
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONSTRAINED REINFORCEMENT LEARNING US-
ING BENDER’S DECOMPOSITION AND EXACT CON-
STRAINT SATISFACTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in reinforcement learning (RL) have expanded its applica-
tions beyond sequential decision-making to encompass non-sequential tasks, such
as matrix decompositions, automatic generation of sorting networks, and combi-
natorial optimization. However, these tasks often require problem-specific algo-
rithm designs to ensure the validity of the solution. To address this limitation,
we propose a universal framework that reformulates non-sequential tasks as con-
strained RL problems by learning to generate cutting planes, i.e., mathematical
constraints that systematically refine the solution space. We ensure constraint sat-
isfaction throughout the training process, enabling safe and efficient training even
during deployment. We show the efficacy of our framework on two complex opti-
mization problems: a reward-maximizing stochastic job-shop scheduling problem
and a nonlinear, nonconvex packing problem. Our method achieves near-globally
optimal solutions while accelerating convergence by up to a factor of 800.

1 INTRODUCTION

Reinforcement Learning (RL) is a powerful technique for solving challenging Markov Decision
Processes (MDPs) through interaction with an environment. Historically, RL has been used for
traditional control and robotics problems (see e.g., oh Kang et al. (2023)). However, as of recent,
more effort has been put into using RL techniques to solve problems that do not naively fit into
the MDP framework: One particularly famous example of this is AlphaTensor (Fawzi et al., 2022),
which finds good factorizations of high dimensional tensors by reducing the problem to a “Tensor
Game”, where in each “turn” of the game three vectors are drawn which are used to build up a rank-1
tensor decomposition. A follow-up work “AlphaTensor Quantum” (Ruiz et al., 2024), extended the
Tensor Game by introducing additional rules that reward decompositions which can be implemented
easily on quantum computers. AlphaDev (Mankowitz et al., 2023) uses a similar synthetic game
construction to discover new sorting algorithms by iteratively building up sorting networks (Knuth,
1998) which can be automatically verified.

In general, all of these approaches can be viewed as trying to optimize a reward R(s) over a set of
constraints s ∈ C. For instance, AlphaTensor’s optimization problem can be concisely described as

minT (1a)

A =

T∑
i=0

ai ⊗ bi ⊗ ci (1b)

T ∈ N, ai, bi, ci ∈ RN×M×K , (1c)

where A is the tensor we want to decompose, ai, bi, ci are the coefficients of the rank-1 tensor
decomposition, and T is the number of rank-1 terms needed. While exact, this problem is not
practically solvable: This problem is equivalent to a large combinatorial optimization problem over
the natural numbers. AlphaTensor tries to find a minimum-rank decomposition by reducing this
problem to an iterative minimization of the residual

∥∥∥A−∑T
i=0 ai ⊗ bi ⊗ ci

∥∥∥ and selecting ai, bi, ci

using Monte-Carlo Tree-Search (MCTS). Reward is assigned once the model has found a point
satisfying the constraints proportional to Eq. 1a.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝜋 𝑎! 𝑠! modifies
objective function

Solve while maintaining feasibility
and Submit to environment

Get feedback from
environment

Constrained World Model

Figure 1: Overview of our method. We assume the existence of a (potentially NP-hard) world
model over which we can optimize. Our policy π modifies the objective function to give the desired
behavior. The solution is given to the environment, which provides feedback (such as a stochastic
events) to the world model, which can then be re-solved with the added information

Although this is a good way to model this specific problem, it is not a general way to solve con-
strained design problems. One core issue with sequential decompositions is that they can easily
lead to a dead-end. While this cannot happen for the AlphaTensor problem (since ai, bi, ci are un-
constrained), this does occur in SAT or Constraint Satisfaction Problems (CSPs). In fact, this is
what makes e.g. SAT or CSP NP-complete: finding a point which satisfies the constraints is already
hard. Assuming P ̸= NP , no static policy without search will be able to solve an arbitrary instance
of these types of problems. Further, due to the design of AlphaTensor and similar MCTS-based
approaches they can only handle a finite number of discrete actions ai, bi, ci.

Classically, Constrained RL (CRL) Problems have been modeled using the framework of Con-
strained Markov Decision Processes (CMDP) (Altman, 1999), which introduce a cost function c(x)
whose expected cumulative (discounted) sum has to be below a threshold C:

max
π

T∑
i=0

γiR(xi)P (xi+1|xi, ai)π(ai|xi) s.t. E

[
T∑

i=0

γici(xi)

]
≤ Ci (2a)

This modeling has the same disadvantages as the sequential decomposition of AlphaTensor. If find-
ing a single point x that satisfies the constraints is already NP-complete, there does not exist a static
policy that solves this problem. Such hard constraints appear frequently in real world problems.

Further, the CMDP framework does not allow for the modeling of hard constraints: For example,
if we have C = 25 and our method produces 20 trajectories with cost 30, and 10 trajectories with
cost 0, the policy would be considered safe despite violating the cost upper bound twice as often
as it stays feasible! In this work, we study exact feasibility where the RL agent has to maintain the
constraint every time, not just in expectation. This allows us to frame design problems - such as
AlphaTensor - as CRL problems, which is impossible using the CMDP framework. In general, the
“safety in expectation” formulation used in CMDPs is incompatible with high risk or high complex-
ity scenarios.

This work covers the scenario where hard constraint satisfaction for every instance has to be up-
held during inference and training. For this, we assume access to the constraint set C. This is a
reasonable assumption in design problems such as AlphaTensor, Process Planning, Job-Scheduling,
and similar other problems where conditions for feasible instances are known, but optimality is un-
known. Knowledge of constraints is also mandatory if one wants to guarantee that a constraint is
never violated during training: As is noted by (Müller et al., 2024), if the constraints are unknown
one has to experience an action violates the constraint at least once before the agent can try to avoid
it!

With techniques from mathematical programming we parameterize our policy relative to the fea-
sible set C, and hence guarantee the agent stays within the feasible region during inference and
training, which allows for fully online training with exact safety guarantees. We do this by propos-
ing a universal parameterization using an implicitly defined policy that iteratively improves its own
objective function using cutting planes inspired by the framework of Bender’s decomposition (see

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Fig. 1). By moving the complexity of strict feasibility preservation into a dedicated solver such as
SCIP (Bestuzheva et al., 2021) our method can scale to complex instances without sacrificing the
expressivity of our neural network. We showcase our method by applying it to a highly constrained
nonconvex nonlinear discrete packing problem (Sec. 5.1), and a complex reward-maximizing job
scheduling problem (Sec. 5.2) including stochastic effects in the reward function.

2 RELATED WORK

From the point of view of constrained reinforcement learning, prior work mostly considers the set-
ting of feasibility budgets where the constraint violations have to stay below a certain threshold (see
Eq. 2). Constrained Policy Optimization (CPO) (Achiam et al., 2017) maintains constraints by de-
scending inside the intersection of a trust region and the feasible set, using recovery steps when the
policy is outside the feasible set. This method does not have a guarantee to be safe during train-
ing and cannot natively handle“no-regret” constraints. Another sometimes competitive approach is
penalizing constraint violations with large negative values inside the reward, such as Fixed Penalty
Optimization (FPO) (Achiam et al., 2017). Tessler et al. (2018) uses a more sophisticated version
of FPO by dynamically adjusting the penalty parameter λ during optimization. However, neither of
these models handle hard “no-regret” constraints or guarantee feasibility during training. Dalal et al.
(2018) consider continuous action spaces where safety is guaranteed by projecting onto a feasible
set of safe actions. While they consider hard constraints, they can only operate in continuous convex
action spaces. Similar to our method, they also delegate their safety constraint to a Quadratic Pro-
gramming (QP) solver to compute the projection onto the feasible set. Our method has the advantage
of not being limited to QP-solvers and being able to deal with combinatorial settings.

To our knowledge, the only other work considering the absolute “no-regret” setting is Müller et al.
(2024), which showcase an algorithm that minimizes the per-episode error rather than the expected
error. Unfortunately, their method does not scale beyond small state and action spaces (in their case
5 states and 5 actions). Further, their method cannot guarantee safety during training, as one needs
to try every action in every state to absolutely guarantee the safety under an unknown constraint
function. We extend their ideas of “no regret learning” by considering the case where constraints
are known, allowing us to be safe even during training.

From the point of view of combinatorial optimization and RL, Bello et al. (2016) consider solving
the traveling salesman (TSP) and Knapsack problem using specialized neural networks. However,
they do not consider learning from a stochastic or nonlinear environments, and assume variable
selection cannot lead to infeasible dead-ends. For instance, Bello et al. (2016) uses the fact that their
TSP instances live on a fully connected graph, meaning that one can arbitrarily pick any order of
nodes and will still get a possible tour. If one had a sparsely connected graph, Bello et al. (2016)’s
method no longer works as picking certain node orders can get the agent into a dead-end.1

3 BACKGROUND: BENDER’S DECOMPOSITION

We frame our solution around a classical optimization concept known as the “(generalized) Bender’s
decomposition” (Geoffrion, 1972). Consider the following optimization problem

min
x,y

f(x, y) (3a)

s.t. g(x, y) ≤ 0 (3b)
x ∈ X, y ∈ Y (3c)

where we call y complicating variables. A complicating variable is a variable that, if fixed, makes
the rest of the optimization much easier. For instance, the problem minx,y(sin(y) − x)2 becomes
trivial if we first fix y to any value. We define the constrained set C = {(x, y) ∈ X×Y |g(x, y) ≤ 0}.
Bender’s decomposition splits this optimization problem into a master problem and a subproblem.
The master problem proposes solutions to the problem in y, ignoring the impact of the choice of
x. The subproblem then uses the solution y from the master to solve for the remaining variables x.

1In fact, it might be the case that such a tour does not exist which is an undetectable case for Bello et al.
(2016). Generally, deciding whether such a tour exists is already NP-complete (Held & Karp, 1965)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝒞

Solver finds optimal point 𝑥𝑖⋆

𝑥𝑖⋆

Policy

𝑥𝑖⋆

𝑓𝑖

Policy predicts new
hyperplane

Solver finds new optimal
point 𝑥𝑖+1⋆

𝑥𝑖+1⋆

𝒞

𝒞
Add hyperplane

(w,b) Predict coefficientsReward

Environment simulates
𝑥𝑖⋆ and emits reward
and features 𝑓𝑖

ENVIRONMENT

Original Constraints Added Constraints New Constraints

Initial Optimization Environment Feedback Policy Evaluation Update Problem

1. 2. 3. 4.

Figure 2: Sketch of the policy evaluation. First, a classical solver (like SCIP (Bestuzheva et al.,
2023) is used to solve the current optimization problem composed of the static C constraints (blue)
and the dynamically added inequality constraints (purple). The current solution (red) is first passed
to the environment to produce the reward, and additional features fi. The solution produced by the
solver, combined with the constraints C and additional features fi are passed to the policy-GNN π,
which predicts a new inequality constraint (red). This inequality constraint is overlayed onto the
existing optimization problem and the classical solver finds the next solution candidate x⋆

i+1.

Based on the value and feasibility of the subproblem we then add additional linear constraints (so
called “cuts”) into the master problem and repeat the optimization with the additional constraint.

Specifically, we can distinguish feasibility cuts, which remove items from the master problem that
do not lead to a solvable subproblem, and optimizing cuts which manipulate the objective function
of the master problem to steer it towards better solutions. To control the objective function, one
classically adds an auxilliary variable φ that is lower bounded by cutting information from the
subproblem. Schematically, the master problem looks like

min
y

f(y) + φ (4a)

s.t. g(y) ≤ 0 (4b)
φ ∈ O(x, y), y ∈ F(x), x ∈ X, y ∈ Y, (4c)

where f(y) and g(y) are lower bounds in x to g(x, y) and f(x, y) respectively, and O,F are addi-
tional constraints that are generated by solving a subproblem (see Geoffrion (1972)). For the sake
of this work, we will only consider optimality constraints O(x, y).

4 BENDER’S ORACLE OPTIMIZATION

Ordinary optimality cuts have the form of

φ ≥ z(x∗) + λT∇xg(x
∗, y∗)(x− x∗), (5)

where z(·) is the result of the subproblem z(x∗) = min{cT y : g(x, y) ≤ 0, y ≥ 0} conditioned
on the solution x∗ of the master problem, λ is the optimal dual solution, y∗ is the solution to the
subproblem, and φ is a helper variable that is added to the objective max cTx + φ. This has a
nice interpretation of placing a lower bound on the main problem based on the linearization of the
subproblem around the current optimum (see, e.g. Geoffrion (1972)).

Our core insight is the following: Notice that we do not necessarily need to solve the subprob-
lem: We only need to know what constraints (Eq. 5) the subproblem would add, if we solved it to
completion, but we do not need to actually solve the intractable subproblem. Therefore, if we had
a function that takes a feasible point and generates the cutting plane coefficients similar to Eq. 5,
we could optimize the original problem, while always staying safe due to the master problem han-
dling the constraints. Bender’s Oracle Optimization (BOO) directly learns a scalar corresponding
to the bias b = z(x∗) + λT∇xg(x

∗, y∗)x∗ ∈ R, and a vector corresponding to the linear weight
w = λT∇xg(x

∗, y∗) ∈ Rd without explicitly constructing and solving the underlying optimization
problem(s). We learn both of these values using RL with feedback from a simulator.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This gives us the following MDP: States are given by the current solution x⋆
i and static features (e.g.

for a scheduling problem “what jobs exist for scheduling”). Actions are the parameters (w, b) which
parameterize the linear inequality. The rewards and transition function is given by the black box
environment. Notice that this parametrization allows us to solve a CMDP with known constraints
using ordinary MDP algorithms, while maintaining guaranteed safety during training and inference.

BOO recursively refines its answer x⋆ by adding bender’s cuts to the problem, depending on the
previous iteration’s result x⋆

k and finds the optimal x⋆ from the set of possible results. We define
BOO recursively as

x⋆
0 = argmaxS0 = argmax{φ|x ∈ C} (6a)

x⋆
1 = argmaxS1 = argmaxS0 ∩ {φ|φ ≥ b1 + wT

1 x, (b1, w1) ∼ π(b, w|x⋆
0, C)} (6b)

x⋆
2 = argmaxS2 = argmaxS1 ∩ {φ|φ ≥ b2 + wT

2 x, (b2, w2) ∼ π(b, w|x⋆
1, C)} (6c)

. . .

x⋆
k = argmaxSk = argmaxSk−1 ∩ {φ|φ ≥ bk + wT

k x, (bk, wk) ∼ π(b, w|x⋆
k−1, C)}. (6d)

The variable φ acts as the quality estimate for the result x. We can see the core assumption of BOO
in Eq. 6: We assume that we have an optimizer that can find a feasible point within C. BOO refines
the estimate of the optimal decision x⋆ online by recursively improving the value estimate using
cuts sampled from the BOO policy π. If a cut at step i > 0 produces an unsatisfiable problem,
we backtrack and sample a new inequality.2 Since only linear constraints are added by BOO, the
subproblems in each iteration can usually be solved very quickly using off-the-shelf solvers such as
SCIP (Bestuzheva et al., 2021) or IPOPT (Wächter & Biegler, 2005). However, even if no explicit
mathematical expression for C is present we can still apply BOO since we only need to be able to
sample feasible points (x, φ). Formally, we can prove

Theorem 1. Given a feasible set C, the recursive BOO scheme Equation (6) will either

• Produce a sequence x⋆
i ∈ Si such that all xi ∈ C

• return “unsatisfiable” if C is empty.

The full proof can be found in Appendix D. This allows us to conclude: BOO is always safe.

Intuitively, our method creates a new unconstrained MDP across the number of cutting planes k
rather than solving a CMDP across the time dimension. We parameterize π as a Graph Neural
Network (GNN) (Kipf & Welling, 2016) connecting variable nodes with constraint nodes as is done
in prior work (see e.g, (Labassi et al., 2022))

Algorithm 1 Bender’s Oracle Optimization.
Input: training constraint sets C = {C0, . . . , CN}, classical optimizer OPT , environment to
evaluate feasible points, number of cuts K
repeat

sample instance and constraints Ci ∼ C
initialize S0 ← Ci and f0 ← ∅
Use OPT to find initial feasible point x⋆

0 ∈ S0
if infeasible, return “unsatisfiable”
for k = 1 to K do

predict π(b, w|xk−1, Ci, fi)
build Sk using (b, w) and Sk−1 (Eq. 6)
solve x⋆

k ∈ Sk using OPT
evaluate x⋆

k in environment to get features fi+1 and reward rk for x⋆
k

add stochastic constraints to Sk
record (bk, wk, x

⋆
k, rk, fi+1)

end for
update π on x⋆

k, rk, (bk, wk), fi+1 using PPO
until convergence

2This happens rarely during the first training iterations where cuts are random.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We provide the training algorithm in Algorithm 1. First, a random instance Ci is sampled from a set
of instances (or a random generator). We directly solve the feasibility problem x⋆

0 ∈ Ci, which gives
us our starting point x⋆

0. If no point within Ci exists, we can immediately determine that no optimal
solution exists. If a point is found, x⋆

0 is - by definition - feasible, but usually not optimal. The RL
algorithm then repeatedly refines the estimate for the solution x⋆

i by looking at the current solution
x⋆
i−1 and producing new inequalities that “cut” of the bad solutions according to Equation (6). Every

time a new solution is produced, it is checked against the environment, which returns rewards and
features for the next cutting step. During training, we record all added inequalities (actions) and
solutions x⋆

i and features fi (states), which we are used for training using PPO (Schulman et al.,
2017). Inference uses the same scheme updating π.

5 EXPERIMENTS

To our knowledge there are three ways of solving general design problems: Sequential bit-placement
methods using pointer networks (Bello et al., 2016), classical optimization (assuming no stochastic
effects and white-box access to the model), and our method. We use a standard graph convolutional
neural network (GCNN) (Kipf & Welling, 2016) with global and edge features, a hidden dimension
of 128, and 4 message passing steps. For optimization we use the Adam optimizer and standard
PPO hyperparameters.

We compare these solvers on two problem sets. First, we study learning a nonlinear and nonconvex
objective function over a nontrivial feasible set, but without considering stochasticity. Since we can
set this problem, we can compare against the global optimum as found by the SCIP global nonlinear
optimizer (Bestuzheva et al., 2023). We also demonstrate the performance advantage over solving
the original MINLP: Our solver is capable of learning a parametrization of the problem that is nearly
800× faster to solve than the true parametrization.

Second, we consider a large-scale stochastic job scheduling problem, where the objective is to max-
imize the profit of a set of jobs, each consisting of a set of operations that have to be completed
in order, within a limited time. A job only receives profit if all its operations are completed in the
correct order by the time of completion. We add stochasticity to the problem, by having a set of
task-types that determine how likely a job is delayed and how much profit is to be made by complet-
ing the job. This means our agent has to learn a complex risk-reward tradeoff, while also having to
produce feasible job scheduling plans.

5.1 NONCONVEX CONSTRAINED PROBLEM

To estimate the ability of our method to recover a nonlinear objective function over a constrained
set, we consider the following toy problem

max
x

xTAx+ bTx+ c (7a)

kTx ≤ p (7b)
x ∈ {0, 1} (7c)

where A is a random positive semidefinite matrix, b and k are random vectors, and k is a random
constant and c is an offset always set to c = 1. This type of problem is frequently found in economics
where many problems can be reduced to convex maximization over binary variables subject to linear
constraints (see Zwart (1974)). There are also applications to machine learning like, for instance,
non-negative sparse PCAs (Zass & Shashua, 2006) or feature selection (Mangasarian, 1996).

We use this model as input to the global optimizer in SCIP (Bestuzheva et al., 2023), but hide the
objective for our RL agent. The goal of our agent is to find optimizing cuts, such that the found
x maximizes the hidden xTAx + bTx + c while staying feasible.3 We give all methods two input
features: First, we give the diagonal value of ai,i ∈ A for every variable x. Second we give the
row/column sum

∑N
i=0 ai,j for every variable. Generally, this is insufficient to reconstruct the entire

objective function. This means the problem is a Constrained Partially Observable Markov Decision
Process (CPOMDP), where the model has to gather information from the found solutions xk.

3Notice that this problem is not convex since we maximize over a convex function rather than minimize
(see, e.g, Zwart (1974)).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 0.5 1

0

0.5

1

training time 5.4× 104 epochs

gl
ob

al
m

ax
im

um
(%

)

Pointer Network
ours

0 0.5 1

0

0.5

1

1.5

training time 5.4× 104 epochs

R
ew

ar
d

pointer network
ours

Figure 3: Validation performance of a pointer network compared to BOO on our nonconvex com-
binatorial problem. The x-axis is normalized towards the number of problems as the methods use
different numbers of steps per problem instance (our method uses dramatically fewer steps).

Table 1: Comparisons of the pointer network and our method on unknown instances of the noncon-
vex optimization problem with one or two inequality constraints. We showcase the quality of the
found solution as a percentage of the global optimum, and the time needed to find that solution. For
the setting with 2 inequality constraints, we truncate the MINLP solver after 120s.

% global maximum time policy expected regret

1 constraint
ours 0.98 0.07s 0.11

pointer network 0.60 1.10s 0.43
global MINLP 1.0 60.19s 0.0

2 constraints
ours 0.95 7.98s 0.06

pointer network 0.45 0.55s 0.55
global MINLP 1.0 >120s 0.0

As a baseline, we utilize a variant of the pointer network (Vinyals et al., 2015) used in Bello et al.
(2016) with the difference that instead of a simple unstructured RNN (Schmidt, 2019), we use ex-
actly the same GNN backbone as in our method to make sure no method is disadvantaged by a
smaller/larger network or different data availability.

We further compare against a naive baseline where we optimize Eq. 7a by linearizing the objective
around 0. Notice that both this linearized model and our BOO model can be efficiently optimized
with LP-solvers, while the original objective has to use much more complex MINLP solvers. As our
reward we compare the quality of the solution found by our policy against its linearization:

R =
xT
πAxπ + bTxπ + c

xT
b Axb + bTxb + c

, (8)

where xπ is the solution found by BOO, and xb is the result found by maximizing the linearized
objective. R > 1 means our model exceeds the naive baseline, while R < 1 implies the model is
worse than the linearized objective.

As we can see in Fig. 3, our method manages to reach almost the 100% of true objectives value
after roughly half the exploration budget has been reached. The pointer network quickly reaches a
saturation level of roughly 60% of the global maximum.

Looking into Table 1, we can also see that our method tends to find solutions orders of magnitude
faster than the MINLP solver that knows the objective function with minimal loss in quality. This is
not entirely unsurprising as Bender’s decomposition is fundamentally a way of speeding up MINLP
problems (see Section 3 or Geoffrion (1972)), but it is nevertheless interesting to see that this prop-
erty translates to black-box learning of objective functions. We also noticed that as our method
improves, it tends to learn policies that find optima faster (see Appendix B).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 0.5 1 1.5

·105

1.7

1.8

1.9

2

training steps

R
ew

ar
d

Ours
MILP

Figure 4: Performance of our model on the stochastic Scheduling problem compared to optimal
solutions provided by a MILP solver. The performance is shown over a unseen validation set

We also study the same problem with two constraints. This problem is significantly more difficult,
so much so that finding the global optimum is generally infeasible. Therefore we allow SCIP a
time budget of 120s and compare the found solution against ours and the pointer network. The
results can be found in Table 1. Notice that our method performs similarly to the single constraint
version, still achieving near optimal performance, while the pointer network drops under 50% of
the global performance. Further, notice that the time taken by our policy increases as the problem
difficulty increases, since the new optimization problem is significantly harder than the one with a
single constraint. This stands in contrast to the pointer-network driven solution, which allocates the
same amount of compute to every decision, regardless of how complex the constraints are.

One advantage of a properly constrained RL agent is that one can train during deployment without
having catastrophic failures in safety. Therefore we also report the regret (i.e., the area under the
performance curve in Fig. 3) one would expect when training this agent online in Table 1. As one
can see our agent outperforms the pointer network by close to 4×.

5.2 SCHEDULING PROBLEM

We consider the problem of finding a schedule that maximizes returns within a fixed timeframe.
In our setup, we consider 3 different machine types, where each machine has M duplicates. We
sample J jobs that have a randomly sampled expected completion time for each machine. The
machines have to be worked on in order: First machine 1, second machine 2, third machine 3. We
have a time-limit of T days to finish as many jobs as possible. A job only pays out its profit if
all of its operations were completed in time and in the right order. Informally, we can model a
schedule as M × J × T binary variables where 1 indicates that Job j is scheduled on machine m at
timestep t. This corresponds to a variation of the time-indexed scheduling problem seen in e.g. Ku
& Beck (2016). The constraints ensure that a job is worked in the correct order, no machines are
double-booked, etc. The resulting constraint set is orders of magnitude more complex than what is
usually consider in black-box CMDP solvers and, just like the previous nonconvex toy problem, not
solveable with off-the-shelf CMDP solvers.4 We give the full constraint set in Appendix C.

Within this feasible set, every assignment of xm,j,t corresponds to a plan that is expected to be fea-
sible. To simulate random events, we unroll the plan recursively and simulate delays by randomly
extending the time taken for a scheduled operation o(j,m) by between 1 and 3 months. The prob-
ability for a delay depends on the job class C(j), which is randomly assigned to jobs as a feature.
After a random event, the schedule is invalid and has to be re-generated from that day forward.

The profits are similarly hidden, but also depend on the job class C(j), such that a riskier job obtains
a higher payoff. Since the likelihood of a job being delayed is predictable, the model should be able
to learn a robust plan that outperforms the optimal schedule where jobs are planned independent of
their probability of success or the expected reward for that operation. This gives a highly complex
risk-reward tradeoff where one has to balance risky but high profit jobs against lower risk, but lower
profit jobs. For our experiments we choose T = 12, J = 200 and M = 4.

4We were not able to get CPO to converge to within the constraint set.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison of our method against an optimal MILP solver (higher is better).

Reward@0.5× 105 Reward@1.0× 105 Reward@1.5× 105

Ours 1.80 1.87 2.03
MILP 1.73 1.73 1.73

Since, to our knowledge, no solver for this stochastic planning problem exists, we follow the ap-
proach taken by (Fawzi et al., 2022; Mankowitz et al., 2023) and compare ourselves against a clas-
sical MIP formulation that plans optimally with the information it has, and re-plans in the case of
a stochastic event. In our case, this involves solving the underlying mixed-integer linear program
without considering stochastic effects and knowledge of the true value of each job. As a reference
value, we solve this model as a baseline to max

∑J
j=1 yj , which can be seen as an uninformative

prior, where all stochastic and (nonlinear) profit functions are ignored, in favor of simply packing
the schedule as tightly as possible. We do not use the true (hidden) job-rewards as the objective
function since that would cause the MILP to plan all high reward, but also high-risk jobs (which
is highly suboptimal). For our agent to beat the baseline, it has to be able to deal with stochastic
effects, and has to learn the true value of completing a job. For this, we set up the job values as the
likelihood of a job being interrupted, i.e., if a job has probability 0.9 of being delayed at any specific
point in time, the reward for completing it is 0.9. This gives a natural risk-reward structure, where
riskier jobs yield more reward.

The results for this can be found in Fig. 4 and Table 2. As we can see our method quickly exceeds
the performance of the greedy MILP solver. Since our method always returns a valid schedule,
this method can be used as a drop-in replacement for traditional MILP solvers when feedback from
the environment is available. Since our method can be trained during deployment, it makes sense
to also consider the advantage of our method against the baseline. Our method offers an expected
improvement over the training interval (Fig. 4) of

∫
ours(t)dt∫
base(t)dt

≈ 8.2%. Note that this depends on the
training time since longer training mean the model spends more time in the RL-optimized region.

6 LIMITATIONS

Our method relies on an existing classical optimizer to allow for training with highly complex con-
straint sets. This has the advantage of inheriting the work that has gone into building state-of-the-art
optimization algorithms. However, it also inherits many of the challenges from classical optimiza-
tion, such as the necessity of formulating all problems in an algebraic modeling language. The
method proposed here is mostly targeted to applications where one has access to the constraints. In
cases where such a model is not available, one would need to train such a model during learning,
turning this algorithm into a model-based RL approach. We leave the combination of model learning
and BOO for future work.

7 CONCLUSION

We propose a general method for converting challenging design problems into a Constrained Rein-
forcement Learning problem with known constraints. To solve the resulting problem we introduce
a new algorithm “BOO” that finds optimal points within a feasible set by iteratively adding linear
constraints to locate the optimal solution of the problem. Since our policy only adds linear inequality
constraints our method remains solvable using high performance classical optimizers. Our method
also guarantees that constraints are strictly satisfied during training, allowing us to train our method
online even in safety critical scenarios.

We showcase the abilities of our method in a synthetic combinatorial environment, and a job-
scheduling problem. Our method shows superior performance over both a MILP and neural-network
baseline, while offering drastically faster convergence compared to a MINLP solver, in cases where
an analytical expression exists. To our knowledge this is the first reinforcement learning method that
allows arbitrary constraints to be enforced during training and inference.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and P. Abbeel. Constrained policy optimiza-
tion. ArXiv, abs/1705.10528, 2017. URL https://api.semanticscholar.org/
CorpusID:10647707.

E. Altman. Constrained Markov Decision Processes. Chapman and Hall, 1999.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. ArXiv, abs/1611.09940, 2016. URL https://api.
semanticscholar.org/CorpusID:3649804.

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald,
Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst,
Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin
Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano,
Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Well-
ner, Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 8.0. Technical report,
Optimization Online, December 2021.

Ksenia Bestuzheva, Antonia Chmiela, Benjamin Müller, Felipe Serrano, Stefan Vigerske, and
Fabian Wegscheider. Global Optimization of Mixed-Integer Nonlinear Programs with SCIP 8,
January 2023.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerı́k, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. ArXiv, abs/1801.08757, 2018. URL https:
//api.semanticscholar.org/CorpusID:711218.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multi-
plication algorithms with reinforcement learning. Nature, 610(7930):47–53, October 2022. ISSN
1476-4687. doi: 10.1038/s41586-022-05172-4. URL http://dx.doi.org/10.1038/
s41586-022-05172-4.

A. M. Geoffrion. Generalized benders decomposition. Journal of Optimization Theory and Ap-
plications, 10(4):237–260, October 1972. ISSN 1573-2878. doi: 10.1007/bf00934810. URL
http://dx.doi.org/10.1007/BF00934810.

M. Held and R. M. Karp. The construction of discrete dynamic programming algorithms. IBM
Systems Journal, 4(2):136–147, 1965. doi: 10.1147/sj.42.0136.

Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. ArXiv, abs/1609.02907, 2016. URL https://api.semanticscholar.org/
CorpusID:3144218.

Donald E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting and searching.
Addison Wesley Longman Publishing Co., Inc., USA, 1998. ISBN 0201896850.

Wen-Yang Ku and J. Christopher Beck. Mixed integer programming models for job shop scheduling:
A computational analysis. Computers & Operations Research, 73:165–173, September 2016.
ISSN 0305-0548. doi: 10.1016/j.cor.2016.04.006. URL http://dx.doi.org/10.1016/
j.cor.2016.04.006.

Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch and
bound with graph neural networks. In Advances in Neural Information Processing Systems 35,
2022.

O. L. Mangasarian. Machine Learning via Polyhedral Concave Minimization, pp. 175–188. Physica-
Verlag HD, 1996. ISBN 9783642997891.

10

https://api.semanticscholar.org/CorpusID:10647707
https://api.semanticscholar.org/CorpusID:10647707
https://api.semanticscholar.org/CorpusID:3649804
https://api.semanticscholar.org/CorpusID:3649804
https://api.semanticscholar.org/CorpusID:711218
https://api.semanticscholar.org/CorpusID:711218
http://dx.doi.org/10.1038/s41586-022-05172-4
http://dx.doi.org/10.1038/s41586-022-05172-4
http://dx.doi.org/10.1007/BF00934810
https://api.semanticscholar.org/CorpusID:3144218
https://api.semanticscholar.org/CorpusID:3144218
http://dx.doi.org/10.1016/j.cor.2016.04.006
http://dx.doi.org/10.1016/j.cor.2016.04.006

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daniel J. Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru,
Edouard Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex Ahern, Thomas Köppe, Kevin Mil-
likin, Stephen Gaffney, Sophie Elster, Jackson Broshear, Chris Gamble, Kieran Milan, Robert
Tung, Minjae Hwang, Taylan Cemgil, Mohammadamin Barekatain, Yujia Li, Amol Mand-
hane, Thomas Hubert, Julian Schrittwieser, Demis Hassabis, Pushmeet Kohli, Martin Ried-
miller, Oriol Vinyals, and David Silver. Faster sorting algorithms discovered using deep rein-
forcement learning. Nature, 618(7964):257–263, June 2023. ISSN 1476-4687. doi: 10.1038/
s41586-023-06004-9. URL http://dx.doi.org/10.1038/s41586-023-06004-9.

Adrian Müller, Pragnya Alatur, Volkan Cevher, Giorgia Ramponi, and Niao He. Truly no-
regret learning in constrained mdps. ArXiv, abs/2402.15776, 2024. URL https://api.
semanticscholar.org/CorpusID:267938685.

Dong oh Kang, Jin Cheng, Miguel Zamora, Fatemeh Zargarbashi, and Stelian Coros. Rl +
model-based control: Using on-demand optimal control to learn versatile legged locomo-
tion. IEEE Robotics and Automation Letters, 8:6619–6626, 2023. URL https://api.
semanticscholar.org/CorpusID:258960714.

Francisco J. R. Ruiz, Tuomas Laakkonen, Johannes Bausch, Matej Balog, Mohammadamin
Barekatain, Francisco J. H. Heras, Alexander Novikov, Nathan Fitzpatrick, Bernardino Romera-
Paredes, John van de Wetering, Alhussein Fawzi, Konstantinos Meichanetzidis, and Pushmeet
Kohli. Quantum circuit optimization with alphatensor. ArXiv, abs/2402.14396, 2024. URL
https://api.semanticscholar.org/CorpusID:267782606.

Robin M. Schmidt. Recurrent neural networks (rnns): A gentle introduction and overview. ArXiv,
abs/1912.05911, 2019. URL https://api.semanticscholar.org/CorpusID:
209324034.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017.

Chen Tessler, Daniel Jaymin Mankowitz, and Shie Mannor. Reward constrained policy opti-
mization. ArXiv, abs/1805.11074, 2018. URL https://api.semanticscholar.org/
CorpusID:44095973.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. ArXiv, abs/1506.03134,
2015. URL https://api.semanticscholar.org/CorpusID:5692837.

Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):
25–57, April 2005. ISSN 1436-4646. doi: 10.1007/s10107-004-0559-y. URL http://dx.
doi.org/10.1007/s10107-004-0559-y.

Ron Zass and Amnon Shashua. Nonnegative sparse pca. In B. Schölkopf, J. Platt, and T. Hoffman
(eds.), Advances in Neural Information Processing Systems, volume 19. MIT Press, 2006.

Philip B. Zwart. Global maximization of a convex function with linear inequality constraints. Op-
erations Research, 22(3):602–609, 1974. ISSN 0030364X, 15265463. URL http://www.
jstor.org/stable/169509.

11

http://dx.doi.org/10.1038/s41586-023-06004-9
https://api.semanticscholar.org/CorpusID:267938685
https://api.semanticscholar.org/CorpusID:267938685
https://api.semanticscholar.org/CorpusID:258960714
https://api.semanticscholar.org/CorpusID:258960714
https://api.semanticscholar.org/CorpusID:267782606
https://api.semanticscholar.org/CorpusID:209324034
https://api.semanticscholar.org/CorpusID:209324034
https://api.semanticscholar.org/CorpusID:44095973
https://api.semanticscholar.org/CorpusID:44095973
https://api.semanticscholar.org/CorpusID:5692837
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://www.jstor.org/stable/169509
http://www.jstor.org/stable/169509

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A LLM USAGE

We used LLMs to improve the writing and presentation of the work, as well as to aid in translation.
We manually ensured that any alteration in wording did not change the meaning of the work.

B OPTIMIZATION SPEED OVER TIME

0 0.2 0.4 0.6 0.8 1

0

5

10

15

training time

so
lv

er
tim

e
(s

)

Pointer Network
ours

Figure 5: Time taken to find a solution.

We find that BOO implicitly learns to find solutions more efficiently. We assume this is because
we impose a 60s time budget on finding solutions during training time, since this is the expected
solving time for our problem class. This might implicitly regularize found policies towards simpler
solutions as more complex solutions run the risk of not being solvable to global optimality within
the time budget. We assume this effect could be increased by explicitly including training time in
the objective, but investigating this is left for further research.

The reason that the pointer network increases in time to find a solution is because the model learns
to take advantage of the existing budget given by kTx ≤ b, which means it can place more items
xi = 1 into the feasible set, which then implies that one has to roll out the RNN over more timesteps,
leading to slower inference.

C FEASIBLE SCHEDULES

The set of feasible schedules is given by: Let yj be a binary indicator of whether job j = 1, . . . , J
is worked to completion, xm,j,t be the binary indicator of whether job j is scheduled on machine

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

m = 1, . . . ,M at timestep t = 1, . . . , T .

T∑
t=1

xm,j,t ≤ 1 ∀m = 1 . . .M∀j = 1 . . . J (9a)

yj ≤
∑ T∑

t=1

xm,j,t ∀m = 1 . . .M∀j = 1 . . . J (9b)

T∑
t=0

(t+ jobtime(j))xm,j,t ≤ T ∀m = 1 . . .M∀j = 1 . . . J (9c)

J∑
j=1

t+1∑
t′=t−jobtime(j)+1

xm,j,t′ ≤M ∀m = 1 . . .M∀t = 1 . . . T (9d)

T∑
t=0

(t+ o(j,m− 1))xm−1,j,t ≤
T∑

t=0

txm,j,t ∀m = 2 . . .M∀j = 1 . . . J (9e)

T∑
t=0

xm−1,j,t ≥
T∑

t=0

xm,j,t ∀m = 2 . . .M∀j = 1 . . . J (9f)

jobtime(j) =
M∑

m=1

o(j,m) (9g)

yj , xm,j,t ∈ {0, 1} (9h)

where T is the global timelimit, and o(j,m) is the time job j takes on machine m. Equation (9a)
makes sure every operation is only scheduled once, Equation (9b) sets the auxiliary variable yj
denoting whether a job j is completed in time, Equation (9c) makes sure that all scheduled operations
complete within the timelimit, Equation (9d) prevents two operations being scheduled on the same
machine simultaneously, Equation (9e) makes sure that operation m of job j happens after operation
m − 1, and Equation (9f) makes sure that if machine m is scheduled, machine m − 1 also has to
be scheduled. This is a highly constrained MILP problem, meaning that randomly generating a plan
xm,j,t is almost always going to be infeasible according to the constraints Equation (9).

D SAFETY PROOF

proof of theorem 1. BOO paramterizes the solution x⋆
i as the recursive intersection of sets. We will

prove the stronger statement that all x ∈ Si (not only the optimal one) are safe for all i = 0, . . . ,∞
Proof via induction:
Base case: For x ∈ S0, we have x ∈ C by definition, unless C = ∅ in which case we can immediately
return “unsatisfiable”.
Induction hypothesis: x ∈ Sk =⇒ x ∈ C.
Induction step: For every subsequent iteration, we have Sk+1 = Sk ∩ {φ|φ ≥ bk +wT

k x} therefore
Sk+1 ⊆ Sk. Meaning that

x ∈ Sk+1 =⇒ x ∈ Sk =⇒ x ∈ C.

We conclude all x ∈ Si x is safe, therefore x⋆
i is safe.

13

	Introduction
	Related Work
	Background: Bender's decomposition
	Bender's Oracle Optimization
	Experiments
	Nonconvex Constrained Problem
	Scheduling Problem

	Limitations
	Conclusion
	LLM usage
	Optimization Speed over time
	Feasible Schedules
	Safety proof

