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ABSTRACT

Large language models (LLMs) have demonstrated remarkable progress in gen-
erating high-quality natural language through extensive pre-training over Trans-
former architectures. However, the quadratic complexity of transformers in se-
quence computation greatly limits their capability to efficiently model long se-
quences. In this paper, we introduce SPARSE TRAINING, a simple training tech-
nique to optimize the complexity of Transformer models in long-sequence gener-
alization. Specifically, in SPARSE TRAINING, the input sequences of the Trans-
former network are segmented into two distinct components: the memory part and
the target part. The target part adheres to the standard next-token prediction for
modeling continuous sequences, while the memory part, sampled from longer se-
quences, serves as the conditional context for the prediction of the target part. To
build the memory part, we apply a sparse sampling policy that decays with the
distance from the target part, to obtain tokens and preserve their positions. With-
out any architectural modifications, our method can extend existing Transformer-
based LLMs to capture long-range dependencies within a fixed window size dur-
ing the training. Experimental results on multiple datasets also demonstrate the
effectiveness and efficiency of SPARSE TRAINING to mitigate the complexity of
the Transformer network in building long-sequence dependency.

1 INTRODUCTION

With the aid of large-scale pre-training techniques (Kaplan et al., 2020; Ouyang et al., 2022) on
the Transformer models (Vaswani et al., 2017), large language models (LLMs) (OpenAI, 2023;
Touvron et al., 2023a;b; Team, 2024a; Jiang et al., 2023; Team & Google, 2023; Team, 2024b)
have recently achieved incredible progress in solving massive natural language processing (NLP)
tasks (e.g., generation, reasoning, translation, etc). Despite these remarkable advancements, the
inherent issue of quadratic complexity in the Transformer networks severely limits their capability
to extend long-sequence modeling, drawing enormous attention from both the industry and academia
to address this critical issue.

Generally, many efforts have been devoted to generalizing the context windows of LLMs beyond
their pre-training settings. Among these works, some researchers attempted to develop sparse ar-
chitectures (Child et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020; Choromanski et al., 2021;
Tay et al., 2023; Han et al., 2024; Xiao et al., 2024) to reduce the quadratic complexity of Trans-
former network during the training phase. However, these architectures involve sparse patterns and
limit their scalability to fall behind the original ones. Therefore, further works continue to explore
how to extend existing LLMs to support long-sequence dependency. To this end, some papers (e.g.,
RoPE (Su et al., 2024), ALiBi (Press et al., 2022), LEX-Transformer (Sun et al., 2023b)) point out
that good positional information plays an important role in enabling length extrapolation. On the
basis of these, some papers (e.g., PI (Chen et al., 2023), Yarn (Peng et al., 2024)) extend positional
information to enlarge context windows via interpolation. Although these works offer a solid ini-
tialization for modeling positional information in long sequences, they still experience performance
deterioration without any fine-tuning. How to devise an efficient training method to extend the
context window of existing LLMs still remains an ongoing challenge.

In this paper, inspired by previous experiences (Child et al., 2019; Beltagy et al., 2020; Zaheer et al.,
2020; Choromanski et al., 2021; Tay et al., 2023; Han et al., 2024; Xiao et al., 2024), we observe and
analyze the phenomenon of attention sparsity, particularly in long-sequence modeling, and further
attribute it as “Pareto Principle of Transformers”. That is, only a small subset of tokens dominates

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 𝑥13 𝑥14𝑥0 𝑥15

𝑥12 𝑥13 𝑥14 𝑥15

Target tokenMemory token

𝑥0 𝑥4 𝑥10 𝑥11

𝑝12 𝑝13 𝑝14 𝑝15𝑝0 𝑝4 𝑝10 𝑝11

Sample (𝑝 = 25%) Sample (𝑝 = 50%)

𝑥13 𝑥14 𝑥15 𝑥16

Transformer (Decoder)

Target Token

Position

Memory Token (Sampled)

Memory Token (Non-Sampled)

Figure 1: The example of SPARSE TRAINING. Assume the window size of this language model is 8. We
expect to sample 8 tokens from a document with 16 tokens to simulate training. Here, we divide the input
document as the memory part (x0−11) and the target part (x12−15). Then, we sample (x0, x4) from (x0−7)
with a probability of 25%, and (x10, x11) from (x8−11) with a probability of 50%. We concatenate the sampled
tokens (x0, x4, x10, x11) with the target tokens and preserve their positions to predict the target tokens.

the attention distribution of the Transformer network empirically for modeling long-sequence de-
pendency. Based on these observations, we raise the following question:

Is it possible to simulate attention sparsity without modifying the architecture during the training?

Therefore, in this paper, we introduce SPARSE TRAINING, which aims to extend the context win-
dow of existing LLM frameworks by leveraging continual pre-training within a fixed window size.
Specifically, we argue that distant tokens generally provide less information for a token prediction
compared to tokens that are closer to the target. In other words, most of computations (i.e., dot prod-
uct) between distant tokens and the target tokens are redundant. Hence, the core idea behind SPARSE
TRAINING is to sample tokens from the distant tokens and simultaneously keep their corresponding
positions, and then adopt the standard next-token prediction for the target tokens. This process is
illustrated in Figure 1. More specifically, we divide the input sequences as the memory part and the
target part. Based on the posterior distribution of attention sparsity, we devise a sampling policy
over the memory part with a decay factor across the distance to collect tokens. That implies tokens
closer to the target part will be sampled at a higher probability while the farther tokens are sampled
at a lower probability. This design enables us to replicate the sparsity of long-sequence dependencies
at the input level, rather than architecture. Generally, it also offers us three key benefits to model
long-sequence dependency: 1) Efficient Long-Sequence Training. By training on the sampled se-
quence where the length Lsample < L, our method can reduce the space and time complexity from
O(L2) to O(L2

sample) when compared with directly training long sequences (Fu et al., 2024) on
the Transformer network; 2) Sparsity Simulation. By applying a decay sampling policy across the
length, our method also simulates the situation of the attention sparsity in long-sequence modeling;
3) Architecture Invariance. Compared with previous sparse architectures, SPARSE TRAINING does
not involve any modifications to the architecture, which makes it adaptable to any LLM framework
to extend its capability in modeling long-sequence dependency.

To verify the effectiveness of SPARSE TRAINING, we conduct extensive experiments on and pub-
lic benchmark datasets. Experimental results demonstrate that by deploying SPARSE TRAINING
over existing LLM frameworks, it can effectively improve the model’s capability to infer over long
contexts. Our contributions can be summarized as follows:

• We conduct an in-depth analysis of the statistical attention patterns in Transformers across dif-
ferent LLMs, and summarize several laws regarding attention distribution, including its sparsity,
weight allocation and decay over distance.

• Based on our analysis, we propose SPARSE TRAINING, a novel training approach to extend con-
text window size of LLMs, without any modifications in the architectures.

• Empirically, we demonstrate the effectiveness of SPARSE TRAINING through extensive experi-
ments on multiple state-of-the-art LLMs over public benchmarks.
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(a) GPT-2 (b) LLaMA-2 (c) Mistral

Figure 2: Attention visualization on different LLMs. GPT-2 is over 1024 samples with a length of
1024, LLaMA-2 is over 4096 samples with a length of 4096, and Mistral-7B is over 2048 samples
with a length of 8192. All results are computed by averaging across samples and layers.

2 STATISTICAL LAWS OF ATTENTION PATTERNS

To unveil the secrets of sparsity beneath the attention mechanism of Transformer networks, we first
analyze several statistical patterns of attention across different samples in this section. Here, in the
standard Transformer architecture (Vaswani et al., 2017), the token features are aggregated through
the self-attention mechanism as follows:

H̃ = Attnθa
(H) := H+

1

N

M∑
m=1

(VmH)× σ
(
(QmH)⊤(KmH)

)
∈ RD×N (1)

where H ∈ RD×N is the input sequence embedding and θa = {(Vm,Qm,Km)}m∈[M ] ⊂ RD×D

denotes the parameters with M heads. N is the number of input tokens and D is the embedding
dimension. σ denotes the attention mask and activation, e.g., scaling by 1√

D
followed by softmax

operation. Conventionally, “attention matrix” refers to the matrix σ
(
(QmH)⊤(KmH)

)
∈ RN×N

with triangular masking applied, i.e., each token attends to all preceding tokens.

To better understand the attention patterns from a statistical viewpoint, we visualize the attention
matrix across different LLMs (e.g., GPT-2 (Radford et al., 2019), LLama-2 (Touvron et al., 2023b)
and Mistral (Jiang et al., 2023)) by calculating its average attention weights over each layer and
sample, shown in Figure 2. All results are tested on the WikiText-103 dataset (Merity et al., 2017)
and measured by the maximum length of their context window. Let AM denote the average attention
matrix for language model M. We discuss several key insights in the following subsections.

2.1 PARETO PRINCIPLE OF TRANSFORMERS

Generally, a common observation is that attention distribution always exhibits sparsity when pro-
cessing long sequences. From Figure 2, we can clearly observe that the tokens close to the query
tokens (i.e., diagonal red pixels) usually receive more attention than distant tokens. To further ana-
lyze the attention distribution, we also count the cumulative sum Sk =

∑k
i=1 α(i) of the attention

weight sorting by their distance to the query token or their ranked corresponding weight 1. Our
results are displayed in Figure 3. From Figure 3b, we can find that approximately 25% of the tokens
account for the vast majority of the total attention, which we refer to as the “Pareto Principle 2 of
Transformers”. These observations also suggest that for long-sequence modeling, attention patterns
are usually sparse and most of pair-wise computations in the attention operations are redundant.
Our studies raise a question: is it possible to sample a few tokens for long-sequence modeling while
simultaneously preserving such a sparsity?

2.2 ATTENTION DECAY WITH RELATIVE DISTANCES

Figure 3c presents the attention weight sum per 1024 tokens. From this Figure, the first bin con-
tributes to over 50% percent of the total attention weight. Additionally, there is a clear descending

1We rank each token xi by their attention weight to guarantee its attention weight α(i) ≥ α(i+1).
2The original Pareto Principle from economics states that a small proportion of factors often account for a

large portion of the effect. https://en.wikipedia.org/wiki/Pareto_principle.
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(a) Cumulative Sum (distance). (b) Cumulative Sum (weight). (c) Attention Sums Per Bin.

Figure 3: Spatial distribution of Attention in the Transformer network. (a) The cumulative sum of
attention weight of each position; (b) The cumulative sum of attention weight sorted by the weight
of each token in descending order; (c) We count the distribution of attention weight and divide it
into bins where each bin includes 1024 tokens.

trend as the position increases except the last one 3. In contrast, standard Transformer networks
assume that each position contributes equally when calculating the outputs of attention layers, ig-
noring these evident statistical patterns. Therefore, we deem it important to incorporate such an
attention decay to reduce the complexity of long-sequence modeling.

2.3 SPARSE ATTENTION IS NOT ALL YOU NEED

Inspired by the Pareto Principle in Transformers, some works (Xiao et al., 2024; Han et al., 2024;
Jiang et al., 2023) explore applying some specific attention patterns to sample tokens for inference.
They attribute attention distributions to two common patterns: sliding window and Λ-shape. The for-
mer only passes close tokens to Transformers, while the latter considers the first few tokens together
with the close tokens critical to making predictions. However, as shown in Figure 3(a), the middle
tokens (approximately from L/4 to the end) account for at least 30% of the attention, indicating that
these tokens may encode crucial information for downstream tasks. Moreover, these works do not
adequately extend the capability of LLMs to achieve long-sequence dependency. Therefore, how to
generalize existing LLM frameworks to unseen length via training still needs to be addressed.

3 SPARSE TRAINING

As mentioned previously, the backbone of most modern LLM frameworks is decoder-only Trans-
former, whose quadratic complexity in computing (QmH)⊤(KmH) ∈ RN×N in equation 1 makes
it inefficient when handling long sequences (large N ). To this end, we believe that an ideal solution
to extend the capability of LLMs to generalize long sequences should meet these criteria:

• It should not introduce any modification over architectures to preserve its architectural integrity;
• It should be able to simulate the sparsity of the attention distribution in sequence computations;
• It should effectively reduce the time and space complexity, avoiding quadratic growth.

Therefore, in this paper, we introduce SPARSE TRAINING, a novel training strategy to extend exist-
ing LLMs to support long sequence generalization. The details are described below.

3.1 FRAMEWORK

Assume the final part of a long sequence as X = {xm+1, . . . , xN}, where m starts from a large
position (e.g., beyond 4096 in LLaMA-2). The conventional method to establish long-sequence
training is to directly calculate the whole sequence from position 1 to N via attention operations
(i.e., O(N2)), while bringing massive and redundant computations. Therefore, we claim that the
core challenge to address the long-context issue is how to bridge the connection between two distant
tokens. However, considering the sparsity between the distant and the target tokens, we argue that
not all pairwise computations in attention are essential, and some distant tokens could be ignored
for modeling long contexts to simulate sparsity.

3Based on previous experiences, Transformer networks suffer from “attention sink” (Xiao et al., 2024) that
means the first few tokens usually occupy a ratio of attention weight.
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To this end, for an input sequence X = {x1, . . . , xN}, we divide it into the memory part
Xmem = {x1, . . . , xm} and the target part Xtarget = {xm+1, . . . , xN}, where m exceeds the pre-
defined context window L (e.g., 4096 in LLaMA-2) of original LLMs. Here, we assume |N−m|
is equal to L/2. Therefore, we propose SPARSE TRAINING, which aims to sample a sub-sequence
X̃mem = {x̃i1 , . . . , x̃iL/2

} from the memory part Xmem, where the sampled indices {i1, . . . , iL/2}
are from [1,m]. Then, we concatenate the sampled X̃mem and the target part Xtarget as the input
sequence and thus employ the standard next-token prediction for the target part. To identify the
long-range dependencies among sequences, we also preserve the corresponding positional indices
of each token, as Transformer is a position-independent architecture 4. Here, we use cross-entropy
loss to optimize our model, and the objective function of SPARSE TRAINING is defined as:

LSparseTraining(Xtarget|X̃mem, θ) = − 1

|N−m|

N∑
i=m+1

log p(xi|xm+1≤t<i, X̃mem, θ), (2)

Here, we enable the target part to follow the standard next-token prediction for modeling continuous
sequences, and then we use the sampled memory part to establish the long-sequence dependencies
between the target part and the distant tokens. Figure 1 also illustrates the pipeline of our method. In
Figure 1, we sample four tokens (x0, x4, x10, x11) from the memory part, and then auto-regressively
predict tokens in the target part. So, in this case, we extend the window size of the language model
to 16 tokens while its predefined window size is 8. Therefore, in SPARSE TRAINING, its complexity
is independent of the input sequence length N , stated as follows:

Lemma 3.1 Given length-N sequences and an LLM pretrained on length L < N , SPARSE TRAIN-
ING reduces causal language modeling complexity from O(N2) to O(L2) for both space and time.

We can find that this design enables us to conduct long-sequence training without any architectural
modifications, and only requires O(L2) complexity during the training. In addition, we also design
two techniques to enhance our model: 1) Sparse Sampling with decay over the distance to simu-
late attention sparsity in long-sequence dependency; 2) Mixed Training to guarantee the original
capability of LLMs when i ≤ L. More details are described below.

Algorithm 1: Sparse Sampling with Decay
Require: uniform(l, r, n) means uniformly sample n distinct tokens from position l to r.
Input: The Length of Memory Part M, The Number of Sample Tokens N, The Initial Sample

Window W (default as N), The number of decay iterations T
1 def SparseSampling(M, N, W, T):
2 if M < 2W or T == 1 then
3 ids = uniform(1, M, N)
4 else
5 ids = uniform(M - W, M, N

2 )
6 ids = concat(ids, SparseSampling(M−W, N

2 , 2W, T− 1))
7 return ids

3.2 SPARSE SAMPLING WITH DECAY

SPARSE TRAINING adopts a sampling policy to sample distant tokens and build their connections
with the target part. Based on our analysis in section 2, the attention distribution also manifests
sparsity with the increasing distance. Therefore, using uniform sampling from the memory parts is
unsuitable as it cannot highlight this characteristic. Consequently, we expect to develop a sparse
sampling policy that should satisfy these two criteria: 1) Captures the sparsity of the attention dis-
tribution, ensuring sufficient allocation to nearby tokens that are likely to be important; 2) Reflects
the decay pattern of attention with increasing relative distances. To this end, we design a sparse
sampling with a decay over the distance, which is depicted in Algorithm 1. In our algorithm, we
involve an initial window size W for sampling. If the length of memory part is smaller than twice
the size of W, we employ a uniform sampling to obtain N tokens from the position 1 to M (Line 3).
Otherwise, we uniformly sample N

2 tokens from the position M−W to M (i.e., the closest interval

4Transformer identifies the order of tokens via their positional embeddings.
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to the target part), and another N
2 tokens are sampled from the remaining memory part with a larger

window (Lines 5-6). This design enables us to sample more tokens within the nearest window, but
also guarantee that the farthest tokens can also be accessed. We also give some examples of our
sampling policy in the Appendix A.1.

3.3 MIXED TRAINING

While our proposed SPARSE TRAINING can effectively help us capture long-range dependencies
of the distant tokens, it will also suffer from another common issue: catastrophic forgetting (Luo
et al., 2023; Wu et al., 2024; Kotha et al., 2024; Huang et al., 2024) in the original positions (i.e.,
From 1 to L). To address this issue, we devise mixed training that combines SPARSE TRAINING
and standard next-token prediction on the original window to preserve the capability of LLMs in
processing tokens within the position from 1 to L.

L = E[
N∑

i=m+1

log p(xi|xm+1≤t<i, X̃mem, θ)] + βE[
L∑

i=1

log p(xi|xt<i, θ)], (3)

where β is a hyper-parameter to balance the sparse training and the original next-token prediction,
empirically set to 1. Specifically, we only tune Q,K of each Transformer layer 5 to further reduce
computations and also preserve original knowledge. Following previous experiences (Ouyang et al.,
2022; Ziegler et al., 2019; Dong et al., 2023), this simple technique can effectively guarantee the
model does not deviate significantly from the original pre-trained one during the continual training.

3.4 DISCUSSION

In this section, we also want to discuss why SPARSE TRAINING is effective at processing long-
context information. We attribute its effectiveness from two perspectives as follows:

Positional Generalization The critical part of attention operation to capture dependency is
(QmH)⊤(KmH), when Qm and Km have been applied with positional information. Therefore,
the way to enable model to learn positional information beyond the original context window is im-
portant. During pre-training with window size L, the model only accessed the positional encoding
of positions (1, . . . , L), and thus cannot be generalized to untrained positional encoding. However,
in SPARSE TRAINING, we enable model to access more positions beyond L for optimization.

Lemma 3.2 With the sampling strategy described in 3.2, each position n of the input sequence has
a non-zero probability of being sampled, and such probability generally decays by distance.

Training Mismatch Another issue of SPARSE TRAINING is whether it can build next-token pre-
diction based on the sampled memory tokens. We deem that SPARSE TRAINING can be considered
as a kind of dropout (Srivastava et al., 2014) at the token level, compared with standard training. That
makes it compatible with other LLM training techniques and does not involve any modification at
the architecture level.

4 EXPERIMENT

We evaluate the effectiveness of SPARSE TRAINING to extend the context window of Transformer
networks via the continual training. We conduct a series of experiments using the LLaMA-2-7B
model 6 (Touvron et al., 2023b) with a pre-trained context window of 4096. In particular, we aim to
study the following research questions: RQ1: How effective is our SPARSE TRAINING at extending
the context window of a given large language model? RQ2: As a training technique, will SPARSE
TRAINING preserve the language ability acquired during pre-training? RQ3: Can SPARSE TRAIN-
ING reduce the computational complexity when modeling long contexts, as stated in Lemma 3.1?
RQ4: SPARSE TRAINING has two components, the crucial SPARSE TRAINING itself and the mixed
training. Is mixed training contributing to the overall effectiveness? All experiments are conducted
on an Ubuntu server with 8 Nvidia H100 GPUs, each with 80GB of graphic memory.

5For most of LLM frameworks, they apply RoPE (Su et al., 2024) to query and key vectors.
6Model weights are available at https://huggingface.co/meta-llama/Llama-2-7b-hf.
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Table 1: Perplexity (↓) and Accuracy (↑) of LLaMA-2-7B on several datasets. The performance of
LLaMA-2-7B after SPARSE TRAINING is stable and improves with longer contexts.

Model Context Length
PG19 arXiv SlimPajama

PPL (↓) Acc (↑) PPL (↓) Acc (↑) PPL (↓) Acc (↑)

Vanilla

4K 7.88 0.54 8.22 0.54 5.73 0.61
8K 151.83 0.31 140.32 0.32 130.07 0.34

16K 1052.86 0.15 1209.21 0.16 1269.29 0.17
32K 2638.58 0.08 3417.44 0.08 2584.39 0.1
64K 5438.16 0.05 7154.67 0.04 6172.95 0.05

Sparse Training

8K 11.08 0.48 16.77 0.45 13.43 0.48
16K 9.59 0.51 13.76 0.48 10.69 0.51
32K 8.48 0.53 9.62 0.52 7.90 0.55
64K 8.02 0.54 9.15 0.53 7.39 0.57

Training. We use the LLaMA-2-7B model as the backbone network and continue to train it on
the PG19 (Rae et al., 2020) dataset. We adopt the training techniques described in Section 3.3
to prevent catastrophic forgetting. This results in approximately one billion trainable parameters
(∼ 13% of all parameters). To further optimize the GPU memory usage, we leverage Huggingface
Accelerate (Gugger et al., 2022) plus Deepspeed (Rajbhandari et al., 2020), speed up with Zero-
stage 2 by using BFloat16. For every 1,000 steps, we extend the context window by 2K, allowing
us to gradually increase LLaMA-2-7B’s context window from 4K to 64K. Because the complexity
of SPARSE TRAINING does not depend on the input sequence length (Lemma 3.1), each 1000 steps
take approximately 30 minutes and the whole training can be done in less than 16 hours. The training
curves are provided in Appendix C.3 and more details can be found in Appendix C.

Evaluation. For PG19 (Rae et al., 2020), we select a ratio of 5% of this dataset as a basic sanity
test. Then, to validate that SPARSE TRAINING empowers language model with general long-range
dependency, we also adopt arXiv (Clement et al., 2019) and Slimpajama (Soboleva et al., 2023)
to measure the long-context capability of our trained model. Here, we mainly report results by
perplexity and accuracy. Then, we also adopt LongBench (Bai et al., 2024), a multi-task long-
context benchmark, to evaluate performance over 12 datasets of 6 downstream tasks. The details of
datasets can be found in Appendix B.

4.1 EXTENDING CONTEXT WINDOW WITH SPARSE TRAINING (RQ1)

In this subsection, we investigate the effectiveness of SPARSE TRAINING to extend the context
window of a given large language model. Here, we evaluate our method on the PG19, arXiv and
SlimPajama, using LLaMA-2-7B model with SPARSE TRAINING. Besides, we also evaluate the
vanilla LLaMA-2-7B model for comparison. The results are reported in Table 1. The results show
that while the vanilla model has limited performance on sequences beyond its original context win-
dow, SPARSE TRAINING can significantly improve long-context capability of LLMs, demonstrated
by stable perplexity and accuracy close to vanilla LLaMA-2-7B on 4K sequences. Moreover, as
context length increases and perplexity decreases, SPARSE TRAINING can also enable the model to
achieve the capability of learning long context in a right way. Besides, we can also observe signif-
icant improvement not only on PG19, but also on out-of-domain datasets (e.g., Arxiv and Slimpa-
jama), proving that SPARSE TRAINING enhances robust generalization across varying sequence
lengths. To further validate the generalization of our proposed method in processing long-sequence
dependency, we conduct experiments on LongBench datasets, and the results are reported in Table 2.
We find SPARSE TRAINING significantly improves the performance across all datasets under each
downstream category, which shares a similar conclusion above. Besides, we measure the perplexity
on LongBench, reported in Appendix C.4.

To further understand the mechanism of our method in learning long context, we visualize the av-
erage attention weights on the LongBench dataset, to compare our method with vanilla model. As
shown in Figure 4, we find that the attention distribution of the vanilla model is highly concentrated
on the initial few tokens and some specific positions beyond the context window, leading to failure in
handling long sequences. In contrast, our method demonstrate a smooth attention distribution over a
longer context window, which indicates our method can better capture long-sequence dependencies.
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Table 2: Accuracy (↑) of LLaMA-2-7B on LongBench datasets. The performance of LLaMA-2-7B
after SPARSE TRAINING is stable and slightly improves with longer contexts.

Model Context Length
Single-Doc QA Multi-Doc QA Summarization

Qasper MultiFieldQA HotPotQA WikiMQA GovReport MultiNews

Vanilla

8K 0.28 0.37 0.34 0.33 0.35 0.34
16K 0.14 0.17 0.17 0.17 0.18 0.18
32K 0.08 0.09 0.09 0.09 0.09 0.09
64K 0.04 0.05 0.04 0.05 0.04 0.05

Sparse Training

8K 0.47 0.49 0.51 0.50 0.51 0.53
16K 0.49 0.53 0.54 0.54 0.53 0.54
32K 0.52 0.59 0.58 0.58 0.55 0.57
64K 0.54 0.61 0.60 0.59 0.56 0.56

Model Context Length
Few-shot Learning Synthetic Task Code Completion

TREC TriviaQA PassageCount PassageRetrieval LCC RepoBench-P

Vanilla

8K 0.40 0.54 0.47 0.46 0.51 0.50
16K 0.28 0.32 0.32 0.31 0.34 0.34
32K 0.15 0.16 0.17 0.16 0.17 0.17
64K 0.05 0.05 0.05 0.04 0.06 0.07

Sparse Training

8K 0.61 0.50 0.52 0.46 0.66 0.65
16K 0.63 0.54 0.55 0.47 0.67 0.65
32K 0.67 0.58 0.56 0.50 0.78 0.79
64K 0.68 0.59 0.58 0.52 0.81 0.81

(a) Raw LLaMA-2 (b) LLaMA-2 using Mixed Training

Figure 4: Attention visualization on LLaMA 2 after SPARSE TRAINING Qasper Task from Long-
bench. The results are computed by averaging across different samples, heads, and layers.

4.2 MAINTAINING PRE-TRAINED LANGUAGE MODELING ABILITY (RQ2)

Table 4: Perplexity (↓) and Accuracy (↑) on
several datasets with 4K input length.

Model Metric PG19 arXiv SlimPajama

Vanilla
PPL (↓) 7.88 8.22 5.73
Acc (↑) 0.54 0.54 0.61

Sparse Training
PPL (↓) 7.90 8.36 5.89
Acc (↓) 0.54 0.54 0.6

As aforementioned in Section 3.3, we also need to
ensure the capability of language models to process
tokens within the original context window. There-
fore, in this part, we conduct experiments to validate
our method and vanilla model in evaluating the con-
text window with 4K tokens. We report our results
on PG19, arXiv, SlimPajama in Table 4, and Long-
Bench in Table 3. From the results, we can find that
textscSparse Training configured with mixed train-
ing can achieve similar performance when compared to the vanilla model in different settings, which
also demonstrates the effectiveness of our design in preserving the original knowledge of language
models.
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Table 3: Performance on LongBench datasets with 4K input length. The performance of LLaMA-
2-7B after SPARSE TRAINING on 4K (pre-train window length) is close to the vanilla model.

Model Metric
Single-Doc QA Multi-Doc QA Summarization

Qasper MultiFieldQA HotPotQA WikiMQA GovReport MultiNews

Vanilla
PPL (↓) 6.99 5.17 4.98 5.27 4.71 4.47
Acc (↑) 0.56 0.62 0.63 0.61 0.63 0.65

Sparse Training PPL (↓) 7.12 5.51 5.27 5.50 4.83 4.57
Acc (↑) 0.56 0.61 0.62 0.61 0.62 0.65

Model Metric
Few-shot Learning Synthetic Task Code Completion

TREC TriviaQA PassageCount PassageRetrieval LCC RepoBench-P

Vanilla
PPL (↓) 4.97 5.18 4.12 7.39 2.09 2.05
Acc (↑) 0.69 0.62 0.69 0.56 0.83 0.83

Sparse Training PPL (↓) 5.14 6.21 4.65 7.86 2.13 2.07
Acc (↑) 0.68 0.60 0.66 0.55 0.83 0.83

4.3 REDUCING LONG-CONTEXT TRAINING COMPLEXITY (RQ3)

Table 5: Time consumption (seconds per
step) training LLaMA-2-7B on PG19.
OOM: out of GPU memory.

Training Scheme 4K 8K 16K 32K 64K

Standard 1.56 3.63 OOM OOM OOM

Sparse Training - 1.57 1.57 1.58 1.58

As mentioned above, by sampling a ratio of the mem-
ory part, we can extend long-sequence training with
quadratic complexity for a fixed length, and thus reduce
both space and time complexity. Here, we respectively
extend the context window from 4K to 8K, 16K, 32K,
and 64K, and then report the time consumption per step
in Table 5. From Table 5, we observe that SPARSE
TRAINING can achieve similar time cost compared to
standard training under 4K contexts. When we scale
up the context length, our method can still guarantee
that our time consumption is independent of the fixed input length. Moreover, our method can avoid
GPU memory explosion, while the standard method suffers from out-of-memory (OOM) issue when
training on longer sequences.

4.4 ABLATION STUDY (RQ4)

In this subsection, we further validate the effectiveness of mixed training in our design. Here, we
train another LLaMA-2 model by using SPARSE TRAINING, but without the mixed training. We
evaluate the model on LongBench, and the results are reported in Table 6. We observe that the
results are worse than using our proposed SPARSE TRAINING with mixed training from 16K to 64K,
especially in 16K and 32K. We claim that this performance degradation is caused by catastrophic
forgetting. Overall, these results also demonstrate the necessity of mixed training in our method.
More results can refer to Appendix C.5.

Table 6: PPL (↓) of SPARSE TRAINING without mixed training on LongBench.

Model Context Length
Single-Doc QA Multi-Doc QA Summarization

Qasper MultiFieldQA HotPotQA WikiMQA GovReport MultiNews

Sparse Training
w/o Mixed Training

16K 1332.19 1134.13 1806.22 1933.51 751.38 1005.19
32K 1471.31 1269.43 2870.13 4162.76 5829.82 5470.50
64K 310.02 368.17 433.99 418.16 608.48 1135.98

5 RELATED WORK

With the rise of advanced LLMs , how to extend the capability of Transformer-based LLMs to gen-
eralize across long sequences has become an ongoing challenge. Generally, the current approaches
to generalize the context window of LLMs can be grouped into two categories, which are as follows:
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Efficient Training with Sparse Architectures The standard complexity of Transformer networks
is known to scale as O(L2). To alleviate the burden of quadratic complexity, many research ef-
forts (Tay et al., 2023) have focused on developing advanced or sparse architectures to effectively
approximate the attention mechanism. Specifically, some works like Sparse Transformer (Child
et al., 2019) apply sparse factorization to the attention matrix, thus reduce the complexity to
O(L

√
L). Some other works (e.g., Linformer (Wang et al., 2020) and Performer Choromanski

et al. (2021)) attempt to approximate the self-attention matrix via low-rank decomposition. Besides,
some works (e.g., Reformer (Kitaev et al., 2020), Block-wise Self-Attention (Qiu et al., 2020),
LongFormer (Beltagy et al., 2020), Big Bird (Zaheer et al., 2020), LongNet (Ding et al., 2023))
propose some fixed sparse attention patterns to reduce time complexity. Recently, some papers have
attempted to develop parallelized RNN to address this problem, like Mamba (Gu & Dao, 2023),
RWKV (Peng et al., 2023) and RetNet (Sun et al., 2023a). In order to extend the context window
of Transformer, several methods explore the use of hybrid window-full attention for training, that
means some layers adopt full attention while other use sparse attention patterns. For example, Long
Llama (Tworkowski et al., 2023) uses the bottom layers to retrieve the most relevant top-k tokens,
then performs attention operations on these tokens to reduce computational complexity. However,
the scalability and capability of these works are still beneath fully attention architectures, and thus
most mainstream LLM frameworks still adopt standard Transformer architecture (i.e., full atten-
tion) as the backbone network. Compared with these works, SPARSE TRAINING does not involve
any modifications over architectures but simulates sparsity at the input-level. Therefore, it can also
be considered as a post-training technique that can be adopted to existing LLM frameworks, and
maintain the complexity within a fixed window size.

Extend Context Window with Length Extrapolation Instead of directly using sparse architec-
ture, a large amount of research focuses on inferring unseen length beyond the pre-training window
size based on the original Transformer network. These works can be considered as a kind of posi-
tion engineering (Zhao et al., 2023). Among these works, RoPE (Su et al., 2024) and Alibi (Press
et al., 2022) are the most representative ones. These works can effectively encode relative posi-
tional information without any learnable parameters, allowing for length extrapolation. Building
on this, some other works (CAPE (Likhomanenko et al., 2021), SANDWICH (Chi et al., 2023),
xPOS (Sun et al., 2023b), LongRoPE (Ding et al., 2024), NoPE (Kazemnejad et al., 2023), FIRE (Li
et al., 2024), and CLEX (Chen et al., 2024)) also extend different positional encoding. However,
as models have not been generalized to unseen positions through training, these works still suffer
from performance degradation. Therefore, some works propose position interpolation, that re-scales
the out-of-distribution positional encoding within the pre-trained window size (Chen et al., 2023).
YaRN (Peng et al., 2024) leverages neural tangent kernel (NTK) to interpolate RoPE and generalize
LLaMA-2 to support 128K tokens. Besides, a similar work (Ruoss et al., 2023) introduces to ran-
domly sample some tokens to extend length generalization but ignores the sparsity when modeling
long-sequence dependency. Generally, our method is orthogonal to these method as we aim to gen-
eralize the long-sequence capability of LLMs from the training level. SPARSE TRAINING can also
use these advanced positional embeddings to encode long sequences, while in this paper, we mainly
use RoPE as the backbone for experiments.

6 CONCLUSION

In this paper, we present a novel training framework that can efficiently extend the context window
of LLM frameworks based on the Transformer architecture, named SPARSE TRAINING. Specifi-
cally, we first analyze statistical laws of existing attention patterns and identify the phenomenon of
“Pareto Principle of Transformer”. Based on these observations, we introduce SPARSE TRAINING,
which employs a sampling policy with a decay factor across the distance to gather tokens as the con-
ditional part for long-sequence prediction. Based on the sampled tokens with their corresponding
positions, we can directly adopt the standard next-token prediction for the long sequences. Benefit-
ing from such a design, our method can effectively extend the context window of LLM frameworks
within a fixed window training. In addition, compared with previous sparse architectures, SPARSE
TRAINING will not introduce any modification over the architecture, and can also simulate the at-
tention sparsity at the input level. Experimental results also demonstrate the effectiveness of our
proposed method in processing long-sequence dependency.
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A TECHNICAL DETAILS AND ANALYSIS

A.1 EXAMPLE OF SPARSE SAMPLING WITH DECAY

In this part, we will present example of our design sparse sampling strategy with decay. We assume
the window size as W, and then illustrate how our method allocates sampled tokens based on differ-
ent length M of the memory part. The examples are presented in Table 7. We can find that when the
length M of the memory part is just M, we will directly sample all tokens from this nearest window.
When M ∈ (W, 4W], we will sample N

2 tokens and the remaining N
2 tokens will be gather from the

remaining windows, and so on. During our sampling, we also introduce the maximum number of
decay iteration T as when the sampling window is too distant, the influence of tokens within this
range can be regarded as insignificant.

Length
Settings W W W W W W W W

M = W N

M = 2W N
2

N
2

M = 3W N
2

N
2

M = 4W N
2

N
2

M = 5W N
2

N
4

N
4

M = 6W N
2

N
4

N
4

M = 7W N
2

N
4

N
4

Table 7: Example of Sparse Sampling with decay.

A.2 COMPLETE FORMULATION OF SPARSE TRAINING

In SPARSE TRAINING, we are given (1) post-training text corpus C; (2) a pre-trained language
model with vocabulary V , embedding size D, pretrain context window length L and parame-
ters θM = (θPE, θTE, θOUTPUT, {θ(k)Attn, θ

(k)
Proj, θ

(k)
FF }K−1

k=0 ), respectively for positional encoding, to-
ken embedding, the final linear output layer, and K decoder layers. For each length-N sequence
(N > L) of input tokens X = (x1, x2, . . . , xN ) ∈ VN in a data batch B = {b1, b2, . . . , bbsz} from
the post-training corpus C, SPARSE TRAINING samples a sub-sequence X ′ = SAMPLE(X) =
(xi1 , xi2 , . . . , xiL) ∈ VL, with the sampled indices (i1, i2, . . . , iL) ∼ SAMPLE(·). Then, The
token embedding θTE ∈ RD×|V| maps the sequence to its embedding matrix θTE[X

′] ∈ RL×D.
After that, θPE calculates the positional encoding θPE[i1, i2, . . . , iL] ∈ RD×L and adds to θTE[X

′]
element-wise to obtain input sequence embedding as input of decoder layer 0.

H′(0) = H′ = θTE[X
′] + θPE[i1, i2, . . . , iL] ∈ RD×L (4)

For each decoder layer {θ(k)Attn, θ
(k)
Proj, θ

(k)
FF }, θ(k)Attn = {(Vm,Qm,Km)}m∈[M ] ⊂ RD×D computes

H̃′(k) = Attn
θ
(k)
Attn

(H′(k)) ∈ RD×L with value, query, key projections and attention mask as in

Equation 1; θ(k)Proj ∈ RD×D projects H̃′(k) to attention output Proj
θ
(k)
Proj

(H̃′(k)) ∈ RD×L; the feed-

forward network further processes the attention output by adding residual, normalization and passing
it through an MLP to obtain inputs of the next decoder layer.

H′(k+1) = FF
θ
(k)
FF

(Proj
θ
(k)
Proj

(H̃′(k))) = FF
θ
(k)
FF

(Proj
θ
(k)
Proj

(Attn
θ
(k)
Attn

(H′(k))) ∈ RD×L (5)

Let H′(K) ∈ RD×L denotes the output of the last decoder layer K − 1. Finally, an output layer
with activation OUTPUTθOUTPUT

: RD → R|V| converts each token’s hidden states to a probability
distribution over vocabulary V .

pθM(· | xi1 , . . . , xil) = OUTPUTθOUTPUT
(H′(K)[:, l]) ∈ R|V| (6)
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where H′(K)[:, l] denotes the lth column of H′(K), i.e., the hidden states of the lth token. Define the
Transformer function TFθM(xi1 , . . . , xil) ≜ argmaxy∈V pθM(xi1 , . . . , xil), e.g., the token in V
that maximizes pθM(· | xi1 , . . . , xil). Following the standard auto-regressive next-token prediction
language modeling, we maximize the probability of TFθM(xi1 , . . . , xil) = xil+1

by optimizing the
cross-entropy loss between the true next token’s distribution (one-hot) and pθM(· | xi1 , . . . , xil).

LX(θM) = LX′(θM) = −
L−1∑
l=1

log pθM(xil+1
| xi1 . . . , xil) (7)

While the original H in Equation 1 is in RD×N , by SAMPLE(·), H′ ∈ RD×L. As a direct result,
the complexity of SPARSE TRAINING is independent of the input sequence length N , stated as in
Lemma 3.1.

To mitigate the forgetting during SPARSE TRAINING, we adopt three techniques. (1) Only tune
Q,K and θPE parameters. During pretraining, parameters that are unrelated to long-range depen-
dency are already well-optimized. Only tuning parameters related to longer positions is beneficial
for both pretrain knowledge preservation and efficiency. (2) Back-propagate with respect to the loss
when predicting the target part only. While the memory part provides context for predicting the
target part, it is not semantically continuous. Therefore, for each sequence X in the post-training
corpus C, instead of Equation 7, we let the loss over it to be LX(θM) = −

∑L−1
l=t log pθM(xil+1

|
xi1 , . . . , xil), where t is the start of target part. (3) Regularize post-training with KL divergence
to the original model is a common practice to ensure that the model does not deviate significantly
from the original pre-trained one (Ouyang et al., 2022; Ziegler et al., 2019; Dong et al., 2023). We
adopt the KL regularization in SPARSE TRAINING, leading to the following loss function, where
UNIFORM(1, N) samples a random integer index between 1 and N , both inclusive. X[i] and X[: i]
respectively denotes the ith token and the first i tokens of X .

L(θM) = −EX∼C,{ij}L
j=1∼SAMPLEM(·)[

L−1∑
l=t

log pθM(X[il+1] | X[i1], . . . , X[il])]

+ βEX∼C,l∼UNIFORM(1,N)KL(pθM(· | X[: l])||pθM0
(· | X[: l]))

(8)

where β is a hyper-parameter to balance the sparse training and the original next-token prediction

A.3 USE TOP-K ATTENTION IN GPT2 INFERENCE STEP

We have visualized the trend between the number of Top-K highest attention value used during
the inference step of GPT2 and the value of two key performance metric, perplexity and accuracy,
across multiple datasets from LongBench dataset (Bai et al., 2024). The results are illustrated in
Figure 5. Despite the difference in values of perplexity and accuracy across different datasets, these
figures still reveal a very clear and consistent trend: as the Top-K value increases, perplexity initially
drops quickly, while accuracy sharply rises, before both metrics stabilize at higher K values. For
all datasets, at very low K values (under 50), perplexity is high and accuracy is low, indicating that
the model performs poorly due to limited access to relevant information. However, as K increases,
perplexity undergoes a rapid decline, and accuracy improves sharply. In fact, the most significant
changes in both metrics occur within the first few hundred K values. This trend suggests that a
relatively small number of key-value pairs provide the majority of useful context for the model’s
predictions. Once K reaches around 500, the accuracy curve flattens and the perplexity plateaus, in-
dicating that further increases in K yield limited improvement in the performance. The stabilization
of both perplexity and accuracy across datasets highlights an underlying pattern of attention mecha-
nisms: a limited number of Top-K weights is sufficient to capture most relevant information, making
larger Top-K values computationally unnecessary beyond a threshold of approximately 500. A mod-
est number of high-scoring key-value pairs capture the majority of relevant information needed for
effective language modeling. After this optimal range is reached, further increases in K yield no sig-
nificant improvements in either perplexity or accuracy, implying that the model has already captured
the essential context.

A.4 ATTENTION VISUALIZATION OF LLAMA2 MODEL

In this section, we present a visualization of attention weight distributions for the LLaMA2 models
n the LongBench dataset, since understanding how attention weights are distributed across tokens
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(a) 2WikiMQA (b) Dureader (c) GovReport (d) HotpotQA

(e) LSH (f) MultiNews (g) MultiFieldQA EN (h) MultiFieldQA ZH

(i) Musique (j) NarrativeQA (k) Passage Count (l) Passage Retrieval EN

(m) Passage Retrieval ZH (n) QASPER (o) QMSum (p) RepoBench-P

Figure 5: Top-k Perplexity and Accuracy Results for Various Datasets in Longbench

in long sequences provides insights into the models’ behavior when dealing with large inputs. The
model is evaluated in terms of cumulative attention weights across different query token positions
in the last layer of each model. The results are illustrated in Figure 6 and Figure 7 .

One of the interesting phenomena that can be observed in the attention visualizations is ”Pareto
Principle of Transformers.” This principle is an adaptation of the well-known Pareto distribution,
which states that a small proportion of the causes is responsible for the majority of the effects. In
the context of Transformer and attention mechanisms, the inherent sparsity of Transformer suggests
that a large portion of attention weights is concentrated on a small fraction of key tokens when the
sequence is long, while the majority of key tokens receive very little attention.

In long sequence modeling, such as the LongBench dataset, the Pareto Principle becomes evident.
As demonstrated in the figures, a high percentage of attention weights tends to accumulate among
a small subset of the highest-ranked key tokens. Notably, this phenomenon persists even after re-
moving the tokens responsible for the ”attention sink”. In each subfigure, a larger number of key
tokens contribute to the cumulative attention in the rescaled version, as the attention sink has been
eliminated and fewer keys hold significant attention weights. This observation supports the notion
that Transformers could benefit from our method by focusing on sparse key tokens. For sequences
longer than 2000 tokens, the concentration of attention on a small set of tokens suggests the it is
possible to employ methods like SparseTraining to significantly reduce computational complexity
while preserving model performance.

B DATASET DETAILS

In the main experiments, we utilized a variety of datasets to validate the effectiveness of SPARSE
TRAINING, including PG19, arXiv, SlimPajama, and 12 additional datasets from LongBench.

PG19. PG197 includes a set of books extracted from the Project Gutenberg books library, that
were published before 1919. It is significantly larger than previous benchmarks, with documents

7https://huggingface.co/datasets/deepmind/pg19
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Figure 6: LLaMa2 cumulative attention weights in the last layer, visualized by both the relative
distance between the query and key tokens, and by the key token rank (sorted by attention weight),
with query positions at 512, 1024, 2048, and 4096 tokens, respectively.

Figure 7: Rescaled LLaMA2 cumulative attention weights in the last layer, after removing the last 8
”attention sink” tokens. The remaining attention weights are normalized to sum to 1, visualized by
both the relative distance between the query and key tokens, and by the key token rank, with query
positions at 512, 1024, 2048, and 4096 tokens, respectively.

averaging 20 times longer than those in WikiText. The dataset includes training, validation, and
test sets with metadata, and is designed for long-range language model training. It supports open-
vocabulary modeling and can be used for tasks requiring long-range reasoning.

arXiv. arXiv8 is a dataset of 1.7 million arXiv articles for applications like trend analysis, paper
recommender engines, category prediction, co-citation networks, knowledge graph construction and
semantic search interfaces.

8https://huggingface.co/datasets/arxiv-community/arxiv_dataset
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SlimPajama. The SlimPajama-627B9 dataset, hosted by Cerebras, is a cleaned and deduplicated
version of the RedPajama dataset. It includes 627 billion tokens sourced from Common Crawl, C4,
GitHub, and other datasets. The dataset is designed for large-scale language model training and
includes train, validation, and test splits, with detailed metadata for each text.

LongBench. LongBench10 is the first benchmark for bilingual, multi-task, and comprehensive as-
sessment of long context understanding capabilities of large language models. It consists of various
natural language processing tasks, including question answering, summarization, and text genera-
tion, with both English and Chinese language support. The dataset contains multiple subsets specifi-
cally designed to test models’ abilities to handle long-range dependencies in text, making it suitable
for evaluating models on tasks requiring extended context comprehension. In the following, we
describe the datasets we used from LongBench.

Qasper. QASPER11 is a dataset for question answering on scientific research papers. It consists
of 5,049 questions over 1,585 Natural Language Processing papers. The dataset supports a range
of question types, including factual, comparison, and clarification queries, making it suitable for
training and evaluating models that need to comprehend scientific texts.

MultiFieldQA. The MultiFieldQA dataset is a part of the LongBench benchmark, designed to test
models’ ability to answer questions based on long articles from diverse fields. These articles include
sources like research papers, legal documents, government reports, and more. The dataset includes
two versions: MultiFieldQA-en (in English) and MultiFieldQA-zh (in Chinese). Questions in this
dataset are manually annotated by experts, making it suitable for evaluating models on long-context
question-answering tasks, where the goal is to comprehend and extract relevant information from
extended texts.

HotPotQA. HotPotQA12 is a question-answering dataset with 113,000 Wikipedia-based question-
answer pairs. It emphasizes multi-hop reasoning, requiring models to extract information from
multiple documents to answer a single question. The dataset also includes sentence-level support-
ing facts, enabling explainable reasoning, and contains comparison questions to assess the ability
to compare facts across documents. It is designed for diverse, challenging QA tasks that involve
complex reasoning over long text passages.

2WikiMultihopQA. 2WikiMultiHopQA is a question-answering dataset designed to test multi-
hop reasoning, where answering a question requires gathering information from multiple Wikipedia
articles.

GovReport. GovReport13 is a large-scale collection of detailed reports from the U.S. Government
Accountability Office and Congressional Research Service, each accompanied by a human-written
summary, spanning a wide variety of national policy issues.

MultiNews. MultiNews14 is a large-scale dataset for multi-document summarization, containing
news articles and their human-written summaries. Each summary in the dataset is generated from
multiple news articles, making it ideal for tasks involving synthesizing information from diverse
sources into a cohesive summary. The dataset helps evaluate the ability of models to handle multi-
document summarization, a more complex form of text summarization than single-document ap-
proaches.

TREC. TREC (Text REtrieval Conference)15 is a question classification dataset used to train mod-
els for question type prediction. The dataset is valuable for evaluating few-shot question answering
systems by testing their ability to classify questions into the correct type for further processing.

9https://huggingface.co/datasets/cerebras/SlimPajama-627B
10https://huggingface.co/datasets/THUDM/LongBench
11https://huggingface.co/datasets/allenai/qasper
12https://huggingface.co/datasets/hotpotqa/hotpot_qa
13https://huggingface.co/datasets/ccdv/govreport-summarization
14https://huggingface.co/datasets/alexfabbri/multi_news
15https://huggingface.co/datasets/CogComp/tre
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TriviaQA. TriviaQA16 is a large-scale question-answering dataset that includes over 650K
question-answer pairs. The questions are sourced from trivia competitions, and the dataset contains
evidence documents from Wikipedia and the web to support the answers. TriviaQA is designed to
evaluate models’ ability to perform reading comprehension and answer questions based on long,
multi-sentence documents. It includes both unfiltered and web-filtered versions, supporting various
QA tasks.

PassageCount. PassageCount seeks to create a more demanding situation where the model is
required to utilize the full context to resolve the task. Each piece of data was generated by randomly
selecting several passages from English Wikipedia, repeating each paragraph at random several
times, and finally shuffling the paragraphs.

PassageRetrieval. The PassageRetrieval dataset in LongBench is a synthetic task designed to eval-
uate a model’s ability to retrieve specific passages. For each entry, 30 passages are sampled, and
one is summarized using GPT-3.5-Turbo. The task challenges models to identify the original pas-
sage that matches the generated summary, testing long-context understanding and passage retrieval
capabilities.

LCC. The Microsoft LCC (Long Code Completion)17 dataset is designed for code completion
tasks and is available in multiple programming languages, including Python, Java, and C#. It is part
of a series of datasets aimed at evaluating the ability of machine learning models to predict the next
line of code in long programming contexts. The dataset is split into training and test sets, making it
useful for training models like transformers for code generation or code completion tasks.

RepoBench-P. RepoBench-P (Pipeline)18 is a part of the RepoBench dataset, which is designed to
evaluate repository-level code auto-completion systems. It combines two tasks: code retrieval and
code completion. First, the model retrieves the most relevant code snippet from another file (cross-
file context), and then it predicts the next line of code based on that retrieved context. RepoBench-P
is particularly useful for assessing the performance of models in real-world multi-file programming
scenarios, where code dependencies span multiple files. The dataset is available for Python and Java.

C EXPERIMENT DETAILS

C.1 REPRODUCIBILITY

Code. The code for the experiments is provided in the supplementary material with a well-written
README file. We also provide the commands and instructions to run the code. We also provide in-
structions on downloading and pre-processing datasets to convert them to binary files for accelerated
computation.

Environment. We conducted all our experiments on an Ubuntu 22.04 machine with 640GB RAM
and 8 NVIDIA H100 GPUs, each equipped with 80GB of graphic memory, connected via HBM3.
The code for our algorithms is written in Python (version 3.11.9). To run the code, several additional
libraries are required, including PyTorch, Huggingface Transformers, Accelerate, and DeepSpeed.
For detailed instructions, please refer to our README and setup.py in the code directory.

We have optimized our code and tested that the space cost of the GPU memory is less than 80 GB
during SPARSE TRAINING. The execution time to run a post-training experiment is less than 16
hours on our machine.

16https://huggingface.co/datasets/mandarjoshi/trivia_qa
17https://huggingface.co/datasets/microsoft/LCC_python
18https://huggingface.co/papers/2306.03091
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C.2 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

We use AdamW optimizer with warmup min lr, warmup max lr, warmup num steps, and to-
tal num steps set to “auto” in deepspeed. The default choices of hyperparameters in our code are
provided in Table 8. For initializing LLaMA-2-7B, we use the default LLaMA config19.

Table 8: Default hyperparameters for the SPARSE TRAINING

Hyperparameter Meaning Value

batch size The batch size for training 1
criterion The criterion for calculating loss “cross entropy”
learning rate The learning rate for optimizer 0.00001
β Ratio of mixed training 1
allgather partitions whether to use allgather “true”
allgather bucket size Size of allgather communication chunks 2e8
gradient accumulation steps # Gradients to combine before updating weights 1

C.3 TRAINING CURVES

We record and report the training curves in Figure 8, Figure 9 and Figure 10. Figure 8 shows the per-
plexity while extending the context window to 8192. Due to space limitations, we only plot the first
100 steps. First, the training perplexity (loss) decreases in general and seems to be more converged
as the training goes on. Second, by only ten training steps, SPARSE TRAINING is able to efficiently
decrease the training perplexity from over 100 to nearly 11. Figure 9 shows the training perplexity
while extending the context window from 8192 (8K) to 10240 (10K). Similar properties can also
be identified. Figure 10 shows the training perplexity (loss) of the whole post-training progress. A
scatter of extending window size K and training perplexity p means that, the training perplexity at
the last step among the 1000 steps that extend the context window to K is p. Although the training
is continuous, the model must adapt to the new context window size each time it is extended. As a
result, perplexity does not decrease monotonically. However, the overall training perplexity gradu-
ally decreases over the course of post-training, without the spikes in perplexity seen in the vanilla
LLaMA-2-7B model as context window length increases, demonstrating the effectiveness of our
SPARSE TRAINING.

Figure 8: Training perplexity (eloss) when extending LLaMA-2-7B to 8192 context window using
SPARSE TRAINING. The perplexity converges quickly from ∼ 130 to ∼ 11.

19https://huggingface.co/docs/transformers/main/model_doc/llama2
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Figure 9: Training perplexity (eloss) when extending LLaMA-2-7B from 8192 to 10240 context
window using SPARSE TRAINING. The perplexity decreases from ∼ 22 to ∼ 15 in only 50 steps.

Figure 10: Converged training perplexity (eloss) when extending LLaMA-2-7B context window us-
ing SPARSE TRAINING. While the perplexity of vanilla LLaMA-2-7B would explode over window
size, the converged perplexity of each extending keeps decreasing with the context window.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.4 PERPLEXITY ON LONGBENCH DATASETS

Table 9: Perplexity (↓) of LLaMA-2-7B on LongBench datasets. The performance of LLaMA-2-7B
after SPARSE TRAINING is stable and improves with longer contexts.

Model Context Length
Single-Doc QA Multi-Doc QA Summarization

Qasper MultiFieldQA HotPotQA WikiMQA GovReport MultiNews

Vanilla

8K 186.86 114.16 107.63 122.47 90.22 116.24
16K 1430.46 1014.01 948.14 991.11 949.16 1045.72
32K 3274.92 3207.46 3082.40 3300.21 5355.33 2983.43
64K 8048.33 4306.92 6096.41 6253.19 15710.44 5334.57

Sparse Training

8K 13.23 11.47 9.87 10.48 9.46 9.71
16K 11.66 9.37 8.14 8.43 8.67 9.26
32K 9.56 6.93 6.6 6.63 8.13 7.93
64K 7.98 5.57 5.72 6.19 7.7 8.9

Model Context Length
Few-shot Learning Synthetic Task Code Completion

TREC TriviaQA PassageCount PassageRetrieval LCC RepoBench-P

Vanilla

8K 102.56 142.23 115.59 153.44 69.78 84.12
16K 1055.62 1121.32 839.71 1146.01 1051.47 1164.55
32K 3786.72 2895.37 2613.10 2977.54 2973.48 3050.69
64K 7541.48 5640.73 6844.86 7631.39 4820.02 5122.14

Sparse Training

8K 7.87 11.15 10.51 16.86 4.98 5.13
16K 6.90 9.28 9.12 13.56 4.73 5.26
32K 5.43 7.24 8.39 11.24 2.56 2.48
64K 5.30 7.31 7.60 10.04 2.28 2.26

C.5 FULL RESULTS OF ABLATION STUDY

Table 10: PPL (↓) of SPARSE TRAINING without mixed training (regularization) on LongBench.

Model Context Length
Single-Doc QA Multi-Doc QA Summarization

Qasper MultiFieldQA HotPotQA WikiMQA GovReport MultiNews

Sparse Training
w/o Mixed Training

16K 1332.19 1134.13 1806.22 1933.51 751.38 1005.19
32K 1471.31 1269.43 2870.13 4162.76 5829.82 5470.50
64K 310.02 368.17 433.99 418.16 608.48 1135.98

Model Context Length
Few-shot Learning Synthetic Task Code Completion

TREC TriviaQA PassageCount PassageRetrieval LCC RepoBench-P

Sparse Training
w/o Mixed Training

16K 130.55 1868.78 1859.02 2073.48 1247.91 1058.37
32K 121.05 1295.00 3274.54 3270.87 1507.53 1498.12
64K 654.35 570.09 457.65 451.15 302.14 292.75

D LIMITATIONS

SPARSE TRAINING still has some limitations, which can be summarized as follows: 1) SPARSE
TRAINING focuses solely on reducing the quadratic complexity of the Transformer network dur-
ing training, while it still suffers from quadratic complexity during the inference stage. Therefore,
we may need to combine other inference tricks to address this inherent issue of Transformer; 2)
Specifically, SPARSE TRAINING enables models to learn more semantic information from unseen
positional information, rather than context information from long sequences. However, we think
that this problem can be alleviated if we can determine which memory part is more important to the
target part, and leave this part as future work.
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