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ABSTRACT

This study investigates the current landscape and future directions of protein founda-
tion model research. While recent advancements have transformed protein science
and engineering, the field lacks a comprehensive benchmark for fair evaluation and
in-depth understanding. Since ESM-1B, numerous protein foundation models have
emerged, each with unique datasets and methodologies. However, evaluations often
focus on limited tasks tailored to specific models, hindering insights into broader
generalization and limitations. Specifically, researchers struggle to understand the
relationships between tasks, assess how well current models perform across them,
and determine the criteria in developing new foundation models. To fill this gap,
we present PFMBench, a comprehensive benchmark evaluating protein foundation
models across 38 tasks spanning 8 key areas of protein science. Through hundreds
of experiments on 17 state-of-the-art models across 38 tasks, PFMBench reveals
the inherent correlations between tasks, identifies top-performing models, and
provides a streamlined evaluation protocol. Code will be released upon acceptance.

1 INTRODUCTION

Protein foundation models (PFMs) have garnered significant attention in recent years for their
transformative potential in protein science and engineering. By training on large-scale protein
datasets, these models capture intricate relationships between sequences, structures, and functions.
Since the debut of ESM-1B Rives et al. (2021) in 2021, a diverse array of PFMs—spanning various
architectures and training paradigms—has emerged Rives et al. (2021); Lin et al. (2023); Hayes et al.
(2025); Elnaggar et al. (2021); Madani et al. (2023); Ferruz et al. (2022); Tan et al. (2025); Zhou et al.
(2025); Elnaggar et al. (2023); Chen et al. (2024); Wang et al. (2024b); Su et al.; 2024); Xu et al.
(2023); Bjerregaard et al. (2025); Guo et al. (2025); Li et al. (2024). Despite this rapid progress, prior
models like ESM2 Lin et al. (2023) still dominate many bioengineering applications. This raises
several pressing questions: Has the field reached a plateau and what is the next frontier for PFMs?
Thus, a comprehensive and systematic benchmark is urgently needed.

scaling, PEFT methods, 264 runs 

336 (28×12) runs →	11 rep tasks
supervised (11×12 = 132 runs)
zero-shot 11 runs

38 Tasks, 17 ModelsCollect Tasks and Models

Core Tasks

Top Models

Task Clustering

Evaluation

114(38×3) runs→28 core tasks 

17 runs →	12 core models

Analysis

PEFT: Adapter/DoRA Tuning 
Task: 11 representative tasks
Baseline: ESM2 and ProTrek

Protocol

Protocol#TasksMM#PFM

✗4✗0NeurIPS 2019TAPE

✗14✗1NeurIPS 2022PEER

✗2✗0NeurIPS 2024CARE

✗22✗3Arxiv 2025Venus

✓38✓14Our

Comparison of PFMBench with existing benchmarks. #PFM:
number of PFMs (>500M), MM: multimodal PFMs, #Tasks:
task count, Protocol: simplified evaluation protocol. 3.2

3.1

3.3

4.1

4.2

4.3

Overall

Figure 1: PFMBench: More tasks, multimodal PFMs, a simplified protocol, and hierarchical analysis.
Previous benchmarking efforts for protein models have either covered a limited set of tasks or were
not explicitly designed for evaluating foundation models, as shown in Fig. 1. In the context of protein
foundation models (PFMs)—typically defined as models with at least 500 million parameters—most
existing benchmarks fall short of providing comprehensive evaluation. For example, TAPE Rao
et al. (2019) assessed architectures such as Transformers Vaswani et al. (2017), LSTMs Hochreiter &
Schmidhuber (1997), and ResNets He et al. (2016) across four tasks, but did not include any large-
scale PFMs. PEER Xu et al. (2022) evaluated models on 14 tasks but was limited to sequence-based

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

architectures, with only ESM-1B Rives et al. (2021) exceeding the 500-million-parameter threshold.
CARE Yang et al. (2024) focused narrowly on two enzyme-related tasks: classification and retrieval.
More recently, VenusFactory Tan et al. (2025) introduced a unified benchmark spanning 22 tasks
across five functional categories. However, it reported results for only three large sequence-based
models, such as ESM2 Lin et al. (2023), Ankh Elnaggar et al. (2023), and ProtT5 Elnaggar et al.
(2021), limiting its ability to capture the full spectrum of modern PFMs.

Multimodal PFMs are understudied in existing benchmarks, despite the field’s rapid shift toward
models that integrate sequence, structure, and functional data. For example, ESM3 Hayes et al.
(2025), GearNet Zhang et al. (b), and SaProt Su et al. have demonstrated strong performance on
specialized tasks such as protein design and function prediction. However, their evaluations are often
limited in scope, focusing on specific tasks or datasets, which impedes a systematic understanding of
their limitations, generalizability, and cross-task performance. For instance, while ESM3 excels in
protein design, its ability to generalize to other tasks remains largely unexplored. Similarly, GearNet
and SaProt have shown promise in certain tasks, but their performance across broader protein function
landscapes has yet to be thoroughly assessed. Consequently, it remains unclear under what conditions
and how multimodal PFMs contribute to improved generalization capabilities.

A benchmark should not merely serve as a collection of tasks and models—it should also provide
a streamlined protocol for model development. As both tasks and models become increasingly
complex, exhaustively evaluating all models across all tasks becomes impractical and often fails
to yield actionable insights. A more effective approach is to uncover the underlying relationships
between tasks, identify a representative subset of tasks, and select a diverse yet informative set of
models for focused evaluation. This strategy enables the benchmark to help researchers identify
top-performing models for specific tasks and guide the development of new models—serving as a
blueprint for future model evaluation, selection, and design.

To address this gap, we introduce PFMBench—a unified and comprehensive benchmark suite for
protein foundation models. PFMBench spans 38 tasks across 8 categories, encompassing 19 sequence-
based, sequence-structure, sequence-function, and multimodal PFMs. Both datasets and models are
carefully curated to ensure robust, fair and meaningful comparisons. Through extensive evaluation,
PFMBench offers detailed insights into the strengths and limitations of modern PFMs, and provide a
simplified and useful protocol for future PFM development.

2 RELATED WORK

Protein Foundation Models. Protein foundation models (PFMs) have witnessed exponential
growth in recent years, revolutionizing computational biology through self-supervised learning on vast
protein sequence datasets. ESM-1b Rives et al. (2021) pioneered large-scale protein modeling with a
650M parameter transformer trained on 65 million protein sequences via masked language modeling.
This trajectory continued with ESM-2 and ESMC models Lin et al. (2023), which demonstrated
enhanced representation learning for protein structure and function through refined architecture and
expanded training data. The ESM family evolved further with ESM3 Hayes et al. (2025), scaling to
98B parameters and incorporating structure-aware training to achieve state-of-the-art performance
on zero-shot fitness prediction and structure modeling. ProtT5 Elnaggar et al. (2021) adapted
the T5 architecture to proteins, scaling to 3B and 11B parameters with span-masking objectives,
establishing strong baselines for protein sequence-to-sequence tasks. The generative approach was
pioneered by ProGen Madani et al. (2023), a 1.2B parameter conditional generation model, and
ProtGPT2 Ferruz et al. (2022), a 738M parameter GPT-2-based model for de novo protein sequence
generation. VenusPLM Tan et al. (2025) employed transformer-based architectures with modular fine-
tuning capabilities for enzyme engineering and protein function prediction. Multimodal approaches
emerged with ProtCLIP Zhou et al. (2025), aligning protein sequences with biological text through
function-informed pre-training. ANKH Elnaggar et al. (2023) built upon ProtT5’s architecture to
optimize data efficiency through systematic ablation studies. xTrimoPGLM Chen et al. (2024) adpot
GLM’s training paradigm to protein sequences, expanding the model size to 100B. Other significant
contributions include DPLM Wang et al. (2024b), leveraging deep learning for protein language
modeling; SaProt Su et al., focusing on structure-aware protein representation learning; ProtRek Su
et al. (2024), specialized in protein sequence retrieval and knowledge integration; and ProST Xu
et al. (2023), which incorporates biomedical texts to guide protein function learning. Together, these
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diverse foundation models have transformed protein research by enabling unprecedented advances in
structure prediction, functional annotation, and protein design through their ability to learn complex
evolutionary and structural patterns from sequence data.

Protein Benchmarks. Protein foundation model benchmarks have evolved significantly, transi-
tioning from early efforts like TAPE Rao et al. (2019), which evaluated small models on a limited
set of tasks, to more comprehensive frameworks. PEER Xu et al. (2022) expanded the scope by
introducing a multi-task benchmark encompassing diverse protein understanding tasks, including
function prediction and protein-protein interactions. BeProf Wang et al. (2024a) further contributed
by evaluating deep learning-based protein function prediction models in different application sce-
narios. Recent benchmarks like VenusFactory Tan et al. (2025) have integrated a broader range
of pre-trained models and datasets, yet they often lack consideration for multimodal approaches.
Beyond predictive benchmarks, initiatives like ProteinGym Notin et al. (2023), ProteinInvBench
Gao et al. (2023) and ProteinBench Ye et al. (2024) have introduced frameworks for evaluating
protein mutation effects, inverse folding and protein design, respectively. These benchmarks have
progressively incorporated more diverse tasks, models—including large pre-trained language models
and multimodal approaches—and sophisticated evaluation metrics, thereby playing a crucial role in
tracking progress, identifying state-of-the-art methods, and guiding future research. However, current
benchmarks do not foucus on protein foundation models, especially multimodal foundation models,
also do not provide a streamlined evaluation protocol for these models.

Parameter-Efficient Fine-Tuning. Recent advances in parameter-efficient fine-tuning (PEFT) have
enabled the adaptation of large pre-trained models by updating only a small subset of their parameters.
Adapter-based methods insert trainable modules between frozen layers Houlsby et al. (2019); Pfeiffer
et al. (2020), while Low-Rank Adaptation (LoRA) approximates weight updates using low-rank
matrices Hu et al. (2022a). Prompt-based techniques—such as prefix tuning Li & Liang (2021) and
prompt tuning Lester et al. (2021)—optimize soft prompts within the input embeddings, avoiding
changes to the model weights. Other approaches, including BitFit (which updates only bias terms)
Zaken et al. (2022), IA3 (which scales intermediate activations) Liu et al. (2022), and QLoRA (which
enables quantized fine-tuning) Dettmers et al. (2023), further improve efficiency. Hybrid strategies
that combine multiple techniques have also emerged He et al.. Recent innovations include AdaLoRA,
which dynamically adjusts rank allocation during training Zhang et al. (2023); MoeLoRA, which
integrates mixture-of-experts into LoRA for enhanced scalability Wu et al. (2024); DoRA, which
decomposes weights into magnitude and direction for targeted adaptation Mao et al. (2024); and
LoCA, which introduces location-aware cosine adaptation for more precise updates Du et al. (2025).
Collectively, these developments continue to improve the efficiency, flexibility, and effectiveness of
PEFT for large language models. This research select Adapter, LoRA, AdaLoRA, DoRA and IA3 as
the representative methods for performance comparison.

3 METHOD

3.1 PFMBENCH FRAMEWORK

Framework. As shown in Figure 2, PFMBench comprises three main components: (1) a user-
friendly interface, (2) a suite of downstream tasks, and (3) a comprehensive collection of foundation
models. Designed with modularity in mind, the framework allows users to swap components and
customize the evaluation process with ease. We employ Hydra to parse configuration files and
PyTorch Lightning to manage model fine-tuning. To our knowledge, PFMBench is the largest and
most comprehensive benchmark for protein foundation models, covering 38 tasks across 17 models.

Data Contribution. For each dataset, we retrieve protein structures from the AF2DB Varadi et al.
(2022) when available; otherwise, we use ESMFold Lin et al. (2023) to generate the rank-1 protein
structure. To standardize evaluation, we enforce a 30% sequence similarity cutoff when splitting
data, resulting in an 8:1:1 ratio for training, validation, and test sets. Mutation datasets are exempt
from this splitting due to their high similarity to wild-type sequences; thus, we retain their original
train/validation/test partitions.
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Protocol Contribution. Evaluating all models and tasks is impractical, especially when aiming to
provide guidance for developing new foundation models. We believe that simplifying the selection
of tasks and models is equally important, as it highlights the key insights. Through hundreds of
experiments, we provide a hierarchical analysis that results in a streamlined protocol: (1) Baseline:
select either the sequence-only ESM2 or the multimodal ProTrek; (2) Task: filter 11 representative
tasks from the original 38 tasks; (3) PEFT: adopt either the transformer-adapter or the DoRA tuning.

User Interface

Protein Tasks

Core

Hydra Config Supervised Tuning

PyTorch Lightning Backend

Zero-shot
Evaluation

Pretrain
Interface

Foundation Models

Annotation Solubility Localization Mutation

Interaction Structure Production ProteinGym

Seq-Func Seq-Struct-FuncSequence

ESM-2
ESM-C
VenusPLM
ProtGPT2

PGLM
ProtT5
ProGen2
DPLM

SaPort
ProstT5
GearNet

Seq-Struct

ProST
ProLLaMA
OntoProtein

ESM3
ProTrek
ProCyon

CSV Dataset
Predicted Structure
Sequence Clustering

Dataset PEFT Metric
Spearman Correlation
F1 Score
Top L/5

Accuracy
AUROC

Adapter
Linear
LoRA

AdaLoRA
DoRA
IA3

Figure 2: The Overall framework of PFMBench. The framework includes: (1) a user-friendly
interface, (2) enumerious downstream tasks, and (3) a comprehensive set of foundation models.
Diverse datasets, parameter-efficient tuning methods, and evaluation metrics are integrated. The
modular design allows users to easily swap components, customize models, tasks and metrics.

3.2 SUPPORTED TASKS

Core Tasks. PFMBench includes 38 tasks spanning diverse domains, covering both supervised
and zero-shot learning. Supervised tasks are grouped into seven categories: Annotation, Solubility,
Localization, Mutation, Interaction, Structure, and Production. Definitions, metrics, and impacts
for each category are detailed in Appendix A.1. Datasets are split into training, validation, and test
sets using an 8:1:1 ratio with a 30% sequence similarity threshold, except for mutation datasets. We
evaluate ESM2-Adapter on all tasks, averaging results over three runs, with bias calculated as the
absolute difference between the best and worst runs divided by the average performance (see Table 1).
To ensure unbiased evaluation, we designates 28 tasks with a bias below 5% as core tasks.

3.3 SUPPORTED MODELS

Core Models. PFMBench supports a broad spectrum of protein foundation models, as summarized
in Table 2. To ensure a fair comparison, we select models with parameter counts close to 1B when
multiple versions are available. Based on input data modalities, the models are categorized into four
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Table 1: PFMBench Tasks span eight categories, detailing training, validation, and test sample counts
per task with references. Symbols △ and ✩ indicate datasets with sequence or sequence-structure
pairs, as used in benchmarks like TAPE Rao et al. (2019), PEER Xu et al. (2022), Venus Tan et al.
(2025), and our framework. ESM2-Adapter’s mean and bias performance are shown, with core tasks
having bias below 5%.

Task Metric Train Val Test TAPE Peer Venus Our Mean Bias(%) Core

Annotation
Cellular Component Ashburner et al. (2000) F1 Score 11196 1398 1400 ✩ ✩ 0.6130 0.26% ✓
Molecular Function Ashburner et al. (2000) F1 Score 22291 2785 2787 ✩ ✩ 0.6488 0.38% ✓
Biological Process Ashburner et al. (2000) F1 Score 21395 2662 2664 ✩ ✩ 0.5412 0.79% ✓
Enzyme Commission Bairoch (2000) F1 Score 13090 1465 1604 ✩ ✩ 0.7379 0.09% ✓

Solubility
DeepSol Khurana et al. (2018) AUROC 55465 6932 6934 △ ✩ ✩ 0.8467 0.23% ✓
DeepSoluE Wang & Zou (2023) AUROC 11627 1452 1454 ✩ ✩ 0.7699 1.10% ✓
ProtSolM Tan et al. (2024b) AUROC 57378 7171 7173 ✩ ✩ 0.8572 0.93% ✓
eSOL Chen et al. (2021) Spearman 2481 309 311 ✩ ✩ 0.2761 38.3%

Localization
DeepLoc Multi Almagro Armenteros et al. (2017) Accuracy 6992 749 751 △ ✩ ✩ 0.7666 1.27% ✓
DeepLoc2 Multi Thumuluri et al. (2022) F1 Score 21949 2743 2744 △ ✩ ✩ 0.7505 0.16% ✓
DeepLoc Binary Almagro Armenteros et al. (2017) AUROC 6887 846 848 ✩ 0.9338 0.42% ✓
Sorting Signal Thumuluri et al. (2022) F1 Score 1484 185 186 △ ✩ 0.8598 0.24% ✓

Mutation
PETA CHS Sol Tan et al. (2024a) Spearman 3872 484 484 △ ✩ 0.2738 12.5%
PETA LGK Sol Tan et al. (2024a) Spearman 15308 1914 1914 △ ✩ 0.1558 21.7%
PETA TEM Sol Tan et al. (2024a) Spearman 6444 808 808 △ ✩ 0.1433 27.0%
FLIP AAV Dallago et al. Spearman 66066 16517 16517 △ ✩ 0.9412 0.13% ✓
FLIP GB1 Dallago et al. Spearman 6988 1745 1745 △ ✩ 0.9517 0.13% ✓
TAPE Stability Rao et al. (2019) Spearman 55182 6897 6898 △ △ △ ✩ 0.3211 4.01% ✓
TAPE Fluorescence Rao et al. (2019) Spearman 21446 5362 27217 △ △ △ ✩ 0.6812 0.21% ✓
β-lactamase activity Gray et al. (2018) Spearman 4158 520 520 △ ✩ 0.5740 21.6%

Interaction
Human-PPI Pan et al. (2010) AUROC 30133 270 195 △ ✩ 0.4828 0.00% ✓
Yeast-PPI Guo et al. (2008) AUROC 4157 83 335 △ ✩ 0.5343 12.8%
PPI affinity Moal & Fernández-Recio (2012) Spearman 2421 203 326 △ ✩ -0.0047 114.3%
PDBbind Liu et al. (2017) Spearman 14687 1835 1836 △ ✩ 0.1677 4.14% ✓
BindingDB Liu et al. (2007) Spearman 9039 1115 1139 △ ✩ 0.1922 3.02% ✓
Metal ion Binding Hu et al. (2022b) Accuracy 5740 717 718 ✩ ✩ 0.7066 2.43% ✓
Pept.HLA/MHC Aff. Wu et al. (2023) AUROC 57357 7008 8406 ✩ 0.9631 0.00% ✓
TCR PMHC Affinity Koyama et al. (2023) AUROC 19264 2265 2482 ✩ 0.9312 0.00% ✓

Structure
Contact prediction Yang et al. (2020) Top L/5 12005 1500 1501 △ △ ✩ 0.7199 0.40% ✓
Fold classification Lo Conte et al. (2000) Accuracy 13034 1628 1630 △ ✩ 0.7859 0.31% ✓
Secondary structure Klausen et al. (2019) Accuracy 67007 8365 8262 △ △ ✩ 0.7601 0.00% ✓

Production
Optimal PH Gado et al. (2023) Spearman 7669 958 959 ✩ 0.0564 17.6%
DeepET Topt Li et al. (2022b) Spearman 1479 184 185 ✩ ✩ 0.2628 7.00%
Cloning CLF Wang et al. (2014) AUROC 22223 2777 2778 ✩ 0.8160 0.51% ✓
Material Production Wang et al. (2014) Accuracy 22196 2773 2775 ✩ 0.7982 0.00% ✓
Enzyme Eff. Li et al. (2022a) Spearman 10363 1298 1290 ✩ 0.2173 58.2%
Antib. Res. Hu et al. (2022b) Accuracy 2703 336 339 ✩ 0.6185 2.23% ✓
Thermostability Jarzab et al. (2020) AUROC 33474 4184 4184 ✩ ✩ 0.9553 1.27% ✓

Zero-shot
ProteinGym Notin et al. (2023) Spearman ✩ ✩ 0.4390 0% ✓

groups: (1) sequence-only models, (2) sequence-structure models, (3) sequence-function models, and
(4) sequence-structure-function models. To establish a consistent evaluation baseline, we assess all
models on the enzyme commission (EC) classification task under the adapter tuning setting. Models
that achieve at least 85% of ESM2’s performance are selected as core models for further evaluation.
For detailed reasons regarding the adoption of EC as a selective task, please refer to Appendix A.5.

3.4 SUPPORTED TUNING METHODS

PFMBench offers diverse parameter efficient fine-tuning (PEFT) methods: linear probing, adapter
tuning, IA3, LoRA, AdaLoRA, and DoRA, with a unified interface for seamless switching.

Adapter Tuning & Linear Probing. We extract features using the pretrained model and employ a
6-layer transformer as a task-specific adapter with a hidden size of 480 and 20 attention heads. In
Linear probing setting, we the transformer adapter is replaced with a linear layer. Without additional
explanation, we report adapter tuning results in the main text.

Other Tuning Methods. LoRA decomposes attention and feedforward layer weight updates into
the product of two low-rank matrices, which are the only trainable components during finetuning Hu
et al. (2022a). IA3 introduces trainable multiplicative scalars into the attention and MLP sublayers,
modulating the flow of information through each component Liu et al. (2022). AdaLoRA dynamically
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Table 2: Models in PFMBench. The table lists the models, architecture types, number of parameters,
publication states, code sources. We report the Enzyme Commission (EC) results.

Model Core Architecture # Params Publication EC Code

Sequence
ESM-2 Lin et al. (2023) ✓ Encoder 650M Science 23 0.7358 HF
VenusPLM Tan et al. (2025) ✓ Encoder 300M Arxiv 25 0.7519 HF
ESM-C ✓ Encoder 600M Blog 25 0.7169 HF
ProtGPT2 Ferruz et al. (2022) ✓ Decoder 738M Nat. Commun. 22 0.6969 HF
ProGen2 Nijkamp et al. (2023) Decoder 764M Cell Syst. 23 0.6198 GitHub
xTrimoPGLM Chen et al. (2024) ✓ Encoder-Decoder 1B Nat. Methods 25 0.7466 HF
ProtT5 Elnaggar et al. (2021) ✓ Encoder-Decoder 3B TPAMI 21 0.7620 HF
DPLM Wang et al. (2024b) ✓ Encoder+Diffusion 650M ICLM 24 0.7552 GitHub

Sequence-Structure
SaPort Su et al. ✓ Encoder 650M ICLR 24 0.7514 HF
ProstT5 Heinzinger et al. (2024) ✓ Encoder-Decoder 3B NAR Gen. Bio. 24 0.7683 GitHub
GearNet Zhang et al. (b) GNN 20M ICLR 23 0.5860 GitHub

Sequence-Function
ProtST Xu et al. (2023) ✓ Encoder 750M ICML 23 0.7176 GitHub
ProLLaMA Lv et al. (2025) Decoder 6.7B IEEE TAI 25 0.5475 GitHub
OntoProtein Zhang et al. (a) Encoder 420M ICLR 22 0.6287 GitHub

Sequence-Structure-Function
ProCyon Queen et al. (2024) Decoder 11B Arxiv 24 0.1909 GitHub
ESM3 Hayes et al. (2025) ✓ Encoder 1.4B Science 25 0.6483 GitHub
ProTrek Su et al. (2024) ✓ Encoder 650M Arxiv 24 0.7641 GitHub

adjusts rank allocation during training Mao et al. (2024). DoRA decomposes weights into magnitude
and direction for targeted adaptation Zhang et al. (2023). We implement these methods using the
PEFT library Mangrulkar et al. (2022).

Hyper-parameters. All models are trained for up to 50 epochs using AdamW with a batch size of
64 and early stopping after 5 patience epochs. Optimal learning rate is selected from {1e-5, 1e-4}.

4 EXPERIMENTS

We conduct systematic experiments to answer the following questions:

• Q1: Supervised Tuning. How are different supervised downstream tasks correlated, and can a
minimal, representative subset of tasks be identified to efficiently benchmark pre-trained models?

• Q2: Zero-shot Evaluation. Can zero-shot protocols reliably evaluate protein foundation models?

• Q3: PEFT Strategies. Which PEFT methods are more effective for protein tasks?

• Q4: Scaling. How does model performance improve with increased model size?

4.1 SUPERVISED TUNNING (Q1)

Task Correlations. We evaluate the adapter tuning performance of 12 core models across 28 core
tasks, with the complete results provided in the appendix (Table 7) due to space constraints. We
analyze task relationships using Spearman correlation and visualize the results in Figure 3, where
p-values greater than 0.05 are marked with ✗. Finally, the 28 core tasks are grouped into 11 clusters
based on their correlations, and the selected representative tasks (marked as ✩).

Core Model Performance on Representative Tasks. Table 3 summarizes the performance of 12
core models on 11 representative tasks. Poorly performing tasks are excluded due to the challenges
adapter tuning faces in learning them. Upon analyzing the poorly performing datasets, we observe
that the newly implemented 30% sequence identity split introduces significant challenges for model
learning. While the stability performance under the original split aligns with SaProt Su et al., the
new split proves to be more demanding. Interaction tasks, requiring paired sequence embeddings
processed via transformer adapters, remain particularly challenging, underscoring the need for PLMs
tailored for interaction prediction, as current models are trained solely on single sequences.
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Figure 3: Task relations in supervised tuning.

Table 3: Core model results on representative tasks. Best and second-best ones are highlighted.

PDBBind Bind. DB Stability Anti.Res. Mat.Pro. EC M. I. Bin. Sec. Str. DL2 M. Clo. CLF DeepSol #Win

Sequence
ESM-2 Lin et al. (2023) 0.14677 0.13692 0.32112 0.63422 0.81189 0.73578 0.71170 0.76375 0.76191 0.80586 0.84494 –
VenusPLM Tan et al. (2025) 0.16536 0.16834 0.33907 0.64602 0.82018 0.75194 0.70195 0.71637 0.73814 0.83172 0.82775 50%
ESM-C 0.14692 0.20716 0.29976 0.67257 0.81009 0.71694 0.70195 0.76777 0.75395 0.81033 0.84171 38%
ProtGPT2 Ferruz et al. (2022) 0.13503 0.17169 0.14803 0.68437 0.76757 0.69687 0.71170 0.49371 0.70341 0.77730 0.78883 13%
PGLM Chen et al. (2024) 0.16877 0.16884 0.33127 0.67257 0.79495 0.74659 0.74513 0.72842 0.74772 0.83638 0.82160 50%
ProtT5 Elnaggar et al. (2021) 0.20105 0.19730 0.18638 0.68732 0.80072 0.76201 0.72145 0.77978 0.72624 0.78485 0.78741 50%
DPLM Wang et al. (2024b) 0.13659 0.17408 0.29440 0.68732 0.80144 0.75521 0.70056 0.75695 0.75759 0.81247 0.82841 38%

Sequence-Structure
SaProt Su et al. 0.15549 0.16557 0.24804 0.65782 0.81081 0.75144 0.71031 0.82389 0.74006 0.81206 0.84364 50%
ProstT5 Heinzinger et al. (2024) 0.18344 0.16642 0.13032 0.69027 0.81622 0.76829 0.72145 0.81397 0.73190 0.79853 0.81937 63%

Sequence-Function
ProtST Xu et al. (2023) 0.19514 0.18886 0.06623 0.63422 0.69261 0.71761 0.51532 0.68468 0.74886 0.80714 0.81951 13%

Sequence-Structure-Function
ESM3 Hayes et al. (2025) 0.15572 0.22519 0.15650 0.58407 0.77514 0.64830 0.70334 0.81264 0.65853 0.77391 0.78106 13%
ProTrek Su et al. (2024) 0.17322 0.19230 0.04924 0.59292 0.81477 0.76408 0.80362 0.77363 0.83944 0.82612 0.83427 75%

Do existing PLMs truly outperform ESM2? For the remaining 8 representative tasks, we compare
each model against ESM2 and calculate the winning rate (#Win), which is defined as the proportion
of tasks where a model outperforms ESM2. From the #Win metric, we observe that:

• Sequence-based PLMs. All sequence-based PLMs achieve no more than a 50% winning rate
against ESM2, indicating that they could not outperform ESM2 on the representative tasks.

• Decoder-only Model. The decoder-only model ProtGPT2 performs the worst on these tasks,
with a winning rate of only 13% on representative tasks. This suggests that the decoder-only
architecture is currently unsuitable for protein understanding.

• Multimodal PLMs. Multimodal PLMs achieve the highest winning rates, with ProTrek attaining
a 75% winning rate on representative tasks. This success is attributed to the effective semantic
alignment of sequence and function information during the pre-training stage.

• Challenges with Function Data. ESM3 and ProtST show low winning rates (13%) due to noisy
or insufficient function data, emphasizing the need for high-quality, large-scale datasets. For
example, ProTrek excels when trained on such cleaned, large-scale annotations.
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4.2 ZERO-SHOT EVALUATION (Q2)

While ProteinGym has established itself as a valuable zero-shot benchmark for protein function
prediction, recent studies (Tsishyn et al., 2025; Gurev et al.; Zhou et al., 2024) have revealed
limitations in its sensitivity to model size and performance differentiation. We greatly appreciate
ProteinGym’s seminal role in standardizing zero-shot mutation evaluation and accelerating progress
in protein ML. PFMBench complements ProteinGym by focusing on more supervised learning
scenarios—including mutation tasks— that better align with real-world deployment needs, while
introducing novel evaluation metrics (e.g., Mutual Information Difference) to assess functional
sequence relationships. This complementary approach provides a more comprehensive evaluation
framework for protein foundation models.

Complementary Evaluation Insights. Zero-shot mutation tests are a common practice, yet Table 4
shows that ProteinGym’s zero-shot performance has limited correlation with supervised tuning results,
indicating the mutation tasks and predictive tasks probe different facets of model capability. This
underscores PFMBench’s role as a complementary suite that include both mutation and predictive
tasks, thereby providing signals that are orthogonal to mutation assessments. In addition, we introduce
a new zero-shot evaluation metric (Mutual Information Difference) to better align the model’s ability
with sequence-level mutual information.

Table 4: Zero-shot proteingym performance of core models.

# Params Architecture Input Loss ProteinGym Rank

SaProt Su et al. 650M Encoder Seq-Struct MLM 0.45094 1
VenusPLM Tan et al. (2025) 300M Encoder Seq MLM 0.43952 2
ESM-2 Lin et al. (2023) 650M Encoder Seq MLM 0.43904 3
ESM-C 600M Encoder Seq MLM 0.43422 4
DPLM Wang et al. (2024b) 650M Encoder Seq MLM 0.42922 5
ESM3 Hayes et al. (2025) 1.4B Encoder Seq MLM 0.41401 6
PGLM Chen et al. (2024) 1B Encoder-Decoder Seq MLM 0.39750 7
ProTrek Su et al. (2024) 650M Encoder Seq MLM+ Contrast 0.35919 8
ProtGPT2 Ferruz et al. (2022) 738M Decoder Seq NTP 0.18962 9

UMAP Visualization. Figure 4 shows UMAP embeddings of ESM2, ProstT5, and ProTrek on
Deeploc2 Multi, colored by class labels. ESM2 and ProstT5 exhibit overlapping clusters, while
ProTrek, leveraging contrastive alignment, shows distinct boundaries. This highlights the importance
of semantic alignment in pretraining for capturing functional relationships.

ESM2 ProstT5 ProTrek

0
1
2
3
4
5
6
7
8
9

Figure 4: UMAP visualization of ESM2, ProstT5, and ProTrek on Deeploc2 Multi.

MSA Mutual Information. We compute the Mutual Information Difference (MID) for sequence-
only models relative to ESM2-35M across 100 MSA clusters (see Appendix A.4 for MID definition).
MSA centers are randomly sampled from UniRef30 Suzek et al. (2015), with mmseq2 Steinegger &
Söding (2017) used for top-10 MSA searches. Figure 5 shows that ProTrek and larger ESM models
achieve higher MID, consistent with their downstream performance, suggesting that PLMs effectively
clustering local MSA.

ESM-2
(35M)

ESM-2
(150M) ESM-2

(650M)
ESM-2
(3B)

ESM-2
(15B)

ESM-C
(600M)

ProTrek
(35M)

ProTrek
(650M)

VenusPLM
(300M)

DPLM
(650M)

PGLM
(1B)

Figure 5: The MID distribution of sequence-only models relative to ESM2-35M.
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4.3 OPTIMAL EFFICIENT FINE-TUNING AND SCALING (Q3 & Q4)

Table 5 presents the performance of the top-2 models alongside the ESM2 baseline on 11 represen-
tative tasks using various efficient fine-tuning methods, including Adapter, Linear Probing, LoRA,
AdaLoRA, DoRA, and IA3. For each fine-tuning method, we calculate the winning rate (#WESM)
against ESM2. Additionally, across different fine-tuning methods, we compute the winning rate
(#WAdap) against the adapter tuning method for each model. We observe that:

• Adapter Tuning is Sufficiently Effective. The adapter tuning method consistently outperforms
other fine-tuning methods across all models, except for DoRA.

• ProTrek Consistently Outperforms ESM2. ProTrek achieves the best performance across all
fine-tuning methods, with a winning rate of 75% to 88% against ESM2.

Table 5: Results on 11 representative tasks using various efficient fine-tuning methods. PEFT methods
that outperform the Adapter are marked in red; the others are marked in blue.

PDBBind BindingDB Stability Anti. Res. Mat. Prod. EC M. I. Bin Sec. Str. DL2 Multi Clo. CLF DeepSol #WESM #WAdap

Adapter
ESM-2 0.14677 0.13692 0.32112 0.63422 0.81189 0.73578 0.71170 0.76375 0.76191 0.80586 0.84494 – –
ProstT5 0.18344 0.16642 0.13032 0.69027 0.81622 0.76829 0.72145 0.81397 0.73190 0.79853 0.81937 63% –
ProTrek 0.17322 0.19230 0.04924 0.59292 0.81477 0.76408 0.80362 0.77363 0.83944 0.82612 0.83427 75% –

Linear Probing
ESM-2 0.21766 0.16427 0.04649 0.64307 0.81586 0.61163 0.71309 0.71846 0.74472 0.78807 0.79465 – 38%
ProstT5 0.24874 0.16144 0.05228 0.67552 0.80541 0.65167 0.66992 0.79928 0.70530 0.78722 0.77794 38% 0%
ProTrek 0.22595 0.25353 0.02332 0.63717 0.81766 0.64201 0.69777 0.73840 0.77847 0.80099 0.80312 75% 25%

LoRA
ESM-2 0.18463 0.24559 0.32304 0.61652 0.80865 0.67146 0.69499 0.74305 0.76851 0.83616 0.86160 – 38%
ProstT5 0.19072 0.21411 0.28204 0.66077 0.81658 0.72779 0.64485 0.80878 0.77875 0.82997 0.84834 63% 0%
ProTrek 0.24707 0.19302 0.2776 0.67257 0.84324 0.71139 0.74373 0.76687 0.79566 0.83441 0.86326 88% 50%

AdaLoRA
ESM-2 0.20398 0.23794 0.26715 0.60767 0.80829 0.68715 0.71448 0.7436 0.77209 0.84171 0.85077 – 50%
ProstT5 0.21487 0.07897 0.17776 0.68142 0.82883 0.71974 0.66156 0.80755 0.75642 0.82935 0.85272 63% 50%
ProTrek 0.24625 0.22491 0.15328 0.64307 0.83640 0.7384 0.68524 0.76651 0.80497 0.83713 0.86152 75% 50%

DoRA
ESM-2 0.18497 0.20087 0.33022 0.63717 0.82739 0.68786 0.72006 0.74357 0.77774 0.84471 0.86346 – 75%
ProstT5 0.23039 0.10505 0.26731 0.69912 0.80000 0.70583 0.66574 0.80813 0.77520 0.83052 0.85343 38% 50%
ProTrek 0.23648 0.07242 0.25293 0.60177 0.83387 0.71772 0.72006 0.76710 0.80063 0.83988 0.86625 63% 75%

IA3
ESM-2 0.18948 0.19144 0.09641 0.60177 0.79928 0.68549 0.63231 0.74286 0.76447 0.82562 0.83062 – 25%
ProstT5 0.24188 0.12700 0.04821 0.66962 0.82342 0.71467 0.71309 0.81016 0.74326 0.78942 0.80635 63% 25%
ProTrek 0.23836 0.10734 0.06299 0.59292 0.79676 0.70588 0.71031 0.76366 0.78881 0.82911 0.83146 75% 25%

Are Scaling PLMs Truly Worth It? In Table 6, we further examine whether increasing model
size improves performance on the 11 representative tasks, focusing on the ESM2 series models. We
calculate the winning rate (W150M) of each model against ESM2-150M and conclude the following:

• Scaling Up Works but Comes at a Cost. The scaling law is effective only when models are
scaled up to 15B parameters; otherwise, none of the models outperform ESM2-150M. However,
this increase in model size incurs significant costs in both pretraining and inference. Considering
the marginal performance gains, the cost of scaling up may not be justified.

• Pretraining Strategies Matter More. Instead of scaling up to 15B, a more effective and efficient
approach is to optimize the pretraining strategy. For instance, ProTrek-650M outperforms ESM2-
15B on 6 out of 8 tasks and achieves a winning rate of 75% against ESM2-150M.

Table 6: Performance of ESM2 under the scaling law. Gray tasks are excluded from the winning rate
analysis. Models that outperform the ESM2-150M are marked in red; the others are marked in blue.

PDBBind Bind. DB Stability Anti.Res. Mat.Pro. EC M. I. Bin. Sec. Str. DL2 M. Clo. CLF DeepSol #W150M

ESM2-35M 0.09985 0.14232 0.32337 0.67552 0.78595 0.71675 0.71866 0.69609 0.73219 0.79441 0.82486 13%
ESM2-150M 0.09371 0.13142 0.33728 0.65192 0.81946 0.73192 0.76462 0.73430 0.74744 0.81531 0.82825 –
ESM2-650M 0.14677 0.13692 0.32112 0.63422 0.81189 0.73578 0.71170 0.76375 0.76191 0.80586 0.84494 50%
ESM2-3B 0.10479 0.12724 0.31647 0.64012 0.80036 0.73878 0.73955 0.77111 0.77328 0.81031 0.83007 50%
ESM2-15B 0.08427 0.12559 0.03018 0.68142 0.81045 0.73259 0.73259 0.77250 0.76714 0.80210 0.85155 63%

ProTrek-650M 0.17322 0.19230 0.04924 0.59292 0.81477 0.76408 0.80362 0.77363 0.83944 0.82612 0.83427 75%

5 CONCLUSION

This work presents a comprehensive benchmark for evaluating protein foundation models (PFMs)
across a diverse range of tasks, accompanied by a streamlined evaluation protocol. Starting with 38
tasks and 17 models, we identify 12 core models and 11 representative tasks to enable efficient and
meaningful evaluation. Through extensive experiments, we reveal that current PFM research exhibits
a high degree of homogeneity and provide in-depth analysis to guide future research directions.
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