
What makes math problems hard for reinforcement
learning: a case study

Ali Shehper1 Anibal Medina-Mardones2 Lucas Fagan3 Bartłomiej Lewandowski4

Angus Gruen5 Yang Qiu6 Piotr Kucharski4 Zhenghan Wang3 Sergei Gukov7

1Department of Mathematics, California Institute of Technology
2Department of Mathematics, Western University

3Department of Mathematics, University of California, Santa Barbara
4Institute of Mathematics, University of Warsaw

5Polygon Zero 6Chern Institute of Mathematics and LPMC, Nankai University
7Richard N. Merkin Center for Pure and Applied Mathematics, California Institute of Technology

correspondence: mshehper@caltech.edu

Abstract

Using a long-standing conjecture from combinatorial group theory, we explore,
from multiple perspectives, the challenges of finding rare instances carrying dispro-
portionately high rewards. Based on lessons learned in the context defined by the
Andrews–Curtis conjecture, we analyze how reinforcement learning agents handle
problems of varying hardness. We also address many mathematical questions as
a part of our study. Notably, we demonstrate the length reducibility of all but
two presentations in the Akbulut–Kirby series (1981), and resolve various poten-
tial counterexamples in the Miller–Schupp series (1991), including three infinite
subfamilies.

1 Introduction

In recent years, Artificial Intelligence (AI) systems have demonstrated remarkable success in board
games, video games, and other tasks requiring extensive planning and intelligence. Mathematics
appears to be the next frontier, with increasing advancements in theorem-provers and theorem-proving
assistants (Azerbayev et al., 2023; DeepMind, 2024; Yang et al., 2024; Lin et al., 2024). Mathematical
problems can often be framed as search problems, where the goal is to find a path from a hypothesis
to a conclusion through a sequence of basic logical steps.

For general mathematical problems, the action space is often vast—sometimes infinite—and solutions
may require long sequences of steps, which may additionally be extremely rare in a large search space.
As a result, mathematical problems, particularly those at the research level, present new challenges
for AI systems and demand novel reinforcement learning algorithms.

At the same time, some mathematical problems—such as the Andrews–Curtis conjecture (Andrews
& Curtis, 1965), which we study in this paper—offer distinct advantages for algorithm development
compared to generic mathematical problems. First, the action space in this setting is finite and
small, consisting of only a few basic moves, while the state space is infinite. Second, these problems
come with a notion of hardness, with difficulty levels ranging from very easy to those requiring
superexponential effort to resolve (Bridson, 2015; Lishak, 2017). Moreover, the distribution of states
with respect to this measure is very non-uniform.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

These aspects provide unique opportunities for algorithmic development and may offer insights
applicable to other complex problems, both in mathematics and beyond. We anticipate that future
reinforcement learning algorithms will need to assess problem hardness during training, adapting
dynamically to the most challenging instances they encounter.

In this paper, we initiate the study of problem hardness in this context, with the goal of developing
novel algorithms. Our contributions include:

• Framing the Andrews–Curtis trivialization problem as a reinforcement learning en-
vironment characterized by long horizons, sparse rewards, and an intrinsic distribution of
problem hardness.

• Developing an understanding of the hardness distribution for a large class of examples
through intrinsic and path-based measures.

• Analyzing how reinforcement learning agents handle problems of varying hardness
and using these observations to propose novel reinforcement learning algorithms that dy-
namically adapt to difficult challenges.

As a byproduct, we resolve various potential counterexamples to the conjecture that had remained
open for more than 25 years (Miller & Schupp, 1999), including three infinite subfamilies, and
discover new results for another family that has been open for over 44 years (Akbulut & Kirby,
1985). These results emerge from a collaboration between human mathematicians and computational
systems, forming a feedback loop: mathematicians design computational tools; machines generate
novel discoveries for specific instances; and mathematicians refine these discoveries into general
results for infinite families.

These findings are of significant interest in mathematics and reinforce our belief that, in the coming
years, reinforcement learning algorithms will play a major role in the discovery of new and important
mathematical results.

2 Related Work

Reinforcement Learning for long-horizon, sparse-reward environments. Long-horizon, sparse-rewards
problems have been a persistent challenge in reinforcement learning (RL), as they require agents to
explore efficiently and learn from delayed and infrequent feedback. Atari games such as Montezuma’s
Revenge (Bellemare et al., 2013), which requires long-term planning to collect keys and open doors,
and Pitfall! (Machado et al., 2018) have exemplified these difficulties. Similarly, robotic tasks such
as dexterous manipulation (Rajeswaran et al., 2017) require agents to learn complex sequences of
actions with little intermediate feedback.

Several approaches have been developed to tackle long-horizon, sparse-reward problems, including
intrinsic motivation (Pathak et al., 2017), reward shaping (Ng et al., 1999), and hierarchical reinforce-
ment learning (HRL) (Sutton et al., 1999). Intrinsic motivation techniques such as curiosity-driven
exploration encourage agents to explore novel states even in the absence of external rewards. Reward
shaping methods provide additional guidance to help bridge the sparse reward signal but require
careful engineering to avoid unintended biases. HRL methods, including options frameworks (Sut-
ton et al., 1999), hierarchical abstract machines (Parr & Russell, 1997), and feudal reinforcement
learning (Dayan & Hinton, 1992; Vezhnevets et al., 2017) learn structured policies that decompose
complex tasks into smaller sub-problems. More recently, memory-based approaches (Ecoffet et al.,
2019; Badia et al., 2020) have been employed to improve long-term planning in these challenging
environments.

Andrews–Curtis Conjecture. Previous studies of the Andrews–Curtis conjecture have used various
search algorithms, including genetic algorithms (Miasnikov, 2003a), breadth-first search (Havas &
Ramsay, 2003), and other more sophisticated algorithms (Bowman & McCaul, 2006; Panteleev &
Ushakov, 2019; Krawiec & Swan, 2016).

2

3 Background: The AC Conjecture

3.1 Mathematical statement

The Andrews–Curtis conjecture is a long-standing conjecture in combinatorial group theory (Andrews
& Curtis, 1965) concerning balanced presentations of the trivial group.

A group presentation π = ⟨x1, . . . , xm | r1, . . . , rp⟩ consists of a list of generators (the xi’s) and a
list of relators (the rj’s), where each relator is a word over the alphabet x±1

1 · · ·x±1
m . The length of π,

denoted ℓ(π), is the sum of the word lengths of all the relators, and π is said to be balanced if m = p.
As we only consider balanced presentations here, we will usually omit the adjective.

The Andrews–Curtis (AC) conjecture states that any balanced presentation of the trivial group is
AC-equivalent to the trivial presentation: ⟨x1, . . . , xm | x1, . . . , xm⟩. That is, any such presentation
can be transformed into the trivial one through a sequence of operations known as AC-moves:

1. Substitute some ri by rirj for i ̸= j.
2. Replace some ri by r−1

i .
3. Change some ri to x±1

j rix
∓1
j .

If such a sequence of moves exists, we say that the starting presentation can be trivialized. In this
work, we also consider a modified set of moves, which we call AC′-moves.

1. Replace some ri by rir
±1
j for i ̸= j.

2. Change some ri to x±1
j rix

∓1
j .

The system of balanced presentations with AC-moves is equivalent to the system of balanced
presentations with AC′-moves, as we show in Appendix F. The Andrews–Curtis conjecture may be
studied for any m. Here, we focus on the case m = 2 and denote the generators as x, y instead of
x1, x2.

3.2 Potential counterexamples

Any presentation of length less than 13 is known to be consistent with the conjecture (Miasnikov,
2003b; Havas & Ramsay, 2003). The shortest potential counterexample is the element AK(3) in the
following infinite family of potential counterexamples known as the Akbulut–Kirby series (Akbulut
& Kirby, 1985):

AK(n) = ⟨x, y | xn = yn+1, xyx = yxy⟩.
Another infinite family containing many potential counterexamples of interest is known as the
Miller–Schupp series (Miller & Schupp, 1999):

MS(n,w) = ⟨x, y | x−1ynx = yn+1, x = w⟩.
Here, n ≥ 1 and w is a word in x and y with zero exponent sum on x. The two families are known to
be related: AK(n) is AC-equivalent to MS(n, y−1x−1yxy) for all n (Myasnikov et al., 2002).

3.3 AC graph and path-based hardness measures

The AC graph consists of nodes and edges labeled respectively by presentations and AC moves.
In this language, the conjecture states that, for any node, there is a path connecting it to the node
representing the trivial presentation. Such a path is called a trivialization.

To measure how hard a presentation is to trivialize, we choose a cost function for paths and minimize
it over all trivializations of the given presentation. A natural cost function is the number of edges
in a path, called the path length. Another option is ℓ-increase, which is defined for a path γ =
(π0, . . . , πN) by maxi∈{0,...,N} ℓ(πi)− ℓ(π0).

4 Methods

4.1 Benchmark dataset

We evaluate our methods by counting the number of presentations solved from the benchmark dataset
D. We consider Miller–Schupp presentations MS(n,w) with n ≤ 7 and Length(w) ≤ 7 up to

3

trivial identifications (see Appendix D). The resulting dataset contains 1190 presentations, with a
maximal presentation length of 25. The methodology for constructing the dataset and the full list of
presentations are provided in Appendix B.

4.2 Classical search algorithms

We use two classical search algorithms—breadth-first search (BFS) and greedy search (GS)—and we
use AC′-moves to search for AC trivializations. 1 2 In GS, the state with the smallest presentation
length ℓ is chosen, with ties being broken by the path length l from the current state to the initial state.

Since the AC graph is infinite, an unconstrained search is impractical. We restrict the search to
presentations whose relators have word lengths at most 512. Despite this restriction, the search
space remains vast. To prevent memory outages, we limit each algorithm to visiting a maximum of 1
million nodes.

4.3 Reinforcement learning

The AC trivialization problem can be framed as a sequential decision-making task within the Markov
Decision Process (MDP) framework, enabling the application of reinforcement learning algorithms
to solve it.

An MDP is characterized by five key components: the state space, action space, transition probability
function, initial state distribution, and reward function. We now outline the specific choices made in
formalizing the Andrews–Curtis problem as an MDP and empirically evaluating the performance of
reinforcement learning agents on this problem.

State space. The space of balanced presentations of the trivial group. As this state space is infinite,
we impose an upper limit of 512 on the word length of each relator to make it finite.

Action space. We consider two choices for the action space: either the set of AC or AC′ moves.

Transition probabilities. The transition probability function is deterministic. The trivial presentation,
which has the shortest possible length ℓ = 2, is a terminal state of the MDP. Reaching a terminal
state successfully solves the initial presentation of a trajectory and ends the episode.

Initial state distribution. When attempting to solve presentations from the benchmark dataset D, we
randomly sample from D following a uniform distribution.

Reward function. The AC conjecture does not come with a fixed reward function. One choice is to
assign +1 to a transition into a terminal state, indicating that a presentation has been successfully
solved, and 0 to every other transition. This reward function, denoted R1, is extremely sparse. We
experiment with providing intermediate rewards that penalize transitions into long presentations,

R2(st, at, st+1) =

{
− ℓ(st+1) if ℓ(st+1) > 2,

1024 · Tmax otherwise.

The reward for the terminal transition 1024 · Tmax is chosen to counteract the accumulated penalties
from long paths. Specifically, when the discount factor γ = 1, the lowest bound on the total return of
any given trajectory is −1024 · Tmax as each of the two relators is allowed a maximum word length of

1We tested a few more search algorithms including A∗ search and MCTS search but the results were
underwhelming.

A∗ search is a half-way option between breadth first and greedy search, where the priority queue is sorted by
the sum of the path length p and presentation length l. We tested a family of search algorithms that sorted the
priority queue using rp+ l for a variety of choices of r = 0, 1 · · · , 10 and measured how many MS presentations
each search algorithm solved. We found that decreasing r improved the number of presentations solved with the
maximum being at r = 0 which corresponds to greedy search.

As for MCTS, we observed that it spends a meaningful amount of time exploring different paths which do
not lead to a trivialization solution. In contrast, the length heuristic function of greedy search helps find AC
trivializations much faster, and with a much smaller usage of system memory.

2AC′-moves provide an advantage over AC-moves in GS when nodes are ordered using presentation length ℓ.
Each AC′-move affects ℓ, providing a signal to the search process. In contrast, the inversion move (AC2) leaves
ℓ invariant.

4

512. The large terminal reward precisely cancels out this worst-case sum, thereby ensuring that a
successful trajectory achieves a positive total return.

We also consider a third reward function R3 that clips the negative rewards at −10 and positive
rewards at 1000.

Maximum horizon length. Solving a Markov Decision Process requires specifying a maximum
horizon length Tmax and a discount factor γ. The horizon length Tmax is a key variable in our problem
as presentations requiring AC paths of lengths longer than Tmax would necessarily remain unsolved by
any agent. Simultaneously, there exist presentations for which the path length is a superexponential
function of the presentation length (Bridson, 2015; Lishak, 2017), ensuring that Andrews–Curtis
MDP is a long-horizon problem.3

The efficacy of our algorithms depends on our choice of Tmax. Hence, we experiment with different
schedules for it.

1. Constant Schedule: We keep Tmax at a constant value throughout the training of a reinforce-
ment learning agent, using Tmax = 200 and Tmax = 400.

2. Piecewise Constant Schedule: We vary Tmax during training as follows. For an agent
trained for 100M environment interactions, we start Tmax at 200, increase to 400 after 10M
interactions, 800 after 25M, and 1200 after 50M. We anticipate that the gradual increase
in Tmax in the latter case will allow the agent to first master solving simpler presentations
before progressively tackling more complex ones as its abilities develop.

On the surface, these values seem much smaller than horizon lengths for various video game
environments that reinforcement learning algorithms are known to excel at. However, a difference
between games and math environments is that there is no way to fail early during an episode and
hence for an agent to learn what steps not to take.

Algorithms. We use Deep Q-Learning (DQN) Mnih et al. (2015), Synchronous Actor-Critic (A2C)
(Mnih, 2016; Schulman et al., 2017), Proximal Policy Optimization (PPO) (Schulman et al., 2017),
and AlphaZero Silver et al. (2017, 2018) to solve the Andrews–Curtis MDPs.

State encoding. We encode each relator of a presentation as an array of length 512. The generators
and their inverses — x, y, x−1, and y−1, are represented by integers 1, 2, −1, and −2 respectively.
If the length of the relator is less than 512, the array is padded to the right with zeros. A balanced
presentation of two relators is represented by an array of length 1024. AC and AC′ moves are
implemented as functions on such arrays. If a move results in a presentation with a relator of length
more than 512, it is taken to act trivially instead.

Training setup. In our preliminary experiments of A2C, PPO and AlphaZero (discussed in Section 5.1),
we use feedforward neural networks with two hidden layers of 512 neurons each for both the actor
and critic networks. The actor and critic networks do not share any parameters. In DQN experiments,
we use feed-forward neural networks with two hidden layers of 842 neurons so that the number
of parameters is roughly the same. A2C, PPO and DQN agents are trained for 100M environment
interactions. AlphaZero agents are trained for approximately 5.7M environment steps with 32
simulations per environment step, taking approximately the same amount of wall-clock time as PPO
training runs. We use reward-normalization for on-policy algorithms (i.e. A2C and PPO).

In later experiments (see Section 5.2), we use residual networks consisting of six residual layers to
train PPO agents for 1B environment interactions. Additional details on the network architectures
and experimental setup are provided in Appendix C. For each training configuration, we train three
agents with different random seeds and report the mean, minimum, and maximum performance.

3Roughly speaking, for these presentations, the number of AC-moves required to trivialize the presentation is
at least ∆(⌊log2 ℓ⌋) where ∆: N → N is defined recursively as ∆(j) = 2∆(j−1) for j ≥ 1 and ∆(0) = 2. For
a considerably small value ℓ = 13, ∆(⌊log2(13)⌋) = 65536.

5

0 20M 40M 60M 80M 100M

0

50

100

150

200

250

300

350

0 20M 40M 60M 80M 100M 1M 2M 3M 4M 5M

AC MDP
AC, R 1
AC, R 2
AC, R 3
AC', R 1
AC', R 2
AC', R 3

DQN PPO AlphaZero

Figure 1: Comparison of RL agents across AC MDPs. Number of presentations solved from the
benchmark dataset D (Y-axis) versus number of environment steps (X-axis).

5 Results

5.1 RL: Comparing algorithms, rewards, and actions

For the two choices of action spaces and three choices of reward functions, we plot the performance
of DQN, PPO and AlphaZero agents in Figure 1. The best choice of action space and reward function
depends on the choice of algorithm.

For either choice of action space, DQN struggles with sparse rewards (R1). Introducing intermediate
rewards (R2) helps the performance, while clipping rewards (R3) hurts the performance compared to
dense and un-clipped rewards. This indicates that the agent benefits from distinguishing between
presentations with total length greater than 10. Overall, the best DQN agent solves 303 presentations.

PPO agents do not benefit from intermediate rewards in the same way as DQN. Sparse and dense
rewards lead to comparable levels of performance when training with AC′ action space. Clipping
rewards (R3) reduces variance in training curves across different seeds, but it does not affect the mean
performance. Over the entire training period, four out of six PPO agents perform approximately at
the same level with the two exceptions being agents trained with AC moves and reward functions R2

and R3. These reward functions depend on the length of the presentation, which the inversion move
(AC2) leaves invariant. In these cases, agents settle early into a suboptimal policy, making repeated
use of the AC2 move, and hence not fully exploring the state space. We also note that agents trained
with AC moves and R1 reward function are most sample-efficient. The best PPO agent solves 353
presentations.

As with DQN, AlphaZero performs poorly with sparse reward function (R1). The y-intercept in
Figure 1 (right) specifies the number of presentations solved by MCTS with randomly initialized
policy and value networks. When training with dense reward function R2, the search process is able
to identify actions that give shorter presentations, resulting in larger values of y-intercept. Overall,
the best AlphaZero agent solves 242 presentations.

Finally, we remark that performances of A2C agents follows the same pattern across AC MDPs as
the PPO agents. This is explained by a previous observation that A2C is a special case of PPO Huang
et al. (2022c). We present a comparison of the best-performing A2C and PPO agents, both trained
with sparse reward function R1 and AC action space, in Appendix C.

Our preliminary results indicate that PPO outperforms DQN, A2C, and AlphaZero on the AC problem.
Coupled with the AC environment’s low computational cost, which makes it well-suited to large-scale
on-policy training, we therefore concentrate on PPO in the remainder of this paper.

5.2 BFS vs. GS vs. PPO

We compare the performance of BFS, GS, and PPO on the task of solving presentations in the
benchmark dataset D. Out of the 1190 presentations in the dataset, BFS and GS solve 278 and 533
presentations respectively.

6

For PPO with constant horizon length schedule, the best agent with Tmax = 200 solved 457 presenta-
tions, and the best agent with Tmax = 400 solved a subset of these presentations of size 402. With a
smaller horizon length, the agent spends less time exploring unpromising directions.

The PPO agent with Tmax = 200 solves five presentations that GS fails to solve. These cases require
a substantial increase in ℓ along the trivialization path—something GS cannot accommodate due to
its greedy behavior with respect to ℓ. In contrast, PPO learns an effective exploration strategy over
the AC state space, enabling it to discover these non-greedy trivialization paths.

When varying horizon length with the piecewise-constant schedule described above, the best PPO
agent solved two new presentations from D that all other algorithms (including PPO with constant
Tmax) are unable to solve. We provide a complete list of all presentations solved by all algorithms in
Appendix B. The AC trivialization paths for all presentations solved by our algorithms are included
in the supplementary material, which also includes the code to verify the correctness of these paths
and to conduct the experiments discussed here.

5.3 Theoretical results

Our agents made two significant mathematical contributions: first, they discovered paths that resolved
long-standing potential counterexamples to the Andrews-Curtis conjecture, and second, they revealed
patterns in these paths that led us to formulate and subsequently prove new conjectures about infinite
families of presentations. We state these results here, detailing their proofs in Appendix A.
Theorem A. The following infinite subfamilies of Miller–Schupp presentations are AC-trivial:

1. MS(1, w) for all w.

2. MS(n, y−1xyx−1) for all n.

3. MS(2, y−kx−1yxy) for all k.
Theorem B. For every n ≥ 2, AK(n) is AC-equivalent to the presentation

⟨x, y | x−1yx = xyx−1y , xyn−1x = yxy⟩,
of length n+ 11. This gives a reduction in length of AK(n) for all n ≥ 5.

6 Hardness distribution

In this section, we study the distribution of hardness for presentations in the dataset D using various
measures.

6.1 Intrinsic measures: ℓ and n

The goal state in the AC trivialization problem, i.e. the trivial presentation, has the shortest possible
length. Hence, a natural intrinsic hardness measure for a presentation is its length ℓ.

Figure 2a provides evidence that longer presentations are harder to trivialize. The relationship,
however, is not predictive: MS(2, yx2yx−2) with ℓ = 14 is not trivialized by any of our algorithms,
but MS(6, y−1x−1y−2xy2) with ℓ = 23 is trivialized by both GS and PPO.

In the case of infinite families MS(n,w) and AK(n), another natural hardness measure is the integer
n. The dataset D contains 170 presentations for each n ∈ {1, 2, · · · , 7}. Figure 2b shows that as n
increases, the performance of our algorithms consistently declines.

6.2 Path-based measures

We use two path-based measures—path length and ℓ-increase—to study hardness distributions of
presentations solved by GS and PPO. In the case of PPO, we study the agent with Tmax = 200 from
Section 5.2, which solved 457 presentations.

6.2.1 Path length

We plot the distribution of path lengths for AC trivializations discovered by GS and PPO in Figure 3a
and Figure 3b, respectively. In both cases, the distributions appear nearly continuous. Presentations

7

7 9 11 13 15 17 19 21 23 25
Total length of a presentation

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f p
re

se
nt

at
io

ns
 so

lv
ed

GS
PPO
BFS

(a) Percentage of presentations solved versus
length ℓ(MS(n,w)).

1 2 3 4 5 6 7
n

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f p
re

se
nt

at
io

ns GS
PPO
BFS

(b) Number of presentations solved versus n of
MS(n,w).

Figure 2: Distributions of the number of presentations solved by BFS, GS, and PPO with constant
horizon length schedule as functions of lengths of the presentations and n.

0 100 200 300 400 500
0

50

100

150

200

250

300

350

Index

V
al
ue

(a) Bar plot of path lengths discov-
ered by GS. Path length (Y-axis)
against problem instances (X-axis).

0 50 100 150 200 250 300 350 400
0

50

100

150

200

Index

V
al
ue

Loading [MathJax]/extensions/MathMenu.js

(b) Bar plot of path lengths discov-
ered by PPO. Path length (Y-axis)
against problem instances (X-axis).

0 25 50 75 100 125 150 175 200
GS path lengths for PPO solved

0

25

50

75

100

125

150

175

200

PP
O

pa
th

 le
ng

th
s f

or
 P

PO
 so

lv
ed

(c) Path lengths discovered by PPO
(Y-axis) against GS (X-axis) for pre-
sentations solved by both.

Figure 3: Distributions of path lengths discovered by GS and PPO, and their comparison.

requiring longer paths—indicative of higher complexity—are highlighted in red, while a long tail of
easier presentations is shown in other colors.

A comparison of path lengths for presentations solved by both PPO and GS is shown in Figure 3c.
For many easy presentations, PPO learns shorter paths compared to GS. However, as presentations
become more difficult, the paths discovered by PPO tend to be longer than those found by GS—
reflecting that while our agents are trained to find trivialization paths, they are not trained to find the
shortest paths possible.

6.2.2 ℓ-increase

We plot the distribution of ℓ-increase for AC trivializations discovered by GS and PPO in Figure 4a
and Figure 4b, respectively.

0 1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

Bar Plot of Dictionary Data

Category

C
ou

nt

(a) ℓ-increase distribution for GS paths.

0 5 10 15 20 25
0

50

100

150

200

250

Bar Plot of Dictionary Data

Category

C
ou

nt

(b) ℓ-increase distribution for PPO paths.

Figure 4: Distributions of ℓ-increase values in paths discovered by GS and PPO. Number of presenta-
tions (Y-axis) against ℓ-increase (X-axis).

8

0 1 2 3 4 5
Increase in length

0

50

100

150

200

250

300

350

Pa
th

 le
ng

th

Figure 5: Path lengths of trivializations found by GS (Y-axis) as a function of ℓ-increase (X-axis) for
Miller-Schupp presentations MS(n,w).

GS prioritizes states based on the pair (ℓ, l) (cf. Section 4.2), ensuring that it discovers paths with
minimal ℓ-increase values. As shown in Figure 4a, GS paths exhibit an ℓ-increase of zero in most
cases, with a maximum value of only 5. In contrast, PPO paths span a much wider range of ℓ-increase
values—ranging from 0 to 27, as depicted in Figure 4b. Thus, we observe that path-based hardness
measures may rely heavily on the choice of the algorithm.

6.2.3 Relationship between path length and ℓ-increase.

For presentations solved by GS we plot the solutions’ path length as as a function of ℓ-increase (Fig-
ure 5). Path lengths increase proportionally with ℓ-increase, indicating the presence of a correlation
between the two hardness measures. While this trend is visible in the case of GS due to its greedy
selection with respect to ℓ, there does not exist a similar pattern for paths discovered by PPO.

7 The cure: new algorithms

In this section, we summarize our insights and present new ideas for RL algorithm development
based on the lessons learned in the case study at hand. Specifically, we argue that the following two
elements can be useful in Andrews–Curtis MDPs and in other long-horizon problems with sparse
rewards and hardness distribution of problem instances:

• Supermoves,

• Adaptive action spaces.

The former refers to actions that are compositions of basic moves. These appear to be a necessary,
unavoidable tool to overcome superexponential lengths of sought-after solutions. Indeed, if the
solution length is superexponential in the presentation length, ℓ, the only way to turn it into a
polynomial sequence of steps is to allow steps to grow in size, aggregating certain sequences of
actions into new actions. We call these new actions of growing size “supermoves”.

Supermoves are closely related to the ideas of compound actions and options often studied in the
subject of hierarchical reinforcement learning. Our proposal, however, is that in long-horizon, sparse-
reward problems where problem instances follow a distribution with respect to certain hardness
measures, we may use the understanding of hardness itself to select new actions (supermoves)
dynamically during training.

A practical implementation can be as follows. Consider one of the standard RL algorithms such as
PPO with a fixed action space, such that some of the actions are initially masked. In the process of
training, we gradually unmask these actions and replace them with supermoves at 10N epochs, with
N = 1, 2, 3, During the intervals between the changes, we effectively train an RL model with a
fixed action space. For the training history at previous stages to be useful at stage N , the changes to
the action space at each stage must not be too large. The fraction of the action space that undergoes a
change is a hyperparameter of the proposed algorithm, and it may be suitable to keep it in the range
5− 15%. At each stage, labeled by N , one can take n hardest presentations solved by the RL agent
with the action space AN and add their successful solutions or some subsequences of these successful
solutions as supermoves to the action space. This process is illustrated by a diagram in Figure 6a.

9

Environment

Agent

action state

rewardat

st

rt

Upgrade policy / schedule

n
ew

 h
a

rd
 c

as
e

s

n
ew

 a
ct

io
ns

AN

(a) A schematic representation of a model with an
adaptive action space.

(b) Path length distributions of newly solved in-
stances; hard instances are shown in red.

Figure 6: Visualizations of key concepts for supermoves and adaptive action spaces.

The implementation relies heavily on the notion of hardness with respect to a very specific underlying
RL model at hand. Thus, if the standard part of the RL cycle in Figure 6a is based on a PPO algorithm
with a particular choice of hyperparameters, then we need hardness with respect to this particular
model.

As discussed in the previous sections, a good proxy for hardness can be the length of the solution path
measured in basic elementary steps. In fact, we observe in preliminary experiments that at a given
stage N , a typical distribution of this measure among solved examples often looks like Figure 6b,
with hard instances shown in red. (See Figure 3b for the distribution of path lengths in an actual PPO
agent, and Figure 10 in Appendix E for evidence that this behavior persists across scale, even as the
total number of environment interactions vary.) For this hardness measure, we propose choosing
sub-sequences of AC paths for paths shown in red (hard), expecting that in the space of all sequences
of actions of a fixed length, these subsequences are both harder and more useful for the agent to learn.

Empirical evidence. While we leave a complete empirical investigation of these ideas to future work,
we will describe some experiments that exhibit the utility of dynamic action spaces. Our setup is
as follows: we enhance the action space of 12 AC′ moves to include all conjugations of the form
ri → wriw

−1 for i = 1, 2, where w is any word of length at most L. 4 All actions are initially
masked except for the original 12 AC′ moves.

As the agent is trained, we look for sub-sequences of actions in its discovered solutions which
are of the type ri → wriw

−1 and unmask actions corresponding to these supermoves. We repeat
this process after every 100 epochs. Further details and hyperparameters of the training setup are
described in Appendix C.

The agent solves 495 presentations including 13 new presentations that had eluded greedy search and
PPO agents of Section 5.2. We highlight these presentations in the table provided in Appendix B and
provide a more detailed analysis of the discovered paths in Appendix D.

8 Limitations

This study has two primary limitations. First, the training dataset was limited to 1190 presentations
of the Miller–Schupp series. We expect that a larger and more diverse set of balanced presentations
would yield more capable agents. Second, our work is focused on the Andrews-Curtis conjecture.
While we believe the lessons learned are broadly applicable, the generalizability of our findings to
other mathematical problems requires further empirical investigation.

Acknowledgments and Disclosure of Funding

We would like to thank Danil Akhtiamov, Anna Beliakova, Jessica Craven, Michael Douglas,
Konstantin Korovin, Miriam Lipniacka, Alexei Lisitsa, Maksymilian Manko, Ciprian Manolescu,

4L is a new hyperparameter, which we set to 6. For general L, there are 2× 3L − 2 choices of w. The new
action space thus has 4× 3L − 4 + 4 = 4× 3L actions. For L = 6, this amounts to 2916.

10

Fabian Ruehle, Michele Tarquini, Josef Urban, Richard Wedeen, and Tony Yue Yu for insightful
discussions and comments. We especially want to thank Anna Beliakova for igniting our interest in
the Andrews–Curtis conjecture as a framework for exploring problems with long and rare sequences
of moves that an RL agent must discover.

A.M.’s work is supported by NSERC grants RES000678 and R7444A03. The work of
P.K. and B.L. has been supported by the Polish National Science Centre through Sonata
grant (2022/47/D/ST2/02058). Y.Q. is supported by National Key R&D Program of China
(2024YFA1013202) and Nankai Zhide Foundation.

References
Selman Akbulut and Robion Kirby. A potential smooth counterexample in dimension 4 to the

Poincaré conjecture, the Schoenflies conjecture, and the Andrews–Curtis conjecture. Topology, 24
(4):375–390, 1985.

James J. Andrews and Morton L. Curtis. Free groups and handlebodies. Proceedings of the American
Mathematical Society, 16(2):192–195, 1965.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathematics.
arXiv preprint arXiv:2302.12433, 2023.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andew Bolt, and Charles
Blundell. Never give up: Learning directed exploration strategies, 2020. URL https://arxiv.
org/abs/2002.06038.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Jean-Daniel Boissonnat and Clément Maria. The simplex tree: An efficient data structure for general
simplicial complexes. Algorithmica, 70:406–427, 2014.

R. Sean Bowman and Stephen B. McCaul. Fast searching for andrews–curtis trivializations. Experi-
mental Mathematics, 15(2):193–197, 2006.

Martin R. Bridson. The complexity of balanced presentations and the Andrews–Curtis conjecture.
arXiv preprint arXiv:1504.04187, 2015.

Robert G. Burns and Olga Macedonska. Balanced presentations of the trivial group. Bulletin of the
London Mathematical Society, 25:513–526, 1993.

Gunnar Carlsson and Mikael Vejdemo-Johansson. Topological data analysis with applica-
tions. Cambridge University Press, Cambridge, 2022. ISBN 978-1-108-83865-8. DOI:
10.1017/9781108975704. URL https://doi.org/10.1017/9781108975704.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In S. Hanson, J. Cowan,
and C. Giles (eds.), Advances in Neural Information Processing Systems, volume 5. Morgan-
Kaufmann, 1992. URL https://proceedings.neurips.cc/paper_files/paper/1992/
file/d14220ee66aeec73c49038385428ec4c-Paper.pdf.

DeepMind. Ai solves imo problems at silver-medal level, 2024. URL https://deepmind.google/
discover/blog/ai-solves-imo-problems-at-silver-medal-level/. Accessed: 2025-
01-30.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
and Aleksander Madry. Implementation matters in deep policy gradients: A case study on PPO
and TRPO. In International Conference on Learning Representations, 2019.

11

https://arxiv.org/abs/2002.06038
https://arxiv.org/abs/2002.06038
https://doi.org/10.1017/9781108975704
https://proceedings.neurips.cc/paper_files/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

George Havas and Colin Ramsay. Breadth-first search and the Andrews–Curtis conjecture. Interna-
tional Journal of Algebra and Computation, 13(1):61–68, 2003.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and Weixun
Wang. The 37 implementation details of proximal policy optimization. In International Conference
on Learning Representations Blog Track, 2022a.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and Joo G.M. Arajo. Cleanrl: High-quality single-file implementations of deep reinforce-
ment learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022b. URL
http://jmlr.org/papers/v23/21-1342.html.

Shengyi Huang, Anssi Kanervisto, Antonin Raffin, Weixun Wang, Santiago Ontañón, and Rousslan
Fernand Julien Dossa. A2c is a special case of ppo, 2022c. URL https://arxiv.org/abs/
2205.09123.

Krzysztof Krawiec and Jerry Swan. Distance metric ensemble learning and the andrews–curtis
conjecture, 2016.

Haohan Lin, Zhiqing Sun, Yiming Yang, and Sean Welleck. Lean-star: Learning to interleave thinking
and proving. arXiv preprint arXiv:2407.10040, 2024.

Boris Lishak. Balanced finite presentations of the trivial group. Journal of Topology and Analysis, 9
(2):363–378, 2017.

Alexei Lisitsa. New Andrews–Curtis trivializations for Miller–Schupp group presentations. Examples
and Counterexamples, 6, 2024.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: evaluation protocols and open
problems for general agents. J. Artif. Int. Res., 61(1):523–562, January 2018. ISSN 1076-9757.

Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The gudhi library:
Simplicial complexes and persistent homology. In Mathematical Software–ICMS, pp. 167–174,
2014.

Alexei D. Miasnikov. Genetic algorithms and the andrews–curtis conjecture. arXiv preprint
math/0304306, 2003a.

Alexei D Miasnikov. Genetic algorithms and the andrews-curtis conjecture. arXiv preprint
math/0304306, 2003b.

Charles Miller and Paul Schupp. Some presentations of the trivial group. In Groups, Languages and
Geometry, pp. 113–115, 1999.

Volodymyr Mnih. Asynchronous methods for deep reinforcement learning. arXiv preprint
arXiv:1602.01783, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015. DOI: 10.1038/nature14236.

Alexei D. Myasnikov, Alexei G. Myasnikov, and Vladimir Shpilrain. On the Andrews–Curtis
equivalence. Contemporary Mathematics, 296:183–198, 2002.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings of the Sixteenth International Conference
on Machine Learning, ICML ’99, pp. 278–287, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc. ISBN 1558606122.

Dmitry Panteleev and Alexander Ushakov. Conjugacy search problem and the andrews–curtis
conjecture. Groups Complexity Cryptology, 11(1):43–60, 2019.

12

http://jmlr.org/papers/v23/21-1342.html
https://arxiv.org/abs/2205.09123
https://arxiv.org/abs/2205.09123

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. In M. Jordan,
M. Kearns, and S. Solla (eds.), Advances in Neural Information Processing Systems, volume 10.
MIT Press, 1997. URL https://proceedings.neurips.cc/paper_files/paper/1997/
file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of go without human knowledge. Nature, 550(7676):354–359, 2017. DOI: 10.1038/
nature24270.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018. DOI: 10.1126/science.
aar6404.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, 1999.
ISSN 0004-3702. DOI: https://doi.org/10.1016/S0004-3702(99)00052-1. URL https://www.
sciencedirect.com/science/article/pii/S0004370299000521.

Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Matteo Caorsi, Anibal M.
Medina-Mardones, Alberto Dassatti, and Kathryn Hess. giotto-tda: A topological data analysis
toolkit for machine learning and data exploration. Journal of Machine Learning Research, 22(39):
1–6, 2021.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International conference on machine learning, pp. 3540–3549. PMLR, 2017.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information Processing Systems, 36, 2024.

13

https://proceedings.neurips.cc/paper_files/paper/1997/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1997/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction claim that the paper explores the application of
reinforcement learning to the Andrews-Curtis conjecture; studies hardness distribution of
problems through intrinsic and path-based measures; and proposes algorithmic enhance-
ments for long-horizon, sparse-reward problems. They also claim that the paper solves
several open mathematical problems. Section 4.3 frames the Andrews–Curtis conjecture
as an MDP. Section 5.1 and Section 5.2 report the results of studying this MDP through
reinforcement learning algorithms. Section 6 studies the distribution of hardness of problems
solved by various algorithms with respect to measures which are intrinsic to problems as
well as those that depend on AC paths. Appendix G also discusses a topological hardness
measure for the AC graph. Section 7 discusses algorithm enhancements, and Section 5.3
and Appendix A discuss the mathematical contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

14

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 8.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Section 5.3 summarizes the theoretical results that came from the empirical
exploration. Appendix A provides the precise mathematical statements with complete
justification.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material,

but if they appear in the supplemental material, the authors are encouraged to
provide a short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

15

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The detailed description of the Andrews-Curtis conjecture and the two types
of moves use are explained in Section 3.1. The benchmark dataset on which experiments are
based is described in Section 4.1, with its explicit construction given in Appendix B. The
discussion of the BFS and GS algorithms is discussed in Section 4.2, and a comprehensive
explanation of the RL experiments including the architecture, state and action spaces, initial
state distribution, reward function, network architecture, and hyperparameters can be found
in Section 5.1 and Appendix C. The paper also provides code for search algorithms as well
as PPO agents in supplementary materials. It also provides complete AC paths for all the
presentations it claims to have solved, along with code to verify the correctness of those
paths.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper provides the data and code, with sufficient instructions to faithfully
reproduce the main experimental results in supplementary material. This includes the code
for search algorithms as well as PPO agents. The supplementary materials also contain AC

16

paths for all the presentations the paper claims to have solved in Appendix B, along with
code to verify the correctness of these results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All data used is described in Section 4.1 and Appendix B. Hyperparameters
are found in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: When comparing different reinforcement learning algorithms or the perfor-
mance of a single reinforcement learning algorithm on MDPs, we conducted experiments
with 3 different seeds and reported their mean, min and max performance. See Figure 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information regarding the computational resources used for experiments is
provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper does not involve human subjects, personal data, or direct societal
applications that would come into conflict with the ethical guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper discusses how its contributions can advance AI for mathematics and
other sparse reward problems. But it does not address any potential negative societal impact
of the work as the authors do not believe this work to have any such impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper involves RL agents trained to solve instances of a group theoretic
conjecture. This poses no obvious risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit the CleanRL library (Huang et al., 2022b), which was used
for our PPO implementation. The library is distributed under the MIT License, as mentioned
in Appendix C.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

19

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new benchmark dataset (detailed in Section 4.1 and
Appendix B) and RL agents/models (described in Section 5.1 and Appendix C). Code
for classical search algorithms, RL agents, and the benchmark dataset are provided in the
supplementary material. These new assets are released under the MIT License, and the
documentation for their understanding and use is provided alongside the supplementary
materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

20

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Proofs of Mathematical Results

In this appendix, we provide proofs of all mathematical results discovered in this work. We re-state
our main results as two theorems.
Theorem C. The following infinite subfamilies of Miller–Schupp presentations are AC-trivial:

1. MS(1, w) for all w.

2. MS(n, y−1xyx−1) for all n.

3. MS(2, y−kx−1yxy) for all k.

Theorem D. For every n ≥ 2, AK(n) is AC-equivalent to the presentation

⟨x, y | x−1yx = xyx−1y , xyn−1x = yxy⟩,

of length n+ 11. This gives a reduction in length of AK(n) for all n ≥ 5.

The three parts of Theorem C are proven respectively as Theorems A.2 and A.3 and Corollary A.9.
Theorem D is proven as Theorem A.4.

A.1 The Substitution Move

Our proofs rely on the following substitution move which comes from Burns & Macedonska (1993).

Definition A.1 (Substitution). Let ⟨x1, . . . , xm | r1, . . . , ri−1, w
−1w′, ri+1, . . . rm⟩ be a balanced

presentation of the trivial group with some words w, w′ in generators. By a sequence of AC-moves,
we may replace any occurrence of w in a relator rj (where j ̸= i) with w′.

Substitution move is a sequence of simple AC-moves. Consider by means of an example substituting
w′ for w in the relator w1ww2: first, conjugate to get w2w1w; then multiply by w−1w′ to write
w2w1w

′; and finally, conjugate again to get the required result w1w
′w2. For a relator of the form

w1ww2 . . . wl−1wwl, we may similarly substitute any number of occurences of w with w′.

A.2 AC-triviality of two MS families

Theorem A.2. MS(1, w) is AC-trivial for all w.

Proof. We have
MS(1, w) = ⟨x, y | x−1yx = y2, x = w⟩

where w has exponent sum 0 in x. We can re-write the first relator in the following four ways:

1. yx = xy2

2. x−1y = y2x−1

3. x−1y−1 = y−2x−1

4. y−1x = xy−2

We can substitute these equations in the second relator to move around all occurrences of x and x−1:
relations (i) and (iv) move x to the left, relations (ii) and (iii) move x−1 to the right. We continue until
the second relator becomes xa−1ybx−a for some a, b ∈ Z. Through conjugation, this simplifies to
x = yb, which when substituted into the first relator leads to a trivialization of the presentation.

The following result follows from this theorem.

Theorem A.3. MS(n,w⋆) for w⋆ = y−1xyx−1 is AC-trivial for all n.

22

Proof. In the presentation,

MS(n,w⋆) = ⟨x, y | x−1ynx = yn+1, x = y−1xyx−1⟩
we can rewrite the second relation as y−1xy = x2, and apply the automorphism x ↔ y to get

MS(n,w⋆) = ⟨x, y | x−1yx = y2, y−1xny = xn+1⟩.
This presentation is the same as MS(1, y−1xnyx−n), which is AC-trivial by Theorem A.2.

AC-trivializations of MS(n,w⋆) for n = 3, 4, 5, 6, 7, 8 were recently obtained using automated
theorem proving in Lisitsa (2024). Here, we have obtained AC-trivializations of this family for all n.

A.3 Length reduction for AK(n)

Theorem A.4. For every n ≥ 2, AK(n) is AC-equivalent to the presentation

⟨x, y | x−1yx = xyx−1y , xyn−1x = yxy⟩,
of length n+ 11. This gives reduction in length of AK(n) for all n ≥ 5.

To prove this theorem, we will use the following result due to Myasnikov et al. (2002), and prove
two additional theorems (Theorem A.6 and Theorem A.7). From these results, Theorem A.4 follows
immediately.
Proposition A.5 (Myasnikov, Myasnikov, and Shpilrain, (Myasnikov et al., 2002)). For all n ≥ 2,
AK(n) is AC-equivalent to MS(n,w1) where w1 = y−1x−1yxy.
Theorem A.6. For each fixed n > 0, the 1-parameter family of presentations MS(n,wk) are all
AC-equivalent. Here, wk = y−kx−1yxy is parameterized by k ∈ Z.

Proof. Starting with the presentation,

MS(n,wk) = ⟨x, y | x−1ynx = yn+1, x = y−kx−1yxy⟩,
we will show that for any fixed n and k, MS(n,wk) is AC-equivalent to MS(n,wk+1).

First, note that the first relation in MS(n,wk) can be rearranged in the following three ways:

1. Multiplying by yk−nx from the left and by y−1 from the right gives

ykxy−1 = yk−nxyn.

2. Multiplying by y−1 from the left and by x−1y−1 from the right, and inverting the relation
gives

y−(n−1)xy = yxy−n.

3. Multiplying by y−1x from the left and by yk−n from the right, and inverting the relation
gives

yn−kx−1y−(n−1) = y−(k+1)x−1y.

Now, we can rearrange the second relation to get ykxy−1 = x−1yx. Substituting (i) gives
yk−nxyn = x−1yx, which we can rewrite as yxy−n = xyk−nx. Now substituting (ii) gives
y−(n−1)xy = xyk−nx, which we may rewrite as yn−kx−1y−(n−1) = xy−1x−1. Finally, substitut-
ing (iii) gives y−(k+1)x−1y = xy−1x−1, which is equivalent to x = y−(k+1)x−1yxy = wk+1.

Theorem A.7. For each n > 0 and k ∈ Z, MS(n,wk) is AC-equivalent to the presentation

P (n, k) = ⟨x, y | yn−k−1x−1yx = xyx−1yn−k , x = y−kx−1yxy⟩,
of total length |k| + |n − k| + |n − k − 1| + 11. For each fixed n, this length is minimum when
k = n− 1, which gives the presentation

P (n, n− 1) = ⟨x, y | x−1yx = xyx−1y , x = y−(n−1)x−1yxy⟩,
of length n+ 11.

23

10 15 20 25
0

20

40

60

80

100

120

Bar Plot of Presentation Lengths

Presentation Length

C
ou

nt

Figure 7: Number of presentations (Y-axis) versus ℓ (X-axis) for presentations in D.

Proof. Starting with the presentation,

MS(n,wk) = ⟨x, y | x−1ynx = yn+1, x = y−kx−1yxy⟩,

the second relation may be equivalently expressed as

1. ykxy−1 = x−1yx

2. y−1xyk = xyx−1

Multiplying the first relation by y−1x from the left and by y−1 from the right, we get yn−1xy−1 =
y−1xyn, which we may rewrite as yn−k−1

(
ykxy−1

)
=

(
y−1xyk

)
yn−k. Substituting from (i) on

the LHS and from (ii) on the RHS gives the required result.

Combining the previous three results shows that, for each fixed n, AK(n) is AC-equivalent to
all members of the infinite families MS(n,wk) and P (n, k). From this, Theorem A.4 follows
immediately from setting k = n− 1.
Remark A.8. While P (n, n− 1) is always the shortest presentation from the P family, other P (n, k)
may also give reductions in length of AK(n). To find which presentations of P -family are shorter
than AK(n), we compare the length of AK(n), i.e. 2n+ 7, with the length of P (n, k) given by:{

2n+ 10− k, if k ≤ n− 1,

3k + 12− 2n, if k ≥ n.

This is less than 2n+ 7 when 4 ≤ k ≤ n− 1 or n ≤ k < 1
3 (4n− 5).

We also note that the AC-triviality of AK(2), when combined with Theorem A.6, gives the following
result.

Corollary A.9. Each member of the infinite families MS(2, wk) and P (2, k) is AC-trivial.

B Benchmark Dataset

In this appendix, we describe the methodology used to obtain the benchmark dataset D in Section 4.1.

We start with a larger dataset of all presentations from the Miller–Schupp series MS(n,w) with n ≤ 7,
length(w) ≤ 7. This dataset contains AC-equivalent presentations which are related to each other
through simple sequences of conjugation (AC3) moves. Consider, for example, the two presentations
MS(n, x−1yx−1y2xy) and MS(n, x−1y2xyx−1y) for a fixed n. Conjugating the second relator in
the first presentation by x and y−1 gives the second presentation. When evaluating the performance
of an algorithm on the task of solving potential counterexamples, it is easy to obtain inflated numbers
(say 80− 90%) by solving presentations that are related by small sequences of AC-moves.

We make, therefore, the following reduction to our dataset: if x−1w and x−1w′ are related through a
sequence of conjugation (AC3) moves, keep only one of the two presentations MS(n, x−1w) and
MS(n, x−1w′). After this simplification, there are 170 choices of x−1w with ℓ(w) ≤ 7 as listed in
the table below. With n ≤ 7, our benchmark dataset D consists of 7× 170 = 1190 presentations.

As discussed in Section 6.2, an intrinsic measure of hardness for a presentation is its length ℓ. We
plot the distribution of lengths in our dataset D in Figure 7.

24

In the table below, we specify the status of each presentation as “solved" or “unsolved" by our
algorithms (cf. Section 5.2). 533 presentations solved by the greedy search are all mentioned in
black; five presentations solved by a PPO agent with Tmax = 200 are mentioned in blue; and the two
presentations solved by a PPO agent with piecewise-constant horizon length are mentioned in red.
Lastly, presentations solved by a PPO agent trained with dynamic action spaces and supermoves (cf.
Section 7) is shown in orange.

It may be easy to solve many more presentations in the dataset by simply scaling the techniques
presented in this paper—for example, by using larger neural networks for PPO or by increasing the
number of nodes visited during greedy search. However, what should be considered a true success
for an algorithm is its ability to solve hard presentations, for which the shortest AC trivialization path
may have thousands, if not hundreds of thousands, of moves. We expect that MS(n, y−1x−1yxy)—a
presentation known to be AC-equivalent to AK(n) (Myasnikov et al., 2002)—may be one such
example.

w n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

y solved solved solved solved solved solved solved
y−1 solved solved solved solved solved solved solved
y2 solved solved solved solved solved solved solved
y−2 solved solved solved solved solved solved solved
y3 solved solved solved solved solved solved solved
y−3 solved solved solved solved solved solved solved

yxyx−1 solved solved unsolved unsolved unsolved unsolved unsolved
yxy−1x−1 solved solved solved solved solved unsolved unsolved

y4 solved solved solved solved solved solved solved
x−1y−1xy solved solved solved solved solved unsolved unsolved

x−1y−1xy−1 solved solved unsolved unsolved unsolved unsolved unsolved
y−4 solved solved solved solved solved solved solved

yxy2x−1 solved solved solved unsolved unsolved unsolved unsolved
yxyx−1y solved solved unsolved unsolved unsolved unsolved unsolved

yxyx−1y−1 solved solved unsolved unsolved unsolved unsolved unsolved
yxy−1x−1y solved solved solved solved solved unsolved unsolved

yxy−1x−1y−1 solved solved solved solved solved unsolved unsolved
yxy−2x−1 solved solved solved unsolved unsolved unsolved unsolved
y2xyx−1 solved solved solved unsolved unsolved unsolved unsolved

y2xy−1x−1 solved solved unsolved solved unsolved unsolved unsolved
y5 solved solved solved solved solved solved solved

yx−1y−1xy solved solved solved solved solved unsolved unsolved
yx−1y−1xy−1 solved solved unsolved unsolved unsolved unsolved unsolved
x−1y−1xy2 solved solved solved unsolved unsolved unsolved unsolved
x−1y−1xy−2 solved solved solved unsolved unsolved unsolved unsolved
x−1y−2xy solved solved unsolved solved unsolved unsolved unsolved

x−1y−2xy−1 solved solved solved solved unsolved unsolved unsolved
y−1xyx−1y−1 solved solved solved solved solved unsolved unsolved

y−1xy−1x−1y−1 solved solved unsolved unsolved unsolved unsolved unsolved
y−5 solved solved solved solved solved solved solved

yx2yx−2 solved unsolved unsolved unsolved unsolved unsolved unsolved
yx2y−1x−2 solved unsolved unsolved unsolved unsolved unsolved unsolved
yxy3x−1 solved solved solved solved solved unsolved unsolved
yxy2x−1y solved solved solved unsolved unsolved unsolved unsolved

yxy2x−1y−1 solved solved solved unsolved unsolved unsolved unsolved
yxyx−1y2 solved solved unsolved unsolved unsolved unsolved unsolved
yxyx−1y−2 solved solved unsolved unsolved unsolved unsolved unsolved
yxy−1x−1y2 solved solved solved solved unsolved unsolved unsolved
yxy−1x−1y−2 solved solved solved solved unsolved unsolved unsolved
yxy−2x−1y solved solved solved unsolved unsolved unsolved unsolved

25

w n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

yxy−2x−1y−1 solved solved solved unsolved unsolved unsolved unsolved
yxy−3x−1 solved solved unsolved unsolved solved unsolved unsolved
y2xy2x−1 solved solved solved solved unsolved unsolved unsolved
y2xyx−1y solved solved solved unsolved unsolved unsolved unsolved

y2xyx−1y−1 solved solved solved solved unsolved unsolved unsolved
y2xy−1x−1y solved solved unsolved solved unsolved unsolved unsolved

y2xy−1x−1y−1 solved solved unsolved solved unsolved unsolved unsolved
y2xy−2x−1 solved solved solved solved solved solved solved
y3xyx−1 solved solved solved unsolved unsolved unsolved unsolved

y3xy−1x−1 solved solved solved unsolved unsolved solved unsolved
y6 solved solved solved solved solved solved solved

y2x−1y−1xy solved solved solved solved unsolved unsolved unsolved
y2x−1y−1xy−1 solved solved unsolved unsolved unsolved unsolved unsolved
yx−1y−1xy2 solved solved solved unsolved unsolved unsolved unsolved
yx−1y−1xy−2 solved solved solved unsolved unsolved unsolved unsolved
yx−1y−2xy solved solved unsolved solved unsolved unsolved unsolved

yx−1y−2xy−1 solved solved solved solved unsolved unsolved unsolved
x−2y−1x2y solved unsolved unsolved unsolved unsolved unsolved unsolved

x−2y−1x2y−1 solved unsolved unsolved unsolved unsolved unsolved unsolved
x−1y−1xy3 solved solved unsolved unsolved solved unsolved solved
x−1y−1xy−3 solved solved solved unsolved solved unsolved unsolved
x−1y−2xy2 solved solved solved solved solved solved solved
x−1y−2xy−2 solved solved solved solved unsolved unsolved unsolved
x−1y−3xy solved solved solved unsolved unsolved solved unsolved

x−1y−3xy−1 solved solved solved unsolved unsolved unsolved unsolved
y−1xy2x−1y−1 solved solved solved unsolved unsolved unsolved unsolved
y−1xyx−1y−2 solved solved solved solved unsolved unsolved unsolved

y−1xy−1x−1y−2 solved solved unsolved unsolved unsolved unsolved unsolved
y−1xy−2x−1y−1 solved solved solved unsolved unsolved unsolved unsolved
y−1x−1y−2xy solved solved unsolved solved unsolved unsolved unsolved

y−1x−1y−2xy−1 solved solved solved solved unsolved unsolved unsolved
y−6 solved solved solved solved solved solved solved

yx2y2x−2 solved unsolved unsolved unsolved unsolved unsolved unsolved
yx2yx−1yx−1 solved unsolved unsolved unsolved unsolved unsolved unsolved
yx2yx−2y solved unsolved unsolved unsolved unsolved unsolved unsolved

yx2yx−2y−1 solved unsolved unsolved unsolved unsolved unsolved unsolved
yx2yx−1y−1x−1 solved unsolved unsolved unsolved unsolved unsolved unsolved
yx2y−1x−1yx−1 solved unsolved unsolved unsolved unsolved unsolved unsolved
yx2y−1x−2y solved unsolved unsolved unsolved unsolved unsolved unsolved

yx2y−1x−2y−1 solved unsolved unsolved unsolved unsolved unsolved unsolved
yx2y−1x−1y−1x−1 solved unsolved unsolved unsolved unsolved unsolved unsolved

yx2y−2x−2 solved unsolved unsolved unsolved unsolved unsolved unsolved
yxyxyx−2 solved unsolved unsolved unsolved unsolved unsolved unsolved

yxyxy−1x−2 solved unsolved unsolved unsolved unsolved unsolved unsolved
yxy4x−1 solved solved solved unsolved unsolved unsolved unsolved
yxy3x−1y solved solved solved unsolved unsolved unsolved unsolved

yxy3x−1y−1 solved solved solved unsolved solved unsolved unsolved
yxy2x−1y2 solved solved solved unsolved unsolved unsolved unsolved
yxy2x−1y−2 solved solved solved unsolved unsolved unsolved unsolved
yxyx−1y3 solved solved unsolved unsolved unsolved unsolved unsolved
yxyx−1y−3 solved solved unsolved unsolved unsolved unsolved unsolved
yxy−1xyx−2 solved unsolved unsolved unsolved unsolved unsolved unsolved

yxy−1xy−1x−2 solved unsolved unsolved unsolved unsolved unsolved unsolved

26

w n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

yxy−1x−1y3 solved solved solved unsolved unsolved unsolved unsolved
yxy−1x−1y−3 solved solved solved solved unsolved unsolved unsolved
yxy−2x−1y2 solved solved solved unsolved unsolved unsolved unsolved
yxy−2x−1y−2 solved solved solved unsolved unsolved unsolved unsolved
yxy−3x−1y solved solved unsolved unsolved solved unsolved unsolved

yxy−3x−1y−1 solved solved unsolved unsolved solved unsolved unsolved
yxy−4x−1 solved solved solved unsolved unsolved unsolved unsolved
y2x2yx−2 solved solved unsolved unsolved unsolved unsolved unsolved

y2x2y−1x−2 solved solved unsolved unsolved unsolved unsolved unsolved
y2xy3x−1 solved solved unsolved solved unsolved unsolved unsolved
y2xy2x−1y solved solved solved solved unsolved unsolved unsolved

y2xy2x−1y−1 solved solved solved solved unsolved unsolved unsolved
y2xyx−1y2 solved solved solved unsolved unsolved unsolved unsolved
y2xyx−1y−2 solved solved solved solved unsolved unsolved unsolved
y2xy−1x−1y2 solved solved unsolved solved unsolved unsolved unsolved
y2xy−1x−1y−2 solved solved unsolved solved unsolved unsolved unsolved
y2xy−2x−1y solved solved solved solved solved solved unsolved

y2xy−2x−1y−1 solved solved solved solved solved solved unsolved
y2xy−3x−1 solved solved solved solved solved unsolved unsolved
y3xy2x−1 solved solved solved unsolved unsolved unsolved unsolved
y3xyx−1y solved solved solved unsolved unsolved unsolved unsolved

y3xyx−1y−1 solved solved solved unsolved unsolved unsolved unsolved
y3xy−1x−1y solved solved solved unsolved unsolved unsolved unsolved

y3xy−1x−1y−1 solved solved solved unsolved unsolved solved unsolved
y3xy−2x−1 solved solved solved unsolved unsolved solved unsolved
y4xyx−1 solved solved unsolved solved unsolved unsolved unsolved

y4xy−1x−1 solved solved solved solved unsolved unsolved unsolved
y7 solved solved solved solved solved solved solved

y3x−1y−1xy solved solved solved unsolved unsolved unsolved unsolved
y3x−1y−1xy−1 solved solved unsolved unsolved unsolved unsolved unsolved
y2x−1y−1xy2 solved solved solved unsolved unsolved unsolved unsolved
y2x−1y−1xy−2 solved solved solved unsolved unsolved unsolved unsolved
y2x−1y−2xy solved solved unsolved solved unsolved unsolved unsolved

y2x−1y−2xy−1 solved solved solved solved unsolved unsolved unsolved
yx−2y−1x2y solved unsolved unsolved unsolved unsolved unsolved unsolved

yx−2y−1x2y−1 solved unsolved unsolved unsolved unsolved unsolved unsolved
yx−1y−1x2yx−1 solved unsolved unsolved unsolved unsolved unsolved unsolved

yx−1y−1x2y−1x−1 solved unsolved unsolved unsolved unsolved unsolved unsolved
yx−1y−1xy3 solved solved unsolved unsolved solved unsolved unsolved
yx−1y−1xy−3 solved solved solved unsolved solved unsolved unsolved
yx−1y−2xy2 solved solved solved solved solved solved unsolved
yx−1y−2xy−2 solved solved solved solved unsolved unsolved unsolved
yx−1y−3xy solved solved solved unsolved unsolved solved unsolved

yx−1y−3xy−1 solved solved solved unsolved unsolved unsolved unsolved
x−2y−1x2y2 solved unsolved unsolved unsolved unsolved unsolved unsolved
x−2y−1x2y−2 solved unsolved unsolved unsolved unsolved unsolved unsolved
x−2y−1xyxy solved unsolved unsolved unsolved unsolved unsolved unsolved

x−2y−1xyxy−1 solved unsolved unsolved unsolved unsolved unsolved unsolved
x−2y−1xy−1xy solved unsolved unsolved unsolved unsolved unsolved unsolved

x−2y−1xy−1xy−1 solved unsolved unsolved unsolved unsolved unsolved unsolved
x−2y−2x2y solved solved unsolved unsolved unsolved unsolved unsolved

x−2y−2x2y−1 solved solved unsolved unsolved unsolved unsolved unsolved
x−1y−1x2yx−1y−1 solved unsolved unsolved unsolved unsolved unsolved unsolved

27

w n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

x−1y−1x2y−1x−1y−1 solved unsolved unsolved unsolved unsolved unsolved unsolved
x−1y−1xy4 solved solved solved unsolved unsolved unsolved unsolved
x−1y−1xy−4 solved solved solved unsolved unsolved unsolved unsolved

x−1y−1x−1y−1x2y solved unsolved unsolved unsolved unsolved unsolved unsolved
x−1y−1x−1y−1x2y−1 solved unsolved unsolved unsolved unsolved unsolved unsolved

x−1y−2xy3 solved solved solved solved solved unsolved unsolved
x−1y−2xy−3 solved solved unsolved solved solved unsolved unsolved
x−1y−3xy2 solved solved solved unsolved unsolved solved unsolved
x−1y−3xy−2 solved solved solved unsolved unsolved unsolved unsolved
x−1y−4xy solved solved solved solved unsolved unsolved unsolved

x−1y−4xy−1 solved solved unsolved solved unsolved unsolved unsolved
y−1xy3x−1y−1 solved solved unsolved unsolved solved unsolved unsolved
y−1xy2x−1y−2 solved solved solved unsolved unsolved unsolved unsolved
y−1xyx−1y−3 solved solved solved unsolved unsolved unsolved unsolved

y−1xy−1x−1y−3 solved solved unsolved unsolved unsolved unsolved unsolved
y−1xy−2x−1y−2 solved solved solved unsolved unsolved unsolved unsolved
y−1xy−3x−1y−1 solved solved solved unsolved solved unsolved unsolved
y−1x−1y−2xy2 solved solved solved solved solved solved unsolved
y−1x−1y−2xy−2 solved solved solved solved unsolved unsolved unsolved
y−1x−1y−3xy solved solved solved unsolved unsolved unsolved unsolved

y−1x−1y−3xy−1 solved solved solved unsolved unsolved unsolved unsolved
y−2xyx−1y−2 solved solved unsolved unsolved unsolved unsolved unsolved

y−2xy−1x−1y−2 solved solved solved solved unsolved unsolved unsolved
y−7 solved solved solved solved solved solved solved

C Experimental Setup

In this appendix, we provide details of the experimental setup for various reinforcement learning
agents discussed in the main text.

PPO and A2C

We trained agents using Synchronous Actor-Critic (A2C) (Mnih, 2016; Schulman et al., 2017) and
Proximal Policy Optimization (PPO) (Schulman et al., 2017) algorithms. Both of these algorithms
use an actor network to learn the policy function and a critic network to learn the value function. We
used unshared networks in both cases. For the experiments of Section 5.1, all neural networks are
chosen to be feed-forward neural networks with 2 hidden layers of 512 neurons. For the experiments
of Section 5.2, both actor and critic networks are residual neural networks with six residual layers,
where each residual block consists of two feed-forward layer with 512 neurons. We used Adam
optimizer for training in all cases.

The performance of PPO is known to be highly sensitive to various implementation details in
addition to the choice of hyperparameters (Huang et al., 2022a; Engstrom et al., 2019). Following
(Engstrom et al., 2019), we used advantage normalization and clipped value loss. We also used
reward normalization in all experiments. If the KL divergence between the old and the updated policy
exceeded the target KL divergence in a mini-batch, we skipped the remaining mini-batches in the
optimization phase to avoid a large jump in policy.

The A2C and PPO agents discussed in Section 5.1 are all trained for 100M environment interactions.
Both algorithms achieve the best performance when trained with sparse rewards and AC action space.
With this setup, their performance is compared in Figure 8.

The agents discussed in Section 5.2 are all trained for 1B environment interactions. The full list
of hyperparameters for agents of Section 5.1 and Section 5.2 are given in Table 2 and Table 3
respectively.

28

0 20M 40M 60M 80M 100M

0

50

100

150

200

250

300

350
Agent

A2C
PPO

Figure 8: PPO vs. A2C

Table 2: Hyperparameters of PPO agents discussed in Section 5.1.
Hyperparameter Value

Rollout Length 200
Number of Parallel Actors 28
Total Number of Environment Interactions 108

Learning rate 1.0× 10−4

Number of Epochs 1
Number of Mini-batches 4
Discount (γ) 0.999
GAE Parameter (λ) 0.95
Clipping Parameter (ϵ) 0.2
Value Loss Coefficient (c1) 0.5
Entropy Loss Coefficient (c2) 0.01
Adam Epsilon Parameter 10−5

Target KL Divergence 0.01

Our implementation of PPO is based on the CleanRL library (Huang et al., 2022b), which is distributed
under the MIT License.

DQN

We trained our Deep Q-Network (DQN) agents using the Adam optimizer with a constant learning
rate of 2.5e-4. We employed a replay buffer with a capacity of 500, 000 transitions, and training began

Table 3: Hyperparameters of PPO agents discussed in Section 5.2.
Hyperparameter Value

Rollout Length 200
Number of Parallel Actors 1190
Total Number of Environment Interactions 109

Learning Rate 10−4

Number of Epochs 3
Number of Mini-batches 4
Discount (γ) 0.999
GAE Parameter (λ) 0.95
Clipping Parameter (ϵ) 0.2
Value Loss Coefficient (c1) 0.5
Entropy Loss Coefficient (c2) 0.01
Adam Epsilon Parameter 10−8

Target KL Divergence 0.01

29

after an initial 20, 000 timesteps of data collection. Updates were performed after every environment
step by sampling 64 mini-batches; each of 256 transitions. For exploration, an epsilon-greedy strategy
was used, with ϵ linearly annealed from 1.0 to 0.05 over the first 5 million timesteps. A target
network was used for stability, with its weights being hard-copied from the online network every
1, 000updates (τ = 1.0). The discount factor (γ) was set to 0.999. Each agent was trained for a total
of 100 million timesteps across 1190 parallel environments.

AlphaZero

We trained all AlphaZero agents for roughly 5.7M iterations using the AdamW optimizer with a
learning rate of 1e − 4. In each iteration, data was generated via self-play across 1190 parallel
environments, with each episode lasting a maximum of 200 steps. At each step of self-play, a Monte
Carlo Tree Search (MCTS) was conducted with 32 simulations to determine the next action. The
search process was guided by the PUCT formula, with exploration parameters c1 set to 1.25 and c2
set to 19652. The training phase utilized mini-batches of 2048 samples, optimizing a combined loss
function of softmax cross-entropy for the policy and mean squared error for the value. Value targets
were computed as the undiscounted Monte Carlo returns from the self-play games.

PPO with dynamic action spaces

The agent described in Section 7 is trained with the same hyperparameters as the ones described in
Table 3 with a few small changes which we describe now. As in the table, the agent is trained for a
total of 1 billion environment interactions. As we use 1190 parallel environments and each rollout
consists of 200 timesteps, training consists of a total of 109/(1190 × 200) ∼ 4200 iterations. We
unmasked new actions every 100 iterations. Hence, the action space is modified 42 times. After
each modification of the action space, we temporarily increased and then annealed the co-efficient of
entropy loss from 0.01 to 0.05 over the next 20 epochs through a piecewise-linear schedule. This is
to encourage the agent from exploring the state space with the help of new unmasked actions. By the
end of training, a total of 405 actions were unmasked. Most of the unmasked actions corresponded to
words of lengths 3 and 4.

D Path Analysis

In this appendix, we provide analysis of paths discovered by the agent of Section 7. As described
there, the new agent, trained with a dynamic action space and supermoves, solved 495 presentations.
478 of these 495 presentations were also solved by greedy search, and 4 presentations were previously
solved by the PPO agents described in Section 5.2. The 13 new presentations with their values of n,
w and path lengths (in terms of supermoves as well as elementary AC′ moves) are shown in Table 4.

n w ℓ = 2n+ 4 + Length(w) Nsupermoves NAC’ moves ℓ-increase
5 y−1xyx−1y−1 19 196 284 12
5 yx−1y−1xy 19 192 277 8
5 yxy−1x−1y 19 182 248 11
5 yxy−1x−1y−1 19 172 231 14
4 y−1xyx−1y−2 18 156 210 21
4 yxy−1x−1y2 18 156 210 7
5 y−1xy3x−1y−1 21 104 137 9
7 x−1y−1xy4 25 90 115 13
3 yxy3x−1y 17 81 101 7
6 y3xy−1x−1 22 72 94 6
6 x−1y−3xy 22 68 91 8
4 y2xy2x−1y 19 62 82 6
4 y2xy−1x−1y2 19 53 74 7

Table 4: Path lengths and l-increase for various words w and parameters n.

We observe that in 6 out of 13 cases, path lengths are less than our maximum horizon length of 200,
but they exceed 200 when interpreted in terms of elementary AC’ moves. In these cases, expanding

30

the action space has helped us discover AC-trivializations with paths longer than the maximum
horizon length (200) of the original best agent from Section 5.2 as well.

E Dependence of hardness measures on scale

The PPO agent analyzed in Section 6.2 was trained with Tmax = 200 for approximately 1 billion
environment interactions. We observed that the lengths of trivialization paths discovered by the agent
follow an almost continuous distribution, as shown in Figure 3b.

We hypothesize that at each scale of computation—measured by the total FLOPs used to train an
agent—a similar distribution of path lengths emerges. A few presentations exhibit significantly long
path lengths, making them the hard cases at that scale, while many others have short path lengths and
can be considered easy. Here, we provide evidence supporting this hypothesis.

Keeping the actor and critic network sizes fixed at a three-layer feed-forward neural network with
512 neurons per hidden layer, we varied the total number of environment interactions used to train
the PPO agent from 1 million to 80 million. For each fixed number of interactions, we trained agents
with three different seeds and tuned the learning rate to maximize the number of solved presentations.
The resulting scaling trend is shown on a log-log scale in Figure 9.

8 9
1M

2 3 4 5 6 7 8 9
10M

2 3 4 5 6 7 8 9
100M

40

60
80
100

200

300

Total number of environment interactions

N
um

be
r o

f p
re

se
nt

at
io

ns
 s

ol
ve

d

Figure 9: Number of presentations solved (Y-axis) against the total number of environment interac-
tions used to train a PPO agent (X-axis).

In Figure 10, we plot the distributions of path lengths discovered by the most capable agent, which
was trained for 80 million environment interactions. We color the bar of a presentation with respect
to the first scale, in terms of total number of environment interactions, at which the presentation is
solved. We make two observations about our results:

1. The overall distribution of path lengths closely resembles that of the agent trained with 1
billion environment interactions shown in Figure 3b.

2. Agents trained for longer amounts of time discover paths of longer lengths, indicating that
agents trained for longer amounts of time are capable of solving harder presentations.

0 100 200 300
0

50

100

150

200 Environment Interactions
1M
2M
5M
10M
40M
80M

Bar Plot of Path Lengths Colored by Environment Interactions

index

A
C
 S

eq
ue

nc
e

Le
ng

th

Figure 10: Bar plot of path lengths discovered by a PPO agent trained for 80 million environment
interactions. Path length (Y-axis) against problem instances (X-axis). Bars are colored with respect
to the minimum number of total environment interactions at which the presentation is first solved.

F Equivalence of AC and AC′ Moves

In the main text of this paper, we defined AC-moves and AC′-moves. We will prove here that two
presentations are AC-equivalent if and only if they are AC′-equivalent.

31

First, we recall the definitions of AC-moves:

1. Substitute some ri by rirj for i ̸= j.
2. Replace some ri by r−1

i .
3. Change some ri to x±1

j rix
∓1
j .

We also recall the definitions of AC′-moves:

1. Replace some ri by rir
±1
j for i ̸= j.

2. Change some ri to x±1
j rix

∓1
j .

The difference between the two sets lies in how the inversion (AC2) of a relator is handled. We
always follow an inversion (AC2) by a concatenation (AC1) in AC′1, while the original AC-moves
allow for standalone inversion.

We can show that two presentations are AC-equivalent if and only if they are AC′-equivalent by prov-
ing that AC2 can be recovered from AC′-moves. To this end, consider a two-generator presentation
⟨x1, x2 | r1, r2⟩. The sequence of AC′-moves,

r2 → r2r1 , r1 → r1r
−1
2 , r2 → r2r1 , r2 → r1r2r

−1
1 ,

results in the presentation ⟨x1, x2 | r−1
2 , r1⟩, which is the same as r2 → r−1

2 up to swapping the two
relators. A similar argument also holds for any pairs of relators in an m-relator presentation.

Strictly speaking, swapping two relators changes the presentation. However, we consider the two
presentations ⟨x1, x2 | r1, r2⟩ and ⟨x1, x2 | r2, r1⟩ to be the same. When using AC′-moves to find
AC-triviality of m-generator presentations, we enhance the notion of terminal states in reinforcement
learning and goal states in classical search to include all presentations with ℓ = m. When m = 2,
there are eight such states:

{⟨x1, x2 | xa
i , x

b
j⟩ | i, j = 1, 2; a, b = ±1; i ̸= j}

G A topological hardness measure for AC-trivialization problem

In Section 6, we studied hardness of presentations solved by our algorithms with respect to intrinsic
as well as path-based measures. Here, we study a global hardness measure for the AC trivialization
problem.

G.1 Definition

A natural approach to define a global hardness measure for the AC graph is by aggregating the
ℓ-increase values across all presentations. However, this method suffers from overcounting: certain
paths have an ℓ-increase of 0, meaning that trivializing one endpoint automatically trivializes the
other, incurring no additional cost.

We consider instead the following approach. Let Γk be the induced subgraph containing all presenta-
tions with length at most k. Let us compare the components of Γk and Γk+1.5

Consider a node v of length k+1. If v cannot be joined to a component of Γk in Γk+1, then v belongs
to a new component that is said to be born at k + 1. If v can be joined to a component of Γk, then its
hardness needs not be considered since the path is of ℓ-increase 0 and trivializing any presentation
in the component with smaller length is more costly. If v connects two distinct components, say
born at k1 ≤ k2, then the component born at k2 is said to die at k + 1. By a similar reasoning, this
component contributes (k + 1)− k2 to the overall hardness of the problem, the difference between
its death and birth values. If a component does not die, we set its death value to ∞.

We propose that the multiset consisting of all such pairs (birth, death) serves as a principled hardness
measure for the AC trivialization problem and any other path-to-the-base search problem on a graph
equipped with weights on its nodes. For any such problem, this multiset coincides with a key invariant

5Recall that the components of a graph refer to the equivalence classes of its nodes under the relation that
identifies two if there is a path between them.

32

Table 5: Global hardness approximation for the AC- and AC′-trivialization problems. For each
approximation depth L, hi represents the number of pairs (b, d) in the hardness multiset satisfying
d− b = i.

AC moves
L Nodes Edges h1 h2 h3

11 350,356 1,002,439 4 0 0
12 791,140 2,251,375 16 0 0
13 3,238,052 9,321,629 72 4 0
14 7,199,908 20,573,343 144 4 0
15 29,243,812 84,391,763 508 52 8
16 64,623,652 185,162,236 1034 88 20

AC′ moves
L Nodes Edges h1 h2 h3

11 350,356 655,928 19 0 0
12 791,140 1,467,080 67 0 0
13 3,238,052 6,107,112 243 16 0
14 7,199,908 13,414,744 483 16 0
15 29,243,812 55,306,744 1819 136 32
16 64,623,652 120,824,232 3923 208 80

from topological data analysis: the barcode of the persistent reduced homology in degree 0 of the
associated filtered based graph.6

G.2 Analysis

Let us now approximate the global ℓ-increase hardness of the AC-trivialization problem. We will
consider both sets of moves: AC and AC′.

We first need to specify a finite approximation to the problem. For L ∈ {11, . . . , 16}, we take the
induced subgraph containing all nodes admitting a trivialization of max length at most L. The upper
bound was imposed by our computational resources, whereas the lower bound was chosen to highlight
non-trivial behavior.

For each such approximation we compute its hardness multiset (as defined in Appendix G.1) using
giotto-TDA (Tauzin et al., 2021)7. We then count the number hi of pairs (b, d) with d− b = i. The
results of our analysis for AC graph and AC′ graph are given in Table 5.

Taking the quotient of the values of both tables, we observe that, as expected, the number of
nodes remains unchanged. Perhaps unsurprisingly, the number of edges scales consistently by
approximately 1.5. More unexpectedly, we find that the scaling factor remains fairly constant across
the other columns. This suggests that the overall complexity of the problem is preserved under the
reformulation, albeit consistently scaled.

In the future, we aim to gather more data from other path-to-the-base search problems, such as
those defined on the Reidemeister graph of knot presentations, and compare their hardness multisets
systematically, using the bottleneck distance and other techniques from TDA.

In Appendix G.3, we investigate the extent to which similar topological invariants, computed on a
filtered graph neighboring a presentation in D, can predict its PPO-solved/unsolved label.

6We refer to any textbook on the subject for these concept, for example, Chapter 5 of Carlsson & Vejdemo-
Johansson (2022).

7Specifically, its binding of the SimplexTree data structure introduced in Boissonnat & Maria (2014) and
implemented in GUDHI (Maria et al., 2014).

33

Table 6: Quotient between corresponding values in the AC and AC′ tables in Table 5.
L Nodes Edges h1 h2 h3

11 1 1.5283 0.2105 – –
12 1 1.5346 0.2388 – –
13 1 1.5264 0.2963 0.2500 –
14 1 1.5336 0.2981 0.2500 –
15 1 1.5259 0.2793 0.3824 0.25
16 1 1.5325 0.2636 0.4231 0.25

0.0 0.2 0.4 0.6 0.8 1.0
Mean SHAP Value

barcode

entropy

max

sum

vertices

lenghts

edges

Feature Importance

Figure 11: Feature importance measured by SHAP values for each feature, calculated in general
setting, for the test set.

G.3 Predicting hardness from local and topological features

We trained an XGBoost classifier on the data set D (Appendix B) to predict the label PPO-(un)solved,
obtained by an RL agent. The data set consists of 417 PPO-solved and 773 PPO-unsolved presenta-
tions. The data set was randomly split into training and test subsets in a 4:1 ratio.

We use barcodes (defined at the end of Appendix G.2 as the numbers hi in the form of a vector)
as the main source of local, topological features. The barcodes were calculated for the graph of a
5-step neighborhood, which is the set of presentations achievable using five or fewer AC-moves. The
considered features include the number of vertices, the number of edges, the barcode vector, the
maximal length of a bar, the sum of the barcode vector entries, persistence entropy, and basic features
of the presentation, such as the lengths of each relator and the total length of the presentation.

We compared F1 scores on the test subset for classifiers trained with different feature subsets. Here is
a brief summary. The length of the presentations, represented as three numbers (the lengths of each
relator separately and their sum), achieved an F1 score of 0.885. The singular feature, the size of the
neighborhood, achieved an F1 score of 0.930. Using the barcode vector as a single feature resulted
in an F1 score of 0.943. An exhaustive search over all feature subsets enabled the selection of the
optimal set of features based on the F1 score of the corresponding classifier. The selected subset
includes the size of the neighborhood, its barcode vector, and the sum of the barcode entries. This
classifier achieves an F1 score of 0.962.

We used the tree explainer technique and SHAP values to analyze the importance of each of considered
features when building a modeled with all of them (number of vertices, number of edges, barcode
vector, maximal length of a bar, sum of the barcode vector entries, persistence entropy, length of each
relator, and length of the presentation). The lower entries of the barcode vector stood out as the most
influential. Aggregated SHAP values are presented in the Figure 11. The feature ‘barcode’ inluces
full barcode vector and the feature ‘lengths’ includes accumulated values of three features: length of
each relator and length of the presentation.

34

	Introduction
	Related Work
	Background: The AC Conjecture
	Mathematical statement
	Potential counterexamples
	AC graph and path-based hardness measures

	Methods
	Benchmark dataset
	Classical search algorithms
	Reinforcement learning

	Results
	RL: Comparing algorithms, rewards, and actions
	BFS vs. GS vs. PPO
	Theoretical results

	Hardness distribution
	Intrinsic measures: and n
	Path-based measures
	Path length
	`3́9`42`"̇613A``45`47`"603A-increase
	Relationship between path length and `3́9`42`"̇613A``45`47`"603A-increase.

	The cure: new algorithms
	Limitations
	Proofs of Mathematical Results
	The Substitution Move
	AC-triviality of two MS families
	Length reduction for AK(n)

	Benchmark Dataset
	Experimental Setup
	Path Analysis
	Dependence of hardness measures on scale
	Equivalence of AC and AC' Moves
	A topological hardness measure for AC-trivialization problem
	Definition
	Analysis
	Predicting hardness from local and topological features

