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ABSTRACT

Representation learning has been greatly improved with the advance of contrastive
learning methods with the performance being closer to their supervised learning
counterparts. Those methods have greatly benefited from various data augmenta-
tions that are carefully designated to maintain their identities so that the images
transformed from the same instance can still be retrieved. Although stronger aug-
mentations could expose novel patterns of representations to improve their gener-
alizability, directly using stronger augmentations in instance discrimination-based
contrastive learning may even deteriorate the performance, because the distor-
tions induced from the stronger augmentations could ridiculously change the im-
age structures and thus the transformed images can not be viewed as the same as
the original ones any more. Additional efforts are needed for us to explore the role
of the stronger augmentations in further pushing the performance of unsupervised
learning to the fully supervised upper bound. Instead of applying the stronger aug-
mentations directly to minimize the contrastive loss, we propose to minimize the
distribution divergence between the weakly and strongly augmented images over
the representation bank to supervise the retrieval of strongly augmented queries
from a pool of candidates. This avoids an overoptimistic assumption that could
overfit the strongly augmented queries containing distorted visual structures into
the positive targets in the representation bank, while still being able to distinguish
them from the negative samples by leveraging the distributions of weakly aug-
mented counterparts. The proposed method achieves top-1 accuracy of 76.2%
on ImageNet with a standard ResNet-50 architecture with a single-layer classifier
fine-tuned. This is almost the same as 76.5% of top-1 accuracy with a fully su-
pervised ResNet-50. Moreover, it outperforms the previous self-supervised and
supervised methods on both the transfer learning and object detection tasks.

1 INTRODUCTION

Deep neural network has shown its sweeping successes in learning from large-scale labeled datasets
like ImageNet (Deng et al. (2009)). However, such successes hinge on the availability of a large
amount of labeled examples that are expensive to collect. To address this challenge, unsupervised
visual representation learning and self-supervised learning, have been studied to learn feature rep-
resentations without labels. Among them is the contrastive learning (Hadsell et al. (2006); Misra &
Maaten (2020); Chen et al. (2020b); He et al. (2020); Caron et al. (2020)), showing great potentials
to close the performance gap with supervised methods.

In contrastive learning Hadsell et al. (2006), each image is considered as an instance, and we wish
to train the network so that the representations of different augmentations of the same instance are
as close as possible to each other (He et al. (2020); Chen et al. (2020a); Wu et al. (2018); Hjelm
et al. (2018); Oord et al. (2018); Bachman et al. (2019); Zhuang et al. (2019); Tian et al. (2019);
Hénaff et al. (2019)). Meanwhile, the representations of different instances can be also distinguished
between each other.

It is worth noting that these methods usually rely on image augmentations that are carefully desig-
nated to maintain their instance identities so that the augmentation of an instance can be accurately
retrieved from a dictionary of instances. On the other hand, we believe stronger augmentations could
expose novel patterns which can further improve the generalizability of learned representations and
eventually close the gap with the fully supervised models. However, directly using stronger augmen-

1



Under review as a conference paper at ICLR 2021

tations in the contrastive learning could deteriorate the performance, because the induced distortions
could ridiculously change the image structures and thus the transformed images cannot keep the
identity of the original instances. Thus, additional efforts are needed for us to explore the role of the
stronger augmentations to further boost the performance of self-supervised learning.

Thus we propose the CLSA (Contrastive Learning with Stronger Augmentations) framework to ad-
dress this challenge. Instead of applying strongly augmented views to the contrastive loss, we pro-
pose to minimize the distribution divergence between the weakly and strongly augmented images
over a representation bank to supervise the retrieval of stronger queries. This avoids an overop-
timistic assumption that could overfit the strongly augmented queries containing distorted visual
structures into the positive targets, while still being able to distinguish them from the negative sam-
ples by leveraging the distributions of weakly augmented counterparts. The learned representation
will not only explore the novel patterns exposed by the stronger augmentations, but also inherits the
knowledge about the relative similarities to the negative samples.

The experiments on various datasets demonstrate that the proposed framework can greatly boost the
performance by learning from stronger augmentations. On the ImageNet linear evaluation protocol,
we reach a record 76.2% top-1 accuracy with the standard ResNet-50 backbone, which is almost
as high as 76.5% top-1 accuracy of the fully supervised model. Meanwhile, it also achieves the
competitive performances on several downstream tasks. Among them is a top-1 accuracy of 93.6%
on VOC07 with the linear classifier on the pretrained ResNet-50 compared to the previous record
of 88.9% top-1 accuracy. For the COCO object detection, the APS for small object detection has
been improved to 24.4% from the previous best APS of 20.8%. These results show that the CLSA
can more effectively leverage stronger augmentations than the previous self-supervised methods on
downstream tasks. We also conduct ablation study to show a naive application of stronger augmen-
tations in the contrastive learning would degrade the performances.

2 RELATED WORK

Unsupervised and self-supervised learning methods have been widely studied to close the gap with
supervised learning. These methods can be categorized into four different major aspects.

Instance Discrimination and Contrastive Learning Each image is considered as an individual
class in an instance discrimination setting (Bojanowski & Joulin (2017); Dosovitskiy et al. (2015);
Wu et al. (2018); Chen et al. (2020a); He et al. (2020)). It can be further formulated as contrastive
learning (Hadsell et al. (2006)). In particular, Wu et al. (2018) built a memory bank that stores
pre-computed representations from which positive examples are retrieved given some queries. Fol-
lowing this work, He et al. (2020) used a momentum update mechanism to maintain a long queue of
negative examples for contrastive learning. Chen et al. (2020a) proposed a rich family of data aug-
mentations on cropped images which has significantly boosted the classification accuracy. However,
these methods failed to further improve the performance by naively applying stronger augmentations
to minimize the contrastive loss, and this motivated the proposed work.

Generative Methods The generative methods typically adopt auto-encoders (Vincent et al. (2008);
Kingma & Welling (2013)), and adversarial learning (Donahue et al. (2016); Donahue & Simonyan
(2019)) to train an unsupervised representation. Usually, they focused on the pixel-wise information
of images to distinguish images from different classes.

Self-supervised Clustering Data clustering (Asano et al. (2019); Caron et al. (2018; 2019; 2020);
Yan et al. (2020)) can also be used to learn visual representations by assigning pseudo cluster la-
bels to individual samples. DeepCluster (Caron et al. (2018)) generalized k-means by alternating
between assigning pseudo-labels and updating networks. Recently, the SWAV (Caron et al. (2020))
is proposed to learn a cluster of prototypes as the negative examples for the contrastive learning.
Combined with the multi-crops of training examples, the SWAV has achieved the state-of-the-art
performance on ImageNet.

Pretext Tasks In addition to the contrastive learning, there exist many alternative methods using
different pretext tasks (Agrawal et al. (2015); Qi et al. (2019); Doersch et al. (2015); Kim et al.
(2018); Larsson et al. (2016); Zhang et al. (2019)) to train unsupervised deep networks. For example,
Doersch et al. (2015) used the relative positions of two randomly sampled patches as the supervised
signal. Agrawal et al. (2015); Zhang et al. (2019); Gidaris et al. (2018) adopted various geometric
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Figure 1: Contrastive instance learning framework

transformations on images and used the transformation parameters to train deep networks. For more
details about these works, please refer to the survey by Jing & Tian (2020).

3 THE PROPOSED METHOD

In this section, we will first review the preliminary work on the contrastive learning, and discuss
their limitations on applying stronger augmentations to explore the novel patterns of representa-
tions. Then we will present a new distributional divergence loss between weakly and strongly
augmented images to self-train the representations over a representation bank consisting of both
negative samples and positive targets. After that, the algorithm and the implementation details will
also be explained.

3.1 PRELIMINARY METHODS AND LIMITATIONS

Contrastive learning (Hadsell et al. (2006)) is a popular self-supervised idea and made great success
in recent years with the advance of computation and various image augmentations. In contrastive
learning, each image is considered as an instance, so it’s also known as instance learning.

Fig. 1 illustrates general framework of contrastive learning methods.For each image x in batchB, we
apply two transformations T and T ′ to obtain two different views V and V ′ of the same instance x.
Then they go through a key encoder and a query encoder respectively, followed with MLP projection
layers, resulting in two embedded representations z and z′ to calculate the constrastive loss. The key
factor of contrastive learning is the quality and the number of negative examples. To deal with those
issues, various methods have been proposed, such as Memory Bank (Wu et al. (2018)), momentum
encoder (He et al. (2020)), and online learning with bigger batch (Chen et al. (2020a)).

Specifically, the contrastive loss is developed to maximize the agreement of representations of differ-
ent views of the same instance while minimizing the agreement with other negative samples. Hence,
the contrastive loss for the different views of the same instance can be defined in Eq. (1).

LC = − 1

|B|
∑
i∈B

log
exp(sim(z′i, zi)/τ)

exp(sim(z′i, zi)/τ) +
∑K
k=0 exp(sim(z′i, zk)/τ)

(1)

with the cosine similarity
sim(zi, zj) = zTi zj/(||zi|| · ||zj ||) (2)

where LC is the contrastive loss, zi and z′i are the projected representations of the different aug-
mentations of the same sample xi, the summation is taken over the samples xi in the current batch
B, and τ is the temperature parameter set to 0.2. Also, the negative pool Q = {zk|k = 1, · · · ,K}
shown in Fig. 1 is a queue of size K storing the embedded features from the past batches in a FIFO
fashion. This will keep the examples from the most recent batches in the queue while removing these
obsoleted ones from it, which has been widely adopted in previous works (Chen et al. (2020b); He
et al. (2020)).

As illustrated in Fig. 1, previous contrastive learning works use two transformations T and T ′ to
generate two different views V and V ′, in which the transformations are carefully designated. Thus,
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the two views are not transformed aggressively so that they can still be viewed as the same instance.
However, directly adopting stronger transformations (e.g., with larger rotation angles, more aggres-
sive colorjittering and cutout) in contrastive learning fails to further improve the performance or
even deteriorate it for downstream tasks, which is not surprising. Stronger transformations could
distort image structures and their perceptual patterns in the learned representation so that strongly
augmented samples from the same instance cannot be viewed as keeping the same instance iden-
tity for training the underlying network. However, stronger augmentations can expose useful clues
to the novel patterns that cannot be revealed from moderately augmented images. In supervised
learning (Cubuk et al. (2018); Lim et al. (2019); Hataya et al. (2019); Cubuk et al. (2020)), data aug-
mentation search have been widely studied and greatly boost the performance with the novel pattern
exposed by strongly augmented images. The findings in RandAugment (Cubuk et al. (2020)) have
verified that strongly augmented views can provide more clues even without an explicit augmen-
tation policy. We believe learning the representations from these novel patterns will pave the last
mile to close the gap with the fully supervised representations. Indeed, in semi-supervised learning
and supervised learning (Cubuk et al. (2020); Qi et al. (2019); Wang et al. (2019)), more aggressive
augmentations have been adopted and achieved extraordinary performances. For example, AET Qi
et al. (2019) has adopted the parameters of augmentations as supervised signal to self-supervise the
training of networks. All of these findings have inspired us to explore novel ways to utilize stronger
transformations in self-supervised learning while avoiding deteriorated performances by naively us-
ing them in a contrastive model (Chen et al. (2020a)). All of these have inspired us to explore novel
ways to utilize stronger transformations in self-supervised learning.

Figure 2: Comparison of the strongly weakly augmented images. The left is the original image,
the middle is the weakly augmented image, and the right is the strongly augmented one with over-
contrastive details.

However, it is not easy. As shown in Fig. 2, a strongly augmented image may look perceptually
different from the original counterpart. Consequently, the representation of a strongly augmented
image can be far apart from that of the weakly augmented one. Thus, naively using strongly aug-
mented images in contrastive learning can be over-optimistic since the induced distortions could
dramatically ruin their image structures. To this end, in Section 3.2, we instead proposed the Distri-
butional Divergence Minimization (DDM) between weakly and strongly augmented images over a
representation bank to avoid overfitting the representation of a strongly augmented image with that
of the corresponding positive target.

3.2 DISTRIBUTIONAL DIVERGENCE MINIMIZATION BETWEEN WEAKLY AND STRONGLY
AUGMENTED IMAGES

Due to the aforementioned limitation of stronger augmentations in contrastive learning, a direct
retrieval of a strongly augmented query is infeasible to self-train deep networks. Fortunately, the
distribution of relative similarities of a weakly augmented image from the same instance over the
representation bank can provide useful information to bridge the gap. As explained below, it does
not only avoid directly placing the representation of a strongly augmented image too closer to that
of the positive target, but also allows it to explore the novel patterns of variations exposed by the
strong augmentation.
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Figure 3: Diagram of distributional divergence minimization. Here the representation bank consists
of K stored features zk in the negative pool and online features zi from the key encoder. They will
be used to calculate the conditional probability of current weakly and strongly augmented images.

Formally, as shown in Fig. 3, for an original image xi and the representation zi of the corresponding
positive target, we applied a weaker and a stronger augmentation to obtain two separate views V ′

i
and V ′′

i , and their embeddings z′i (weak representation) and z′′i (strong representation). Given a
pool Q (shown in Fig. 1) of K negative samples {zk|k = 1, · · · ,K} accumulated from the past
iterations, we obtain a conditional distribution

p(zk|z′i) =
exp(sim(z′i, zk)/τ)

exp(sim(z′i, zi)/τ) +
∑K
k=0 exp(sim(z′i, zk)/τ)

(3)

which encodes the likelihood of the weaker query z′i being assigned to zk. In the similar way, we
can define the likelihood p(zi|z′i) of the query being assigned to the positive target zi, as well as the
likelihoods p(zi|z′′i ) and p(zk|z′′i ) for the stronger query z′′i . Here the representation bank consists
of the negative pool Q and the positive query targets zi from the current batch B.

Then, we propose to minimize the following distributional divergence between the weak and the
strong queries such that

LD =
1

|B|
∑
i∈B

[
−

K∑
k=1

p(zk|z′i) log(p(zk|z′′i ))− p(zi|z′i) log(p(zi|z′′i ))

]
(4)

By minimizing this divergence, we assume the learned representation z′′i of the strongly augmented
query should inherit the representation z′i of the weakly augmented one regarding not only its belief
of the query being assigned to the corresponding positive target zi, but also its relations with the
negative samples zk in the representation bank through the conditional distribution p(zk|z′i).
This will prevent a direct overfitting of the strong query representation to the positive target as well
as improve the generalization of the learned representation with additional clues from the other
examples in the representation pool. In a more general sense, this extends the idea of knowledge
distillation (Hinton et al. (2015)). However, we did not use the predicted labels by a teacher model
to supervise the training of a student model as in the knowledge distillation. Instead, we used the
distribution of the likelihoods of a weak query to supervise the retrieval of a strong query from a
pool of representations.

3.3 IMPLEMENTATION DETAILS

Algorithm 1 gives the pseudo code to implement the proposed CLSA method. In the following, we
will discuss the details about the applied strong and weak augmentations for distributional diver-
gence minimization.

Stronger Augmentations S As explored in the previous works (Cubuk et al. (2018); Wang et al.
(2019); Qi et al. (2019)), strong augmentations usually have two types: geometric and non-geometric
augmentations. Specifically, we considered 14 types of augmentations: ShearX/Y, TranslateX/Y,
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Algorithm 1 Pseudo code for the proposed CLSA

Input: fθ, fφ: the query and the key encoder networks; gθ, gφ: the MLP projection layers for the
query and the key; Q: a queue of representations of K negative samples; α: momentum decay
for the key network; τ : the temperature; T and T ′: weak augmentation; S: strong augmentation;
β: the balancing coefficient.

1: Initialize the network fφ = fθ, gφ = gθ and Q;
2: for i=1 to steps do
3: Fetch x from the current batch B;
4: z′′ = gθ(fθ(S(x))), z

′ = gθ(fθ(T
′(x))), z = gφ(fφ(T (x)));

5: Calculate the contrastive loss LC ; . see Eq. (1)
6: Calculate distributional divergence loss LD; . see Eq. (4)
7: Update the query network fθ and gθ with loss L = LC + β ∗ LD;
8: Update the key network fφ and gφ with φ = αφ+ (1− α)θ;
9: Update Q with the representation z output from the key network;

10: end for
Output: The representation encoder fθ.

Rotate, AutoContrast, Invert, Equalize, Solarize, Posterize, Contrast, Color, Brightness, Sharpness.
The magnitude of each augmentation is significant enough to produce as strong augmentations as
possible. More details are shown in Table 1. For example, the shear is drawn from a range of
[-0.3,0.3], which results in aggressively transformed images that can be hard to retrieve given a
counterpart target. In particular, to transform an image, we randomly select an augmentation from
the above 14 types of transformations, and apply it to the image with a probability of 0.5. This
process is repeated five times and that will strongly augment an image as the example shown in the
right panel of Fig. 2.

Table 1: Various augmentations we applied in experiments to strongly augment training images.

Operation ShearX(Y) TranslateX(Y) Rotate AutoContrast Invert Equalize
Mag Range [-0.3,0.3] [-0.3,0.3] [-30,30] 0 or 1 0 or 1 0 or 1
Operation Solarize Posterize Contrast Color Brightness Sharpeness
Mag Range [0,256] [4,8] [0.05,0.95] [0.05,0.95] [0.05,0.95] [0.05,0.95]

Weaker Augmentations T Weak augmentations are drawn by following most of existing con-
trastive learning methods in literature (Chen et al. (2020a;b); Caron et al. (2020); He et al. (2020)):
an image is first cropped from an input image and resized to 224×224 pixels. Then random color
jittering, Gaussian Blur, grayscale conversion, horizontal flip, channel-wise color normalization are
sequentially applied to generate weakly augmented images with an example shown in the middle of
Fig. 2.

Technical Details Similar to the previous works (He et al. (2020); Chen et al. (2020a); Caron et al.
(2020)), we used the ResNet-50 (He et al. (2016)) as our encoder backbones fθ and fφ and a 2-
layer MLP (2048-d hidden layer with the ReLU) as the projection head gθ and gφ. The projected
representation z is first L2-normalized (Wu et al. (2018)) before calculating the cosine similarity.
The temperature τ is set to 0.2, with a momentum smoothing factor α of 0.999 and a fixed balancing
coefficient β of 1.0. We set the size K of the queue Q to 65536 to store the negative examples used
to compute the conditional distribution of weakly and strongly augmented queries and minimize
their divergence.

4 EXPERIMENTS

4.1 TRAINING DETAILS

For the unsupervised pretraining on ImageNet with the CLSA, we used the SGD optimizer (Bottou
(2010)) with an initial learning rate of 0.03, a weight decay of 0.0001 and a momentum of 0.9.
We used cosine scheduler (Loshchilov & Hutter (2016)) to gradually decay the learning rate to 0.
Usually, the batch size is set to 256. When multiple GPU cluster servers are used, the batch size will
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Table 2: Top-1 accuracy under the linear evaluation on ImageNet with the ResNet-50 backbone.
The left table compared methods trained over 200 epochs, and the right table compared the methods
with various numbers of epochs.

Method Top 1

InstDisc (Wu et al. (2018)) 54.0
LocalAgg (Zhuang et al. (2019)) 58.8
MoCo (He et al. (2020)) 60.8
SimCLR (Chen et al. (2020a)) 61.9
CPC v2 (Hénaff et al. (2019)) 63.8
PCL (Li et al. (2020)) 65.9
MoCo v2 (Chen et al. (2020b)) 67.5
InfoMin Aug (Tian et al. (2020)) 70.1
SWAV (Caron et al. (2020)) 72.7

CLSA-Single 69.4
CLSA-Multi 73.3
Supervised 76.5

Method Top 1

BigBiGAN (Donahue & Simonyan (2019)) 56.6
SeLa-400epochs (Asano et al. (2019)) 61.5
PIRL-800epochs (Misra & Maaten (2020)) 63.6
CMC (Tian et al. (2019)) 66.2
SimCLR-800epochs (Chen et al. (2020a)) 70.0
MoCo v2-800epochs (Chen et al. (2020b)) 71.1
InfoMin Aug-800epochs (Tian et al. (2020)) 73.0
BYOL-1000epochs (Grill et al. (2020)) 74.3
SWAV-800epochs (Caron et al. (2020)) 75.3

CLSA-Single-800epochs 72.2
CLSA-Multi-800epochs 76.2
Supervised 76.5

be multiplied by the same number of servers by convention. Typically, the experiment with a single
strong augmentation for each training image takes roughly 70 hours to finish on 8 V100 GPUs.

For the fine-tuning on ImageNet, we trained a linear classifier on top of the frozen feature vector
(2048-D) upon the pretrained ResNet-50 with CLSA. This linear layer is trained for 100 epochs,
with a learning rate of 10 without weight decay. We used the cosine learning rate decay and a batch
size of 256.

For the transfer learning on the VOC dataset, we trained a linear classifier upon the pretrained
Resnet-50 in the similar way for ImageNet – we trained 100 epochs with the SGD optimizer and
a learning rate of 0.05, a momentum of 0.9 and no weight decay. The batch size is 256 without
learning rate scheduler.

Finally, for object detection, we adopted the same protocol in (He et al. (2020)) to fine-tune the
pretrained Resnet-50 backbone based on detectron2 (Wu et al. (2019)) for the sake of a fair and
straight comparison with the other methods.

4.2 LINEAR CLASSIFICATION ON IMAGENET

For the linear evaluation on ImageNet, we trained the CLSA in two settings. In the first setting
named CLSA-Single, we used a single stronger augmentation (see Table 1) that crops each training
image to a smaller size of 96×96, which does not incur too much computing overhead in processing
these smaller augmented images. In the second setting named CLSA-Multi, we adopted five differ-
ent stronger augmentations that crop each image into various sizes: 224 × 224, 192 × 192, 160 ×
160, 128 × 128, and 96 × 96. The DDM loss in Eq. (4) is the sum over these multiple stronger
augmentations. The similar multi-crop strategy has been adopted in contrastive learning literature
before. For example, the SWAV (Caron et al. (2020)) reached the state-of-the-art top-1 accuracy by
applying such multi-crop augmentations. To ensure a fair comparison with the SWAV, we chose five
stronger augmentations such that the self-training with CLSA-Multi consumed the same computing
time (i.e., 166 hours with a cluster of 8 V100 GPUs for 200 epochs of pre-training with a batch size
of 256).

As shown in Table 2, we compared the performance with the other unsupervised methods. All the
experiments are based on a pretrained ResNet-50 backbone that is fine-tuned with a linear classifier.
The left table showed the performance of different methods pretrained over 200 epochs, and the
right table reported models pretrained over more epochs.

First, under the same contrastive protocol, the CLSA-Single has a higher 69.4% top-1 accuracy than
both MoCo v2 (67.5%) and SimCLR (61.9%) with 200 epochs training. With multiple stronger
augmentations, the CLSA-Multi outperforms the State-of-the-art SWAV model using multi-crops of
training images over 200 epochs 73.3% vs. 72.7%. Moreover, as shown in the right table, the CLSA-
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Single outperforms MoCo v2 and SimCLR with the same training epochs. It is also noteworthy that
the CLSA-Multi achieves almost the same top-1 accuracy as that of the fully supervised network
(76.2% vs. 76.5%).

4.3 TRANSFER LEARNING RESULTS ON DOWNSTREAM TASKS

Table 3: Transfer learning results on various downstream tasks.

Classification Object Detection
VOC07 VOC07+12 COCO

Measurement Accuracy AP50 AP APS
RotNet (Gidaris et al. (2018)) 64.6 - - -
NPID++ (Wu et al. (2018)) 76.6 79.1 - -
MoCo (He et al. (2020)) 79.8 81.5 - -
PIRL (Misra & Maaten (2020)) 81.1 80.7 - -
PCL (Li et al. (2020)) 84.0 - - -
BoWNet (Gidaris et al. (2020)) 79.3 81.3 - -
SimCLR (Chen et al. (2020a)) 86.4 - - -
MoCov2 (Chen et al. (2020b)) 87.1 82.5 42.0 20.8
SWAV (Caron et al. (2020)) 88.9 82.6 42.1 19.7

CLSA 93.6 83.2 42.3 24.4
Supervised 87.5 81.3 40.8 20.1

We test the generalizability of the ResNet-50 pre-trained on ImageNet to several downstream tasks.
Specifically, we focused on two tasks: cross-dataset image classification and object detection. The
pre-trained ResNet-50 was frozon, and we fine-tuned the linear classifier on the VOC07trainval (Ev-
eringham et al. (2010)) and tested it on the VOC07test. For object detection, we evaluated the
pre-trained network on two datasets using the detectron2 (Wu et al. (2019)) used in the previous
methods He et al. (2020); Chen et al. (2020a). On the VOC dataset (Everingham et al. (2010)), we
trained the detection head with VOC07+12 trainval dataset and tested on VOC07 test dataset. On
the COCO dataset (Lin et al. (2014)), we fine-tuned the network on the train2017 set with 118k
images and evaluate on the val2017. For the sake of a fair comparison, the object detection tasks are
completed by detectron2 (He et al. (2017)) based on the pretrained ResNet-50.

As shown in Table 3, the performances on both tasks are much better than the supervised model
trained on ImageNet. This suggests that the proposed method has better generalization ability in
downstream tasks. The pre-trained network on ImageNet by the CLSA outperformed the compared
models after being fine-tuned on different datasets. Among them is a top-1 accuracy of 93.6% on the
VOC07 with the linear classifier on the pretrained ResNet-50 in comparison with the previous record
of 88.9% top-1 accuracy by the SWAV. On the COCO dataset, the APS for small object detection
has been significantly improved to 24.4% from the previously best APS of 20.8%. As well known,
it is much challenging to detect small objects on the COCO dataset. Thus, the better performance
of the CLSA could be attributed to the ability of involving the stronger augmentations that result in
many small objects to pretrain the network.

4.4 ABLATION STUDY

Table 4: Ablation study of the CLSA on ImageNet with 200 epochs of pre-training.

Model Top-1 Accuracy

MoCo V2 67.5
MoCo V2 with Strong query 67.7
MoCo V2 with Strong query & Strong key 67.0
CLSA-Single with contrastive loss 68.0
CLSA-Single 69.4

In the ablation study shown in Table 4, we studied the role of the proposed DDM loss in the CLSA.
First, we naively used the stronger augmentation applied in the CLSA-Single as the query and/or

8



Under review as a conference paper at ICLR 2021

the key in the MoCo V2. Both results (Strong query and Strong query & Strong key) showed
the performance can not be improved or even degraded. Second, we replaced the DDM loss in the
CLSA-Single with the contrastive loss, and we found it can only achieved a top-1 accuracy of 68.0%
compared to that of 69.4% with the DDM loss. Both studies showed that the proposed CLSA and
its DDM loss help us learn from stronger augmentations by avoiding the performance degeneration
that would be incurred by the distortions of augmented images.

5 CONCLUSION

In this paper, we present CLSA, a novel method that can utilize the distributional divergence to learn
the information from strongly augmented images. The proposed method outperforms the state-of-
the-art methods on all the datasets and achieved almost same performance compared to supervised
ImageNet network. Meanwhile, it outperforms the previous supervised and self-supervised methods
on downstream tasks, which suggests CLSA learned more reliable and fine-grained features that can
contribute to the development of other areas.
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