliant models manipulate forces,
LCP as well as convex optimization models manipulate ve-
locities, and position-based dynamics (PBD) (Müller et al.,
2007) directly manipulate positions. PBD is originally pro-
posed to tackle contact-rich physics-based animation in
computer graphics and games. In PBD, interpenetration
in a contact event is resolved by directly projecting points
to valid locations in such a way that takes into account the
conservation of linear and angular momentum. Velocities
are then updated based on the updated positions and the
positions in the previous time step. Extended PBD (XPBD)
(Macklin et al., 2016) extends the original PBD to address
the problems of iteration-dependent contact stiffness by in-
troducing elastic potentials.

The forward pass of calculating position-based impulses
only involves differentiable operations so the gradients can
be computed by automatic differentiation. Open source
libraries such as Warp (Macklin, 2022) and Brax (Freeman
et al., 2021) implement differentiable PDB in this way.

Liang et al. (2019) study differentiable cloth simulation and
formulate the updates of positions as a quadratic program-
ming (QP) problem. They introduce a QR decomposition
step after the implicit differentiation to compute the gradi-
ent through the QP more efficiently in the context of cloth
simulation. Qiao et al. (2020) adopt a similar approach but
use generalized coordinates instead of Cartesian coordinates
and additionally deal with the mapping between the two
coordinates when deriving gradients. A relevant work in
learning contact constraints (Yang et al., 2020) also use
position-based techniques to handle inelastic contacts.

2.5. Other Related Works

We further review some other relevant differentiable physics
simulators. Macklin et al. (2020) propose a primal/dual de-
scent method for simulation, where the primal formulation
is related to projective dynamics (Bouaziz et al., 2014) and
the dual formulation is related to XPBD. They demonstrate
the differentiability of the primal formulation using an ex-
ample of trajectory optimization. Le Lidec et al. (2021)
formulate the frictional contact problem into a sequence of
QCQPs. The analytical gradients are derived by implicit
differentiation. They demonstrate the framework on system
identification from videos of dynamical scenes. Chen et al.
(2021) propose neural event functions to model instanta-
neous velocity change during a collision. They show that for
frictionless contacts, both the neural event functions and the
instantaneous updates can be learned. Sutanto et al. (2020)
demonstrate the learning of physics parameters by encoding
physical constraints in differentiable simulation. However,
simulation with contacts has not been investigated.

3. Implementation Choices for Experiments
In principle, different concepts of differentiable simulation
mentioned above are not restricted to any single software
tool. For example, we can implement them in general-
purpose machine learning tools such as Tensorflow, Pytorch
and Jax, or tools that are tailored for physics simulations
such as DiffTaichi (Hu et al., 2020) and Warp (Macklin,
2022). In this work, we implement different differentiable
contact formulations on three systems by leveraging existing
open source tools to avoid reinventing the wheel. Our im-
plementation choice for each formulation is detailed below.

For LCPs, we implement our systems in Nimble (Werling
et al., 2021). Nimble is a fork of the DART physics engine
(Lee et al., 2018), with analytical gradients of LCP and
PyTorch binding. DiffTaichi (Hu et al., 2020) has pointed
out that directly adding velocity impulse can lead to incor-
rect gradients and proposed using continuous-time detection
or time-of-impact (TOI) for computing correct gradients.
Since LCP uses velocity impulse in simulation, it would
suffer from this problem if the correction is not considered.
Nimble has implemented continuous-time detection and
therefore does not suffer from this particular problem, as we
can see in the experiment sections. In this work we focus
on frictionless contact, where the NCP and LCP formula-
tions become equivalent. We leave the investigation of NCP
formulations (Howell et al., 2022) as a future work.

For convex optimization models, we implement our sys-
tems with a simplified version of DiffCoSim (Zhong et al.,
2021). As convex optimization models also calculate veloc-
ity impulses and the original DiffCoSim does not implement
TOI, we add the TOI implementation for comparison.

For compliant models and PBD, we implement our systems
with both Brax (Freeman et al., 2021) and Warp (Macklin,
2022). The authors of Brax have experimented with com-
pliant models but encountered stability issues. Neverthe-
less, they include this implementation in the project (the
legacy spring dynamics mode). Their latest collision
model is position-based (the pbd dynamics mode), which
also supports frictional and elastic contacts. Warp is a re-
cently released open source project for high-performance
physics simulation. They provide example implementations
of compliant models and PBD along with the release, but
their current PBD implementation is preliminary and does
not support frictional and elastic contact yet. We add fric-
tional and elastic support tailored to our systems.

For frictionless collisions, we can easily compute the veloc-
ity impulse without using the LCP or convex optimization
models. In fact, the billiards example in diffTaichi
(Hu et al., 2020) is implemented in this way. In our sys-
tems with frictionless collisions, we also implement direct
computation of velocity impulses using diffTaichi.
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Table 1. Task 1: gradients of the final heights w.r.t. initial position, velocity and control

Implementations ∂py,N/∂py,0 ∂py,N/∂vy,0 ∂py,N/∂uy,0

Analytical gradients −1.0000 −1.0000 −0.0021

LCP (with TOI) −1.0000 −1.0000 −0.0021

Convex Optimization Model with TOI −1.0000 −1.0000 −0.0021
without TOI 1.0000 −0.0958 −0.0002

Direct Velocity Impulse with TOI −1.0000 −1.0000 −0.0021
without TOI 1.0000 −0.1000 −0.0002

Compliant Model Warp −1.5680 −1.2248 −0.0026
Brax 1.0000 −0.0958 −0.0004

PBD Warp 0.0000 −0.5479 −0.0011
Brax −0.0020 −0.5467 −0.0023

4. Experiments
In this section, we investigate and compare the performance
of differentiable contact models on three tasks. The physics
system in all three tasks are two-dimensional. We mainly
work with a discrete-time formulation, where the simulation
duration T is discretized into N time steps with ∆t =
T/N . In all three tasks, we choose ∆t = 1/480s. We
use pn = [px,n, py,n] to denote the position of an object
at the nth time step. Task 3 involves two objects and the
configuration of the system at the nth time step is denoted
as pn = [p1,n, p2,n] = [px1,n, py1,n, px2,n, py2,n]. When
working in a continuous-time perspective, we use p(t) to
denote the system configuration at time t. The velocity
variables are denoted by v and defined similarly.

Gradients with control. From a continuous-time view-
point, the concept of gradients w.r.t. the position or velocity
at certain time (this paper mainly examines the quantity at
the initial time) is well-defined while the gradients w.r.t. the
control is more subtle. The reason is that when the control is
viewed as a function of time, we need to extend the classical
concept of gradients to some functional derivatives, such
as Gateaux derivative or Fréchet derivative (Gelfand et al.,
2000). To avoid the complication of diving into deeper math-
ematical concepts, here we examine the gradients w.r.t. the
control in a special setting. Given ∆t > 0 and continuous-
time control profile ũ(t) defined on [0, T ], we apply constant
u0 on [0,∆t] and then ũ on [∆t, T ] to get the total loss l.
Then ∂l/∂u0 can be defined in the classical sense and we
treat that as the analytical gradient for comparison. We
remark that, in the finite-dimensional case, the functional
derivative is consistent with the classical derivative up to a
time discretization factor. Specifically, when u0 = ũ(0), the
gradient we consider converges to the functional derivative

at t = 0 as ∆t→ 0.1

4.1. Task 1: Gradients with a Simple Collision

In this section, we revisit the task of simple collision studied
in DiffTaichi. As shown in Figure 1, this is a 2D system
without gravity. The initial position and velocity of the ball
are p0 = [−1, 1] and v0 = [2,−2]. We add constant zero
controls un = [0, 0], n = 0, ..., N − 1 to the ball in order
to compute the gradients w.r.t. controls. The simulation
duration is T = 1s. During the simulation, the ball has a
perfectly elastic frictionless collision with the ground. We
are interested in the gradients of the final height w.r.t. the
initial position, velocity and control.

In this example, we can write down the analytical expression

1We take the functional l(u) =
∫ T

0
u(t)2dt as an example.

The Fréchet derivative of l(u) in L2 is δl
δu

(t) = 2u(t). If we take
the discrete approximation of the integral as l̃(u0, · · · , uN−1) =∑N−1

i=0 u2
i∆t, where ui are values at i∆t, the function l̃ has gradi-

ent ∇l̃(u0, · · · , uN−1) = 2∆t(u0, · · · , uN−1).

Figure 1. Simple collision in task 1.
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Table 2. Task 2: gradients of loss w.r.t. initial velocity; optimized velocity; and trajectory mode.

Implementations
∂l/∂vx,0, ∂l/∂vy,0

at iteration 0
vx,0, vy,0

at iteration 999 trajectory mode

LCP (with TOI) −3.2016,−0.3059 10.2297,−4.1396 Trajectory 1

Convex Optimization Model with TOI −3.1652,−0.3059 10.2575,−4.2041 Trajectory 1
without TOI 1.5898,−0.1391 −2.4934,−4.3371 Trajectory 2

Direct Velocity Impulse with TOI −3.1662,−0.3111 10.1841,−4.1606 Trajectory 1
without TOI 1.5550,−0.1552 −2.4933,−4.2984 Trajectory 2

Compliant Model Warp −4.9727,−0.3984 10.6386,−4.2821 Trajectory 1
Brax 1.6971,−0.0366 −2.4935,−4.7927 Trajectory 2

PBD Warp −16.7149,−2.0866 9.7299,−4.0706 Trajectory 1
Brax −0.8311,−0.0663 10.4865,−4.7518 Trajectory 1

of the final height (see Appendix A for a derivation),

py,N = −py,0 − vy,0T − uy,0(T∆t−
1

2
(∆t)2) + 2r, (1)

where r is the radius of the ball. In Table 1, we compare the
analytical gradients with gradients computed by different im-
plementations. We find that the three implementations that
can compute accurate gradients in this example are the ones
that implement TOI. This is consistent with DiffTaichi’s
observation. It should be emphasized that discarding TOI
in velocity-impulse-based contact models will result in a
completely wrong gradient w.r.t. the position, and making
∆t smaller cannot solve the issue. We refer the interested
reader to DiffTaichi (Hu et al., 2020) for more details.

For compliant models, there exists no concept of TOI since
interpenetration is resolved in multiple time steps. The gradi-
ents w.r.t. position of the Warp and Brax implementations do
not match. In fact, they are even in the opposite directions.
This phenomenon might be due to different implementation
details, e.g. spring stiffness.

The two PBD implementations agree well, but they do not
match the analytical gradients. In particular, the gradients
w.r.t. position are close to zero. This is because when a
collision (interpenetration) is detected, the position of the
ball is updated to resolve the interpenetration. An infinitesi-
mal change in py,0 will not change the value of py,n after
the collision, since the ball is always updated to touch the
ground (py = r) right after the collision.

We also remark that across all implementations, the gra-
dients w.r.t. velocity and control are all negative. In other
words, even if they might be wrong in value, they are correct
in direction. If we are optimizing over velocity or control
in an optimization task, it is possible that it ends up with a
reasonable solution with these “inaccurate” gradients.

4.2. Task 2: Optimize the Initial Velocity of a Bouncing
Ball to Hit a Target

In this section, we revisit a task studied in Warp (Macklin,
2022) and (Macklin et al., 2020). As shown in Figure 2(a),
we have a ball of radius r = 0.1 with initial position p0 =
[−0.5, 1.0] and initial velocity v0 = [5,−5]. The simulation
duration is T = 0.6s.

The initial trajectory is shown in Figure 2(a). We assume
collisions are frictionless and the elastic coefficient is e =
0.92. These contact properties will produce trajectories
close to the original Warp implementation.2

The task is to optimize the initial velocity such that the
ball hits a target at ptarget = [−2.0, 1.5] at the end of the
simulation. With differentiable simulations, we can set up a
loss function l = ||pN − ptarget||22, get the gradient w.r.t the
initial velocity ∂l/∂vx,0, ∂l/∂vy,0 and use gradient descent
to update the initial velocity to minimize the loss. In this
task, we use a learning rate of 0.01 for 1000 gradient steps.

The learning curves in Figure 2(d) (left) indicate that all the
implementations can successfully minimize the loss to zero
and accomplish the task. Table 2 shows the gradients of
loss w.r.t. initial velocity before optimization (Figure 2(a))
and the optimized initial velocity after 1000 gradient steps.
We observe that this task has at least two solutions, with
the trajectories shown in Figure 2(b) and 2(c). Different
implementations learn different trajectories, as summarized
in the last column in Table 2.

2The original Warp implementation is frictionless and use the
compliant model with nonzero damping coefficient. In this non-
perfectly elastic collision case, there’s no one-to-one mapping
between compliant model parameters and the elastic coefficient
in other models. We examine the horizontal velocity of the ball
before (5.0) and after (−4.6) the bouncing with the wall in the
original trajectory and choose to use an elastic coefficient e =
| − 4.6/5.0| = 0.92 to produce similar trajectories.
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(a) (b) (c)

(d)

Figure 2. Trajectories and learning curves of task 2. (a) initial trajectory; (b) optimized trajectory 1; (c) optimized trajectory 2; (d) Left:
learning curves - loss over iterations; Right: learning curves - initial horizontal velocity over iterations.

We also find that which solution an implementation end
up with can be inferred from the sign of ∂l/∂vx,0 at it-
eration 0. For example, the LCP implementation results
in ∂l/∂vx,0 < 0. To minimize the loss, the algorithm in-
creases the value of vx,0 and ends up with trajectory 1. For
those implementations with ∂l/∂vx,0 > 0, the algorithm
decreases the value of vx,0 and ends up with trajectory 2.
This reasoning can be verified in Figure 2(d) (right).

If we compare implementations with and without TOI, we
notice that TOI affects the sign of ∂l/∂vx,0, which in turn
affects the optimized trajectory. The two compliant model
implementations again produce gradients in the opposite
directions.

The takeaway from this task is that even in a simple set-
ting with two frictionless collisions, the gradients computed
by different implementations do not agree. These differ-
ences have a huge impact on optimization and can lead to
totally different outcomes. We also experiment with fric-
tional contacts in this task and have similar observations
(see Appendix B.)

4.3. Task 3: Learning Optimal Control with a Two-ball
Collision

In this section, we investigate the learning of optimal control
sequences using differentiable simulation. The specific task
has been studied by Hu et al. (2022) using a different ap-

Figure 3. The initial configuration and target position of task 3.

proach, i.e., hybrid minimum principle (HMP). As Hu et al.
(2022) has derived the analytical solution of this specific
task, we are able to use that to measure the performance of
different implementations.

The system is shown in Figure 3. We have two balls, of
the same size (radius r = 0.2) on a plane with no gravity.
The initial positions of the balls are p1,0 = [−2,−2] and
p2,0 = [−1,−1] and the initial velocities are v1,0 = v2,0 =
[0, 0]. The simulation duration is T = 1s. We are able to
add control inputs as forces acted on the first ball. The goal
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Table 3. Task 3: gradients of loss w.r.t. initial position, velocity and control at iteration 0

Implementations
∂l/∂px1,0, ∂l/∂px2,0

at iteration 0
∂l/∂vx1,0, ∂l/∂vx2,0

at iteration 0
∂l/∂ux1,0

at iteration 0

Analytical gradients −0.3987,−0.3213 −0.4978,−0.2221 −0.0009

LCP (with TOI) −0.5476,−0.1825 −0.6031,−0.1270 0.0000

Convex Optimization Model with TOI −0.7325, 0.0000 −0.7310,−0.0015 −0.0003
without TOI 0.0000,−0.7291 −0.2233,−0.5058 0.0008

Direct Velocity Impulse with TOI −0.7191, 0.0000 −0.7191, 0.0000 −0.0002
without TOI 0.0000,−0.7156 −0.2221,−0.4935 0.0008

Compliant Model Warp 0.9509,−1.6969 0.4348,−1.1808 0.0022
Brax 0.0000,−0.7252 −0.2220,−0.5031 0.0016

PBD Warp −0.3610,−0.3610 −0.4723,−0.2497 0.0003
Brax −0.3613,−0.3606 −0.4725,−0.2494 0.0005

Figure 4. Results of task 3. Left: learning curves; Right: learned control profiles along with analytical optimal control profile.

in this task is to push ball 1 to strike ball 2 so that ball 2 will
be close to the origin at the end of the simulation.

The problem can be formulated as an optimal control prob-
lem in continuous-time with state jumps:

minimize
u(·)

ϕ(s(T )) +

∫ T

0

L(s(t), u(t))dt, (2)

subject to ṡ(t) = f(s(t), u(t)), t ∈ [0, γ) or t ∈ (γ, T ],
(3)

ψ(s(γ−)) = 0, (4)

s(γ+) = g(s(γ−)). (5)

Here we use s = [p, v] to denote the positions and veloc-
ities of two balls as the state variable. f denotes the state
dynamics under external forces u; γ denotes the time of
collision between two balls, characterized by the distance
function ψ between two balls; and g denotes the effect
of collision on the state. We choose terminal cost to be

ϕ(s(T )) = ||p2(T )||22 to capture our goal and running cost
to be L(s, u) = ϵ||u||22 with ϵ = 0.1 to penalize large con-
trol inputs. See the appendix of Hu et al. (2022) for the
optimal solution of this problem in an analytic form.

To solve the above problem approximately, we discrete the
problem into

minimize
u0,...,uN−1

ϕ(sN ) +

N−1∑
i=0

L(si, ui)∆t, (6)

subject to si+1 = step(si, ui,∆t). (7)

The step function takes the current state and control as
inputs and calculates the next time step state based on dy-
namics and collisions. With differentiable simulations, we
can differentiate through the step function and solve for
the optimal control sequence directly using gradient descent.

We initiate our control sequence as a constant force un =
[3, 3], n = 0, ..., N−1. With this constant control sequence,
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we can compute the gradients of the loss w.r.t. initial posi-
tions and velocities of the two balls as well as the control
at the first time step. As this task is symmetric in x and
y coordinates, we only present the x-components in Ta-
ble 3. The y-components are the same as the corresponding
x-components. The analytical gradients in the table are com-
puted by deriving the analytical expression of the loss as
done in Section 4.1. We provide code scripts of computing
these gradients in Appendix C.

Surprisingly, from Table 3, we observe that none of the
gradients from differentiable simulators match the analytical
gradients; only the two implementations based on PBD give
results that are close to the analytical gradients.

In this task, we use a learning rate of 10 for 1000 gradient
steps. Figure 4 (left) shows the learning curves of differ-
ent implementations along with the analytical optimal loss
(1.3965). We observe that two implementations without TOI
and two compliant model implementations fail to converge
to the analytical optimal loss. The rest of the implemen-
tations converge to values that are close to the analytical
optimal loss.

Figure 4 (right) compares the control profile optimized
by different simulators with the analytical optimal control,
based on the analytical expression presented in (Hu et al.,
2022). We observe that for two implementations without
TOI and the Brax implementation of the compliant model,
the learned control sequences are close to zero all the time.
Under a zero control sequence, the two balls would not
move at all resulting in a running loss of 0 and a terminal
loss of 2. From Figure 4 (left) we can confirm that these
three implementations end up with a loss close to 2. For
all the other implementations, the shapes of the learned op-
timal control profiles resemble the analytical one, where,
they linearly decrease before the collision and drop to zero
after the collision. Three implementations with TOI per-
form the best in learning the optimal control sequence. We
remark that, as reported in (Hu et al., 2022), the deep rein-
forcement learning algorithm PPO (Schulman et al., 2017)
usually finds a solution with a running loss of 0 and a ter-
minal loss of 2, if there is no reward shaping. Compared to
such model-free reinforcement learning methods, optimiz-
ing with differentiable physics simulations demonstrates its
strength in solving control tasks.

We also experiment with the spring stiffness parameter in the
compliant models, as shown in Figure 5. We observe that a
small stiffness (100) makes the surface too soft to represent
the actual collision phenomenon. The initial loss is 2.39
in this case while the analytical loss before optimization is
around 2.06. The initial losses of larger stiffness are indeed
around 2.06, but a large stiffness such as 105 makes learning
unstable and fails to learn a reasonable control strategy.

Figure 5. Task 3: learning curves of compliant models imple-
mented in Warp with different spring stiffness kn. Spring stiffness
determines the normal contact force based on interpenetration d,
i.e., fn = −kn · d.

The takeaway from this task is that the gradients computed
by differentiable physics simulators might not reflect the true
gradients in the physics process. Nevertheless, they might
still be helpful in gradient-based learning tasks. The reasons
behind the successful optimizations with wrong gradients
need further investigation. In more complex contact-rich
scenarios, it is likely that none of the current differentiable
simulators can accomplish particular optimization tasks.

5. Conclusion
In this paper, we investigated gradient computation using
existing differentiable physics simulation tools. We apply
multiple differentiable simulators on three tasks. All the
three tasks only involve simple frictionless collision and do
not involve ill-cases such as grazing contacts (Corner, 2017),
which are likely not differentiable. We find that in a specific
system (Task 3), the gradients w.r.t. position, velocity and
control computed from all differentiable simulators studied
in this paper do not match the analytical result well.

This finding raises two questions: 1) how can the optimiza-
tion task be successfully achieved with wrong gradients?
and more importantly 2) how to improve differentiable sim-
ulations to compute correct gradients? If these questions
are properly addressed, differentiable physics simulation
can serve as a powerful interpretable tool in end-to-end op-
timization tasks, such as system identification, learning of
dynamics systems, learning of optimal control, geometry
optimization and reinforcement learning. We hope this work
can motivate future research into differentiable physics sim-
ulations. A recent study (Suh et al., 2022) compares the
gradients of a differentiable simulator and policy gradients
in a stochastic setting. It will also be of interest to extend the
comparison with the differentiable simulator with improved
gradients.
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Appendices
A. Derivation of Equation 1
For this system, the dynamics along x and y axes are decoupled. Here we are interested in the dynamics along y axis.
We assume the initial control component uy,0 is applied to the ball from time 0 to time ∆t, and the control remain zero
afterwards. Then the velocity and position components at time ∆t are

vy,1 = vy,0 + uy,0∆t (8)

py,1 = py,0 + vy,0∆t+
1

2
uy,0(∆t)

2 (9)

Since the contact is perfectly elastic, we have

(py,N − r) + (py,1 − r) = −vy,1(T −∆t) (10)

Thus we get Equation 1

py,N = −py,0 − vy,0T − uy,0(T∆t−
1

2
(∆t)2) + 2r. (11)

The analytical gradients are

∂py,N
∂py,0

= −1,
∂py,N
∂vy,0

= −T, ∂py,N
∂uy,0

= −T∆t+ 1

2
(∆t)2 (12)

B. Task 2 with Friction
We change the frictionless contacts in Task 2 to be frictional with coefficient µ = 0.1. In this case, it would be challenging
to directly compute the velocity impulse. Thus, we implement the all the other contact model formulations and present the
result in Table 4. Here Trajectory 1 and 2 refers to trajectories similar to those in Figure 2(b) (colliding with both the ground
and the wall) and Figure 2(c) (colliding with only the ground), respectively.

Table 4. Task 2 with friction: gradients of loss w.r.t. initial velocity; optimized velocity; and trajectory mode.

Implementations
∂l/∂vx,0, ∂l/∂vy,0

at iteration 0
vx,0, vy,0

at iteration 999 trajectory mode

LCP (with TOI) −3.2016,−0.3190 11.3389,−6.1378 Trajectory 1

Convex Optimization Model with TOI −4.2416,−1.4351 10.3454,−3.9920 Trajectory 1
without TOI 3.2069, 0.1918 0.6268,−4.7243 N/A (Failed)

Direct Velocity Impulse N/A

Compliant Model Warp −4.5909,−1.4180 11.8168,−6.4319 Trajectory 1
Brax 1.7889,−0.0147 −2.5777,−4.7980 Trajectory 2

PBD Warp −12.9160, 126.9161 10.3663,−3.9202 Trajectory 1
Brax −0.8622,−0.3825 10.1879,−3.9497 Trajectory 1

C. Code Snippets for Computing Analytical Gradients in Task 3
The gradients in this case can be derived in an analytical form. They can also be computed by automatic differentiation. As
the analytical expressions are lengthy, here we provide two code snippets to compute the these gradients in JAX. We have
verified that the gradients computed by analytical expressions and by the code snippets match with each other as expected.

Since this problem is symmetric, the gradients in the direction [1,−1] are zero. In the code snippets, we simplify the problem
into a 1D problem by computing the gradients along the direction [1, 1]. We then convert them back to the 2D coordinate
frame.
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The first code snippet only computes the gradient w.r.t. initial position, it has a simple form and should be easy to understand

1 import jax
2 import jax.numpy as jnp
3 import numpy as np
4 def loss_fn(x, u_c=3*jnp.sqrt(2), r=0.2, T=1.):
5 x1_0 = x[0]
6 x2_0 = x[1]
7 # time of collision
8 s = jnp.sqrt(2 * (x2_0 - x1_0 - 2 * r) / u_c)
9 # velocity at time of collision

10 v1_s = u_c * s
11 x2_T = x2_0 + v1_s * (T - s)
12 l = x2_T ** 2
13 return l, (s, v1_s, x2_T)
14

15 grad_loss_fn = jax.grad(loss_fn, has_aux=True)
16 x0 = jnp.array([-2 * jnp.sqrt(2), -1 * jnp.sqrt(2)])
17 dl_dx, aux_data = grad_loss_fn(x0)
18 print((dl_dx)/ jnp.sqrt(2))
19

20 # output
21 # [-0.39866853 -0.3212531 ]

Listing 1. computing gradients w.r.t. initial position in Task 3

The second code snippet computes the gradient w.r.t. initial position, velocity and control.

1 import jax
2 import jax.numpy as jnp
3 import numpy as np
4 def loss_fn(x0, v0, u0, u_c=3*jnp.sqrt(2), dt=1./480, r=0.2, T=1., epsilon=0.1):
5 x1_0 = x0[0] ; x2_0 = x0[1]
6 v1_0 = v0[0] ; v2_0 = v0[1]
7 # integrate first time analytically
8 v1_dt = v1_0 + u0 * dt ; v2_dt = v2_0
9 x1_dt = x1_0 + v1_0 * dt + u0 * dt**2/2

10 x2_dt = x2_0 + v2_0 * dt
11 # solve time of collision
12 # \int_{dt}ˆ{s} (v1_dt + u_c*(t-dt) - v2_dt) = x2_dt - x1_dt - 2 * r
13 dist_dt = x2_dt - x1_dt - 2 * r
14 # a (s-dt)ˆ2 + b (s-dt) + c = 0
15 a = u_c / 2
16 b = v1_dt - v2_dt
17 c = -dist_dt
18 s = (-b + jnp.sqrt(b*b - 4*a*c)) / (2*a) + dt
19 # velocity at time of collision
20 v1_s = v1_dt + u_c * (s - dt)
21 x2_s = x2_dt + v2_dt * (s - dt)
22 x2_T = x2_s + v1_s * (T - s)
23 l = x2_T ** 2 + epsilon * u0 * dt # running loss for future us does not matter
24 return l, (s, v1_s, x2_T)
25

26 grad_loss_fn = jax.grad(loss_fn, [0, 1, 2], has_aux=True)
27 x0 = jnp.array([-2 * jnp.sqrt(2), -1 * jnp.sqrt(2)])
28 v0 = jnp.array([0., 0.])
29 u0 = 3 * jnp.sqrt(2)
30 dl, aux_data = grad_loss_fn(x0, v0, u0)
31 dl_dx0, dl_dv0, dl_du0 = dl
32 print(dl_dx0 / jnp.sqrt(2))
33 print(dl_dv0 / jnp.sqrt(2))
34 print(dl_du0 / jnp.sqrt(2))
35 # output
36 # [-0.39866856 -0.32125315]
37 # [-0.49779078 -0.22213092]
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38 # -0.0008888851

Listing 2. computing gradients w.r.t. initial position velocity and control in Task 3


