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ABSTRACT

Humans use log-compressed number lines to represent different quantities, includ-
ing elapsed time, traveled distance, numerosity, sound frequency, etc. Inspired
by recent cognitive science and computational neuroscience work, we developed
a neural network that learns to construct log-compressed number lines. The net-
work computes a discrete approximation of a real-domain Laplace transform using
an RNN with analytically derived weights giving rise to a log-compressed time-
line of the past. The network learns to extract latent variables from the input and
uses them for global modulation of the recurrent weights turning a timeline into
a number line over relevant dimensions. The number line representation greatly
simplifies learning on a set of problems that require learning associations in dif-
ferent spaces – problems that humans can typically solve easily. This approach
illustrates how combining deep learning with cognitive models can result in sys-
tems that learn to represent latent variables in a brain-like manner and exhibit
human-like behavior manifested through Weber-Fechner law.

1 INTRODUCTION

The human ability to map sensory inputs onto number lines is critical for rapid learning, reasoning,
and generalizing. Recordings of activity from individual neurons in mammalian brains suggest a
particular form of representation that could give rise to mental number lines over different variables.
For instance, the presentation of a salient stimulus to an animal triggers sequential activation of
neurons called time cells which are characterized by temporally tuned unimodal basis functions
(MacDonald et al., 2011; Tiganj et al., 2017; Eichenbaum, 2014). Each time cell reaches its peak
activity at a particular time after the onset of some salient stimulus. Together, a population of time
cells constitutes a temporal number line or a timeline of the stimulus history (Howard et al., 2015;
Tiganj et al., 2018). Similarly, as animals navigate spatial environments neurons called place cells
exhibit spatially tuned unimodal basis functions (Moser et al., 2008). A population of place cells
constitutes a spatial number line that can be used for navigation (Bures et al., 1997; Banino et al.,
2018). The same computational strategy seems to be used to represent other variables as well,
including numerosity (Nieder & Miller, 2003), integrated evidence (Morcos & Harvey, 2016), pitch
of tones (Aronov et al., 2017), and conjunctions of these variables (Nieh et al., 2021). Critically,
many of these “neural number lines” appear to be log-compressed (Cao et al., 2021; Nieder & Miller,
2003), providing a natural account of the Weber-Fechner law observed in psychophysics (Chater &
Brown, 2008; Fechner, 1860/1912). Here we present a method by which deep neural networks can
construct continuous, log-compressed number lines of latent task-relevant dimensions.

Modern deep neural networks are excellent function approximators that learn in a distributed man-
ner: weights are adjusted individually for each neuron. Neural activity in the brain suggests a
representation where a population of neurons together encodes a distribution over a latent variable
in the form of a number line. In other words, a latent variable is not represented as a scalar (e.g., a
count of objects could be encoded with a single neuron with a firing rate proportional to the count),
but as a function supported by a population of neurons, each tuned to a particular magnitude of the
latent variable. To build deep neural networks with this property, we use global modulation such
that recurrent weights of a population of cells are adjusted simultaneously. We show that this gives
rise to the log-compressed number lines and can greatly facilitate associative learning in the latent
space.
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Inspired by experiments on animals, we conduct experiments where a neural network learns number
lines for spatial distance and count of objects appearing over time. We designed an experimental
setup where the network needs to predict when a target event will happen. In our experiments, time
to the target event depends either on the elapsed time, traveled spatial distance, or the count of how
many times some object appears in the input. Critically, just like in the experiments with animals,
these variables are not directly observable from the inputs – they are hidden and have to be learned
from the spatiotemporal dynamics of the input. For example, if the target event will happen after
some object appears a certain number of times, the network needs to learn to identify the object and
learn the correct number of appearances (Experiment 3; see also an illustration in Fig. 5). Similarly,
people can estimate distance when riding a bicycle using their motor outputs and sensory inputs –
we can learn a non-linear mapping of motor outputs and sensory inputs onto velocity and integrate
velocity to estimate distance (this concept is an inspiration for Experiments 2a and 2b; see also an
illustration in Fig. 4).

Building on models from computational and cognitive neuroscience (Shankar & Howard, 2012;
Howard et al., 2014; 2018), we propose a neural network architecture that gives rise to a number
line supported by unimodal basis functions. The network is composed of three layers. The input
is fed into a recurrent layer with the weights analytically computed to approximate the real-domain
Laplace transform of the input. Critically, we use properties of the Laplace domain and apply global
modulation to the recurrent weights to convert functions of time into functions of other variables,
such as distance or count. The output of the Laplace layer is mapped through a linear layer with
analytically computed weights implementing the inverse Laplace transform. The inverse gives rise
to a log-compressed number line supported with unimodal basis functions. Depending on the mod-
ulatory signal, this population can resemble, for instance, time cells, place cells or count cells. The
output is then mapped through a trainable dense layer with a sigmoid activation function to the net-
work’s output. This approach augments the capabilities of cognitive models, which typically rely
on handcrafted features enabling them to learn latent variables. At the same time, the structure
and properties of the cognitive model are preserved, allowing the resulting system to have strong
explanatory power of neural activity in the brain and behavioral data.

To the best of our knowledge, this work is the first time that the Laplace transform and its inverse
have been implemented as a part of a neural network trainable with error backpropagation – in our
experiments, the gradient flows through the Laplace and inverse Laplace transform. Global modu-
lation of analytically computed recurrent weights is also a novel approach to learning in Recurrent
Neural Networks (RNNs). The Laplace transform uses a diagonal weight matrix which makes it
robust to problems of exploding and vanishing gradients related to backpropagation through time.
These problems have been somewhat reduced with gated networks, such as Long Short-Term Mem-
ory (LSTM) (Greff et al., 2016; Hochreiter & Schmidhuber, 1997) and Gated Recurrent Units (GRU)
(Chung et al., 2014). Recent approaches bounded the gradients, such as Coupled Oscillatory RNN
(coRNN) (Rusch & Mishra, 2020) or used formalism that does not require learning of the recur-
rent weights, such as Lagrange Memory Unit (LMU) (Voelker et al., 2019). Echo state networks
(Jaeger, 2001) used RNNs with non-trainable, fixed recurrent weights but without global modula-
tion. Similarly, the multiscale temporal structure approach used fixed weights with a spectrum of
time constants (Mozer, 1992).

2 METHODS

We first describe the construction of a log-compressed timeline using an approximation of the real-
domain Laplace and the inverse Laplace transform. Then we describe how the timeline can be turned
into a more general number line via global weight-modulation in the Laplace domain.

2.1 CONTINUOUS-TIME FORMULATION OF LAPLACE AND INVERSE LAPLACE TRANSFORM

Given a one-dimensional input signal f(t), we define a modified version of the Laplace transform
F (s; t):

F (s; t) =

∫ t

0

e−s(t−t′)f(t′)dt′. (1)

This modified version differs from the standard Laplace transform only in variable s: instead of s
being a complex value composed of the real and imaginary part, we use real and positive s. This
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modification simplifies the neural network implementation while still giving us the computational
benefits of the standard Laplace transform, as we will illustrate below. Note that F is also a function
of time t. This implies that at every moment we construct the Laplace transform of the input function
up to time t: f(0 ≤ t′ < t)

L−→ F (s; t).

To construct the timeline we need to invert the Laplace transform. The inverse which we denote as
f̃(

∗
τ ; t) can be computed using Post inversion formula (Post, 1930):

f̃(
∗
τ ; t) = L−1

k F (s; t) =
(−1)k

k!
sk+1 dk

dsk
F (s; t), (2)

where
∗
τ := k/s and k →∞.

2.2 GENERALIZING A TIMELINE INTO A NUMBER LINE

We can use the Laplace domain to convert a timeline into a number line if we learn a time derivative
of a variable that we want to represent using the number line. To achieve this, instead of computing
the Laplace transform for a function of time f(t), we compute the transform for a function of some
variable f(x(t)).

We first rewrite Eq. 1 in a differential form:

dF (s; t)

dt
= −sF (s; t) + f(t). (3)

The impulse response (response to input f(t) = δ(0)) of F (s; t) decays exponentially as a function
of time t with decay rate s: e−st (Fig. 1a).

We define a time derivative of x(t) as α(t) = dx
dt and modify Eq. equation 3 as follows:

dF (s; t)

dt
= −α(t)sF (s; t) + f(t), (4)

such that α(t) modulates the decay rate s (Fig. 1b).

By reorganizing terms in Eq. equation 4 and applying the chain rule we obtain the Laplace transform
of f(x(t)):

dF (s;x)

dx
= −sF (s;x) + f(x). (5)

Note that Eq. equation 3 and Eq. equation 5 are the same, except that t in Eq. equation 3 is x in
Eq. equation 5. This allows us to use the same calculation as in Eq. equation 2 to obtain the inverse
Laplace transform of f̃(

∗
τ ;x).

2.3 NEURAL NETWORKS IMPLEMENTATION OF THE LAPLACE AND INVERSE LAPLACE
TRANSFORM WITH GLOBAL WEIGHT MODULATION

We implement an approximation of the modified Laplace and inverse Laplace transform as a two-
layer neural network with analytically computed weights (Fig. 1c). The first layer implements the
modified Laplace transform through an RNN with recurrent weights. The second layer implements
the inverse Laplace transform as a dense layer with weights analytically computed to implement
k − th order derivative with respect to s.

While in the Laplace domain s is a continuous variable, here we redefine s as N elements long
vector. We can now write a discrete-time approximation of Eq. equation 4 as an RNN with a diagonal
connectivity matrix and a linear activation function:

Fs;t = WLFs;t−1 + ft, (6)

where WL is a recurrent weight matrix WL = e−α(t)S∆t where WL is an N by N matrix and S
is a diagonal matrix with diagonal elements composed of s values. At every time step t, Fs;t is N
elements long vector. For brevity of the notations, we assume that the duration of a discrete-time
step ∆t = 1. Importantly, since the values of vector s are fixed, WL is also fixed and not learned
during training.
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a b c

Figure 1: The activity of neurons in CNL with and without modulatory input. a. Impulse response of
the Laplace transform approximation decays exponentially with decay rate s. The impulse response
of the inverse Laplace transform approximation has a unimodal form such that each curve peaks
at

∗
τ . Note that if time t was shown on the log-scale, the unimodal curves would be equally wide

and equidistant. b. α modulates the decay rate of Fs;t. When α = 0, Fs;t is constant since
its time derivative is 0. When α = 0.5 the decay of Fs;t is slowed down by a factor of 2. c.
Schematic of the CNL network with input fa and modulatory inputs. fa feeds into the recurrent layer
that implements an approximation of the Laplace transform using analytically computed recurrent
weights. Modulatory inputs are passed through a trainable dense layer and modulate the recurrent
weights. Approximation of the inverse Laplace transform f̃∗

τ ;s
is computed by applying a linear

operator L−1
k on Fs;t. Afterward, f̃∗

τ ;s
is fed into a trainable dense layer with sigmoid activation

function. The network has a single prediction output which is trained to predict the activity of target
fb.

Following Eq. equation 2, a discrete approximation of the inverse Laplace transform, f̃∗
τ ;t

, can be

implemented as a dense layer on top of Fs;t. The connectivity matrix of the dense layer is L−1
k (see

Appendix Sec. A.1 for the derivation of the exact matrix form of L−1
k ).

To interpret f̃∗
τ ;t

and to select values s in an informed way, we compute the impulse response of f̃∗
τ ;t

.

For input f(t) = δ(0), the activity of f̃∗
τ ;t

is:

f̃∗
τ ;t

=
1

u(t)

kk+1

k!

(
u(t)
∗
τ

)k+1

e
−k

u(t)
∗
τ , (7)

where u(t = tn) =
∑tn

i=0 α(ti). If α(0 ≤ t < tn) = 1, then u(t = tn) = tn. To investigate
properties of this approximation and to motivate our choice for

∗
τ and consequently s, we analyze

the case where α(0 ≤ t ≤ tn) = 1.

The impulse responses of units in f̃∗
τ ;t

is a set of unimodal basis functions (Fig. 1a and Fig. 2a). To
better characterize its properties we first find the peak time by taking a partial derivative with respect
to t, equate it with 0 and solve for t: ∂f̃∗

τ ;t
/∂t = 0 → t =

∗
τ . Therefore each unit in f̃∗

τ ;t
peaks

at
∗
τ . Note that if we computed the exact continuous-time Laplace and inverse Laplace transform

(which would require infinitely many neurons, since s and
∗
τ would be continuous variables), the

impulse response would be a δ(
∗
τ). This would provide a perfect reconstruction of the input function

f(0 < t′ < t) rather than its approximation.

To further characterize our approximation, we express the width of the unimodal basis functions of
the impulse response of f̃∗

τ ;t
through the coefficient of variation c (see Appendix Sec. A.2 for the

derivation of c): c = 1/
√
k + 1. Importantly, c does not depend on t and

∗
τ , implying that the width

of the unimodal basis functions increases linearly with their peak time. Therefore when observed as
a function of log(t), the width of the unimodal basis functions is constant. Note that this property is
critical for log-compression.
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We choose values of
∗
τ as log-spaced between some minimum and maximum (see next section for the

values used in the experiments). Because of the log-spacing and because c does not depend on t and
∗
τ , when analyzed as a function of log(t), the unimodal basis functions are equidistant and equally
wide, providing uniform support over log(t) axis. This result is analogous to the scale-invariance
observed in human timing and perception, formalized as the Weber-Fechner law. Intuitively, this
is beneficial since the more recent past carries more predictive power than the more distant past.
Hence, our approximation of function f(0 < t′ < t) will be better for values closer to t than to 0.
Note that fixing the values of

∗
τ and choosing k also fixes values of s since s = k/

∗
τ so s is not a

trainable parameter.

To convert a log-compressed timeline into a log-compressed number line, we implemented global
modulation of recurrent weights as in Eq. equation 4. We assume that α is not known and that
it needs to be learned from the input data. α(t) is computed through a feedforward projection
which receives a subset of inputs designated as modulatory inputs (e.g., inputs from which a latent
variable, such as velocity or count, can be computed). Details of the feedforward projection are
stated in the description of each experiment since they varied across experiments due to variability
in the input dimensionality. We feed f̃∗

τ ;t
into a trainable dense layer with a single output and

a sigmoid activation function. Due to its log-compression of the input signal and gating of the
recurrent weights, we call our approach Compressed Number Line or CNL.

3 RESULTS

We tested the proposed network on four event prediction experiments inspired by psychophysics
experiments in humans and other animals. In our experiments, event a predicted event b such that
the time between them depends on either the actual amount of elapsed time (Experiment 1), traveled
distance with velocity as a latent variable which can be learned as a non-linear combination of the
inputs (Experiments 2a and 2b) or the number of occurrences of a specific pattern (Experiment 3).
Our goal was to demonstrate that the proposed network can identify latent variables by learning an
appropriate mapping from inputs onto a global modulatory signal α. The network then constructs a
number line representation over an integral of the latent variable (e.g., if velocity is a latent variable,
then traveled distance is its integral across time), making the learning more accurate, faster, and
more robust than with other approaches.

CNL parameters were kept the same for all the experiments. We set k = 8 and we used 64 neurons
in F and 50 neurons in f̃ with input fa. The number of neurons in f̃ was smaller than in F in order
to avoid edge effects when taking a derivative with respect to s (the number of units in f̃ is 2k less
than the number of units in F ; see Appendix Sec. A.1 for details on the computation of the discrete
approximation of the derivative).

∗
τ was composed of 50 log-spaced values between 5 and 20000.

These lower and upper limits were chosen to cover the entire range of temporal relationships in the
input signal. The output of f̃ layer was fed through trainable weights into a single output neuron
with a sigmoid activation function.

To evaluate how commonly used RNNs perform on this task we compared CNL with a simple RNN,
GRU, LSTM, LMU, and coRNN followed by a fully connected layer. For LMU we experimented
with hyperparameters and got the best performance with: dt = 1, θ = 5000 and d = 128. For
coRNN we set the hyperparameters to the same values as in Rusch & Mishra (2020): dt = 0.016,
γ = 94.5 and ϵ = 9.5. The hidden size was 64 in all cases. As with CNL, the output layer had
a single neuron with a sigmoid activation function. While still relatively simple, these networks
had many more parameters than CNL (e.g., Table 1) because most of the CNL parameters were
computed analytically.

The results were obtained as an average of three runs with 95% confidence intervals. Each of the
networks was trained for 1000 epochs using the learning rates 0.001, 0.01, 0.1, and 1.0 with ADAM
optimization on an Nvidia Tesla P100 12GB GPU. We used sample weighting to train the networks
using binary cross-entropy as supervising loss and report binary cross-entropy as test loss. We also
report the average distance between the actual timestamp of the target event and the timestamp that
received the highest probability estimate by a particular network.
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3.1 EXPERIMENT 1: PREDICTING INTERVAL DURATION AT A WIDE RANGE OF TEMPORAL
SCALES

To test the baseline performance of different approaches, we start with a simple experiment with no
latent variables. We designed a setup with input fa(t) = δ(x) and target (label) fb(t) = δ(x + x′)
(Fig. 2a). We used three values for x′: x′ ∈ [50, 500, 5000]. Length of fa(t) and fb(t) was 4x′, 200,
2000 and 20000. We created only 3 training examples and 12 validation and 35 test examples, every
time with a random x sampled uniformly from a range between 1 and 3x′.

Results are shown in Table 1 (cross-entropy loss) and Table 5 (average distance). At the shortest
timescale with x′ = 50 and medium timescale with x′ = 500, LMU did a perfect job of predicting
fb. At the largest time scale (x′ = 5000), CNL performed better than the other approaches, which
effectively failed to provide a useful prediction (Fig. 6), likely due to a large number of parameters
and problems with gradient backpropagation in long temporal sequences.

Table 5 indicates that for CNL the error in the distance grows roughly linearly with x′. This gradual
drop in performance is due to the log-spacing of the recurrent weights. Fig. 6 shows how the standard
deviation of the bell-shaped prediction curve scales with the temporal distance. These properties are
consistent with temporal estimates in humans and the Weber-Fechner law.

To investigate the importance of the inverse Laplace transform, we also compared CNL (which is
composed of the Laplace and inverse Laplace transform) with F (s) (only the Laplace transform,
without the inverse) combined with a trainable dense layer of 50 neurons. We label the later model
as CNL-F. CNL performed better than CNL-F at all scales. We attribute this to the fact that the in-
verse Laplace transform constructs a timeline, which is a representation that makes learning tempo-
ral associations particularly easy. Timeline representation means that neurons activate sequentially
following event a. This means that some neurons are active only when event b happens, making it
easy for the network to learn the temporal relationships. This is confirmed by observing the learned
weights of the dense layer in CNL (Fig. 3). Since the Laplace transform is linear, the output weights
are interpretable. The weights are largest around

∗
τ = x′ and have a Mexican hat connectivity pattern

which helps to sharpen the prediction peak (Fig. 6).

x’=50 x’=500 x’=5000 Params
CNL-F 0.399 ± 0.031 0.433 ± 0.008 0.639 ± 0.014 51
CNL 0.212 ± 0.003 0.227 ± 0.004 0.255 ± 0.004 51
RNN 0.521 ± 0.317 0.446 ± 0.281 0.561 ± 0.184 4353

LSTM 0.347 ± 0.500 0.669 ± 0.077 0.647 ± 0.000 17217
GRU 0.103 ± 0.111 0.326 ± 0.559 0.646 ± 0.001 12929

coRNN 0.264 ± 0.255 0.408 ± 0.304 0.647 ± 0.000 8385
LMU 0.005 ± 0.008 0.208 ± 0.265 0.732 ± 0.103 12610

Table 1: Experiment 1: Binary cross-entropy loss across different scales.

3.2 EXPERIMENT 2A: PREDICTING DISTANCE IN THE PRESENCE OF TWO MODULATORY
INPUTS

In this experiment input fa predicts input fb, but the time between them was modulated by other
inputs, fc and fd (see Fig. 4 for an illustration of the experiment). This means that the effective
duration of each time step was a weighted sum of fc and fd as described in Alg. 1. For the CNL
network, this meant that it had to learn that α = w1fc + w2fd, where w1 and w2 were randomly
generated weights between 0 and 1 and fc and fd had a magnitude ranging from 0 to 5. The network
only observed fc and fd and not the weights w1 and w2, so it had to learn the relationship between
α and fc and fd. We can view this problem as one of learning spatial distance between event a and
event b such that velocity (in this case α(t)) is not directly observable but has to be learned from
the modulatory inputs fc and fd. Therefore, a does not predict b after a particular amount of time
has elapsed, but instead after traveling a particular distance at a velocity that has to be learned from
the network inputs. Similar to Experiment 1, in the absence of modulatory inputs fa(t) = δ(x) and
fb(t) = δ(x+ x′) with x′ ∈ [50, 500, 5000]. Modulatory inputs fc and fd were stepwise functions
broken into 15 pieces with amplitude of each piece between 0 and 10. The two modulatory inputs
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were passed through a set of weights Wα (one weight for each modulatory input), adding two more
parameters to CNL.

Algorithm 1 Generating an interval duration x′
m with modulatory inputs fc and fd. If fc and fd are

equal to 1, x′
m = x′ = 100.

i⇐ 0

x′ ⇐ 0

while i ≤ x′ do
i = i+ 1

x′
m = x′

m + w1fc(x+ i) + w2fd(x+ i)

end while

We constructed 6 training, 22 validation, and 22 test examples. The error was again quantified
as binary cross-entropy loss in predicting fb(t). Results from Experiment 2 are given in Table 2
(cross-entropy loss) and Table 6 (average distance). Despite having much fewer parameters, CNL
performed better than the other approaches at all timescales. We attribute this to the ability of CNL to
learn α from the inputs and cast the problem to be similar to Experiment 1 by constructing a number
line and then simply learning which component on the number line corresponds to the target, which
is a simple associative task. From observing plots in Fig. 7 we see that other approaches failed to
provide a useful prediction.

x’=50 x’=500 x’=5000 Params
CNL-F 0.537 ± 0.171 0.585 ± 0.006 0.633 ± 0.047 53
CNL 0.275 ± 0.007 0.277 ± 0.004 0.336 ± 0.018 53
RNN 0.578 ± 0.489 0.574 ± 0.316 0.575 ± 0.157 4481

LSTM 0.637 ± 0.349 0.677 ± 0.179 0.617 ± 0.179 17729
GRU 0.653 ± 0.098 0.659 ± 0.131 0.594 ± 0.096 13313

coRNN 0.611 ± 0.093 0.593 ± 0.071 0.509 ± 0.019 8513
LMU 0.645 ± 0.161 0.592 ± 0.258 0.521 ± 0.350 12740

Table 2: Experiment 2a: Binary cross-entropy loss across different scales.

a b c d

Figure 2: Temporal relationships in the presence of modulatory inputs. Delta pulse in fa predicts
a delta pulse in fb. a No temporal modulation (e.g., α = 1). b and c When the modulatory signal
corresponds to velocity (Experiment 2), the network represents traveled distance as manifested by
units that activate sequentially as a function of distance (bottom row). d Temporal modulation with
delta pulses (Experiment 3). The network represents the total count of presented pulses.
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x’=50 x’=500 Params
Loss Distance Loss Distance

CNL-F 0.601 ± 0.220 17.4 ± 7.6 0.498 ± 0.004 229.7 ± 0.0 1352
CNL 0.2031 ± 0.019 7.4 ± 0.6 0.2601 ± 0.020 52.6 ± 8.8 1352
RNN 0.658 ± 0.162 70.4 ± 15.9 0.676 ± 0.229 746.6 ± 96.0 7553

LSTM 0.627 ± 0.064 67.3 ± 3.7 0.657 ± 0.170 675.4 ± 224.0 30017
GRU 0.578 ± 0.134 57.1 ± 16.6 0.640 ± 0.075 573.9 ± 22.2 22529

coRNN 0.627 ± 0.196 54.8 ± 21.9 0.627 ± 0.043 733.1 ± 112.4 11585
LMU 0.614 ± 0.062 104.3 ± 2.7 0.639 ± 0.120 561.3 ± 239.0 15860

Table 3: Experiment 2b: Binary cross-entropy loss across different scales and the average distance
between the actual timestamp of the target event and the timestamp that received the highest proba-
bility estimate.

count=10 count=200 Params
Loss Distance Loss Distance

CNL-F 0.469 ± 0.249 24.2 ± 53.1 0.085 ± 0.001 1005.0 ± 0.0 196
CNL 0.201 ± 0.036 1.3 ± 0.4 0.077 ± 0.004 75.8 ± 21.5 196
RNN 0.323 ± 0.076 69.8 ± 24.5 0.108 ± 0.023 1365.1 ± 421.1 5377

LSTM 0.303 ± 0.140 62.0 ± 14.2 0.096 ± 0.010 1264.4 ± 941.1 21313
GRU 0.324 ± 0.119 28.8 ± 1.7 0.116 ± 0.072 629.0 ± 1006.0 16001

coRNN 0.636 ± 0.117 60.8 ± 25.3 0.093 ± 0.000 1619.3 ± 0.0 9409
LMU 0.402 ± 0.297 65.5 ± 87.8 0.146 ± 0.135 597.7 ± 781.4 13650

Table 4: Experiment 3: Binary cross-entropy loss across different scales and the average distance
between the actual timestamp of the target event and the timestamp that received the highest proba-
bility estimate.

3.3 EXPERIMENT 2B: PREDICTING DISTANCE IN THE PRESENCE OF FIFTY MODULATORY
INPUTS

This experiment is a more complex version of Experiment 2a with fifty modulatory inputs instead
of just two. In this case α =

∑50
i=1 wifi, where fi were the modulatory inputs and weights wi for

1 ≤ i ≤ 6 were chosen randomly between 0 and 1 and weights wi for 7 ≤ i ≤ 50 were 0. The
range of values for the magnitude of fi was between 0 and 5. Thus the network had to learn to
ignore 44 of the inputs (which were effectively noise) and add together a weighted sum of 6 inputs.
If the network correctly learns α, then the distance between fa and fb becomes fixed on a number
line. The fifty modulatory inputs were passed through a set of weights Wα, which was a two-layer
feedforward network.

We constructed 60 training, 20 validation, and 20 test examples. We conducted the experiment at
two temporal scales with x′ = 50 and x′ = 500. Since this experiment was more demanding in
terms of resources, we omitted the timescale x′ = 5000. Results from Experiment 2b are shown in
Table 3. CNL again performed better than the other approaches at all timescales. Results shown in
Fig. 8 suggest that CNL was again the only approach that provided a useful estimate.

3.4 EXPERIMENT 3: COUNTING

In Experiment 3, the time between a and b was modulated by the number of specific patterns pre-
sented as modulatory inputs (Fig. 5). At each time step, a pattern composed of 16 elements with
binary values was presented. One of the patterns, which we refer to as the target pattern, was re-
peated multiple times and the network had to learn that the time between a and b depends on the
number of target patterns. The patterns were generated randomly.

To solve this task, the network had to learn to recognize the target pattern and count its repetitions.
In this case, α had to be learned as a temporal derivative of the count. Whenever the target pattern
appears, the count changes by one, therefore α = 1. Whenever the pattern was not the target pattern,
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the counts stay the same and α = 0. Fig. 2d shows an illustration of this, assuming that the network
has learned appropriate α.

We conducted the experiment at two different scales, one with 10 target counts and one with 200
target counts. In the first case, the input signal had 200 time steps, and in the second case, it had
2000 time steps. The results are shown in Table 4. At both scales, CNL performed better than the
other approaches demonstrating that it learned the temporal derivative and constructed a number
line representing the count of the target pattern. Fig. 9 shows prediction results for each of the seven
networks.

4 DISCUSSION

The mammalian brain seems to commit to representing many physical and abstract dimensions as
number lines. Computational neuroscience and cognitive science work developed a framework for
the real-value Laplace transform and inverse Laplace transform that gives rise to such representa-
tion. Our approach uses that framework as a part of a deep neural network that can extract relevant
latent dimensions. Because of commitment to the number line representation, the network can learn
various associative relationships with very few training examples and a small number of weights.
Existing widely-used networks, such as LSTMs and GRUs fail at most learning tasks used here.
While, in principle, neural networks with multiple layers, many training examples and long training
time could potentially perform well, the proposed approach provides a much simpler alternative.

Cognitive models provide immense utility in understanding neural computations in the brain, but
they are usually limited to handcrafted features and associative learning. Here we have shown that
incorporating cognitive models into neural networks can expand the utility and explanatory power
of these models. CNL can take advantage of deep learning and learn latent features while at the
same time utilizing the benefits of the cognitive model and structured representation of knowledge
which allows easy associative learning. The resulting performance resembled human performance
in psychophysics tasks, commonly characterized by the Weber-Fechner law. This is manifested by
a roughly linear increase of error with distance in Table 5 and Table 6 as well as a linear increase of
the standard deviation of the bell-shaped prediction curve in Fig. 6 as a function of distance.

This work introduces a trainable neural network implementation of real-domain Laplace transform
and inverse Laplace transform. The Laplace domain enables access to a number of useful operations.
For instance, translation, convolution and cross-correlation can be efficiently implemented in the
Laplace domain. In this work, the network constructs the real-domain Laplace transform of the
position of A as a function of the latent dimension. In the experiments used here, this is simply a
delta function. Convolution of two delta functions at two real numbers produces a delta function at
their sum δ(x) ∗ δ(y) = δ(x + y); cross-correlation is similarly understandable as subtraction. In
this way, abstract dimensions could be used with sparse representations as part of a number system
for symbolic computation (Howard et al., 2015; Howard & Hasselmo, 2020). Because the same
representational scheme can be generated for many different latent dimensions, the same operations
could be reused for many different kinds of information. Supplementary material contains code
and detailed instructions for reproducing the results and integrating the Laplace and inverse Laplace
transform into deep neural networks.

Activity patterns of neurons in the proposed network resemble the activity of neurons recorded
in mammalian brains. Fig. 2 shows time cells, place cells (in 1D environment) and cells tuned to a
particular number of objects. Each of these cell types has been recorded in mammalian brains (Bures
et al., 1997; MacDonald et al., 2011; Morcos & Harvey, 2016). The experiments used here require
the network to learn a variety of complicated one-dimensional latent dimensions. Neurons in the
mammalian hippocampus and prefrontal cortex have been shown to form conjunctive representations
of multiple variables (Rigotti et al., 2013; Fusi et al., 2016; Nieh et al., 2021). We have yet to
show that the proposed approach can scale to multiple latent dimensions. Nonetheless, the current
results indicate that it is possible to automatically learn continuous supported latent dimensions
using standard techniques for training artificial neural networks.
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A APPENDIX

A.1 DERIVATION OF THE CONNECTIVITY MATRIX FOR THE INVERSE LAPLACE TRANSFORM

As described in Eq. 2, the inverse Laplace transform is performed using the Post inversion formula
(Post, 1930):

f̃(
∗
τ ; t) = L−1

k F (s; t) =
(−1)k

k!
sk+1 dk

dsk
F (s; t),

where
∗
τ := k/s. To implement this equation in a neural network we construct a discrete approx-

imation for dk

dsk
. First we compute N by N linear operator D which approximates the first order

derivative: d
ds (Alg. 2) and then raise D to power k to implement k-th order derivative: Dk ≈ dk

dsk
.

Algorithm 2 Constructing N by N linear operator D which approximates the first order discrete
derivative.
D ← zeros(N,N)

for i← 1 to N − 1 do
D[i, i− 1]← − s[i+1]−s[i]

(s[i]−s[i−1])(s[i+1]−s[i−1])

D[i, i]←
s[i+1]−s[i]
s[i]−s[i−1]

− s[i]−s[i−1]
s[i+1]−s[i]

s[i+1]−s[i−1]

D[i, i+ 1]← s[i]−s[i−1]
(s[i+1]−s[i])(s[i+1]−s[i−1])

end for

A.2 COMPUTING COEFFICIENT OF VARIATION OF f̃

f̃ has a unimodal impulse response with peak at t =
∗
τ . The coefficient of variation, c, is a ratio of

standard deviation and mean. The mean of f̃ is:

µ =

∫ ∞

0

tf̃(s; t)dt

=

∫ ∞

0

t
1

t

kk+1

k!

(
t
∗
τ

)k+1

e
−k t

∗
τ dt

=
kk+1

k!

∫ ∞

0

(
t
∗
τ

)k+1

e
−k t

∗
τ dt

=
∗
τ
k + 1

k
.

The standard deviation of f̃ is:

σ =

√∫ ∞

0

(t− µ)2f̃(s; t)dt

=

√∫ ∞

0

(t− µ)2
1

t

kk+1

k!

(
t
∗
τ

)k+1

e
−k t

∗
τ dt

=
∗
τ

√
k + 1

k
.

Finally, the coefficient of variation is then:

c =
σ

µ
=

1√
k + 1

.

The coefficient of variation depends only on k. Therefore the variance grows with the peak time. In
other words, variance is constant as a function of the logarithm of the peak time.

12



Under review as a conference paper at ICLR 2023

A.3 VISUALIZAION OF WEIGHTS IN CNL

a b c

Figure 3: CNL weights for the output dense layer when x′ = 50 (a), x′ = 500 (b) and x′ = 5000 (c).
Since the Laplace transform is linear, the output weights are interpretable. The weights are largest
around

∗
τ = 50 (a),

∗
τ = 500 (b) and

∗
τ = 5000 (c) and have a Mexican hat connectivity pattern

which helps to sharpen the prediction.

A.4 ILLUSTRATIONS OF EXPERIMENT 2 A AND 3

a b

∫ "#$

∫ #$

∫ %!#$

∫ %"#$
∫ "#$

Figure 4: Illustration of predicting distance by learning latent modulatory inputs, as highlighted
in Experiment 2. a. Let us assume that we want to estimate traveled distance from location A to
location B. If we integrate time steps while traveling from A to B (x axis) then the estimate would not
be accurate (broad distribution shown in blue) since our velocity changes during the trip. However, if
we integrate velocity (y axis) then the estimate would be more accurate (narrow distribution shown in
blue) and subject only to error in the velocity estimate itself. b. If velocity is not directly observable,
it needs to be estimated as a combination of observable inputs, fc and fd as in Example 2a (for
example, perhaps we are riding a bicycle and only observe motor outputs and sensory inputs - those
would correspond to fc and fd here). If we use only fc or fd, our estimate of traveled distance will
not be accurate (broad distributions shown in blue). However if we find a correct combination of fc
and fd (in this simple illustration that is fc+ fd) then the velocity estimate is more accurate (narrow
distribution shown in blue) and subject again only to error in the velocity estimate itself.
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Figure 5: Example output from the Counting dataset used in Experiment 3 (duration and size of the
pattern are shortened for illustrative purposes). Input Data columns represent modulatory inputs,
and rows represent time steps. In this example, the five rows highlighted in blue contain the target
pattern, with the red portions being the target pattern itself. The target number of pattern occurrences
is 3, corresponding to the number of patterns between the signal to start counting ”S” (fed into the
network as fa) and the hidden target ”T”.

A.5 AVERAGE DISTANCE METRIC IN EXPERIMENTS 1 AND 2A

x’=50 x’=500 x’=5000 Params
CNL-F 8.0 ± 0.0 141.0 ± 0.0 2658.6 ± 6.1 51
CNL 2.0 ± 0.0 19.0 ± 0.0 249.3 ± 1.4 51
RNN 83.1 ± 107.0 641.4 ± 612.8 7513.0 ± 10853.5 4353

LSTM 11.1 ± 41.4 763.5 ± 302.9 12560.0 ± 0.0 17217
GRU 0.8 ± 1.7 102.8 ± 405.9 12405.7 ± 154.8 12929

coRNN 4.0 ± 3.7 438.3 ± 594.5 12539.0 ± 0 8385
LMU 0.0 ± 0.0 0.0 ± 0.0 5001.3 ± 5724.4 12610

Table 5: Experiment 1: The average distance between the actual timestamp of the target event and
the timestamp that received the highest probability estimate.

x’=50 x’=500 x’=5000 Params
CNL-F 29.7 ± 14.5 354.0 ± 0.0 8546.1 ± 9514.7 53
CNL 2.4 ± 0.7 35.2 ± 5.2 433.4 ± 118.1 53
RNN 57.7 ± 22.1 735.2 ± 139.3 6783.5 ± 3448.6 4481

LSTM 55.9 ± 8.7 607.1 ± 50.6 8200.2 ± 3628.6 17729
GRU 62.2 ± 13.7 592.8 ± 90.9 5293.3 ± 1597.3 13313

coRNN 49.9 ± 10.7 568.1 ± 57.4 5553.4 ± 913.9 8513
LMU 47.9 ± 31.4 778.3 ± 128.8 7884.5 ± 2141.8 12740

Table 6: Experiment 2a: The average distance between the actual timestamp of the target event and
the timestamp that received the highest probability estimate.
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A.6 VISUALIZATION OF REPRESENTATIVE EXAMPLES IN EACH EXPERIMENT

a b c d e f g
CNL-F CNL RNN LSTM GRU coRNN LMU

Figure 6: Experiment 1: representative examples of prediction (orange lines) for different models.
Input fa is shown in blue and target fb is in green. Each row corresponds to a different time scale.
Top row: x′ = 50, middle row: x′ = 500 and bottom row: x′ = 5000.

a b c d e f g
CNL-F CNL RNN LSTM GRU coRNN LMU

Figure 7: Experiment 2a: Odd rows: representative examples of prediction (orange lines) for differ-
ent models. Input fa is shown in blue and target fb is in green. Even rows: Modulatory inputs fc
and fd. Plots are shown for three temporal scales. Top two rows: x′ = 50, third and fourth row:
x′ = 500 and bottom two rows: x′ = 5000.
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a b c d e f g
CNL-F CNL RNN LSTM GRU coRNN LMU

Figure 8: Experiment 2b: Odd rows: representative examples of prediction (orange lines) for differ-
ent models. Input fa is shown in blue and target fb is in green. Even rows: Modulatory inputs. Plots
are shown for two temporal scales. Top two rows: x′ = 50, third and fourth row: x′ = 500.

a b c d e f g
CNL-F CNL RNN LSTM GRU coRNN LMU

Figure 9: Experiment 3: Top row: representative examples of prediction (orange lines) for different
models. Input fa is shown in blue and target fb is in green. Plots are shown for two temporal scales.
Top row: fb = 1 after 10 counts, bottom row: fb = 1 after 200 counts.
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