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Abstract

Biological visual systems have evolved around the efficient coding of natural image
statistics in order to support recognition of complex visual patterns. Recent work
has shown that deep neural networks are able to learn similar representations to
those measured in visual areas in animals, suggesting they may serve as models
for the brain. Varying the network architecture and loss function has been shown
to modulate the biological similarity learned representations, however the extent
to which this results from exposure to natural image statistics during training has
not been fully characterized. Here, we use self-supervised learning to train neural
network models across a range of data domains with different image statistics and
evaluate the similarity of the learned representations to neural activity of the mouse
visual cortex. We find that networks trained on different domains also exhibit
different responses when shown held-out natural images. Furthermore, we find that
the degree of biological similarity of the representations generally increases as a
function of the naturalness of the data domain used for training. Our results provide
evidence for the idea that the training data domain is an important component when
modeling the visual system using deep neural networks.

1 Introduction

In recent years, it has been shown that task-driven deep neural networks (DNNs) are highly accurate
normative models for predicting the neural responses in both the primate [22, 21] and mouse ventral
visual stream [2, 15, 10, 4]. Despite their success as models of the brain, it has not been fully
elucidated how each component of the DNN contributes to its capacity to learn biologically similar
representations. Namely, three aspects of DNNs may be essential: the network architecture, the
loss function, and the training data.

Recent studies argue that the network architecture can have a significant impact on biological
similarity of learned representations [1, 5, 4, 16]. [10] used a shallow, multi-stream network to
achieve state-of-the art results in neural predictivity for the mouse visual cortex, showing that
similarity in topology impacts similarity in representations. Early work relied on task-driven loss
functions (e.g., object recognition), but it has recently been demonstrated that models trained using
self-supervised loss functions can reach the same or greater level of neural predictivity [24]. Very
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few studies [5, 10], however, have investigated the role of the training data domain on the neural
predictivity of learned representations. While it is thought that the visual stream has specifically
evolved around the efficient coding of natural image statistics [18, 11], it is still not clear to what
extent this may also apply to DNN models of the brain.

Here, we investigate the role natural image statistics play in the formation of biologically plausible
representations within DNN models of the mouse visual cortex. To do this, we first train separate
models using self-supervised learning on image datasets from visually distinct domains with varying
degrees of “naturalness”. We then compare the representations of these networks to each other to
confirm whether they are indeed learning distinct feature representations. Finally, we probe the
extent to which models trained on domains of varying “naturalness” are predictive of biological
neural responses. We find that the naturalness of the training image distribution affects the degree
to which the network is able to learn biologically-realistic representations, and find that this is
reflected in emergence of canonical visual feature detector motifs such as Gabor filters and textured
patches. We see this effect most profoundly in the earlier layers of the artificial network indicating
that they are more sensitive to low-level image features. Code and data is available at https:
//github.com/talmolab/domain_rep .

2 Methods

2.1 Datasets

AIVC Sensorium ImageNet Real Painting Clipart Infograph Sketch Quickdraw Cremi

Figure 1: Sample images from each dataset. Networks were trained on ImageNet, DomainNet, and
CREMI, then evaluated on AIVC and Sensorium.

ImageNet [7] is a multiclass object categorization dataset with C = 1000 classes containing a
training set with around 1.3 million images and a validation set of around 50 thousand images. In
order to control for dataset size and since the dataset is already downsized to 64× 64 (shown to be
important for modeling mouse brains [10], we used the TinyImageNet [9] dataset which contains
about 100k training images and about 20k validation images with only 200 classes.

DomainNet [13] is a large-scale multi-source domain adaptation dataset containing 6 domains each
having 345 categories: Real (510 images per category/175,327 total), Infograph (150 images per
category/53,201 total), Clipart (150 images per category/48,833 total), Painting (220 images per
category/75,759 total), Sketch (220 images per category/70,386 total), and Quickdraw (500 images
per category/17,2500 total).

CREMI(Circuit Reconstruction from Electron Microscopy Images) is an electron microscopy
dataset made up of three datasets, each consisting of two 5 µm3 volumes (training and testing, each
1250 × 1250 × 125 px of serial section EM of the adult fly brain)1. We treated each slice in the z
dimension as a separate image and then generated 100 125× 125 tiles per image resulting in a dataset
with 27,750 images which we then trained on.

Sensorium is a large-scale dataset from mouse primary visual cortex containing the responses of
more than 28,000 neurons across seven mice stimulated with thousands of natural images, together
with simultaneous behavioral measurements that include running speed, pupil dilation, and eye
movements [20].

Allen Institute Visual Coding Dataset (AIVC) [6, 17] is a mouse neural recording dataset containing
electrophysiological and calcium fluorescence recordings of around 60 thousand neurons from the
VISp, VISl, VISal, VISam, VISpm, and VISrl regions of 221 different mice. We limited our study to
the neural responses of animals in response to the Natural Scenes stimulus set which consisted of

1MICCAI Challenge on Circuit Reconstruction from Electron Microscopy Images (CREMI): https://
cremi.org
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Figure 2: Experiment Pipeline. From left to right: First, we train separate SimCLR-based contrastive
AlexNet models on each domain. We then extract activations from each network in response to the
AIVC and Sensorium image dataset and evaluate the representational similarity learned by each
network to each other as well as to biological neural recordings.

118 grayscale natural images. After following the filtering process outlined by [4] and [10] we were
left with around 17,000 neurons across 98 different specimen(calcium) and 1422 neurons across 42
different specimen(neuropixels) across the six visual areas.

2.2 Network architecture and training

Because we were interested in only how the input stimuli affected the representations formed, we
decided to keep the network architecture fixed and train a network on each domain. Following [10],
we chose to use a shallower deep network trained on a contrastive objective function as this has
been shown to be the best DNN-based model of the mouse visual cortex. Specifically, we used
Pytorch Lightning and the Lightly Self-supervised library to train an AlexNet [8] with a SimCLR
loss [3] by replacing the fully-connected layers with a 2-layer MLP projection head that produces a
128-dimensional feature embedding. We trained each network for 600 epochs using the NXent-Loss
[3] with temperature scaling τ = 0.1. We used a LARS [23] optimizer with a batch size of 4096,
learning rate of 4.8, momentum of 0.9 and weight decay of 10−6 and we decayed the learning rate by
a factor of 0.5 if the loss did not decrease by 0.1 every 10 epochs. To ensure that the distribution of
image statistics were not altered due to augmentations, we restricted them to: random-resized crop,
random horizontal and vertical flips, and random gray-scaling. Every image dataset was reduced to
a resolution of 64× 64 before applying augmentations in order to better model the mouse’s visual
acuity [14, 10].

3 Experiments and Results

3.1 Training data domain has an impact on neural predictivity

We first asked whether training contrastive models on different image domains would result in
significantly different distributions of activations in response to a (potentially out-of-domain) stimulus
set of natural images (AIVC and Sensorium). In other words, we wanted to verify the extent to which
DNNs learn the same set of features independent of the data domain. For each network, we extracted
the activations from every convolutional layer by forward-propagating each image from the AIVC
stimulus set until the activation layer succeeding that convolutional layer to get an (h×w× c) tensor.

Given the actions, we calculated the l2-norm of each image activation to measure the distribution of
how much each network responded to common images. For each image, we calculated the pairwise
Euclidean distance between the activations from each network in order to get an estimate for how
far away the representations of the different networks were. Our results (Figure 3) show that the
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Figure 3: Distributions of activation magnitudes in response to natural images differ across networks
trained on different domains. Network activations were extracted per convolutional layer in response
to each image in both the AIVC dataset (left) and the Sensorium Dataset (right)

distribution of activations is indeed different across networks indicating that the networks are learning,
unrelated features as a function of data domain.

To verify this result, we hypothesized that if the activations of each network are truly distinct, then
it should be possible to find a hyperplane that separates each domain from each other within the
activation space. Using the same activations, we trained a separate linear support vector machine
(SVM) to classify which domain each set of activations came from. We first flattened the tensors
into an (n× h · w · c) dataset, then performed a 5-fold cross-validation and measured the accuracy,
precision, and recall scores for each. Indeed, the SVM was able to classify which domain a given
convolutional layer’s activation was from with near certainty (classification precision of 0.9876 and
0.9998 for AIVC and Sensorium respectively).

3.2 Models trained on different data domains also have different degrees of biological
similarity

Given that models trained on different domains exhibit different responses to natural images, we next
asked whether these differences in representations were associated with changes in neural predictivity.
We calculated the neural predictivity of each layer of each model to each visual region of the AIVC
dataset as follows. We first mapped the model activations to their biological counter part on one half
of the image set using a partial least squares regression model. We then calculated the inter-animal
consistency metric described in [10] using the held out set. However, in our case we decided to keep
the measured predictivity per layer rather than for the overall model so we did not take the maximum
over all the convolutional layers. We ran 100 trials for each domain using different train-test splits
each time.

We find that models trained on different data domains exhibit significant differences in neural
predictivity (p = 1.48 × 10−45, p = 3.46 × 10−58, and p = 2.44 × 10−79 using a one-sided
Mann-Whitney U test for AIVC-calcium, AIVC-neuropixels, and Sensorium respectively).

3.3 Training with more natural image domains increases neural predictivity

We hypothesized that this association may be explained by the “naturalness” of the image domain
from which representations were derived. To measure this quantity, we first conducted a spectral
analysis on the statistics of a subsample of 1000 images in each dataset to evaluate their adherence
to the 1

fp power law that has been previously associated with natural images owing, in part, to their
texture bias [19, 18]. We used the distance of the average p value to the idealized p = 2 as an
approximation for the “naturalness” of the domain.

We find that more natural domains like ImageNet (p = 2.06 ± 0.76) and DomainNet-Real (p =
1.97±0.79) are closer to the previously reported p = 2 [19] than less natural domains like DomainNet-
Quickdraw (p = 1.04± 0.31) and CREMI (p = 6.19± 0.54) (Figure 4).
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Figure 4: Left: Naturalness of each domain approximated by − log |p − 2| after fitting the power
spectrum of a sample of images from each domain to the form 1

fp . Right: The neural predictivity of
the first convolutional layer of ANNs trained various domains plotted against its naturalness. The
neural predictivity was calculated against the calcium recordings from the AIVC dataset.

Table 1: Neural Predictivity Results.

Domain Naturalness PLS-AIVC(calcium) PLS-AIVC(ephys) PLS-Sensorium
CREMI -1.453 0.219 0.614 0.129
Quickdraw -0.029 0.331 0.786 0.147
Sketch 0.629 0.305 0.750 0.129
Infograph 0.688 0.278 0.755 0.143
Clipart 1.089 0.303 0.744 0.143
Painting 1.548 0.260 0.667 0.154
Real 1.687 0.342 0.808 0.156
ImageNet 2.436 0.352 0.810 0.170

Next, using this parameter, we compared the naturalness of models trained on different domains to
the neural predictivity of the learned representations. We found that models trained on more natural
domains generally appear to exhibit higher neural predictivity (Figure 4, Table 1). This effect is
especially clear in early convolutional layers (conv1), with mixed trends for deeper layers deeper
(See Appendix).

3.4 Biological visual system motifs emerge when training with more natural data

Previous work has shown that Gabor-like filter banks emerge in the earlier layers of the visual stream
due to the tuning of these neurons to edges and other natural statistics [18], and in computational
models of vision [12]. We wondered whether there was a similar functional reason for the gap in
neural similarity between naturalistic and non-naturalistic domains. Although qualitative, visualizing
the first convolutional kernel of our models suggests that the Gabor-like filters are learned more
frequently in models trained on more natural data (See Appendix).

4 Discussion

Overall, our results show that the input data distribution can have significant impacts on the biological
similarity of the representations learned by self-supervised models of the ventral visual stream.
Importantly, we demonstrate that the “naturalness” of the data domain has a correlation with the
neural predictivity of the learned representations. This effect is most pronounced in the earlier layers
of the models, which we hypothesize might be a result of the the earlier layers serving as low level
feature detectors (e.g., edge detectors) which would change accordingly with respect to the low
level image statistics of the data that it is exposed to. Given that the brain is optimized to natural
image statistics, its representations should differ from one optimized for images from other domains.
One major limitation of our study, however, is that while our more natural image domains are more
“natural” in the spectral sense, they are not natural in the ethological sense. In other words, animals
such as mice are less likely to have evolved to learn from images of cars and houses than they are
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of shrubbery and predators. Going forward, we believe that it is important not just to take into
consideration the architecture and loss function as hyperparameters when modeling the brain with
deep neural networks, but also the domain of the training data.
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6 Appendix

6.1 Compute

All model training and subsequent analyses were conducted on on-premises GPU computing servers.
GPUs were orchestrated through the Run:AI software, which enabled fractional GPU allocations
for containerized compute environments. For this work, we used at the most 0.5 of an A40 GPU,
the equivalent of 24 GB of GPU RAM. CPU usage was minimal and all analyses downstream of
model training were reproduced on Google Colab (CPU-only) and could run on a standard laptop.
Our computing environment can be exactly reproduced by using our general-purpose Docker image
available at: https://hub.docker.com/r/talmo/tf-extras

6.2 Supplementary Figures
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Figure 5: Euclidean distances of activations from each domain from ImageNet
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Figure 6: Filters learned by the first convolutional layer of each network
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Figure 7: Neural Predictivity as a function of depth. We see a general trend that Neural predictivity
decreases in lower layers but we also see that within the first convolutional layer, natural image
domains have the higher neural predictivity, while it is less conclusive in later layers. The order is
AIVC-calcium, AIVC-neuropixels, and sensorium from top to bottom.
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Figure 8: Comparison between the average predictivity over all convolutional layers(top row) and the
neural predictivity of conv1 by itself(bottom row). We see that across the board conv1 has higher
predictivity. We also see that the more natural domains have a higher level of predictivity
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