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ABSTRACT

Direct Preference Optimization (DPO) has been proven as an effective solution in
aligning generative models with human preferences. However, as shown in recent
works, DPO could suffer from constraints from the offline preference dataset. This
paper introduces a novel improvement approach for online iterative optimization
of the diffusion models without introducing extra annotation of the online data.
We propose to learn a preference improvement model to extract the implicit pref-
erence from the preference dataset. The learned improvement model is then used
to generate winning images from the images generated by the current diffusion
model. We can construct new pairs of preference data by using images generated
by the current diffusion model as losing images, and its corresponding improved
images as winning images. The diffusion model can therefore be optimized via
iteratively applying online preference datasets. This method enables online im-
provement beyond offline DPO training without requiring additional human la-
beling or risking overfitting the reward model. Results demonstrate improvements
in preference alignment with higher diversity compared with other fine-tuning
methods. Our work bridges the gap between offline preference learning and on-
line improvement, offering a promising direction for enhancing diffusion models
in image generation tasks with limited preference data.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful paradigm for
aligning generative models with human preferences, showing remarkable success in both language
models (Ouyang et al., 2022) and diffusion models for image generation (Black et al., 2024; Fan
et al., 2023). Traditional RLHF approaches, often implemented using Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017), have faced significant challenges, including training instability,
overfitting the reward model, and high computational costs.

Direct Preference Optimization (DPO) was introduced as an alternative that simplifies the training
process by directly optimizing the model based on preference data (Rafailov et al., 2024; Wallace
et al., 2024). While DPO offers more efficient training and improved stability, it is inherently limited
to offline examples, potentially constraining its performance: Offline DPO, which relies solely on a
fixed dataset of preferences, often exhibits suboptimal performance due to the lack of on-policy data
(Xu et al., 2024; Tajwar et al., 2024). Recent studies have investigated online iterative DPO methods,
such as online annotated preference data from LLMs (Rosset et al., 2024), reward models (Xu et al.,
2024), or human feedbacks (Xiong et al., 2024). However, online labeling can be prohibitively
expensive, and runs the risk of reward hacking Zhang et al. (2024).

On the other hand, recent research has explored the concept of self-improvement in generative mod-
els especially LLMs, including self-rewarding models (Yuan et al., 2024b) and self-improving lan-
guage models (Choi et al., 2024). These approaches offer a promising direction to achieve self-
improvement without extra labeled data, which could be a natural remedy for data constraints in
DPO. However, such self-improvement capability remains under-explored in text-to-image diffu-
sion models. Recently, Yuan et al. (2024a) proposed a self-play approach for diffusion models.
However, their optimization target is equivalent to aligning with the winning data distribution. The
performance is thus still upper-bounded by the offline dataset. The self-improvement approaches
have been widely studied for LLMs since the base LLM can be re-purposed in a natural way to
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SD 1.5 Diffusion-DPO SPIN Ours

Figure 1: Visualization of sampled images from the baseline and fine-tuned diffusion models.
Prompts (from top to bottom): 1. Beefy cowboy, tucked in shirt; 2. A cyborg on the ocean; 3.
Cute grey cat, digital oil painting by Monet; 4. A guinea pig riding a motorcycle. The samples on
the same row are sampled from the same seed.

provide a self-improvement signal. However, it is not straightforward to apply the self-improvement
approach to a mixed-modality T2I model.

In this paper, we aim to answer the following research question: With a fixed offline preference
dataset, can we achieve online improvement for diffusion models without extra annotations? To
solve the challenges of limited offline datasets, we introduce a novel multi-task formulation to train
a model to learn the generic improvement directions from the preference dataset.

Specifically, we learn an improvement diffusion model to generate a winning image given a losing
image and a prompt. The learned improvement diffusion model can then be applied to generate
online preference pairs depending on the output of the current diffusion model, enabling continuous
improvement in iterative DPO training. This approach offers several key advantages:

• Leveraging the advantages of DPO while mitigating its limitations in offline settings;

• Enabling online learning without the need for extra annotations;

• Providing a mechanism for continuous improvement for diffusion models with fixed pref-
erence datasets.

Experimental results demonstrate that our iterative training for diffusion models with the learned
improvement model leads to improvements over DPO baselines including Diffusion-DPO (Wallace
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et al., 2024) and SPIN (Yuan et al., 2024a). Specifically, we observe consistently higher scores on
PickScore (Kirstain et al., 2023), HPSv2 (Wu et al., 2023), and Aesthetic score (Schuhmann et al.,
2022), indicating improved image quality and better alignment with human preferences. Moreover,
we observe improved Vendi scores (Friedman & Dieng, 2023), suggesting that our method enhances
quality without sacrificing diversity in the generated images, even improving the diversity compared
with SPIN and Diffusion DPO.

We summarize our contributions as follows: (1) We introduce a novel method that learns an im-
provement direction from an offline preference dataset. (2) Using the improvement model to gener-
ate online training data, we address the critical challenge of learning from limited offline preference
data, allowing training beyond the initial dataset. (3) Our experiments demonstrate improvements
in preference alignment with better diversity compared with baseline fine-tuning methods.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Let x0 ∈ Rn be a data sample, and q0 be the data distribution, i.e., x0 ∼ q0(x0). Diffusion models
approximate q0 with pθ(x0) =

∫
pθ(x0:T )dx1:T , where pθ(x0:T ) = pT (xT )

∏T
t=1 pθ(xt−1|xt) is a

Markov chain with the following dynamics:

p(xT ) = N (0, I), pθ(xt−1|xt) = N
(
µθ(xt, t),Σt

)
. (1)

The forward or diffusion process q(x1:T |x0) is a Markov chain that adds Gaussian noise to the data
according to a variance schedule β1, . . . , βT :

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (
√

1− βt xt−1, βtI). (2)

Let αt = 1 − βt, ᾱt =
∏t

s=1 αs, β̃t = 1−ᾱt−1

1−ᾱt
βt, µθ(xt, t) = 1√

αt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
. The

training of diffusion models is performed by optimizing a variational bound on the negative log-
likelihood Eq[− log pθ(x0)], which is equivalent to optimizing:

Ext,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥22

]
, (3)

where xt =
√
ᾱtx0 +

√
1− ᾱtϵ, x0 ∼ q0(x0), ϵ ∼ N (0, I).

2.2 DPO AND DIFFUSION-DPO

DPO. Assume that we have access to a general preference dataset D = {c, xw, xl} where c is the
text prompt, xl is the losing response and xw is the winning response. Given a conditional generative
model pθ(x|c) and a reference model pref(x|c), we can align the model with the preference using the
DPO loss (Rafailov et al., 2024):

−Ec,xw,xl∼D

[
log σ

(
β log

pθ(xw|c)
pref(xw|c)

− pθ(xl|c)
pref(xl|c)

)]
. (4)

Diffusion-DPO. For diffusion models, since pθ(x|c) is not generally tractable, Wallace et al.
(2024) proposes an approximation by finding an upper-bound of the original DPO objective:

− Ec,xl,xw∼D,t

[
log σ

(
−βT

(
∥ϵw − ϵθ(x

w
t , t, c)∥22 + ∥ϵl − ϵref(x

l
t, t, c)∥22

−∥ϵw − ϵref(x
w
t , t, c)∥22 − ∥ϵl − ϵθ(x

l
t, t, c)∥22

))]
.

(5)

Drawbacks of DPO. The interpretation of DPO training is straightforward: it aims to pull up the
probability of the winning response and pull down the losing one. During training, all the responses
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Figure 2: The overview of the training and sampling pipeline of the proposed improvement model.
The left side diagram demonstrates the three tasks used for training the improvement model. The
three tasks are co-trained together to make the model both learn the generic capability of improving
image toward the preferred distribution represented in the offline dataset and the retain generalized
image generation capability without losing diversity. The right side diagram shows the sampling
strategy of the improvement model where the diffusion score of the improvement images are com-
bined from the three tasks learned before.

are from the preference dataset, and the actual output of the model is never checked. The quality of
the learned policy in DPO can be compromised by a biased distribution towards unseen responses.
This bias arises when the offline preference dataset lacks diversity or is not readily accessible. This
phenomenon has been observed in Xu et al. (2024).

Given the downsides of using an offline dataset in DPO, the recent work (Xiong et al., 2024) has
explored augmenting training datasets through online training, incorporating online samples that en-
hance performance in preference learning (Tajwar et al., 2024). However, annotating these samples
requires extra effort, and optimizing with a reward model could risk reward over-optimization and
hacking. This paper explores whether DPO-based training without extra annotations can be further
improved.

3 METHOD

We consider a scenario where only a fixed offline preference dataset is available, without access
to additional annotation sources. We propose to build an improvement model from the preference
dataset that generates improved images (for a given prompt) when given images generated by the
current diffusion model as input. The input (image condition) and output (improved image) of the
improvement model therefore correspond to a losing/winning preference pair that can be used for
iterative DPO training without extra annotation.

The intuition behind iterative DPO training with an improvement model is straightforward. Recall
that DPO training pulls up the probability of the winning response, which is the output of the im-
provement model in our case. It also pulls down the probability of the losing response, which is the
output of the current diffusion model. Thus, if we can successfully train an improvement model, we
can continuously improve the current diffusion model using the improvement model with iterative
DPO training till convergence.

We introduce how to train such an improvement model in Section 3.1, the sampling from the im-
provement model in Section 3.2, and iterative training of the improvement model in Section 3.3.

3.1 TRAINING AN IMPROVEMENT DIFFUSION MODEL

The objective of the improvement diffusion model ϕ is to predict a conditional distribution over
improved images, p†ϕ(xw|xl, c) i.e. It learns to generate a winning image xw given a text prompt
c and a losing image xl. This can be accomplished by the ability of diffusion models to condition
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Figure 3: The overview of the training pipeline of iterative DPO with the improvement model. The
diagram on the left side demonstrates the iterative DPO algorithm with the improvement model.
The current diffusion model generates a losing image and passes it to the improvement model to
improve to a winning image. Both images are paired as the preference dataset to fine-tune the
diffusion model. The diffusion model is optimized iteratively until it converges. The optimized
diffusion model is then deployed for inference as shown in the diagram on the right side.

the denoising trajectory on arbitrary additional signals. For example, InstructPix2Pix Brooks et al.
(2023) is an image-editing model that takes an original image and an editing instruction (in text) as
its input conditions by encoding the image with additional channels in the first convolutional layer
of the UNet.

Multi-task training. In order to train a model with a generic improvement capability to map any
given image to higher quality ones without sacrificing diversity, we design a multi-task training algo-
rithm that takes different text-image condition combinations as input (See the left side of Figure 2).
The model is trained on a mixture of the following tasks:

1. Learning the conditional winning distribution: Given both text c and a losing image condition
xl, we learn the target distribution of xw:

Eϵ∼N (0,I),xw,xl,c,t[∥ϵ− ϵϕ(xt|xl, c, t)∥2], (6)

where xt =
√
ᾱtxw +

√
1− ᾱtϵ.

2. Reconstruction: Given only the image condition x ∈ {xw, xl}, the model is encouraged to
reconstruct x:

Eϵ∼N (0,I),x,c,t[∥ϵ− ϵϕ(x
′
t|x,∅, t)∥2], (7)

x′
t =

√
ᾱtx+

√
1− ᾱtϵ.

3. Unconditional distribution: Without conditioning input from either xw or xl, the model gener-
ates images drawn from a distribution encompassing both winning and losing images:

Eϵ∼N (0,I),x,c,t[∥ϵ− ϵϕ(x
′′
t |∅,∅, t)∥2], (8)

x′′
t =

√
ᾱtx+

√
1− ᾱtϵ, x, c ∼ D.

Interpretation. The design of the improvement model is inspired by InstructPix2Pix (Brooks
et al., 2023). However, their setting cannot be directly applied here because prompts in our datasets
lack specific improvement/editing instructions. Furthermore, applying their objective function to
our setting could cause the sampled distribution to collapse. Consider a single-task training that
solely focuses on learning the conditional distribution of p(xw|xl, c). Without an objective to force
the model to utilize xl, it might learn to ignore xl and instead learn an unconditional distribution
p(xw|c). This is likely to happen when we are fine-tuning from a pre-trained diffusion model where
image condition weights are initialized to 0. This necessitates the additional reconstruction task
which aims to capture the information from the image condition. Further, the difference between
ϵϕ(·|xl, c, t) and ϵϕ(·|xl,∅, t) provides a natural “improvement direction” for the main improve-
ment task. Moreover, learning the unconditional score is crucial for achieving both high conditional
generation accuracy and sample diversity (Ho & Salimans, 2022).
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Algorithm 1 Iterative DPO training with improvement model.

Input: Improvement model p†ϕ, prompt set Dc, initialized model pθ, number of iterations Titer,
number of samples n, training batch size b, text guidance weight sT , image guidance weight sI ,
number of training steps per iteration Ttrain

for titer ∈ [1, Titer] do
Randomly sample n images from pθ conditioned on Dc, and construct Dl

Randomly sample n images from p†ϕ conditioned on Dc and Dl. With guidance weights sT and
sI , construct Dw

for ttrain ∈ [1, Ttrain] do
Compute an estimation of gradient using Equation (10) with batch size b, and update θ

end for
end for

Output: Fine-tuned model pθ

3.2 SAMPLING FROM AN IMPROVEMENT DIFFUSION MODEL

Double classifier-free guidances. For conditional sampling from the improvement model, we
adapt the double classifier-free guidance technique introduced in InstructPix2Pix (Brooks et al.,
2023) and design the sampling algorithm as:

ϵ̄ϕ(x
′|x, c, t) = ϵϕ(x

′|∅,∅, t) + sI(ϵϕ(x
′|x,∅, t)− ϵϕ(x

′|∅,∅, t))

+ sT (ϵϕ(x
′|x, c, t)− ϵϕ(x

′|x,∅, t)),
(9)

where x′ is the output, sT is the text guidance weight and sI is the image guidance weight. The first
term ϵϕ(x

′|∅,∅, t) is to sample without any condition as the standard diffusion model. The second
term sI(ϵϕ(x

′|x,∅, t) − ϵϕ(x
′|∅,∅, t)) is to sample from the image only condition to reconstruct

the input images. It helps to regularize the divergence of the output from the input images. The
last term sT (ϵϕ(x

′|x, c, t) − ϵϕ(x
′|x,∅, t)) is to sample from both the image and text condition to

improve from losing images to winning ones. The overall sampling algorithm of the improvement
model is illustrated on the right side of Figure 2.

Roles of the guidance weights. To further refine the sampling process, we utilize two guidance
weights: text guidance weight sT and image guidance weight sI . The text guidance weight sT
determines the strength of the improvement direction - a larger sT value leads to more significant
alignment with text prompt. Meanwhile, the image guidance weight sI controls how closely the
output image resembles the input condition image, i.e., increasing sI enforces greater similarity of
input and output images.

3.3 ITERATIVE DPO WITH AN IMPROVEMENT DIFFUSION MODEL

Objective function for iterative DPO. Building on the improvement diffusion model
p†ϕ(xw|xl, c), we can sample pairs of preference images xw and xl, where xl are generated from
the current diffusion model as the losing image and xw output from the improvement model as the
winning image. These online sampled pairs provide valuable data for optimizing the diffusion model
using the DPO objective function below:

− Ex∼D,xl∼pθ(·|x),xw∼p†(·|xl,c),t

[
log σ

(
−β

(
∥ϵw − ϵθ(x

w
t , t)∥22 + ∥ϵl − ϵref(x

l
t, t)∥22

−∥ϵw − ϵref(x
w
t , t)∥22 − ∥ϵl − ϵθ(x

l
t, t)∥22

))]
,

(10)

where the losing images xl are from the current output of the model, and the winning images xw

are from the improvement model conditioning on xl and c, constructing a new preference dataset.
After one iteration of optimization, we can regenerate new preference data from the current diffusion
model and the improvement model, and perform DPO training iteratively (details in Algorithm 1).
An illustration of the iterative training pipeline is in Figure 3.
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Comparison with SPIN. Here we compare our method with SPIN, a self-play method that can
be applied to diffusion models (Yuan et al., 2024a). The iterative objective function of SPIN aims
to move the model’s output distribution closer to a target distribution. However, a key limitation of
this approach is its strong reliance on the quality of the preferred responses. SPIN uses these pre-
ferred responses, along with the prompt set, to construct an SFT dataset, while discarding the losing
responses. This strategy assumes that the preferred distribution is near-optimal. If this assumption
doesn’t hold, the model risks falling into a suboptimal area. Furthermore, the output distribution is
still constrained by the available preferred responses in the training dataset, potentially limiting the
outputs’ diversity. In contrast, we learn the improvement direction from the preference dataset while
retaining information from the losing distribution. By iteratively applying this learned improvement
direction, we can optimize the model towards better performances. Thus, our method could surpass
SPIN models, achieving both higher alignment and higher diversity.

4 RELATED WORK

Variants of DPO. Direct preference optimization (DPO) (Rafailov et al., 2024) is developed to op-
timize the generation policy with the offline preference dataset. It eliminates the dependency on the
explicit reward model. However, the optimal solution derived from the Bradley-Terry (BT) model
makes DPO prone to weakening the regularization and overfitting to the offline training dataset. Azar
et al. (2024) propose the IPO by introducing the identity function into the generic ΨPO framework
and derive an efficient optimization process and achieve improved performance than DPO. Meng
et al. (2024) argue for the effectiveness of the reference model regularization in DPO. They there-
fore propose the simple preference optimization (SimPO) method that bypasses the reference model
regularization and introduces a reward margin to the optimization objective to better approximate
the noisy preference dataset. Their approach also shows improved performance over DPO. Hong
et al. (2024) also argue about impediments in optimizing the reference model under distributional
discrepancy and propose the margin-aware preference optimization (MaPO) method to replace KL
regularization on the reference model with an amplification factor defined by the trained policy’s
likelihood estimation. These DPO variants explore the challenges of distribution discrepancy be-
tween the reference model and model under optimization. They optimize with the offline sampled
dataset which is verified to be less efficient than on-policy sampling (Tajwar et al., 2024).

Iterative DPO and self-play methods. To understand and address the limitations of offline train-
ing associated with DPO, recent works have investigated the performance gap between online and
offline training methods (Tajwar et al., 2024; Tang et al., 2024). Their findings indicate that on-
line training can lead to better generation, and is beneficial when high-reward responses have a low
likelihood under the pretrained model. Accordingly, several works have proposed iterative DPO
methods that train DPO using online samples generated by the improved policy (Guo et al., 2024;
Xu et al., 2023b; Xiong et al., 2023). However, they require a reward model to label the online
samples. To eliminate the dependence on reward models, researchers have developed self-play or
self-improvement methods. For example, Yuan et al. (2024b) use the language model itself to pro-
vide the reward signal, and Chen et al. (2024) treat self-generated responses as losing to human
demonstrations for iterative improvement. More recently, Choi et al. (2024); Wu et al. (2024) refor-
mulate these ideas under the constant-sum two-player game framework (Munos et al., 2023; Swamy
et al., 2024), and propose algorithms to find the approximate Nash equilibrium. Our work proposes
a self-improvement method for text-to-image diffusion models, which has been under-explored.

Aligning diffusion models with human preferences. Inspired by the success of RLHF and DPO
in fine-tuning language models, recent works have explored applications in aligning diffusion mod-
els with human preferences. RLHF-based methods maximize a reward score given by a separately
trained reward model (Radford et al., 2021; Lee et al., 2023; Xu et al., 2023a; Wu et al., 2023;
Kirstain et al., 2023). For differentiable rewards, reward maximization can be done by backpropa-
gating the reward function gradient through the denoising process (Clark et al., 2024; Prabhudesai
et al., 2023). For black-box reward functions, DDPO (Black et al., 2024) and DPOK (Fan et al.,
2023) propose PPO-based RL fine-tuning. PRDP (Deng et al., 2024) further improves training sta-
bility on large-scale datasets by converting reward maximization to an equivalent reward difference
prediction objective. However, RLHF-based methods generally have a complicated pipeline involv-
ing reward model training, and are prone to reward hacking. These issues can be partially mitigated
by DPO-based methods, such as Diffusion-DPO (Wallace et al., 2024) and SPIN-Diffusion (Yuan
et al., 2024a), which directly fine-tune the diffusion model from offline preference datasets without
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Ours SPIN

Figure 4: Prompts (from top to bottom): 1. A cat jumping for a toy. 2. A crocodile in a space
suit. 3. An abstract print of water and oil mixing, bubbles, textual. Samples on the same row are
from the same prompt. For each prompt, the examples are from the same set of random seeds for
both SPIN and our model. Our model generates more diverse outputs than SPIN in terms of output
backgrounds, colors, etc.

requiring reward models. However, their performance can be limited due to a lack of online training.
Our approach combines the benefits of online training from RLHF and the simplicity from DPO.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

5.1.1 TRAINING

Model and Dataset. We use the Pick-a-pic (Kirstain et al., 2023) training dataset as the offline
preference dataset, following Diffusion-DPO (Wallace et al., 2024). For the improvement model,
we add 4 channels to the first convolutional layer of the UNet, and initialize the weights from Stable
Diffusion 1.5 (Rombach et al., 2022) following Brooks et al. (2023). For iterative DPO training, we
fine-tune the model initialized from the third iteration in SPIN (Yuan et al., 2024a).

Hyperparameters. For the improvement model training, we use AdamW with a learning rate
10−4, and train up to 200K steps with batch size 2048, and sample from it with sT = 3.5, sI = 3.0.
For iterative DPO training, we train for 3 iterations, and for each iteration, we first generate 38400
pairs of preference data, and train for 5k steps for each iteration with the batch size 2048 and learning
rate 10−4, β = 2000, with SD 1.5 as the reference model.

5.1.2 EVALUATION

Prompt sets. We use two prompt sets for evaluation: We randomly sample 500 unique prompts
from the training set to reflect the model’s performance on the training set. We also use the 500
unique prompts from the test dataset in Pick-a-pic v2 as the test set. We sample 64 random images
from each prompt.

Metrics. We evaluate our method against DPO and other baselines using a comprehensive set of
metrics. For quality assessment, we employ PickScore (Kirstain et al., 2023), Human Preference

8
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Table 1: Evaluation of Pickscore, HPSv2, Aesthetic score and Vendi score. Our model achieves
improved reward scores without sacrificing diversity compared with SPIN and Diffusion-DPO.

Score Method Training subset Test set

Pickscore (↑)

SD 1.5 20.46 20.74
Diffusion-DPO 20.80 21.05
SPIN 21.15 21.41
Iterative (Ours) 21.20 21.46

HPSv2 (↑)

SD 1.5 26.65 26.90
Diffusion-DPO 26.96 27.19
SPIN 27.39 27.57
Iterative (Ours) 27.40 27.59

Aesthetic (↑)

SD 1.5 5.48 5.42
Diffusion-DPO 5.55 5.49
SPIN 5.92 5.86
Iterative (Ours) 5.94 5.88

Vendi score (↑)

SD 1.5 2.61 2.64
Diffusion-DPO 2.44 2.47
SPIN 2.43 2.48
Iterative (Ours) 2.51 2.58

Score v2 (HPSv2) (Wu et al., 2023) and Aesthetic score (Schuhmann et al., 2022), which capture
different aspects of image quality and alignment with human preferences. To ensure that our method
not only improves quality but also maintains diversity in generated images, we utilize the Vendi score
(Friedman & Dieng, 2023) to measure the output diversity.

Baseline methods. We compare our method with the base model SD 1.5, and DPO-based meth-
ods: Diffusion-DPO and SPIN. Notice that Diffusion-DPO, SPIN, and our method all share the same
data assumption: using the offline preference dataset only without the need for extra annotations or
feedback from reward models.

5.2 REWARD EVALUATION

We report the results of Pickscore, HPSv2, and Aesthetic score in Table 1, and the win-rates against
SD 1.5 in Table 4 in Appendix C. Our iterative training can further improve the SPIN model with
prompts in both training and test sets in terms of the surrogate metrics of human preferences. It
further proves that our iterative training with an improvement model can surpass the upper bound in
SPIN training.

We also visualize samples from the fine-tuned model in Figure 1 and Figure 5 in Appendix A, where
our model output can generate the samples more aligned with the prompt than the SPIN model.

5.3 DIVERSITY EVALUATION

We present the evaluation of the Vendi score in Table 1, where we calculate the diversity of 64
images per prompt, and report the average over all test prompts.

Our model shows improvement from the SPIN model in terms of diversity, which is only slightly
lower than SD 1.5 on the test set (notice that the diversity score from SD 1.5 could be a reference).
We visualize the sample sets using the same prompt from both SPIN and our fine-tuned model in
Figure 4 which shows that our model tends to generate samples with more diverse colors, styles,
and backgrounds with more details. We also show more samples to illustrate improved diversity
compared with SPIN in Appendix B.
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Table 2: Evaluation on the effect of the online samples. The values presented are Pickscore.

Number of online samples Training set Test set

2560 21.10 21.27
12800 21.13 21.36
38400 21.20 21.46

Table 3: Improvement model evaluation. The values presented are Pickscore.

Method Training set Test set

SPIN 21.15 21.41
Improvement model 21.30 21.38
Iterative (Ours) 21.20 21.46

5.4 EFFECT OF THE ONLINE SAMPLES

Here we present the effect of the number of online samples used for iterative training. From Table 2,
we find that more online samples can lead to higher Pickscore from prompts in both training and test
sets. This verifies that the key to successful iterative training is the online samples generated from
our improvement model: more online samples would lead to better results.

5.5 EVALUATION OF THE IMPROVEMENT MODEL.

In this section, we provide the evaluation of the improvement model, by using the SD 1.5 baseline
to generate the losing images as the image condition for the improvement model. We find that the
improvement model can achieve significant improvements on the training set, but the generalization
ability on the test set is worse than the iterative model, which implies why we do not consider using
it as an inference-time model. The improvement model modifies the original architecture of SD 1.5
and is trained with different tasks than text-to-image generation. Thus the generalization ability on
test prompts may not be as good as fine-tuned diffusion model. In the iterative training, we reuse the
same training prompts and do not use the improvement model on unseen prompts. The iteratively
trained model with the improvement model can therefore achieve better generalization ability on the
test set.

6 DISCUSSION AND LIMITATION

Note that the gap between SPIN and our method depends on the specific structure of the prefer-
ences dataset. If all winning images in the preference set are near-optimal, there is little space for
improvement with our improvement model and iterative training. However, if the winning images
contain a diverse range from sub-optimal to optimal, SPIN can only get mediocre quality at best. In
contrast, our method that learns the improvement direction can outperform SPIN. Due to a lack of
resources, we use the open-source benchmark dataset instead of creating a more diverse dataset for
losing images that could potentially lead to larger improvements from SPIN.

7 CONCLUSION

This paper introduces a novel approach for diffusion models to overcome the limitations of directly
optimizing on the offline preference datasets. By learning a preference improvement model and
using it to generate online preference pairs, the method allows for iterative model enhancement
without additional human labeling. The results show improved preference alignment with high di-
versity, offering a promising direction for advancing image generation tasks with limited preference
data while effectively bridging offline preference learning and online improvement.
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A COMPARISON WITH BASELINES

We present more samples from SD 1.5, Diffusion DPO, SPIN and our fine-tuned models in Figure 5,
where our model shows better alignment and image quality compared with the baselines.

SD 1.5 Diffusion-DPO SPIN Ours

Figure 5: Prompts: 1. Gothic cathedral in a stormy night. 2. Illustration Amanda a 14-year-old girl
practicing meditation and mindfulness with her mother. 3. A man sitting at his desk, with silhouettes
of his inner demon behind him. 4. Bear eating apple. 5. A dog riding bicycle. 6. A dog and Santa
Claus. Christmas trees in background. Black and white background.
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B SAMPLES FOR DIVERSITY VISUALIZATION

We present more samples to show the improved diversity compared with SPIN in Figure 6, 7, 8.

Ours SPIN

Figure 6: Prompt: An xbox controller. The colors and backgrounds from our model are more diverse,
Examples are from the same set of seeds.

Ours SPIN

Figure 7: Prompt: A silhouette of a dog looking at the stars. The output backgrounds are more
diverse from our model. Examples are from the same set of seeds.

Ours SPIN

Figure 8: Prompt: A house made of cards. The output backgrounds from our model are more diverse
than SPIN. Examples are from the same set of seeds.

C WIN-RATE

We present the win-rates from Diffusion DPO, SPIN, and our iterative model against SD 1.5 in
Table 4, where our model achieves consistent improvement from SPIN.

Table 4: Win-rate against SD 1.5.

Reward Diffusion-DPO SPIN Iterative (Ours)

Pickscore 69.0% 78.5% 79.4%
HPSv2 64.8% 74.7% 75.4%
Aesthetic 59.2% 85.5% 86.4%
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