
ON SOCIALLY FAIR REGRESSION AND LOW-RANK AP-
PROXIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Regression and low-rank approximation are two fundamental problems that are
applied across a wealth of machine learning applications. In this paper, we study
the question of socially fair regression and socially fair low-rank approximation,
where the goal is to minimize the loss over all sub-populations of the data. We
show that surprisingly, socially fair regression and socially fair low-rank approxi-
mation exhibit drastically different complexities. Specifically, we show that while
fair regression can be solved up to arbitrary accuracy in polynomial time for a
wide variety of loss functions, even constant-factor approximation to fair low-
rank approximation requires exponential time under certain standard complexity
hypotheses. On the positive side, we give an algorithm for fair low-rank approxi-
mation that, for a constant number of groups and constant-factor accuracy, runs
in 2poly(k) rather than the naı̈ve npoly(k), which is a substantial improvement when
the dataset has a large number n of observations. Finally, we show that there
exist bicriteria approximation algorithms for fair low-rank approximation and fair
column subset selection that runs in polynomial time.

1 INTRODUCTION

Machine learning algorithms are increasingly used in technologies and decision-making processes that
affect our daily lives, from high volume interactions such as online advertising, e-mail filtering, smart
devices, or large language models, to more critical processes such as autonomous vehicles, healthcare
diagnostics, credit scoring, and sentencing recommendations in courts of law (Chouldechova, 2017;
Kleinberg et al., 2018; Berk et al., 2021). Machine learning algorithms frequently require statistical
analysis, utilizing fundamental problems from numerical linear algebra, especially regression and
low-rank approximation.

In the classical regression problem, the input is a data matrix A ∈ Rn×d and a label matrix b ∈ Rn,
and the task is to determine the hidden vector x ∈ Rd that minimizes L(Ax − b) for some loss
function L. The vector x can then be subsequently used to label future observations v through the
operation ⟨v,x⟩. Hence, regression analysis is frequently used in machine learning to infer causal
relationships between the independent and dependent variables, and thus also used for prediction
and forecasting. Similarly, in the classical low-rank approximation problem, the input is a data
matrix A ∈ Rn×d and an integral rank parameter k > 0, and the goal is to find the best rank k
approximation to A, i.e., finding a set of k vectors in Rd that span a matrix B, which minimizes
L(A−B) across all rank-k matrices B, for some loss function L. The rank parameter k should be
chosen to accurately represent the complexity of the underlying model chosen to fit the data, and thus
the low-rank approximation problem is often used for mathematical modeling and data compression.
Regression and low-rank approximation share key connections and thus are often studied together,
e.g., a number of sketching techniques can often be applied to both problems, resulting in significant
runtime improvements due to dimensionality reduction. See Appendix A.1 for more information.

Algorithmic fairness. Unfortunately, real-world machine learning algorithms across a wide variety
of domains have recently produced a number of undesirable outcomes from the lens of generalization.
For example, Barocas & Selbst (2016) noted that decision-making processes using data collected from
smartphone devices reporting poor road quality could potentially underserve poorer communities with
less smartphone ownership. Kay et al. (2015) observed that search queries for CEOs overwhelmingly

1



returned images of white men, while Buolamwini & Gebru (2018) observed that facial recognition
software exhibited different accuracy rates for white men compared with dark-skinned women.

Initial attempts to explain these issues can largely be categorized into either “biased data” or “biased
algorithms”, where the former might include training data that is significantly misrepresenting the true
statistics of some sub-population, while the latter might sacrifice accuracy on a specific sub-population
in order to achieve better global accuracy. As a result, an increasingly relevant line of active work has
focused on designing fair algorithms. An immediate challenge is to formally define the desiderata
demanded from fair algorithmic design and indeed multiple natural quantitative measures of fairness
have been proposed (Hardt et al., 2016; Chouldechova, 2017; Kleinberg et al., 2017; Berk et al.,
2021). However, Kleinberg et al. (2017); Corbett-Davies et al. (2017) showed that many of these
conditions for fairness cannot be simultaneously achieved.

In this paper, we focus on socially fair algorithms, which seek to optimize the performance of
the algorithm across all sub-populations. That is, for the purposes of regression and low-rank
approximation, the goal is to minimize the maximum cost across all sub-populations. For socially
fair regression, the input is a set of data matrices A(1) ∈ Rn1×d, . . . ,A(ℓ) ∈ Rnℓ×d and labels
b(1) ∈ Rn1 , . . . ,b(ℓ) ∈ Rnℓ corresponding to ℓ sub-populations, which we refer to as groups.
The goal is to optimize the objective function minx∈Rd maxi∈[ℓ] ∥A(i)x − b(i)∥, for some fixed
norm ∥ · ∥. Similarly, for socially fair low-rank approximation, the input is a set of data matrices
A(1) ∈ Rn1×d, . . . ,A(ℓ) ∈ Rnℓ×d corresponding to ℓ groups and a rank parameter k, and the goal is
to determine a set of k factors U1, . . . ,Uk ∈ Rd that span matrices B(1), . . . ,B(ℓ), which minimize
maxi∈[ℓ] ∥A(i)−B(i)∥F . Due to the Eckart–Young–Mirsky theorem stating that the Frobenius loss is
minimized when each A(i) is projected onto the span of U = U1 ◦ . . .◦Uk, the problem is equivalent
to minU∈Rk×d maxi∈[ℓ] ∥A(i)U†U−A(i)∥F , where † denotes the Moore-Penrose pseudoinverse.

1.1 OUR CONTRIBUTIONS AND TECHNICAL OVERVIEW

Surprisingly, we show in this paper that socially fair regression and socially fair low-rank approx-
imation exhibit drastically different complexities. Specifically, we show that while fair regression
can be solved up to arbitrary accuracy in polynomial time for a wide variety of loss functions, even
constant-factor approximation to fair low-rank approximation requires exponential time under certain
standard complexity hypotheses.

Fair regression. We first summarize a number of simple results for socially fair regression. Using
known connections to convex minimization Abernethy et al. (2022), we show that given an accuracy
parameter ε > 0, fair regression can be solved up to additive error ε in polynomial time for any
convex loss function whose subgradient can also be computed in polynomial time.

Theorem 1.1. Let n1, . . . , nℓ be positive integers and for each i ∈ [ℓ], let A(i) ∈ Rni×d and
b(i) ∈ Rni . Let ∆ = poly(n) for n = n1 + . . . + nℓ and let ε ∈ (0, 1). For any norm ∥ · ∥
whose subgradient can be computed in poly(n, d) time, there exists an algorithm that outputs
x∗ ∈ [−∆,∆]d such that maxi∈[ℓ] ∥A(i)x∗ − b(i)∥ ≤ ε+minx∈[−∆,∆]d maxi∈[ℓ] ∥A(i)x− b(i)∥.
The algorithm uses poly

(
n, d, 1

ε

)
runtime.

Importantly, the class of convex loss functions whose subgradient can be computed in polynomial
time include the popular class of Lp norms.

The algorithm corresponding to the guarantees of Theorem 1.1 is quite simple. Recall that the
maximum of convex functions is itself a convex function. Thus if the loss function is convex, then the
fair regression problem corresponds to minimizing a convex objective over a convex space. Abernethy
et al. (2022) uses this observation in conjunction with stochastic projection gradient descent. We
instead apply existing results in convex optimization stating that the objective can be efficiently
approximated to within additive error ε given a separation oracle (Lee et al., 2015; Jiang et al.,
2020b). Moreover, Lee et al. (2015) notes that such a separation oracle can be implemented using the
subgradient of the loss function and the separating hyperplane method.

In many cases, the input matrices A(1), . . . ,A(ℓ) can be somewhat sparse. In these classes, the
number of nonzero entries in the matrix A = A(1) ◦ . . . ◦A(ℓ), which we denote by nnz(A), can be
significantly smaller than nd. We also give a result for fair regression that uses input-sparsity runtime.

2



Theorem 1.2. Let n1, . . . , nℓ be positive integers and for each i ∈ [ℓ], let A(i) ∈ Rni×d and b(i) ∈
Rni . Let ∆ = poly(n) for n = n1+. . .+nℓ and let ε ∈ (0, 1). There exists an algorithm that outputs
x∗ ∈ [−∆,∆]d such that maxi∈[ℓ] ∥A(i)x∗−b(i)∥ ≤ (1+ε)minx∈[−∆,∆]d maxi∈[ℓ] ∥A(i)x−b(i)∥.
The algorithm uses Õ (nnz(A)) + poly

(
d, ℓ, 1

ε

)
runtime.

We achieve Theorem 1.2 by applying existing results in subspace embeddings that use input-sparsity
runtime to first reduce the overall dimension of the entire dataset, and then we apply the algorithm of
Theorem 1.1.

Fair low-rank approximation. We now describe our results for socially fair low-rank approxima-
tion. We first show that under assumption that P ̸= NP, fair low-rank approximation cannot be
approximated within any constant factor in polynomial time.
Theorem 1.3. Fair low-rank approximation is NP-hard to approximate within any constant factor.

We show Theorem 1.3 by reducing to the problem of minimizing the distance of a set of n points
in d-dimensional Euclidean space to all set of k dimensional linear subspaces, which was shown
by (Brieden et al., 2000; Deshpande et al., 2011) to be NP-hard to approximate within any con-
stant factor. In fact, Brieden et al. (2000); Deshpande et al. (2011) showed that a constant-factor
approximation to this problem requires runtime exponential in k under a stronger assumption, the
exponential time hypothesis (Impagliazzo & Paturi, 2001). We show similar results for the fair
low-rank approximation problem.
Theorem 1.4. Under the exponential time hypothesis, the fair low-rank approximation requires
2k

Ω(1)

time to approximate within any constant factor.

Together, Theorem 1.3 and Theorem 1.4 show that under standard complexity assumptions, we
cannot achieve constant-factor approximation to fair low-rank approximation using time polynomial
in n and exponential in k. We thus consider additional relaxations, such as bicriteria approximation
(Theorem 1.6) or 2poly(k) runtime (Theorem 1.5). On the positive side, we first show that for a
constant number of groups and constant-factor accuracy, it suffices to use runtime 2poly(k) rather
than the naı̈ve npoly(k), which is a substantial improvement when the dataset has a large number of
observations, i.e., n is large.
Theorem 1.5. Given an accuracy parameter ε ∈ (0, 1), there exists an algorithm that outputs
Ṽ ∈ Rk×d such that with probability at least 2

3 , maxi∈[ℓ] ∥A(i)(Ṽ)†Ṽ − A(i)∥F ≤ (1 + ε) ·
minV∈Rk×d maxi∈[ℓ] ∥A(i)V†V −A(i)∥F . The algorithm uses runtime 1

ε poly(n) · (2ℓ)
O(N), for

n =
∑ℓ

i=1 ni and N = poly
(
ℓ, k, 1

ε

)
.

At a high level, the algorithm corresponding to Theorem 1.5 first finds a value α such that is an ℓ-
approximation to the optimal solution. It then repeatedly decreases α by (1+ε) factors while checking
if the resulting quantity is still feasible. To efficiently check whether α is feasible, we first reduce the
dimension of the data using an affine embedding matrix S, so that for all rank k matrices V and all
i ∈ [ℓ], (1− ε)∥A(i)V†V −A(i)∥2F ≤ ∥A(i)V†VS−A(i)S∥2F ≤ (1 + ε)∥A(i)V†V −A(i)∥2F .

Observe that given V, it is known through the closed form solution to the regression problem
that the rank-k minimizer of ∥X(i)VS −A(i)S∥2F is (A(i)S)(VS)†. Let R(i) be defined so that
(A(i)S)(VS)†R(i) has orthonormal columns, so that

∥(A(i)S)(VS)†R(i))((A(i)S)(VS)†R(i))†A(i)S−A(i)S∥2F = min
X(i)
∥X(i)VS−A(i)S∥2F .

It follows that if α is feasible, then α(1 + ε) ≥ ∥(A(i)S)(VS)†R(i))((A(i)S)(VS)†R(i))†A(i)S−
A(i)S∥2F .

Unfortunately, V is not given, so the above approach will not quite work. Instead, we use a polynomial
solver to check whether there exists such a V by writing Y = VS and its pseudoinverse W = (VS)†

and check whether there exists a satisfying assignment to the above inequality, given the constraints
(1) YWY = Y, (2) WYW = W, and (3) A(i)SWR(i) has orthonormal columns.

We remark that because V ∈ Rk×d, then we cannot naı̈vely implement the polynomial system,
because it would require kd variables and thus use 2Ω(dk) runtime. Instead, we only manipulate VS,

3



which has dimension k×m for m = O
(

k2

ε2 log ℓ
)

, allowing the polynomial system solver to achieve

2poly(mk) runtime.

Next, we show that there exists a bicriteria approximation algorithm for fair low-rank approximation
that uses polynomial runtime.
Theorem 1.6. Given a trade-off parameter c ∈ (0, 1), there exists an algorithm that outputs
Ṽ ∈ Rt×d for t = O

(
k(log log k)(log2 d)

)
such that with probability at least 2

3 ,

max
i∈[ℓ]
∥A(i)(Ṽ)†Ṽ−A(i)∥F ≤ ℓc ·21/c ·O (k(log log k)(log d)) min

V∈Rk×d
max
i∈[ℓ]
∥A(i)V†V−A(i)∥F .

The algorithm uses runtime polynomial in n and d.

The algorithm for Theorem 1.6 substantially differs from that of Theorem 1.5. For one, we can
no longer use a polynomial system solver, because it would be infeasible to achieve polynomial
runtime. Instead, we observe that for sufficiently large p, we have max ∥x∥∞ = (1 ± ε)∥x∥p
and thus focus on optimizing minV∈Rk×d

(∑
i∈[ℓ] ∥A(i)V†V −A(i)∥pF

)1/p

. However, the terms

∥A(i)V†V −A(i)∥pF are difficult to handle, so we apply Dvoretzky’s Theorem, i.e., Theorem 3.2,
to generate matrices G and H so that (1 − ε)∥GMH∥p ≤ ∥M∥F ≤ (1 + ε)∥GMH∥p, for all
matrices M ∈ Rn×d, so that it suffices to approximately solve minX∈Rk×d ∥GAHSX−GAH∥p,
for A = A(1) ◦ . . . ◦A(ℓ).

Although low-rank approximation with Lp loss cannot be well-approximated in polynomial time,
we recall that there exists a matrix S that samples a “small” number of columns of A to provide
a coarse bicriteria approximation to Lp low-rank approximation (Woodruff & Yasuda, 2023a).
However, we require a solution with dimension d and thus we seek to solve regression problem
minX ∥GAHSX−GAH∥p. Thus, we consider a Lewis weight sampling matrix T such that

1

2
∥TGAHSX−TGAH∥p ≤ ∥GAHSX−GAH∥p ≤ 2∥TGAHSX−TGAH∥p.

and again note that (TGAHS)†TGAH is the closed-form solution to the minimization problem
minx ∥TGAHSX − TGAH∥F , which only provides a small distortion to the Lp regression
problem, since TGAH has a small number of rows due to the dimensionality reduction. We then
observe that by Dvoretzky’s Theorem, (TGAHS)†TGA is a “good” approximate solution to the
original fair low-rank approximation problem. Given δ ∈ (0, 1), the success probabilities for both
Theorem 1.5 and Theorem 1.6 can be boosted to arbitrary 1− δ by taking the minimum of O

(
log 1

δ

)
independent instances of the algorithm, at the cost of increasing the runtime by the same factor.

Although low-rank approximation can reveal important latent structure among the dataset, the
resulting linear combinations may not be as interpretable as simply selecting k features. The column
subset selection problem is therefore a version of low-rank approximation with the restriction that the
right factor must be k columns of the data matrix. We give a bicriteria approximation algorithm for
fair column subset selection that uses polynomial runtime.

Theorem 1.7. Given input matrices A(i) ∈ Rni×d with n =
∑

ni, there exists an algorithm
that selects a set S of k′ = O (k log k) columns such that with probability at least 2

3 , S is a
O (k(log log k)(log d))-approximation to the fair column subset selection problem. The algorithm
uses runtime polynomial in n and d.

The immediate challenge in adapting the previous approach for fair low-rank approximation to fair
column subset selection is that we required the Gaussian matrices G,H to embed the awkward
maximum of Frobenius losses minmaxi∈[ℓ] ∥ · ∥F into the more manageable Lp loss min ∥ · ∥p
through GAH. However, selecting columns of GAH does not correspond to selecting columns of
the input matrices A(1), . . . ,A(ℓ).

Instead, we view the bicriteria solution Ṽ from fair low-rank approximation as a good starting
point for the right factor for fair low-rank approximation. Thus we consider the multi-response
regression problem maxi∈[ℓ] minB(i) ∥B(i)Ṽ−A(i)∥F . We then argue through Dvoretzky’s theorem
that a leverage score sampling matrix S that samples O (k log k) columns of Ṽ will provide a good
approximation to the column subset selection problem. We defer the formal exposition to Appendix D.

4



Empirical evaluations. Finally, in Section 4, we present a number of experimental results on socially
fair regression, comparing the performance of the socially fair objective values associated with the
outputs of the fair regression algorithm and the standard regression algorithms.

Our experimental results in Figure 3 similarly demonstrate the improvement of the fair regression
algorithm over the standard regression algorithm across various values of k and various matrix
sizes. We perform our experiments on both synthetic data and the Law School Admissions Councils
National Longitudinal Bar Passage Study (Wightman, 1998); in the latter dataset, the goal is to predict
a student’s first year GPA at law school via least squared regression, given the student’s undergraduate
GPA and whether or not they passed the bar exam, using race as the protected attribute. Our results
demonstrate the improvement of the fair regression algorithm over the standard regression algorithm
across various datasets, number of features, number of observations, and number of protected groups.
Finally, we give a simple synthetic example for socially fair low-rank approximation that serves as a
proof-of-concept similarly demonstrating the improvement of fair low-rank approximation optimal
solutions over the optimal solutions for standard low-rank approximation.

1.2 RELATED WORK

Initial insight into socially fair data summarization methods were presented by Samadi et al. (2018),
where the concept of fair PCA was explored. This study introduced the fairness metric of average
reconstruction loss, expressed by the loss function loss(A,B) := ∥A−B∥2F −∥A−Ak∥2F , aiming
to identify a k-dimensional subspace that minimizes the loss across the groups, with Ak representing
the best rank-k approximation of A. Their proposed approach, in a two-group scenario, identifies a
fair PCA of up to k + 1 dimensions that is not worse than the optimal fair PCA with k dimensions.
When extended to ℓ groups, this method requires an additional k + ℓ− 1 dimensions. Subsequently,
Tantipongpipat et al. (2019) explored fair PCA from a distinct objective perspective, seeking a
projection matrix P optimizing mini∈[ℓ] ∥A(i)P∥2F . A pivotal difference between these works and
ours is our focus on the reconstruction error objective, a widely accepted objective for regression and
low-rank approximation tasks. Alternatively, Olfat & Aswani (2019); Lee et al. (2022); Kleindessner
et al. (2023) explored a different formulation of fair PCA. The main objective is to ensure that
data representations are not influenced by demographic attributes. In particular, when a classifier
is exposed only to the projection of points onto the k-dimensional subspace, it should be unable to
predict the demographic attributes.

For fair regression, initial research focused on designing models that offer similar treatment to
instances with comparable observed results by incorporating fairness regularizers Berk et al. (2017).
However, in Agarwal et al. (2019), the authors studied a fairness notion closer to our optimization
problem, termed as “bounded group loss”. In their work, the aim is to cap each group’s loss within a
specific limit while also optimizing the cumulative loss. Notably, their approach diverged from ours,
with a focus on the sample complexity and the problem’s generalization error bounds.

Abernethy et al. (2022) studied a similar socially fair regression problem under the name min-max
regression. In their setting, the goal is to minimize the maximum loss over a mixture distribution,
given samples from the mixture; our fair regression setting can be reduced to theirs. Abernethy et al.
(2022) observed that a maximum of norms is a convex function and can therefore be solved using
projected stochastic gradient descent.

The term “socially fair” was first introduced in the context of clustering, aiming to optimize clus-
tering costs across predefined group sets (Ghadiri et al., 2021; Abbasi et al., 2021). In subsequent
studies, tight approximation algorithms (Makarychev & Vakilian, 2021; Chlamtáč et al., 2022), FPT
approaches (Goyal & Jaiswal, 2023), and bicriteria approximation algorithms (Ghadiri et al., 2022)
for socially fair clustering have been presented.

2 SOCIALLY FAIR REGRESSION

As a warm-up, we first present simple and intuitive algorithms for fair regression. Let ℓ be the number
of groups, n1, . . . , nℓ be positive integers and for each i ∈ [ℓ], let A(i) ∈ Rni×d and b(i) ∈ Rni .
Then for a norm ∥ · ∥, we define the fair regression problem to be minx∈Rd maxi∈[ℓ] ∥A(i)x− b(i)∥.
We first show that the optimal solution to the standard regression minimization problem also admits a
ℓ-approximation to the fair regression problem.

5



Theorem 2.1. The optimal solution to the standard regression problem that computes a vector
x̂ ∈ Rd also satisfies maxi∈[ℓ] ∥A(i)x̂ − b(i)∥2 ≤ ℓ ·minx∈Rd maxi∈[ℓ] ∥A(i)x − b(i)∥2, i.e., the
algorithm outputs a ℓ-approximation to the fair regression problem. For L2 loss, the algorithm uses
O
(
ndω−1

)
runtime, where n = n1 + . . .+ nℓ and ω is the matrix multiplication exponent.

More generally, we can apply the same principles to observe that for any norm ∥ · ∥, ∥Ax∗ − b∥ ≤∑ℓ
i=1 ∥A(i)x∗ − b(i)∥ ≤ ℓ ·maxi∈[ℓ] ∥A(i)x∗ − b(i)∥. Thus if ∥ · ∥ admits an efficient algorithm

for regression, then ∥ · ∥ also admits an efficient ℓ-approximation algorithm for fair regression. See
Algorithm 1 for reference.

We now give a general algorithm for achieving additive ε approximation to fair regression. Abernethy
et al. (2022) observed that every norm is convex, since ∥λu+ (1− λ)v∥ ≤ λ∥u∥+ (1− λ)∥v∥ by
triangle inequality. Therefore, the function g(x) := maxi∈[ℓ]{∥A(i)x − b(i)∥} is convex because
the maximum of convex functions is also a convex function. Hence, the objective minx g(x) is the
minimization of a convex function and can be solved using standard tools in convex optimization.
Abernethy et al. (2022) leveraged this observation by applying projected stochastic gradient descent.
Here we use a convex solvers based on separating hyperplanes. The resulting algorithm is quite
simple and appears in Algorithm 2. We defer the proof to Appendix B.2.

Algorithm 1 ℓ-approximation for Socially Fair
Regression

Input: A(i) ∈ Rni×d, b(i) ∈ Rni for all i ∈
[ℓ]

Output: ℓ-approximation for fair regression
1: A← A(1) ◦ . . . ◦A(ℓ)

2: b← A(1) ◦ . . . ◦ b(ℓ)

3: return argminx∈Rd ∥Ax− b∥

Algorithm 2 Algorithm for Socially Fair Re-
gression

Input: A(i) ∈ Rni×d, b(i) ∈ Rni for all i ∈
[ℓ]

Output: Optimal for socially fair regression
1: Use a convex solver to return

argminx∈Rd maxi∈[ℓ] ∥A(i)x− b(i)∥

3 SOCIALLY FAIR LOW-RANK APPROXIMATION

In this section, we consider algorithms and hardness for socially fair low-rank approximation. Let
n1, . . . , nℓ be positive integers and for each i ∈ [ℓ], let A(i) ∈ Rni×d. Then for a norm ∥ · ∥, we
define the fair low-rank approximation problem to be minV∈Rk×d maxi∈[ℓ] ∥A(i)V⊤V −A(i)∥.

3.1 (1 + ε)-APPROXIMATION ALGORITHM FOR FAIR LOW-RANK APPROXIMATION

We first give a (1 + ε)-approximation algorithm for fair low-rank approximation that uses runtime
1
ε poly(n) · (2ℓ)

O(N), for n =
∑ℓ

i=1 ni and N = poly
(
ℓ, k, 1

ε

)
.

The algorithm first finds a value α that is an ℓ-approximation to the optimal solution, i.e.,

min
V∈Rk×d

max
i∈[ℓ]
∥A(i)V†V −A(i)∥F ≤ α ≤ ℓ · min

V∈Rk×d
max
i∈[ℓ]
∥A(i)V†V −A(i)∥F .

We then repeatedly decrease α by (1 + ε) while checking if the resulting quantity is still achievable.
To efficiently check if α is achievable, we first apply dimensionality reduction to each of the matrices
by right-multiplying by an affine embedding matrix S, so that

(1− ε)∥A(i)V†V −A(i)∥2F ≤ ∥A(i)V†VS−A(i)S∥2F ≤ (1 + ε)∥A(i)V†V −A(i)∥2F ,

for all rank k matrices V and all i ∈ [ℓ].

Now if we knew V, then for each i ∈ [ℓ], we can find X(i) that minimizes ∥X(i)VS−A(i)S∥2F and
the resulting quantity will approximate ∥A(i)V†V −A(i)∥2F . In fact, we know that the minimizer is
(A(i)S)(VS)† through the closed form solution to the regression problem. Let R(i) be defined so
that (A(i)S)(VS)†R(i) has orthonormal columns, so that

∥(A(i)S)(VS)†R(i))((A(i)S)(VS)†R(i))†A(i)S−A(i)S∥2F = min
X(i)
∥X(i)VS−A(i)S∥2F ,

6



and so we require that if α is feasible, then α ≥ ∥(A(i)S)(VS)†R(i))((A(i)S)(VS)†R(i))†A(i)S−
A(i)S∥2F . Unfortunately, we do not know V, so instead we use a polynomial solver to check whether
there exists such a V. We remark that similar guessing strategies were employed by Razenshteyn et al.
(2016); Kumar et al. (2019); Ban et al. (2019); Velingker et al. (2023) and in particular, Razenshteyn
et al. (2016) also uses a polynomial system in conjunction with the guessing strategy. Thus we
write Y = VS and its pseudoinverse W = (VS)† and check whether there exists a satisfying
assignment to the above inequality, given the constraints (1) YWY = Y, (2) WYW = W, and
(3) A(i)SWR(i) has orthonormal columns. Note that since V ∈ Rk×d, then implementing the
polynomial solver naı̈vely could require kd variables and thus use 2Ω(dk) runtime. Instead, we
note that we only work with VS, which has dimension k ×m for m = O

(
k2

ε2 log ℓ
)

, so that the

polynomial solver only uses 2poly(mk) time.

We now show a crucial structural property that allows us to distinguish between the case where a
guess α for the optimal value OPT exceeds (1 + ε)OPT or is smaller than (1− ε)OPT by simply
looking at a polynomial system solver on an affine embedding.

Lemma 3.1. Let V ∈ Rk×d be the optimal solution to the fair low-rank approximation problem for
inputs A(1), . . . ,A(ℓ), where A(i) ∈ Rni×d, and suppose OPT = maxi∈[ℓ] ∥A(i)V†V −A(i)∥2F .
Let S be an affine embedding for V and let W = (VS)† ∈ Rk×m. For i ∈ [ℓ], let Z(i) =
A(i)SW ∈ Rni×k and R(i) ∈ Rk×k be defined so that A(i)SWR(i) has orthonormal columns. If
α ≥ (1+ε)·OPT, then for each i ∈ [ℓ], α ≥ ∥(A(i)SWR(i))(A(i)SWR(i))†A(i)−A(i)∥2F . If α <

(1−ε)·OPT, then there exists i ∈ [ℓ], such that α < ∥(A(i)SWR(i))(A(i)SWR(i))†A(i)−A(i)∥2F .

Algorithm 3 Input to polynomial solver

Input: A(1), . . . ,A(ℓ), S, α
Output: Feasibility of polynomial system

1: Polynomial variables
2: Let Y = (VS) ∈ Rk×m be mk variables
3: Let W = (VS)† ∈ Rm×k be mk variables
4: Let R(i) ∈ Rk×k for each i ∈ [ℓ] be ℓk2

variables
5: System constraints
6: YWY = Y, WYW = W
7: A(i)SWR(i) has orthonormal columns
8: α ≥ ∥(A(i)SWR(i))(A(i)SWR(i))†A(i)−

A(i)∥2F
9: Run polynomial system solver

10: If feasible, output V =
(A(1)SWR(1))†A(1). Otherwise, output
⊥.

Algorithm 4 (1 + ε)-approximation for Fair
Low-Rank Approximation

Input: A(i) ∈ Rni×d for all i ∈ [ℓ], rank pa-
rameter k > 0, accuracy parameter ε ∈
(0, 1)

Output: (1 + ε)-approximation for fair low-
rank approximation

1: Let α be an ℓ-approximation for the fair
LRA problem

2: Let S be generated from a random affine
embedding distribution

3: while Algorithm 3 on input A(1), . . . ,A(ℓ),
S, and α does not return ⊥ do

4: Let V be the output of Algorithm 3 on
input A(1), . . . ,A(ℓ), S, and α

5: α← α
1+ε

6: return V

3.2 BICRITERIA ALGORITHM

To achieve polynomial time for our bicriteria algorithm, we can no longer use a polynomial system
solver. Instead, we observe that for sufficiently large p, we have max ∥x∥∞ = (1 ± ε)∥x∥p.
Thus, in place of optimizing minV∈Rk×d maxi∈[ℓ] ∥A(i)V†V − A(i)∥F , we instead optimize

minV∈Rk×d

(∑
i∈[ℓ] ∥A(i)V†V −A(i)∥pF

)1/p

. However, the terms ∥A(i)V†V −A(i)∥pF are un-
wieldy to work with. Thus we instead use Dvoretzky’s Theorem, i.e., Theorem 3.2, to embed L2 into
Lp, by generating matrices G and H so that (1− ε)∥GMH∥p ≤ ∥M∥F ≤ (1 + ε)∥GMH∥p, for
all matrices M ∈ Rn×d.

Now, writing A = A(1) ◦ . . . ◦A(ℓ), it suffices to approximately solve minX∈Rk×d ∥GAHSX−
GAH∥p. Unfortunately, low-rank approximation with Lp loss still cannot be approximated to
(1 + ε)-factor in polynomial time, and in fact GAH has dimension n′ × d′ with n′ ≥ n and d′ ≥ d.
Hence, we first apply dimensionality reduction by appealing to a result of Woodruff & Yasuda (2023a)

7



showing that there exists a matrix S that samples a “small” number of columns of A to provide
a coarse bicriteria approximation to Lp low-rank approximation. Now to lift the solution back to
dimension d, we would like to solve regression problem minX ∥GAHSX−GAH∥p.

To that end, we consider a Lewis weight sampling matrix T such that
1

2
∥TGAHSX−TGAH∥p ≤ ∥GAHSX−GAH∥p ≤ 2∥TGAHSX−TGAH∥p.

We then note that (TGAHS)†TGAH is the minimizer of the problem minx ∥TGAHSX −
TGAH∥F , which only provides a small distortion to the Lp regression problem, since TGAH has
a small number of rows due to the dimensionality reduction. By Dvoretzky’s Theorem, we have
that (TGAHS)†TGA is a “good” approximate solution to the original fair low-rank approximation
problem. The algorithm appears in full in Algorithm 5.

Algorithm 5 Bicriteria approximation for fair low-rank approximation

Input: A(i) ∈ Rni×d for all i ∈ [ℓ], rank parameter k > 0, trade-off parameter c ∈ (0, 1)
Output: Bicriteria approximation for fair low-rank approximation

1: Generate Gaussian matrices G ∈ Rn′×n,H ∈ Rd×d′
through Theorem 3.2

2: Let S ∈ Rn′×t,Z ∈ Rt×d′
be the output of Theorem 3.3 on input GAH

3: Let T ∈ Rs×n′
be a Lewis weight sampling matrix for GAHSX−GAH

4: Let Ṽ← (TGAHS)†(TGA)

5: return Ṽ

We use the following notion of Dvoretzky’s theorem to embed the problem into entrywise Lp loss.
Theorem 3.2 (Dvoretzky’s Theorem, e.g., Theorem 1.2 in (Paouris et al., 2017)). Let p ≥ 1 be a
parameter and let

m ≳ m(n, p, ε) =


ppn
ε2 , ε ≤ (Cp)p/2n− p−2

2(p−1)

(np)p/2

ε , ε ∈
(
(Cp)p/2n− p−2

2(p−1) , 1
p

]
np/2

pp/2εp/2
logp/2 1

ε ,
1
p < ε < 1.

Then there exists a family G of random scaled Gaussian matrices with dimension Rm×n such that for
G ∼ G, with probability at least 1 − δ, simultaneously for all y ∈ Rn, (1 − ε)∥y∥2 ≤ ∥Gy∥p ≤
(1 + ε)∥y∥2.

We use the following algorithm from (Woodruff & Yasuda, 2023a) to perform dimensionality
reduction so that switching between L2 and Lp loss will incur smaller error. See also (Chierichetti
et al., 2017).
Theorem 3.3 (Theorem 1.5 in (Woodruff & Yasuda, 2023a)). Let A ∈ Rn×d and let k ≥ 1.
Let s = O (k log log k). Then there exists a polynomial-time algorithm that outputs a matrix
S ∈ Rd×t that samples t = O

(
k(log log k)(log2 d)

)
columns of A and a matrix Z ∈ Rt×d such

that ∥A−ASZ∥p ≤ 2p · O (
√
s) ·minU∈Rn×k,V∈Rk×d ∥A−UV∥p.

We recall the following construction to use Lewis weights to achieve an Lp subspace embedding.
Theorem 3.4 (Cohen & Peng (2015)). Let ε ∈ (0, 1) and p ≥ 2. Let A ∈ Rn×d and s =
O
(
dp/2 log d

)
. Then there exists a polynomial-time algorithm that outputs a matrix S ∈ Rs×n that

samples and reweights s rows of A, such that with probability at least 0.99, simultaneously for all
x ∈ Rd, (1− ε)∥Ax∥pp ≤ ∥SAx∥pp ≤ (1 + ε)∥Ax∥pp.

We then show that Algorithm 5 provides a bicriteria approximation.

Lemma 3.5. Let Ṽ be the output of Algorithm 5. Then with probability at least 9
10 ,

max
i∈[ℓ]
∥A(i)(Ṽ)†Ṽ −A(i)∥F ≤ ℓc · 21/c · O (k(log log k)(log d))max

i∈[ℓ]
∥A(i)(Ṽ)†Ṽ −A(i)∥F .

Since the generation of Gaussian matrices and the Lewis weight sampling matrix both only require
polynomial time, it follows that our algorithm uses polynomial time overall. Hence, we have
Theorem 1.6.

8



4 EMPIRICAL EVALUATIONS

In this section, we describe our empirical evaluations on socially fair regression.

Law school dataset. We used the Law School Admissions Councils National Longitudinal Bar
Passage Study (Wightman, 1998), which has 22,407 observations. The task is to predict a student’s
first year GPA at law school via least squared regression, given the student’s undergraduate GPA
and whether or not they passed the bar exam, using race as the protected attribute. In particular, the
dataset contains the following distribution of individuals self-identifying for each race: 980 “hisp”,
1280 “black”, 839 “asian”, 17924 “white”, 387 “other”, and 997 providing no response.

Experimental setup. We compare Algorithm 1 and Algorithm 2. Intuitively, the former can be
viewed as finding the optimal solution to the regression problem on the entire dataset, while the latter
can be viewed as finding the optimal solution with respect to the socially fair regression objective.
Thus the comparisons of the algorithms essentially measure the gain of fair algorithmic design for
socially fair regression, i.e., how much the objective improves when using the optimal socially fair
regression solution rather than the optimal regression solution to the entire dataset.

(a) Two sub-populations. (b) All five sub-populations.

Fig. 1: Improvement by socially fair regression algorithm under linear least squares objective for the
law school dataset when solution is computed using a subset of the data sampled at rate p, across 50
independent instances.

We run both algorithms over the entire law school dataset subsampling each group at rates p ∈
{2−i|i ∈ {0, . . . , 9}}. In other words, if group i has gi observations in the entire dataset, then we
randomly select a group of ⌊p · gi⌋ observations to form the input to the algorithms. Using the
parameter vector output by the algorithms, we then measure their corresponding cost to the socially
fair regression objective on the entire dataset, i.e., the entire groups. We then compute the ratio of the
outputs of the algorithms. That is, if Algorithm 1 outputs vector u and Algorithm 2 outputs vector

v, we compute maxi∈[ℓ] ∥A(i)v−b(i)∥2
2

maxi∈[ℓ] ∥A(i)u−b(i)∥2
2

, across 50 independent instances for each value of p. We then
plot the minimum and mean values of these instances for each value of p in Figure 1, with Figure 1a
denoting restrictions to two sub-populations and Figure 1b considering all five sub-populations.

Results and discussion. Our empirical evaluations show that our algorithms can perform significantly
better for socially regression. In particular, for two sub-populations, the fair regression algorithm,
Algorithm 2, can demonstrate more than 40% improvement for the fair regression objective over the
standard regression algorithm, Algorithm 1, i.e., Figure 1a with sampling rate p = 1/256. When
considering all five sub-populations, the improvement can be as large as 8%, c.f., Figure 1b. We do
notice that on average, the ratios of the performances for smaller values of p can be larger than 1 for
two sub-populations though this phenomenon does not present itself for all five sub-populations; we
attribute this to large variances in the sampled observations resulting. On the other hand, for larger
sampling rates, i.e., p ≥ 1/32, the variance of the ratios of the performances becomes significantly
smaller and the fair regression algorithm demonstrates a clear, albeit smaller, improvement over the
standard regression algorithm for both two sub-populations and all five sub-populations. We present
a number of additional empirical evaluations in Appendix E, including normalized loss across each
group, synthetic datasets, larger numbers of features, and runtime analyses.

9



REFERENCES

Mohsen Abbasi, Aditya Bhaskara, and Suresh Venkatasubramanian. Fair clustering via equitable
group representations. In Proceedings of the 2021 ACM conference on fairness, accountability,
and transparency, pp. 504–514, 2021.

Jacob D. Abernethy, Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern, Chris Russell,
and Jie Zhang. Active sampling for min-max fairness. In International Conference on Machine
Learning, ICML, pp. 53–65, 2022.

Alekh Agarwal, Miroslav Dudı́k, and Zhiwei Steven Wu. Fair regression: Quantitative definitions
and reduction-based algorithms. In International Conference on Machine Learning, pp. 120–129.
PMLR, 2019.

Frank Ban, David P. Woodruff, and Qiuyi (Richard) Zhang. Regularized weighted low rank approxi-
mation. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems, NeurIPS, pp. 4061–4071, 2019.

Solon Barocas and Andrew D Selbst. Big data’s disparate impact. California law review, pp. 671–732,
2016.

Saugata Basu, Richard Pollack, and Marie-Françoise Roy. On the combinatorial and algebraic
complexity of quantifier elimination. J. ACM, 43(6):1002–1045, 1996.

Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgen-
stern, Seth Neel, and Aaron Roth. A convex framework for fair regression. arXiv preprint
arXiv:1706.02409, 2017.

Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in criminal
justice risk assessments: The state of the art. Sociological Methods & Research, 50(1):3–44, 2021.

Andreas Brieden, Peter Gritzmann, and Victor Klee. Inapproximability of some geometric and
quadratic optimization problems. Approximation and Complexity in Numerical Optimization:
Continuous and Discrete Problems, pp. 96–115, 2000.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial
gender classification. In Conference on Fairness, Accountability and Transparency, FAT, volume 81
of Proceedings of Machine Learning Research, pp. 77–91, 2018.

Xue Chen and Eric Price. Active regression via linear-sample sparsification. In Conference on
Learning Theory, COLT, pp. 663–695, 2019.

Flavio Chierichetti, Sreenivas Gollapudi, Ravi Kumar, Silvio Lattanzi, Rina Panigrahy, and David P.
Woodruff. Algorithms for lp low-rank approximation. In Proceedings of the 34th International
Conference on Machine Learning, ICML, pp. 806–814, 2017.

Eden Chlamtáč, Yury Makarychev, and Ali Vakilian. Approximating fair clustering with cascaded
norm objectives. In Proceedings of the 2022 annual ACM-SIAM symposium on discrete algorithms
(SODA), pp. 2664–2683. SIAM, 2022.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big data, 5(2):153–163, 2017.

Michael B. Cohen and Richard Peng. Lp row sampling by lewis weights. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC, pp. 183–192, 2015.

Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimen-
sionality reduction for k-means clustering and low rank approximation. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC, pp. 163–172, 2015.

Michael B. Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank approxi-
mation via ridge leverage score sampling. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pp. 1758–1777, 2017.

10



Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing
(STOC), 2019.

Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorithmic decision
making and the cost of fairness. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 797–806, 2017.

Amit Deshpande, Madhur Tulsiani, and Nisheeth K. Vishnoi. Algorithms and hardness for subspace
approximation. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pp. 482–496, 2011.

Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling and relative-error
matrix approximation: Column-based methods. In Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques, 9th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, APPROX and 10th International Workshop
on Randomization and Computation, RANDOM, Proceedings, pp. 316–326, 2006a.

Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling and relative-error
matrix approximation: Column-row-based methods. In Algorithms - ESA 2006, 14th Annual
European Symposium, Proceedings, pp. 304–314, 2006b.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

Frederic G Foster. On the stochastic matrices associated with certain queuing processes. The Annals
of Mathematical Statistics, 24(3):355–360, 1953.

Mehrdad Ghadiri, Samira Samadi, and Santosh Vempala. Socially fair k-means clustering. In
Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp.
438–448, 2021.

Mehrdad Ghadiri, Mohit Singh, and Santosh S Vempala. Constant-factor approximation algorithms
for socially fair k-clustering. arXiv preprint arXiv:2206.11210, 2022.

Dishant Goyal and Ragesh Jaiswal. Tight FPT approximation for socially fair clustering. Information
Processing Letters, 182:106383, 2023.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In
Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems, pp. 3315–3323, 2016.

Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving SDP faster:
A robust IPM framework and efficient implementation. In 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pp. 233–244, 2022.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62
(2):367–375, 2001.

Arun Jambulapati, Yang P. Liu, and Aaron Sidford. Improved iteration complexities for overcon-
strained p-norm regression. In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of
Computing, pp. 529–542, 2022.

Gabriela Jeronimo, Daniel Perrucci, and Elias P. Tsigaridas. On the minimum of a polynomial
function on a basic closed semialgebraic set and applications. SIAM J. Optim., 23(1):241–255,
2013.

Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster interior
point method for semidefinite programming. In FOCS, 2020a.

Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting plane method
for convex optimization, convex-concave games, and its applications. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, pp. 944–953, 2020b.

11



Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. A faster algorithm for solving
general lps. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp.
823–832, 2021.

Matthew Kay, Cynthia Matuszek, and Sean A. Munson. Unequal representation and gender stereo-
types in image search results for occupations. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, CHI, pp. 3819–3828, 2015.

Jon Kleinberg, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Sendhil Mullainathan.
Human decisions and machine predictions. The quarterly journal of economics, 133(1):237–293,
2018.

Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair
determination of risk scores. In 8th Innovations in Theoretical Computer Science Conference,
ITCS, pp. 43:1–43:23, 2017.

Matthäus Kleindessner, Michele Donini, Chris Russell, and Muhammad Bilal Zafar. Efficient fair
pca for fair representation learning. In International Conference on Artificial Intelligence and
Statistics, pp. 5250–5270. PMLR, 2023.

Ravi Kumar, Rina Panigrahy, Ali Rahimi, and David P. Woodruff. Faster algorithms for binary matrix
factorization. In Proceedings of the 36th International Conference on Machine Learning, ICML,
pp. 3551–3559, 2019.

Junghyun Lee, Gwangsu Kim, Mahbod Olfat, Mark Hasegawa-Johnson, and Chang D Yoo. Fast and
efficient mmd-based fair pca via optimization over stiefel manifold. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 7363–7371, 2022.

Yin Tat Lee. Faster algorithms for convex and combinatorial optimization. PhD thesis, Massachusetts
Institute of Technology, 2016.

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its
implications for combinatorial and convex optimization. In IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS, pp. 1049–1065, 2015.

Malik Magdon-Ismail. Row sampling for matrix algorithms via a non-commutative bernstein bound.
CoRR, abs/1008.0587, 2010.

Yury Makarychev and Ali Vakilian. Approximation algorithms for socially fair clustering. In
Conference on Learning Theory, pp. 3246–3264. PMLR, 2021.

Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff, and Samson Zhou. Fast
regression for structured inputs. In The Tenth International Conference on Learning Representa-
tions, ICLR, 2022.

Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff, and Samson Zhou. Near-
linear sample complexity for Lp polynomial regression. In Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA, pp. 3959–4025, 2023.

Cameron Musco, Christopher Musco, David P. Woodruff, and Taisuke Yasuda. Active linear regres-
sion for Lp norms and beyond. In 63rd IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pp. 744–753, 2022.

Matt Olfat and Anil Aswani. Convex formulations for fair principal component analysis. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 663–670, 2019.

Grigoris Paouris, Petros Valettas, and Joel Zinn. Random version of dvoretzky’s theorem in ℓnp .
Stochastic Processes and their Applications, 127(10):3187–3227, 2017.

Aditya Parulekar, Advait Parulekar, and Eric Price. L1 regression with lewis weights subsampling.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM, pp. 49:1–49:21, 2021.

12



Ilya P. Razenshteyn, Zhao Song, and David P. Woodruff. Weighted low rank approximations with
provable guarantees. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC, pp. 250–263, 2016.

James Renegar. On the computational complexity and geometry of the first-order theory of the reals.
part i: Introduction. preliminaries. the geometry of semi-algebraic sets. the decision problem for
the existential theory of the reals. Journal of symbolic computation, 13(3):255–299, 1992a.

James Renegar. On the computational complexity and geometry of the first-order theory of the reals.
part ii: The general decision problem. preliminaries for quantifier elimination. Journal of Symbolic
Computation, 13(3):301–327, 1992b.

Samira Samadi, Uthaipon Tantipongpipat, Jamie H Morgenstern, Mohit Singh, and Santosh Vempala.
The price of fair pca: One extra dimension. Advances in neural information processing systems,
31, 2018.

Uthaipon Tantipongpipat, Samira Samadi, Mohit Singh, Jamie H Morgenstern, and Santosh Vem-
pala. Multi-criteria dimensionality reduction with applications to fairness. Advances in neural
information processing systems, 32, 2019.

Ameya Velingker, Maximilian Vötsch, David P. Woodruff, and Samson Zhou. Fast (1 + ϵ)-
approximation algorithms for binary matrix factorization. In International Conference on Machine
Learning, ICML, pp. 34952–34977, 2023.

Linda F Wightman. Lsac national longitudinal bar passage study. lsac research re-
port series. 1998. URL https://www.kaggle.com/datasets/danofer/
law-school-admissions-bar-passage.

David P. Woodruff. Sketching as a tool for numerical linear algebra. Found. Trends Theor. Comput.
Sci., 10(1-2):1–157, 2014.

David P. Woodruff and Taisuke Yasuda. New subset selection algorithms for low rank approximation:
Offline and online. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC, pp. 1802–1813, 2023a.

David P. Woodruff and Taisuke Yasuda. Online lewis weight sampling. In Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 4622–4666, 2023b.

A PRELIMINARIES

We use the notation [n] to represent the set {1, . . . , n} for an integer n ≥ 1. We use the notation
poly(n) to represent a fixed polynomial in n and we use the notation polylog(n) to represent
poly(log n). We use poly(n) to denote a fixed polynomial in n and polylog(n) to denote poly(log n).
We say an event holds with high probability if it holds with probability 1− 1

poly(n) .

We generally use bold-font variables to represent vectors and matrices, whereas we use default-font
variables to represent scalars. For a matrix A ∈ Rn×d, we use Ai to represent the i-th row of A and
A(j) to represent the j-th column of A. We use Ai,j to represent the entry in the i-th row and j-th
column of A. For p ≥ 1, we use

∥A∥p =

∑
i∈[n]

∑
j∈[d]

Ap
i,j

1/p

to represent the entrywise Lp norm of A and we use

∥A∥F =

∑
i∈[n]

∑
j∈[d]

A2
i,j

1/2

13

https://www.kaggle.com/datasets/danofer/law-school-admissions-bar-passage
https://www.kaggle.com/datasets/danofer/law-school-admissions-bar-passage


to represent the Frobenius norm of A, which is simply the entrywise L2 norm of A. We use define
the Lp,q of A as the Lp norm of the vector consisting of the Lq norms of each row of A, so that

∥A∥p,q =

∑
i∈[n]

∑
j∈[d]

(Ai,j)
q

p/q


1/p

.

Similarly, we use ∥A∥(p,q) to denote the Lp norm of the vector consisting of the Lq norms of each
column of A. Equivalently, we have ∥A∥(p,q) = ∥A⊤∥p,q , so that

∥A∥(p,q) =

∑
j∈[d]

∑
i∈[n]

(Ai,j)
q

p/q


1/p

.

We use ◦ to represent vertical stacking of matrices, so that

A(1) ◦ . . . ◦A(m) =

A(1)

...
A(m)

 .

A.1 REGRESSION AND LOW-RANK APPROXIMATION

In this section, we briefly describe some common techniques used to handle both regression and low-
rank approximation, thus presenting multiple unified approaches for both problems. Thus in light of
the abundance of techniques that can be used to handle both problems, it is somewhat surprising that
socially fair regression and socially fair low-rank approximation exhibit vastly different complexities.

Closed form solutions. Given the regression problem minx∈Rd ∥Ax − b∥2 for an input matrix
A ∈ Rn×d and a label vector b ∈ Rn, the closed form solution for the minimizer is A†b =
argminx∈Rd ∥Ax− b∥2, where A† is the Moore-Penrose pseudoinverse of A.

Similarly, given an input matrix A and a rank parameter k > 0, there exists a closed form solution
for the minimizer argminV∈Rk×d ∥A − AV⊤V∥2F . Specifically, by the Eckart-Young-Mirsky
theorem Eckart & Young (1936), the minimizer is the top k right singular vectors of A.

Dimensionality reduction. We next recall a unified set of dimensionality reduction techniques for
both linear regression and low-rank approximation. We consider the “sketch-and-solve” paradigm, so
that for both problems, we first acquire a low-dimension representation of the problem, and find the
optimal solution in the low dimension using the above closed-form solutions. For “good” designs
of the low-dimension representations, the low-dimension solution will also be near-optimal for the
original problem.

We first observe that oblivious linear sketches serve as a common dimensionality reduction for both
linear regression and low-rank approximation. For example, it is known Woodruff (2014) that there
exists a family of Gaussian random matrices G1 from which S ∼ G1 satisfies with high probability,

(1− ε)∥SAx− Sb∥2 ≤ ∥Ax− b∥2 ≤ (1 + ε)∥SAx− Sb∥2,

simultaneously for all x ∈ Rd. Similarly, there exists Woodruff (2014) a family of Gaussian random
matrices G2 from which S ∼ G1 satisfies with high probability, that the row space of SA contains a
(1 + ε)-approximation of the optimal low-rank approximation to A.

Alternatively, we can achieve dimensionality reduction for both linear regression and low-rank
approximation by sampling a small subset of the input in related ways for both problems. For
linear regression, we can generate a random matrix S by sampling rows of [A b] by their leverage
scores Drineas et al. (2006a;b); Magdon-Ismail (2010); Woodruff (2014). In this manner, we again
achieve a matrix S such that with high probability,

(1− ε)∥SAx− Sb∥2 ≤ ∥Ax− b∥2 ≤ (1 + ε)∥SAx− Sb∥2,

14



simultaneously for all x ∈ Rd. For low-rank approximation, we can generate a random matrix S
by sampling rows of A with the related ridge-leverage scores Cohen et al. (2017). Then with high
probability, we have for all V ∈ Rk×d,

(1− ε)∥SA− SAV⊤V∥2F ≤ ∥A−AV⊤V∥2F ≤ (1 + ε)∥SA− SAV⊤V∥2F .

B MISSING PROOFS FROM SECTION 2

Theorem 2.1. The optimal solution to the standard regression problem that computes a vector
x̂ ∈ Rd also satisfies maxi∈[ℓ] ∥A(i)x̂ − b(i)∥2 ≤ ℓ ·minx∈Rd maxi∈[ℓ] ∥A(i)x − b(i)∥2, i.e., the
algorithm outputs a ℓ-approximation to the fair regression problem. For L2 loss, the algorithm uses
O
(
ndω−1

)
runtime, where n = n1 + . . .+ nℓ and ω is the matrix multiplication exponent.

Proof. Let x̂ = argminx∈Rd ∥Ax−b∥, where A = A(1) ◦ . . . ◦A(ℓ) and b = b(1) ◦ . . . ◦b(ℓ). Let
x∗ = argminx∈Rd maxi∈[ℓ] ∥A(i)x− b(i)∥. Then by the optimality of x̂, we have

∥Ax̂− b∥ ≤ ∥Ax∗ − b∥.
By triangle inequality,

∥Ax∗ − b∥2 ≤
ℓ∑

i=1

∥A(i)x∗ − b(i)∥ ≤ ℓ ·max
i∈[ℓ]
∥A(i)x∗ − b(i)∥.

Therefore,
∥Ax̂− b∥ ≤ ℓ ·max

i∈[ℓ]
∥A(i)x∗ − b(i)∥,

so that x̂ produces an ℓ-approximation to the fair regression problem.

Finally, note that for L2 loss, the closed form solution of x̂ is x̂ = (A(i))†b(i) and can computed in
runtime O

(
ndω−1

)
.

B.1 ALGORITHMS FOR L1 AND L2 REGRESSION

We now give an efficient algorithm for (1 + ε)-approximation for fair L1 regression using linear
programs.

Definition B.1 (Linear program formulation for min-max L1 formulation). Let n =
∑ℓ

i=1 ni. Given
A(i) ∈ Rni×d, b(i) ∈ Rni and a parameter L > 0, the linear program formulation (with d + n
variables and O(n) constraints) can be written as follows

min
x∈Rd,t∈R

∑ℓ
i=1

ni

⟨x,1d⟩

subject to (A(i)x− b(i))j ≤ ti,j · 1d, ∀i ∈ [ℓ],∀j ∈ [ni]

(A(i)x− b(i))j ≥ −ti,j · 1d, ∀i ∈ [ℓ],∀j ∈ [ni]

ti,j ≥ 0, ∀i ∈ [ℓ],∀j ∈ [ni]
ni∑
j=1

ti,j ≤ L, ∀i ∈ [ℓ]

Here 1d is a length-d where all the entries are ones.
Observation B.2. The linear program in Definition B.1 has a feasible solution if and only if

L ≥ min
x∈Rd

max
i∈[ℓ]
∥A(i)x− b(i)∥1.

Theorem B.3. There exists an algorithm that uses O ((n+ d)ω) runtime and outputs whether the
linear program in Definition B.1 has a feasible solution. Here ω ≈ 2.373.

Proof. The proof directly follows using linear programming solver (Cohen et al., 2019; Jiang et al.,
2021) as a black-box.

15



Given Theorem B.3 and the ℓ-approximation algorithm as a starting point, we can achieve a (1 + ε)-
approximation to fair L1 regression using binary search in O

(
1
ε log ℓ

)
iterations.

Definition B.4 (Quadratic program formulation for min-max L2 formulation). Given A(i) ∈ Rni×d,
b(i) ∈ Rni and a parameter L > 0, the quadratic constraint quadratic program formulation can be
written as follows

min
x∈Rd

x⊤Idx

subject to x⊤(A(i))⊤A(i)x− 2⟨A(i)x, b(i)⟩+ ∥b(i)∥22 ≤ L, ∀i ∈ [ℓ]

We now describe a similar approach for fair L2 regression using a quadratic program.
Observation B.5. The quadratically constrained quadratic program in Definition B.4 has a feasible
solution if and only if

L ≥ min
x∈Rd

max
i∈[ℓ]
∥A(i)x− b(i)∥22.

Theorem B.6. There exists an algorithm that uses poly(n + d) runtime and outputs whether
the quadratically constrained quadratic program in Definition B.4 has a feasible solution. Here
n =

∑ℓ
i=1 ni. The polynomial factor is at least 4.

Proof. This directly follows using semi-definite programming solver as a black-box (Jiang et al.,
2020a; Huang et al., 2022). Note that in general, quadratic programming is NP-hard to solve, however
the formulation we have, all the matrices are semi-definite matrix. Thus, it’s straightforward to reduce
it to a SDP and then run SDP solver.

B.2 ON CONVEX SOLVERS

We first require the following definition of a separation oracle.
Definition B.7 (Separation oracle). Given a set K ⊂ Rd and ε > 0, a separation oracle for K is a
function that takes an input x ∈ Rd, either outputs that x is in K or outputs a separating hyperplane,
i.e., a half-space of the form H := {z | c⊤z ≤ c⊤x+ b} ⊇ K with b ≤ ε∥c∥2 and c ̸= 0d.

We next recall the following statement on the runtime of convex solvers given access to a separation
oracle.
Theorem B.8 (Lee et al. (2015); Jiang et al. (2020b)). Suppose there exists a set K that is contained
in a box of radius R and a separation oracle that, given a point x and using time T , either outputs
that x is in K or outputs a separating hyperplane. Then there exists an algorithm that either
finds a point in K or proves that K does not contain a ball of radius ε. The algorithm uses
O (dT log κ) + d3 · polylog κ runtime, for κ = dR

ε .

We use the following reduction from the computation of subgradients to separation oracles, given by
Lemma 38 in (Lee et al., 2015).
Lemma B.9 (Lee et al. (2015)). Given α > 0, suppose K is a set defined by {x ∈ [−∆,∆]d |
∥Ax∥ ≤ α}, where ∆ = poly(n) and the subgradient of ∥Ax∥ can be computed in poly(n, d) time.
Then there exists a separation oracle for K that uses poly

(
nd
ε

)
time.

Putting things together, we now have our main algorithm for fair regression:

Theorem 1.1. Let n1, . . . , nℓ be positive integers and for each i ∈ [ℓ], let A(i) ∈ Rni×d and
b(i) ∈ Rni . Let ∆ = poly(n) for n = n1 + . . . + nℓ and let ε ∈ (0, 1). For any norm ∥ · ∥
whose subgradient can be computed in poly(n, d) time, there exists an algorithm that outputs
x∗ ∈ [−∆,∆]d such that maxi∈[ℓ] ∥A(i)x∗ − b(i)∥ ≤ ε+minx∈[−∆,∆]d maxi∈[ℓ] ∥A(i)x− b(i)∥.
The algorithm uses poly

(
n, d, 1

ε

)
runtime.

Proof. Recall that every norm is convex, since ∥λu+ (1− λ)v∥ ≤ λ∥u∥+ (1− λ)∥v∥ by triangle
inequality. Therefore, the function g(x) := maxi∈[ℓ]{∥A(i)x − b(i)∥} is convex because the
maximum of convex functions is also a convex function. Hence, the objective minx g(x) is the
minimization of a convex function and can be solved using a convex program.

16



B.3 INPUT-SPARSITY RUNTIME

For further runtime improvements for sparse inputs, we recall the following notion of subspace
embeddings.

Definition B.10 (Subspace embedding). Given an input matrix A ∈ Rn×d and an accuracy param-
eter ε ∈ (0, 1), a subspace embedding for A is a matrix M ∈ Rm×d such that for all x ∈ Rd, we
have

(1− ε)∥Ax∥p ≤ ∥Mx∥p ≤ (1 + ε)∥Ax∥p.

Constructions of subspace embeddings have been well-studied. We utilize the following constructions:

Definition B.11 (Cohen & Peng (2015); Lee (2016); Jambulapati et al. (2022); Woodruff & Yasuda
(2023b)). Given an input matrix A ∈ Rn×d and an accuracy parameter ε ∈ (0, 1), let m =

O
(

dp/2

ε2 · log
2 d · log n

)
for p > 2 and m = Õ

(
d
ε2

)
for p ≤ 2. There exists an algorithm outputs a

matrix M ∈ Rm×d such that with probability 0.99, simultaneously for all x ∈ Rd, we have

(1− ε)∥Ax∥p ≤ ∥Mx∥p ≤ (1 + ε)∥Ax∥p.

The algorithm uses Õ (nnz(A)) + poly
(
d, 1

ε

)
runtime.

C MISSING PROOFS FROM SECTION 3

C.1 LOWER BOUND

We first show in Section C.1 that it is NP-hard to approximate fair low-rank approximation within any
constant factor in polynomial time and moreover, under the exponential time hypothesis, it requires
exponential time to achieve a constant factor approximation. We then give missing details from
Section 3.1 and in Section 3.2.

Given points v(1), . . . ,v(n) ∈ Rd, their outer (d − k)-radius is defined as the minimum, over all
k-dimensional linear subspaces, of the maximum Euclidean distance of these points to the subspace.
We define this problem as Subspace(k,∞). It is known that it is NP-hard to approximate the
Subspace(n− 1,∞) problem within any constant factor:

Theorem C.1 (Brieden et al. (2000); Deshpande et al. (2011)). The Subspace(n− 1,∞) problem is
NP-hard to approximate within any constant factor.

Utilizing the NP-hardness of approximation of the Subspace(n − 1,∞) problem, we show the
NP-hardness of approximation of fair low-rank approximation.

Theorem 1.3. Fair low-rank approximation is NP-hard to approximate within any constant factor.

Proof. Given an instance v(1), . . . ,v(n) ∈ Rd of Subspace(n− 1,∞) with n < d, we set ℓ = k =
n− 1 and A(i) = v(i) for all i ∈ [n]. Then for a k-dimensional linear subspace V ∈ Rk×d, we have
that ∥A(i)V⊤V −A(i)∥2F is the distance from v(i) to the subspace. Hence, maxi∈[ℓ] ∥A(i)V⊤V −
A(i)∥2F is the maximum Euclidean distance of these points to the subspace and so the fair low-rank
approximation problem is exactly Subspace(n− 1,∞). By Theorem C.1, the Subspace(n− 1,∞)
problem is NP-hard to approximate within any constant factor. Thus, fair low-rank approximation is
NP-hard to approximate within any constant factor.

We next introduce a standard complexity assumption beyond NP-hardness. Recall that in the 3-SAT
problem, the input is a Boolean satisfiability problem written in conjunctive normal form, consisting
of n clauses, each with 3 literals, either a variable or the negation of a variable. The goal is to
determine whether there exists a Boolean assignment to the variables to satisfy the formula.

Hypothesis C.2 (Exponential time hypothesis Impagliazzo & Paturi (2001)). The 3-SAT problem
requires 2Ω(n) runtime.

17



Observe that while NP-hardness simply conjectures that the 3-SAT problem cannot be solved in
polynomial time, the exponential time hypothesis conjectures that the 3-SAT problem requires
exponential time.

We remark that in the context of Theorem C.1, Brieden et al. (2000) showed the hardness of
approximation of Subspace(n − 1,∞) through a reduction from the Max-Not-All-Equal-3-SAT
problem, whose NP-hardness itself is shown through a reduction from 3-SAT. Thus under the
exponential time hypothesis, Max-Not-All-Equal-3-SAT problem requires 2Ω(n) to solve. Then it
follows that:
Theorem C.3 (Brieden et al. (2000); Deshpande et al. (2011)). Assuming the exponential time
hypothesis, then the Subspace(n − 1,∞) problem requires 2n

Ω(1)

time to approximate within any
constant factor.

It follows that under the exponential time hypothesis, any constant-factor approximation to socially
fair low-rank approximation requires exponential time.
Theorem 1.4. Under the exponential time hypothesis, the fair low-rank approximation requires
2k

Ω(1)

time to approximate within any constant factor.

Proof. Given an instance v(1), . . . ,v(k) ∈ Rd of Subspace(k − 1,∞) with k < d, we set ℓ =
k − 1 and A(i) = v(i) for all i ∈ [k]. Then for a (k − 1)-dimensional linear subspace V ∈
R(k−1)×d, we have that ∥A(i)V⊤V − A(i)∥2F is the distance from v(i) to the subspace. Hence,
maxi∈[ℓ] ∥A(i)V⊤V −A(i)∥2F is the maximum Euclidean distance of these points to the subspace
and so the fair low-rank approximation problem is exactly Subspace(k−1,∞). By Theorem C.3, the
Subspace(k − 1,∞) problem requires 2k

Ω(1)

time to approximate within any constant factor. Thus,
fair low-rank approximation requires 2k

Ω(1)

time to approximate within any constant factor.

C.2 MISSING PROOFS FROM SECTION 3.1

We first recall the following result for polynomial system satisfiability solvers.
Theorem C.4 (Renegar (1992a;b); Basu et al. (1996)). Given a polynomial system P (x1, . . . , xn)
over real numbers and m polynomial constraints fi(x1, . . . , xn)⊗i0, where⊗ ∈ {>,≥,=, ̸=,≤, <}
for all i ∈ [m], let d denote the maximum degree of all the polynomial constraints and let B denote
the maximum size of the bit representation of the coefficients of all the polynomial constraints. Then
there exists an algorithm that determines whether there exists a solution to the polynomial system P
in time (md)O(n) · poly(B).

To apply Theorem C.4, we utilize the following statement upper bounding the sizes of the bit
representation of the coefficients of the polynomial constraints in our system.
Theorem C.5 (Jeronimo et al. (2013)). Let T = {x ∈ Rn | f1(x) ≥ 0, . . . , fm(x) ≥ 0} be
defined by m polynomials fi(x1, . . . , xn) for i ∈ [m] with degrees bounded by an even integer d
and coefficients of magnitude at most M . Let C be a compact connected component of T . Let
g(x1, . . . , xn) be a polynomial of degree at most d with integer coefficients of magnitude at most M .
Then the minimum nonzero magnitude that g takes over C is at least (24−n/2M̃dn)−n2ndn

, where
M̃ = max(M, 2n+ 2m).

To perform dimensionality reduction, recall the following definition of affine embedding.
Definition C.6 (Affine embedding). We say a matrix S ∈ Rn×m is an affine embedding for a matrix
A ∈ Rd×n and a vector b ∈ Rn if we have

(1− ε)∥xA− b∥2F ≤ ∥xAS− bS∥2F ≤ (1 + ε)∥xA− b∥2F ,

for all vectors x ∈ Rd.

We then apply the following affine embedding construction.
Lemma C.7 (Lemma 11 in (Cohen et al., 2015)). Given δ, ε ∈ (0, 1) and a rank parameter k > 0,

let m = O
(

k2

ε2 log 1
δ

)
. For any matrix A ∈ Rd×n, there exists a family S of random matrices in

18



Rn×m, such that for S ∼ S, we have that with probability at least 1 − δ, S is a one-sided affine
embedding for a matrix A ∈ Rd×n and a vector b ∈ Rn.

We now show a crucial structural property that allows us to distinguish between the case where a
guess α for the optimal value OPT exceeds (1 + ε)OPT or is smaller than (1− ε)OPT by simply
looking at a polynomial system solver on an affine embedding.
Lemma 3.1. Let V ∈ Rk×d be the optimal solution to the fair low-rank approximation problem for
inputs A(1), . . . ,A(ℓ), where A(i) ∈ Rni×d, and suppose OPT = maxi∈[ℓ] ∥A(i)V†V −A(i)∥2F .
Let S be an affine embedding for V and let W = (VS)† ∈ Rk×m. For i ∈ [ℓ], let Z(i) =
A(i)SW ∈ Rni×k and R(i) ∈ Rk×k be defined so that A(i)SWR(i) has orthonormal columns. If
α ≥ (1+ε)·OPT, then for each i ∈ [ℓ], α ≥ ∥(A(i)SWR(i))(A(i)SWR(i))†A(i)−A(i)∥2F . If α <

(1−ε)·OPT, then there exists i ∈ [ℓ], such that α < ∥(A(i)SWR(i))(A(i)SWR(i))†A(i)−A(i)∥2F .

Proof. By the Pythagorean theorem, we have that

(A(i)S)(VS)† = argmin
X(i)

∥X(i)VS−A(i)S∥2F .

Thus, Z(i) = argminX(i) ∥X(i)VS −A(i)S∥2F for Z(i) = A(i)SW ∈ Rni×k and W = (VS)† ∈
Rm×k.

Let R(i) ∈ Rk×k be defined so that A(i)SWR(i) has orthonormal columns. Thus, we have

∥(Z(i)R(i))(Z(i)R(i))†A(i)S−A(i)S∥2F = ∥(Z(i))(Z(i))†A(i)S−A(i)S∥2F
= ∥Z(i)VS−A(i)S∥2F
= min

X(i)
∥X(i)VS−A(i)S∥2F ,

by the definition of Z(i).

Suppose α ≥ (1 + ε) · OPT. Since S is an affine embedding for V, then we have that for all
X(i) ∈ Rni×k,

∥X(i)VS−A(i)S∥2F ≤ (1 + ε)∥X(i)V −A(i)∥2F .
In particular, we have

min
X(i)
∥X(i)VS−A(i)S∥2F ≤ (1 + ε)min

X(i)
∥X(i)V −A(i)∥2F ≤ (1 + ε)OPT.

Then from the above argument, we have

∥(Z(i)R(i))(Z(i)R(i))†A(i)S−A(i)S∥2F = min
X(i)
∥X(i)VS−A(i)S∥2F

≤ (1 + ε)OPT ≤ α.

Since Z(i) = A(i)SW ∈ Rni×k, then for α ≥ (1 + ε) · OPT, we have that for each i ∈ [ℓ],

α ≥ ∥(A(i)SWR(i))(A(i)SWR(i))†A(i) −A(i)∥2F .

On the other hand, suppose α < (1− ε) · OPT. Let i ∈ [ℓ] be fixed so that

OPT = min
X(i)
∥X(i)V −A(i)∥2F .

Since S is an affine embedding for V, we have that for all X(i) ∈ Rni×k,

(1− ε)∥X(i)V −A(i)∥2F ≤ ∥X(i)VS−A(i)S∥2F ,
Therefore,

(1− ε)min
X(i)
∥X(i)V −A(i)∥2F ≤ min

X(i)
∥X(i)VS−A(i)S∥2F

From the above, we have

∥(Z(i)R(i))(Z(i)R(i))†A(i)S−A(i)S∥2F = min
X(i)
∥X(i)VS−A(i)S∥2F .

19



Hence, putting these relations together,

α < (1− ε)OPT = (1− ε)min
X(i)
∥X(i)V −A(i)∥2F

≤ min
X(i)
∥X(i)VS−A(i)S∥2F

= ∥(Z(i)R(i))(Z(i)R(i))†A(i)S−A(i)S∥2F ,

as desired.

We can thus utilize the structural property of Lemma 3.1 by using the polynomial system solver in
Algorithm 3 on an affine embedding.

Corollary C.8. If α ≥ (1 + ε) · OPT, then Algorithm 3 outputs a vector U ∈ Rn×k such that

α ≥ ∥UU†A(i) −A(i)∥2F .

If α < (1− ε) · OPT, then Algorithm 3 outputs ⊥

Correctness of Algorithm 4 then follows from Corollary C.8 and binary search on α.

We now analyze the runtime of Algorithm 4.

Lemma C.9. The runtime of Algorithm 4 is at most 1
ε poly(n) · (2ℓ)

O(N), for n =
∑ℓ

i=1 ni and
N = poly

(
ℓ, k, 1

ε

)
.

Proof. Suppose the coefficients of A(i) are bounded in magnitude by 2poly(n), where n =
∑ℓ

i=1 ni.
The number of variables in the polynomial system is at most

N := 2mk + ℓk2 = poly

(
ℓ, k,

1

ε

)
.

Each of the O (ℓ) polynomial constraints has degree at most 20. Thus by Theorem C.5,
the minimum nonzero magnitude that any polynomial constraint takes over C is at least
(24−N/22poly(n)20N )−N2N20N . Hence, the maximum bit representation required is B = poly(n) ·
2O(N). By Theorem C.4, the runtime of the polynomial system solver is at most (O (ℓ) · 20)O(N) ·
poly(B) = poly(n) · (2ℓ)O(N). We require at most O

(
1
ε log ℓ

)
iterations of the polynomial system

solver. Thus, the total runtime is at most 1
ε poly(n) · (2ℓ)

O(N).

Putting things together, we have:

Theorem 1.5. Given an accuracy parameter ε ∈ (0, 1), there exists an algorithm that outputs
Ṽ ∈ Rk×d such that with probability at least 2

3 , maxi∈[ℓ] ∥A(i)(Ṽ)†Ṽ − A(i)∥F ≤ (1 + ε) ·
minV∈Rk×d maxi∈[ℓ] ∥A(i)V†V −A(i)∥F . The algorithm uses runtime 1

ε poly(n) · (2ℓ)
O(N), for

n =
∑ℓ

i=1 ni and N = poly
(
ℓ, k, 1

ε

)
.

C.3 MISSING PROOFS FROM SECTION 3.2

Lemma C.10. Let ε ∈ (0, 1) and x ∈ Rℓ and let p = O
(
1
ε log ℓ

)
. Then ∥x∥∞ ≤ ∥x∥p ≤

(1 + ε)∥x∥∞.

Proof. Since it is clear that ∥x∥∞ ≤ ∥x∥p, then it remains to prove ∥x∥p ≤ (1 + ε)∥x∥∞. Note that
we have ∥x∥pp ≤ ∥x∥p∞ · ℓ. To achieve ℓ1/p ≤ (1 + ε), it suffices to have 1

p log ℓ ≤ log(1 + ε). Since
log(1+ ε) = O (ε) for ε ∈ (0, 1), then for p = O

(
1
ε log ℓ

)
, we have ℓ1/p ≤ (1 + ε), and the desired

claim follows.

Lemma 3.5. Let Ṽ be the output of Algorithm 5. Then with probability at least 9
10 ,

max
i∈[ℓ]
∥A(i)(Ṽ)†Ṽ −A(i)∥F ≤ ℓc · 21/c · O (k(log log k)(log d))max

i∈[ℓ]
∥A(i)(Ṽ)†Ṽ −A(i)∥F .

20



Proof. We have

max
i∈[ℓ]
∥A(i)(Ṽ)†Ṽ −A(i)∥F ≤

∑
i∈[ℓ]

∥A(i)(Ṽ)†Ṽ −A(i)∥pF

1/p

.

Let A = A(1) ◦ . . . ◦A(ℓ) and let
Ũ := AHS.

For i ∈ [ℓ], let Ũ(i) be the matrix of Ũ whose rows correspond with the rows of A(i) in A, i.e., let
Ũ(i) be the i-th block of rows of Ũ.

By the optimality of A(i)(Ṽ)† with respect to the Frobenius norm, we have∑
i∈[ℓ]

∥A(i)(Ṽ)†Ṽ −A(i)∥pF

1/p

≤

∑
i∈[ℓ]

∥Ũ(i)Ṽ −A(i)∥pF

1/p

By Dvoretzky’s Theorem, Theorem 3.2, with distortion ε = Θ(1), we have that with probability at
least 0.99, ∑

i∈[ℓ]

∥Ũ(i)Ṽ −A(i)∥pF

1/p

≤ 2

∑
i∈[ℓ]

∥GŨ(i)ṼH−GA(i)H∥pp

1/p

,

where we use ∥ · ∥p to denote the entry-wise p-norm. Writing Ũ = Ũ(1) ◦ . . . ◦ Ũ(ℓ), then we have∑
i∈[ℓ]

∥GŨ(i)ṼH−GA(i)H∥pp

1/p

= ∥GŨṼH−GAH∥p.

By the choice of the Lewis weight sampling matrix T, we have that with probability 0.99,

∥GŨṼH−GAH∥p ≤ 2∥TGŨṼH−TGAH∥p
≤ 2∥TGŨṼH−TGAH∥(p,2)
= 2∥TGAHS(TGAHS)†(TGA)H−TGAH∥(p,2).

Here ∥M∥(p,2) denotes the Lp norm of the vector consisting of the L2 norms of the columns of M.
By optimality of (TGAHS)†(TGA)H for the choice of X in the minimization problem

min
X∈Rt×d′

∥TGAHSX−TGAH∥(p,2),

we have

∥TGAHS(TGAHS)†(TGA)H−TGAH∥(p,2) = min
X∈Rt×d′

∥TGAHSX−TGAH∥(p,2).

Since S ∈ Rn′×t and T is a Lewis weight sampling matrix for GAHSX −GAH, then T has t
rows, where t = O

(
k(log log k)(log2 d)

)
by Theorem 3.3. Thus, each column of TGAH has t

entries, so that

min
X∈Rt×d′

∥TGAHSX−TGAH∥(p,2) ≤
√
t min
X∈Rt×d′

∥TGAHSX−TGAH∥p.

By the choice of the Lewis weight sampling matrix T, we have that with probability 0.99,

min
X∈Rt×d′

∥TGAHSX−TGAH∥p ≤ 2 min
X∈Rt×d′

∥GAHSX−GAH∥p.

By Theorem 3.3, we have that with probability 0.99,

min
X∈Rt×d′

∥GAHSX−GAH∥p ≤ 2p · O
(√

s
)
· min
U∈Rn′×t,V∈Rt×d′

∥UV −GAH∥p,

21



for s = O (k log log k). Let V∗ = argminV∈Rk×d maxi∈[ℓ] ∥A(i) −A(i)V†V∥p. Then since UV
has rank t with t ≥ k, we have

min
U∈Rn′×t,V∈Rt×d′

∥UV −GAH∥p ≤ ∥GA(V∗)†V∗H−GAH∥p

=

∑
i∈[ℓ]

∥GA(i)(V∗)†V∗H−GA(i)H∥pp

1/p

.

By Dvoretzky’s Theorem, Theorem 3.2, with distortion ε = Θ(1), we have that with probability at
least 0.99,∑

i∈[ℓ]

∥GA(i)(V∗)†V∗H−GA(i)H∥pp

1/p

≤ 2

∑
i∈[ℓ]

∥A(i)(V∗)†V∗ −A(i)∥pF

1/p

.

For p = c log ℓ with c < 1, we have∑
i∈[ℓ]

∥A(i)(V∗)†V∗ −A(i)∥pF

1/p

≤ 21/c max
i∈[ℓ]
∥A(i)(Ṽ)†Ṽ −A(i)∥F .

Putting together these inequalities successively, we ultimately have

max
i∈[ℓ]
∥A(i)(Ṽ)†Ṽ −A(i)∥F ≤ 2p · 21/c · O

(√
st
)
max
i∈[ℓ]
∥A(i)(Ṽ)†Ṽ −A(i)∥F ,

for p = c log ℓ, s = O (k log log k), and t = O
(
k(log log k)(log2 d)

)
. Therefore, we have

max
i∈[ℓ]
∥A(i)(Ṽ)†Ṽ −A(i)∥F ≤ ℓc · 21/c · O (k(log log k)(log d))max

i∈[ℓ]
∥A(i)(Ṽ)†Ṽ −A(i)∥F .

D SOCIALLY FAIR COLUMN SUBSET SELECTION

In this section, we consider socially fair column subset selection, where the goal is to select a matrix
C ∈ Rd×k that selects k columns to minimize

min
C∈Rd×k,∥C∥0≤k,B(i)

max
i∈[ℓ]
∥B(i)C−Ai∥F .

Algorithm 6 Bicriteria approximation for fair column subset selection

Input: A(i) ∈ Rni×d for all i ∈ [ℓ], rank parameter k > 0, trade-off parameter c ∈ (0, 1)
Output: Bicriteria approximation for fair column subset selection

1: Acquire Ṽ from Algorithm 5
2: Generate Gaussian matrices G ∈ Rn′×n through Theorem 3.2
3: Let S ∈ Rd×k′

be a leverage score sampling matrix that samples k′ = O (k log k) columns of Ṽ
4: M(i) = S†(Ṽ)†Ṽ for all i ∈ [ℓ]
5: return A(i)S, {M(i)} ▷Set of selected columns is given by S

We first provide preliminaries on leverage score sampling.
Definition D.1. Given a matrix M ∈ Rn×d, we define the leverage score σi of each row mi with
i ∈ [n] by mi(M

⊤M)−1m⊤
i . Equivalently, for the singular value decomposition M = UΣV, the

leverage score of row mi is also the squared row norm of ui.

It is known that the sum of the leverage scores of the rows of a matrix can be bounded by the rank of
the matrix.

22



Theorem D.2 (Generalization of Foster’s Theorem, Foster (1953)). Given a matrix M ∈ Rn×d, the
sum of its leverage scores is rank(M).

By sampling rows proportional to their leverage scores, we can obtain a subspace embedding as
follows:

Theorem D.3 (Leverage score sampling). Drineas et al. (2006a;b); Magdon-Ismail (2010); Woodruff
(2014) Given a matrix M ∈ Rn×d, let σi be the leverage score of the i-th row of M. Suppose
pi = min (1, σi log n) for each i ∈ [n] and let S be a random diagonal matrix so that the i-th
diagonal entry of S is 1√

pi
with probability pi and 0 with probability 1 − pi. Then for all vectors

v ∈ Rn,
E
[
∥Sv∥22

]
= ∥v∥22

and with probability at least 0.99, for all vectors x ∈ Rd

99

100
∥Mx∥2 ≤ ∥SMx∥2 ≤

101

100
∥Mx∥2.

Moreover, S has at most O (d log n) nonzero entries with high probability.

Since Theorem D.2 upper bounds the sum of the leverage scores by d for an input matrix M ∈ Rn×d,
then Theorem D.3 shows that given the leverage scores of M, it suffices to sample only O (d log n)
rows of M to achieve a constant factor subspace embedding of M. Because the leverage scores of
M can be computed directly from the singular value decomposition of M, which can be computed in
O (ndω + dnω) time where ω is the exponent of matrix multiplication, then the leverage scores of
M can be computed in polynomial time.

Finally, we recall that to provide a constant factor approximation to Lp regression, it suffices to
compute a constant factor subspace embedding, e.g., through leverage score sampling. The proof is
through the triangle inequality and is well-known among the active sampling literature (Chen & Price,
2019; Parulekar et al., 2021; Musco et al., 2022; Meyer et al., 2022; 2023), e.g., a generalization of
Lemma 2.1 in Meyer et al. (2022). For completeness, we provide the proof below.

Lemma D.4. Given a matrix M ∈ Rn×d, let S be a matrix such that for all x ∈ Rd and v ∈ Rn,

11

12
∥Mx∥2 ≤ ∥SMx∥2 ≤

13

12
∥Mx∥2, E

[
∥Sv∥22

]
= ∥v∥22.

For a fixed B ∈ Rn×m where B = b1 ◦ . . . ◦ bm with bi ∈ Rn for i ∈ [m], let x̃i = (SM)†(Sbi).
Let X̃ = x̃1 ◦ . . . ◦ x̃m. Then with probability at least 0.97,

∥MX̃−B∥2 ≤ 99min
X
∥MX−B∥2.

Proof. Let X∗ = argminX ∥MX−B∥2 and OPT = ∥MX∗ −B∥2. By triangle inequality,

∥SMX− SB∥2 ≥ ∥SM(X−X∗)∥2 − ∥SMX∗ − SB∥2.

We have
99

100
∥MX∥2 ≤ ∥SMX∥2 ≤

101

100
∥MX∥2

for all X ∈ Rn×m. Thus,

∥SMX− SB∥2 ≥
99

100
∥M(X−X∗)∥2 − ∥SMX∗ − SB∥2.

By triangle inequality,

∥SMX− SB∥2 ≥
99

100
(∥MX−B∥2 − ∥MX∗ −B∥2)− ∥SMX∗ − SB∥2.

Since E
[
∥Sv∥22

]
= ∥v∥22 for all x ∈ Rd, then by concavity and Markov’s inequality, we have that

Pr [∥SMX∗ − SB∥2 ≥ 49∥MX∗ −B∥2] ≤
1

49
.

23



Thus with probability at least 0.97,

∥SMX− SB∥2 ≥
99

100
(∥MX−B∥2 − ∥MX∗ −B∥2)− 49∥MX∗ −B∥2.

Now since we have ∥SMX∗−SB∥2 ≤ 49∥MX∗−B∥2 and ∥SMX̃−SB∥2 ≤ ∥SMX∗−SB∥2,
then

49∥MX∗ −B∥2 ≥
99

100

(
∥MX̃−B∥2 − ∥MX∗ −B∥2

)
− 49∥MX∗ −B∥2,

so that
∥MX̃−B∥2 ≤ 99∥MX∗ −B∥2,

as desired.

We now give the correctness guarantees of Algorithm 6.

Lemma D.5. Let S,M(1), . . . ,M(ℓ) be the output of Algorithm 6. Then with probability at least 0.8,

max
i∈[ℓ]
∥A(i)SM(i)−A(i)∥F ≤ ℓc ·21/c ·O (k(log log k)(log d)) min

V∈Rk×d
max
i∈[ℓ]
∥A(i)V†V−A(i)∥F .

Proof. Let Ṽ ∈ Rt×d be the output of Algorithm 5, where t = O
(
k(log log k)(log2 d)

)
. Then with

probability at least 2
3 , we have

max
i∈[ℓ]
∥A(i)(Ṽ)†Ṽ−A(i)∥F ≤ ℓc ·21/c ·O (k(log log k)(log d)) min

V∈Rk×d
max
i∈[ℓ]
∥A(i)V†V−A(i)∥F .

Therefore, we have

max
i∈[ℓ]

min
B(i)
∥B(i)Ṽ−A(i)∥F ≤ ℓc ·21/c ·O (k(log log k)(log d)) min

V∈Rk×d
max
i∈[ℓ]
∥A(i)V†V−A(i)∥F .

Let p be a sufficiently large parameter to be fixed. By Dvoretzky’s theorem, i.e., Theorem 3.2, with
ε = O (1), we have

max
i∈[ℓ]

min
B(i)
∥G(i)B(i)Ṽ −G(i)A(i)∥p,2 ≤ O (1) ·max

i∈[ℓ]
min
B(i)
∥B(i)Ṽ −A(i)∥F .

For sufficiently large p = O (log ℓ), we have by Lemma C.10,

max
i∈[ℓ]

min
B(i)
∥B(i)Ṽ −A(i)∥F . ≤ O (1) ·min

B(i)
∥G(i)B(i)Ṽ −G(i)A(i)∥p,2.

By a change of variables, we have

min
X
∥XṼ −GA∥p,2 ≤ min

B
∥GBṼ −GA∥p,2.

Note that minimizing ∥XṼ −GA∥p,2 over all X corresponds to minimizing ∥XiṼ −GiA∥2 over
all i ∈ [n′]. However, an arbitrary choice of Xi may not correspond to selecting columns of A. Thus
we apply a leverage score sampling matrix S to sample columns of Ṽ which will correspondingly
sample columns of GA. Then by Lemma D.4, we have

min
X
∥XṼS−GAS∥p,2 ≤ O (1) ·min

X
∥XṼ −GA∥p,2.

Putting these together, we have

min
X
∥XṼS−GAS∥p,2 ≤ ℓc ·21/c ·O (k(log log k)(log d)) min

V∈Rk×d
max
i∈[ℓ]
∥A(i)V†V−A(i)∥F . (1)

Let S be the selected columns from Algorithm 6 by S and note that A(i)SS†(Ṽ)†Ṽ is in the column
span of A(i)S for each i ∈ [ℓ]. By Dvoretzky’s theorem, i.e., Theorem 3.2, with ε = O (1) and a
fixed parameter p, we have

max
i∈[ℓ]
∥A(i)SS†(Ṽ)†Ṽ −A(i)∥F ≤ O (1) ·max

i∈[ℓ]
∥G(i)A(i)SS†(Ṽ)†Ṽ −G(i)A(i)∥p,2.

24



For sufficiently large p, we have

max
i∈[ℓ]
∥G(i)A(i)SS†(Ṽ)†Ṽ −G(i)A(i)∥p,2 ≤ O (1) · ∥GASS†(Ṽ)†Ṽ −GA∥p,2.

By the correctness of the leverage score sampling matrix, we have

∥GASS†(Ṽ)†Ṽ −GA∥p,2 ≤ O (1) · ∥GASS†(Ṽ)†ṼS−GAS∥p,2.

Observe that minimizing ∥XṼS − GAS∥p,2 over all X corresponds to minimizing ∥XiṼS −
GiAS∥2 over all i ∈ [n′]. Moreover, the closed-form solution of the L2 minization problem is

GiASS†(Ṽ)† = argmin
Xi

∥XiṼS−GiAS∥2.

Therefore, we have

∥GASS†(Ṽ)†ṼS−GAS∥p,2 ≤ min
X
∥XṼS−GAS∥p,2.

Putting things together, we have

max
i∈[ℓ]
∥A(i)SS†(Ṽ)†Ṽ −A(i)∥F ≤ O (1) ·min

X
∥XṼS−GAS∥p,2. (2)

By Equation 1 and Equation 2 and a rescaling of the constant hidden inside the big Oh notation, we
have

max
i∈[ℓ]
∥A(i)SS†(Ṽ)†Ṽ−A(i)∥F ≤ ℓc·21/c·O (k(log log k)(log d)) min

V∈Rk×d
max
i∈[ℓ]
∥A(i)V†V−A(i)∥F .

The desired claim then follows from the setting of M(i) = S†(Ṽ)†Ṽ for i ∈ [ℓ] by Algorithm 6.

Lemma D.6. The runtime of Algorithm 6 is polynomial in n and d.
Theorem 1.7. Given input matrices A(i) ∈ Rni×d with n =

∑
ni, there exists an algorithm

that selects a set S of k′ = O (k log k) columns such that with probability at least 2
3 , S is a

O (k(log log k)(log d))-approximation to the fair column subset selection problem. The algorithm
uses runtime polynomial in n and d.

E ADDITIONAL EMPIRICAL EVALUATIONS

In this section, we present a number of additional results from our empirical evaluations.

E.1 SOCIALLY FAIR REGRESSION

Normalized group loss for law school dataset. A natural question to ask is whether the results may
change for the law school dataset when the socially fair regression objective is normalized across each
group. That is, instead of the objective function minx∈Rd maxi∈[ℓ] ∥A(i)x− b(i)∥22 that minimizes
the loss in each group, we consider the objective function minx∈Rd maxi∈[ℓ]

1
ni
∥A(i)x − b(i)∥22

that minimizes the average loss in each group, where ni is the number of observations for group
i. We show that our fair regression algorithm similarly (if not even more) performs better than the
the standard regression algorithm on the normalized socially fair regression objective. Thus our
experiments in Figure 2 show that for the law school dataset, considerations beyond the standard
regression algorithms may be a worthy investment under the socially fair regression objective.

Synthetic dataset. Finally, we perform experiments on a simple synthetic dataset, in particular to
consider larger numbers of features. In this setup, we repeatedly generate matrices A(1),A(2) of size
10× 3, 40× 10, and 200× 50, with integer entries from 1 through k for k ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}.
We similarly generate vectors b(1),b(2) with the appropriate dimension and integer entries from 1
through k. We then compare the ratio of the socially fair objective values associated with the outputs
of the fair regression algorithm and the standard regression algorithms. Our experimental results in
Figure 3 similarly demonstrate the improvement of the fair regression algorithm over the standard
regression algorithm across various values of k and various matrix sizes. Finally, we remark that
across all of our experiments, the fair regression algorithm used similar but always more runtime than
the standard regression algorithm. We summarize these results in Table 1.

25



(a) Two sub-populations. (b) All five sub-populations.

Fig. 2: Improvement by socially fair regression algorithm under linear least squares objective,
normalized across each group for the law school dataset when solution is computed using a subset
of the data sampled at rate p, across 50 independent instances.

(a) Synthetic datasets with observa-
tions of dimension 10× 3.

(b) Synthetic datasets with observa-
tions of dimension 40× 10.

(c) Synthetic datasets with observa-
tions of dimension 200× 50.

Fig. 3: Improvement by socially fair regression algorithm under linear least squares objective
for synthetic dataset when dataset is generated with integer values from 1 through k, across 100
independent instances.

Dataset Fair Algorithm Standard Algorithm
Law school, two groups 7.64 4.98
Law school, five groups 36.39 20.95

Synthetic, 10× 3 4.78 2.99
Synthetic, 40× 10 5.62 3.57

Synthetic, 200× 50 25.05 19.93

Table 1: Average runtime (in milliseconds) for algorithms across each dataset

E.2 SOCIALLY FAIR LOW-RANK APPROXIMATION

Finally, we give a toy example using a synthetic dataset showing the importance of considering
fairness in low-rank approximation.

Synthetic dataset. We show that even for a simple dataset with four groups, each with a single
observation across two features, the performance of the fair low-rank approximation algorithm can be
much better than standard low-rank approximation algorithm on the socially fair low-rank objective.
In this setup, we repeatedly generate matrices A(1),A(2),A(3),A(4) ∈ {0, 1}2, with A(1) = (1, 0)

and A(2) = A(3) = A(4) = (0, 1). The optimal fair low-rank solution is
(√

2
2 ,

√
2
2

)
but due to

the extra instances of (0, 1), the standard low-rank algorithm will output the factor (0, 1). Thus the
optimal fair solution achieves value 1

4 on the socially fair low-rank approximation objective while the
standard low-rank approximation solution achieves value 1

2 , so that the ratio is a 50% improvement.

26


	Introduction
	Our Contributions and Technical Overview
	Related Work

	Socially Fair Regression
	Socially Fair Low-Rank Approximation
	1+eps-Approximation Algorithm for Fair Low-Rank Approximation
	Bicriteria Algorithm

	Empirical Evaluations
	Preliminaries
	Regression and Low-Rank Approximation

	Missing Proofs from Section 2
	Algorithms for L1 and L2 Regression
	On Convex Solvers
	Input-Sparsity Runtime

	Missing Proofs from Section 3
	Lower Bound
	Missing Proofs from Section 3.1
	Missing Proofs from Section 3.2

	Socially Fair Column Subset Selection
	Additional Empirical Evaluations
	Socially Fair Regression
	Socially Fair Low-Rank Approximation


