Self-Enhancing Programming-Driven Reasoning for Visual Question
Answering

Anonymous ACL submission

Abstract

In Visual Question Answering (VQA) tasks,
program-driven reasoning methods have made
significant progress by transforming solutions
into executable code. However, existing
approaches often fall short due to their reliance
on a single code generation iteration, lacking
the flexibility to handle unforeseen errors. To
address this limitation, we propose the Self-
Enhancing Programming-driven Reasoning
framework for VQA (Seper). Seper combines
a code generator and evaluator to decompose
questions into multistep instructions, dynami-
cally generating Python code based on input.
The code evaluator performs both forward and
backward evaluations, triggering an iterative
code regeneration process that enables continu-
ous optimization. Additionally, we introduce
prompt tuning to improve the quality of the
generated code. Our experiments on the GQA
and OK-VQA datasets demonstrate Seper’s
superior performance, highlighting its potential
to advance VQA programming methods. Code:
https://anonymous.4open.science/r/Seper-
5540/

1 Introduction

The pursuit of artificial general intelligence (AGI)
has led to the development of large-scale visual
models, which often rely on task-specific datasets,
such as object grounding, visual question answer-
ing, or image segmentation. These models struggle
with complex, real-world tasks that require multi-
step reasoning. For example, answering “What was
the color of the first horse that crossed the finish
line?” involves identifying the finish line, recog-
nizing the first horse, and determining its color.
Such intricate tasks challenge the effectiveness and
scalability of end-to-end models.

Early approaches, such as Modular Visual Ques-
tion Answering(Andreas et al., 2016), decompose
tasks into atomic units but require extensive super-
vision, limiting their adaptability across domains.

The emergence of large language models has driven
interest in automatic module integration, giving rise
to program-driven reasoning methods (Schick et al.,
2023; Surdis et al., 2023; Subramanian et al., 2023;
Gupta and Kembhavi, 2022), which tackle complex
problems through step-by-step code solutions. By
addressing subproblems via defined APIs, these
methods eliminate the training costs of traditional
modular approaches and provide enhanced inter-
pretability.

Existing programming-driven reasoning meth-
ods often lack iterative and reflective processes,
typically performing only a single iteration of code
generation and execution. These methods fail to
address unforeseen issues, such as syntax errors
or erroneous API results, which can affect the fi-
nal outputs. While human programmers can de-
bug code manually, this process is time-consuming
and lacks real-time efficiency. Additionally, large
language models (LLMs) usually require specific
prompts to generate code, yet they struggle with
complex visual language tasks due to difficulties in
comprehending detailed task requirements, often
resulting in suboptimal code generation.

Self-iterative models have emerged as a power-
ful approach in Al, particularly for code generation
tasks that demand high precision. These models
rely on unit tests to detect errors and use compiler
outputs to inform corrections. By iteratively refin-
ing the generated code based on test results, they
can effectively handle complex programming chal-
lenges, ensuring both correctness and optimization.

When applying the self-iterative framework to
visual programming, several key challenges must
be addressed during its implementation:

* Without unit tests, how can we effectively de-
tect errors in the generated code?

* How can we revise the generated code based
on the detected errors?



To address these limitations, we propose the
Self-Enhancing Programming-Driven Reasoning
(Seper) framework for Visual Question Answering
(VQA), as illustrated in Figure 2. The Seper frame-
work goes beyond traditional visual programming
approaches by integrating multiple code evaluation
components that automatically assess the gener-
ated code and produce detailed reports for further
improvement.

To address these limitations, we propose the
Self-enhancing programming-Driven Reasoning
(Seper) framework for Visual Question Answering
(VQA), as illustrated in Figure 2. The Seper frame-
work goes beyond traditional visual programming
approaches by integrating multiple code evaluation
components that automatically assess the gener-
ated code and produce detailed reports for further
improvement.

Our main contributions include:

* We introduce the first iterative framework for
Visual Question Answering that integrates
both code generation and evaluation, mark-
ing a significant advancement in the field.

* We propose a supervised prompt tuning
method for automatically adjusting prompt
templates used by the code generator and re-
viewers during code evaluation.

* Experimental results on real benchmarks
demonstrate the superior performance of our
approach.

2 Related Work

The early method for the Visual Question Answer-
ing is the Modular Visual Question Answering
(Modular VQA), which refers to a framework used
in Visual Question Answering (VQA) tasks that de-
composes the question-answering process into dis-
tinct, modular components (Andreas et al., 2016).
For example, Promptcap(Hu et al., 2023) is the first
to leverage the text reasoning capabilities of large
language models in conjunction with generated
image captions to address visual questions. Sim-
ilarly, Prophet(Shao et al., 2023) employs a large
language model to aggregate judgments from mul-
tiple VQA models, improving the overall accuracy
of answers by combining insights from different
systems.

In contrast to the methods described above, re-
cent research has introduced Visual Programming

frameworks that uses the incontext learning abil-
ity of large language models to generate python-
like modular programs, which are then executed
to get both the solution and a comprehensive and
interpretable rationale. Each line of the generated
program may invoke one of several off-the-shelf
computer vision models, image processing subrou-
tines, or python functions to produce intermediate
outputs that may be consumed by subsequent parts
of the program. This allows for the seamless inte-
gration of new components, enhancing the system’s
versatility and adaptability to a broad range of VQA
tasks. Several studies have explored visual pro-
gramming for VQA (Sur6is et al., 2023; Subrama-
nian et al., 2023; Gupta and Kembhavi, 2022; Khan
et al., 2024; Dou et al., 2024), but these approaches
typically generate code in a single pass, without
iterative refinement. In contrast, our method con-
tinuously evaluates and revises the generated code,
enabling ongoing optimization through repeated
iterations, which ensures improved performance
and adaptability.

However, the code generated by visual program-
ming may not always run as expected. Even if exe-
cution is possible, issues such as incorrect interface
calls or parameter mismatches can arise, leading
to inaccurate results. Code refinement refers to
the process of improving, optimizing, or cleaning
up code while preserving its overall functionality.
Statistical and learning-based techniques for code
refinement have a long history in both program-
ming languages and machine learning, typically
focused on repairing human-written code (Long
and Rinard, 2016; Bader et al., 2019; Le Goues
et al., 2021). Self-Edit (Zhang et al., 2023) ex-
plores self-repair with natural language feedback
on apps. Similarly, T-eval (Chen et al.) assesses
Codex’s ability to self-repair across a variety of
tasks.

However, the aforementioned work is specifi-
cally designed for text-based tasks and relies on
correction through unit testing (Olausson et al.,
2023), which requires knowing the correct output
in advance—an approach that is difficult to apply to
Visual Question Answering (VQA) due to the chal-
lenge of labeling correct outputs. To address this
issue, our framework incorporates a self-enhancing
mechanism that autonomously identifies problems
in the generated code and revises it accordingly.



3 Error Analysis Of Existing Methods

To examine the influence of code generation
quality and pre-trained model capabilities on
programming-driven reasoning, we analyzed 200
randomly selected error cases from Viper (Surdis
et al., 2023) using the GQA (Hudson and Manning,
2019) test-dev dataset. Figure 1 presents the evalu-
ation results, categorizing the failure reasons into
three main groups:

1. Code Error: These errors arise during code
execution and include syntax issues (e.g.,
missing semicolons or mismatched parenthe-
ses) and runtime problems (e.g., invalid input,
memory overflow, or division by zero), which
can lead to program termination.

2. API Limitation: This refers to situations
where API calls, particularly those involv-
ing pre-trained models, fail to produce ex-
pected results. This category includes: Image-
Text-Contrastive (ITC) models, which use
models like CLIP (Radford et al., 2021) and
XVLm (Zeng et al., 2021) which assess image
attributes and are affected by object names
and properties; Visual Question Answer-
ing (VQA) models, where slight variations
in question phrasing can impact outcomes
despite identical semantics; and Location
(LOC) models, such as GroundingDINO (Liu
et al., 2023), which detect and crop objects in
images, with object name sensitivity influenc-
ing detection accuracy.

3. Logic Error: Can be classified into answer
logic errors and potential logic errors.

* Answer Inaccuracies: Return values
misaligned with question format (e.g.,
yes/no for multiple-choice).

* Potential Logic Errors: Reflect mis-
matches between the question-solving
process and code logic, often arising with
more complex images than anticipated,
such as missing target objects, as illus-
trated in Figure 5.

The insights from Figure 1 reveal that Viper
mainly faces API limitations and logic errors, with
code errors being rare due to GPT’s robustness.
VQA models notably contribute to API limitations,
highlighting the importance of question representa-
tion in visual question answering.

Logic Error
%

9% Logic Error
12%
) Mode | R

— LOC Mode
1TC Vlodor 7. 2%

5.2%

Correct
5. 3% 64. 4%

Correct  1TC Model

69%
Seper Viper

Figure 1: Error analysis results.

4 Methodology

The Seper framework combines code generation,
execution, and evaluation. Given an image and
question, the code generator breaks down the task,
generates code, and passes it to the Python com-
piler. The code is evaluated in two stages: forward
evaluation checks input, and backward evaluation
traces errors. Language Model-based reviewers de-
tect issues, and if errors are found, a review report
is generated to refine the code iteratively until it
passes or the iteration limit is reached.

4.1 Code Generation

As shown in Figure 2(a), the code generation pro-
cess consists of two stages using a Code Large
Language Model (CodeLLM): rationale generation
and Python code generation. To enhance reason-
ing interpretability and soundness, CodeLLM first
generates rationales that break down the task into
subtasks, guiding the subsequent code generation.
These subtasks are then embedded as comments in
the code to improve readability.

A predefined prompt, as detailed in Listing 1,
guides the CodeLLLM in generating accurate Python
code. This prompt combines the question ¢, API
specifications, examples, and a review report, pro-
viding a comprehensive input to steer the code gen-
eration process.

Listing 1: Prompt for code generation

# Here are the APIs available for
calling

${API specifications}

# Learn from the following examples

${Related examples?}

# The question

${Question}

# The review result from previous
iteration

${Rationale}

# Generate python code to answer the
question, with variable "image"” as
input

Prompt Composition: To answer a visual ques-
tion using an image, the goal is to leverage a Large




Query: T, .
What Kind of the clothing on (-’-%

the left of microwave?

APIs specification:

def simple_qeury(question: str): ... S“bFaSkl: .

def find(object_name: str,): ... 1. Find the microwave and all
- clothing

Image: Subtask2:

2. Locate the clothing on the
| left of microwave.

| Subtask3:

| 3. Identify the kind of the
| clothing.
|

|

def execute_command(image):

# subtaskl: Find the microwave and all clothing
image_patch = ImagePatch(image)

clothing_patches = image_patch.find("clothing")
microwave_patches = image_patch.find("microwave")

# subtask2: Locate the clothing on the left of microwave

for clothing_patch in clothing_patches:
for microwave_patch in microwave_patches:
if clothing_patch.vertical_center > microwave_patch.vertical center
clothing_on_the_right = clothing_patch
subtask3: Identify the kind of the clothing
clothing_kind = clothing_on_the_right.simple query("What is this?")
return clothing_kind

| Review Report

|  Here is a review report of your previous code and its
| results:

|  Subtaskl:

| Pass.

| Subtask2:

| Logic: The code should use the horizontal center

| but not vertical_center attribute to determine

| whether clothing_patch is on the left side of

| microwave_patch.

|  Subtask3: |
| API: The kind of clothing generated by code is |

|  "baby",which is unreasonable. The query parameter : p
| should be expanded into a more informative form, |

| such as "What kind of clothing is this?"

) lothing kind - clothing_on_the_rignt. |

et 1 . !
|

¢ ‘ Lo

Output Answer [ | Return Value RSN bl
____________ |

|
|
|
|
|
|
|
clothing_on_the_right = clothing_patches[@] |
|
|
|
|
|
|
|

|

|

| : Execution Result Report
:

|

Error Message

No Error Message

|
|
|
|
|
|
|
|

7 if clothing_patches[0].vertical _center> |

microwave_patches[0].vertical_center: False; |

|
11Image_patch: a baby in a kitchen; |

2 Clothing_patches: type:list, length:1, ...

3 microwave_patches: type:list, length:1, ... :
|
|
|

Return Value

N J

Figure 2: Our proposed Seper framework.

execution &
evaluation

eneration |
QA Pair & > Code

>| Review Report

no

d
< r‘{ Incorrect Pair & report |*

[Comectrar}

| Prompt Template

discard

Figure 3: Supervised Prompt Tuning framework.

Language Model to generate Python code by en-
hancing the question representation with three key
elements:

1. API Specifications: We use the ImagePatch
API specification and text query ¢ as in-
put prompts for the program generation
model (Suréis et al., 2023). While follow-
ing the original implementation, our approach
differs in categorizing the APIs into VQA,
Location, and Other types. Detailed API spec-
ifications are in Appendix B.

2. Related examples: The process of example
selection is crucial. We follow the setup of
mainstream methods by using manually con-
structed examples as context in experiments.

3. Rationale: Including the three subtasks de-
composed by the LLM, as well as the pos-
sible review report from the review process
detailing code execution results and error

corrections, is vital for the code generator.
CodeLLM uses this feedback to iteratively
refine and regenerate code.

4.2 Code Execution

Upon code generation, we employ the Python com-
piler to execute the code and gather all necessary
variables and intermediate data for thorough review.
Ultimately, a comprehensive execution result report
is generated, as illustrated in Figure 2(b).

Execute Code: Upon code generation, snippets
will be injected to preserve variables, which will
be stored in a Python dictionary for later analysis.
Generate Execution Result Report: Multiple exe-
cution result reports will be generated in structured
format, each covering five key components com-
prehensively: (1) Source code: The Python code
generated by the code generator; (2) Error Mes-
sage: Returns detailed error information (location,
type, stack trace) for the first encountered error,
or "No error” if none detected; (3) Return Value:
The final text-based return value or an empty string
in case of encountering errors; (4) Runtime vari-
ables: Variables are categorized as ImagePatch
objects with BLIP-2 descriptions, basic strings,
and collections with text-converted elements and
lengths; (5) Logical judgement result: Extracted
conditional statements trace execution flow through
loops and branches, using transformed variables to



indicate decisions.

4.3 Code Evaluation

The code evaluation process, as shown in Fig-
ure 2(c), involves extracting the relevant execution
results for each sub-task and conducting evalua-
tions in two sub-stages: forward and backward.

* Forward Evaluation: Verifying whether
each line of code ascertain its successful ex-
ecution, followed by validating whether the
output of each line conforms to the expected
results.

* Backward Evaluation: Assessment of code
output against intended objectives, followed
by retrospective analysis of potential errors
and intermediate results.

Unlike traditional code generation tasks (Long
and Rinard, 2016; Bader et al., 2019; Le Goues
et al., 2021), which can be validated using test
cases, our approach faces the challenge of missing
test cases, leading to uncertain and unverifiable out-
comes. To address this, we utilize heuristic-based
reviews focused on the three components outlined
in the previous section: code error checking to
identify syntax and runtime issues, API checking
to verify API calls and their results, and code logic
checking to detect logical errors causing incorrect
outputs. Different Language Model-based review-
ers evaluate each component, following a two-step
process using the prompts detailed in Appendix C:

* Result assessment: This process identifies
errors by analyzing execution result reports,
examining explicit and implicit errors from
various sources. Each report is reviewed by
different reviewers who provide detailed re-
sponses and a true or false answer. A majority
vote then determines the final acceptance of
the response.

* Review generation: Reviewers compile as-
sessment results to identify error types and
underlying causes, offering specific sugges-
tions for code improvement. The goal is to
provide a clear and thorough analysis to guide
code modifications and enhance quality.

Finally, we merge the reports of each sub-task
into a comprehensive report and provide feedback
to the code generator.

4.3.1 Forward Evaluation.

The forward evaluation stage verifies that each line
of code executes correctly and produces the ex-
pected output. It focuses on local issues, such as
runtime errors, syntax errors, and the proper func-
tioning of API calls.

Code Error Reviewer

Code error reviewer assesses the basic errors in the
code and generate reviews as follows:

Result assessment: Leveraging the error infor-
mation and location captured during the code ex-
ecution, we directly utilize the error message in
the execution result report. If no error message is
present, the review generation step is skipped.
Review generation: In the prompt for the Code
Error Reviewer, we first provide definitions for
syntax errors and runtime errors. Subsequently,
we instruct the reviewer to address syntax errors
directly and to add exception handling for runtime
errors by generating new code for the erroneous
part.

API Reviewer

The API reviewer’s main objective is to system-
atically identify and evaluate errors in API calls,
consolidating these results into a comprehensive
review. Given that VQA-type and location-type
APIs exhibit the most errors, the reviewer employs
specialized strategies tailored to these API types.
Result Assessment: Each API is treated as a black
box without disclosing intermediate results. The
output variable’s name indicates the expected out-
put type. For example, “clothing_kind” in line
9 suggests the answer should be a clothing type.
Results are assessed by checking alignment with
the expected type. This involves two stages: ex-
tracting key details from the execution report (e.g.,
objects, parameters, and output values) and guiding
the reviewer to evaluate acceptability by prompt
template. For vqa APIs, reviewers assess the plau-
sibility and clarity of the answer. For location-type
APIs, reviewers confirm the presence of the object
as per the image caption and its relevance to the
original question.

Review Generation: Inspired by the Exploration-
Exploitation Dilemma in reinforcement learning,
we design two instruction sets for guiding the API
reviewer in generating comments. The first encour-
ages CodeLLM to adjust parameters of existing
API calls, such as using more specific parameters
if a “simple_query(.)” output is vague. The sec-
ond promotes exploration by suggesting alternative



Query: What kind of furniture is the
building behind of?
Label: chair

@ :def execute_command(image)->str:
1 image patch = ImagePatch(image)
codeLLM subtask1: Identify the furniture kind
2 returnimage_patch.simple_query("What kind of furniture is the building
behind of?")

Return value:

Restaurant X

Subtaskl phase,
1 image_patch: An old man standing—jy ¢ phase)

The No.2 line of code call simple_query API. But the answer

é : def execute_command(image)->str:

1 image_patch = ImagePatch(image)
codeLLM I ; SO
2 building_patches = image_patch.find("building")
1 subtask1: Locate the building
3 iflen(building_patches) == 0:
# If no building is found, query the image directly

4 return image_patch.simple_query("What kind of furniture is in the
image?")
subtask2: Locate the furniture and get the answer
5 for building_patch in building_patches:
6 furniture_patches = building_patch.find("furniture")
7 if len(furniture_patches) > 0:
8 return furniture_patches[0].simple_query("What kind of furniture is

inside the building?")
9 return "unknown"

Return value:
chair v

API" "restaurant" is not the expected furniture in the query. Use other
Reviewer A pJ to locate furniture before No.2 line of code.

Figure 4: Example of VQA type API limiation.

Query: Does that luggage have red color?
Label: yes

: def execute_command(image)->str:

subtaskl: Find the luggage
image_patch = ImagePatch(image)
luggage_patches = image_patch.find("luggage")
# subtask2: Verify the color
3 iflen(luggage patches) == 0:

If no lugge

codeLLM
1

Return value:

No X

> is found, query the image directly

4 return image_patch.simple_query("Does that luggage have red color?")
5 luggage_patch = luggage_patches[0]

6  return bool_to_yesno(luggage_patch.verify_property("luggage", "red"))

l

1 image_patch: suitcases;

2 luggage patches: type:list, length:4;
3 luggage patch: a green suitcase;

(Subtask2 phase)

Reviewer

The No.5 line of code assessed the first luggage patch and did not evaluate the
Logic  remaining three luggage items. Add a loop structure to the code so that it
checks whether all the luggage items meet the requirements.

@ : def execute_command(image)->str:

subtask1: Find the luggage
codeLLM 4 image_patch = ImagePatch(image)
2 luggage patches = image_patch.find("luggage")

subtask2: Verify the color
3 if len(luggage_patches) == 0:
If no luggage is found. query the image directly
return image_patch.simple_query("Does that luggage have red color?")

for lu e patch in luggage patches:

patch.verify_property("luggage", "red"):
"yes"

N NZES

return "no"
Return value:

Yes v

Figure 5: Example of lacking structure type logical error.

API calls. For example, as shown in Figure 4, when
vqa-type APIs alone are insufficient, Seper prompts
the code generator to combine them with loc-type
APIs.

4.3.2 Backward Evaluation.

In neural networks, backpropagation calculates fi-
nal error and updates gradients in preceding layers.
Similarly, we propose a backward evaluation mech-
anism to trace final errors up the source code, using
a logic reviewer to identify and analyze error ori-
gins.

Logic Reviewer

As discussed in section 3, logic errors can be cate-
gorized into answer errors and potential errors.
Result Assessment: Unlike APIs, which are
treated as black boxes, a logic reviewer can ac-
cess all code lines and runtime variables, enabling
a thorough evaluation of the code’s logic. The as-
sessment is conducted from two perspectives: 1)
Answer Inaccuracies: These errors are similar to
those in Visual Question Answering (VQA) sys-
tems, such as misinterpretations of queries like “Is
he to the right or left of the mirror?”. Reviewers as-

sess whether the response aligns with the intended
question. 2) Potential Errors: These errors stem
from issues in key algorithmic constructs, includ-
ing sequential, branching, and looping structures.
Such errors may arise from missing structures (e.g.,
absent loops) or inaccuracies within existing ones
(e.g., incorrect branch conditions). Reviewers iden-
tify these issues by analyzing the variables and
source code to ensure the logic is correctly imple-
mented.

Review Generation: Reviewers analyze the code
to identify logic errors and provide actionable feed-
back for improvement. The evaluation is conducted
from two perspectives: 1) Answer Inaccuracies:
For answer errors, reviewers trace the return value
back to the first incorrect statement to identify the
root cause, which may involve an API or logical
error. This process helps pinpoint the exact issue
and informs further analysis. 2) Potential Errors:
For potential errors, such as incorrect spatial prop-
erties in left-right judgment (as shown in Figure
5), reviewers assess the logic structure as a whole.
They evaluate whether the algorithm’s constructs
are correctly implemented and aligned with the



intended behavior, suggesting modifications if nec-
essary. Finally, reviewers output “pass” if no errors
are found; otherwise, the aggregated report is sent
to CodeLLM for further iteration.

4.4 Supervised Prompt Tuning

To improve the performance of CodeLLM, we pro-
pose a supervised prompt tuning method to opti-
mize prompt templates for code generation. As
shown in Figure 3, the process begins by running
Seper on a training dataset using initial prompt tem-
plates to generate and execute code. We construct
a sample pool, initially populated with all training
samples. After evaluating the results, we select
representative examples, especially those that fre-
quently cause errors, for prompt refinement. In an
iterative process, error-prone samples are retained
in the pool, while correct samples are gradually
discarded, with only a small subset kept. These
examples help the reviewer model identify failure
patterns and refine the prompt templates. Details
are provided in Appendix F.2.

5 Experiment

5.1 Experimental Setup

Benchmarks. We evaluate our method on the
GQA (Hudson and Manning, 2019) and OK-
VQA (Marino et al., 2019) datasets. GQA focuses
on multi-hop questions using human-annotated
scene graphs for complex compositional queries,
while OK-VQA assesses answering image-related
questions requiring external knowledge.
Implementation. We utilized ChatGPT(OpenAl,
2023) to serve as both code generator and three
reviewers, each with distinct sessions to ensure in-
dependence. Choosing ChatGPT is to maintain con-
sistency with the mainstream visual programming
methods that have predominantly used ChatGPT,
and also because, as previous research(Chen et al.,
2023). We employ BLIP-2(Li et al., 2023), Ground-
ingDINO(Liu et al., 2023), and XVLM(Zeng et al.,
2021) as the pre-trained models underpinning our
API. Detailed parameters are provided in the Ap-
pendix A.

5.2 Results

Table 1 presents results on the GQA test-dev and
OK-VQA validation datasets, showing that Seper
outperforms all other zero-shot methods. Despite
utilizing large foundational models, programming-
based methods like ViperGPT and CodeVQA are

Table 1: Result on the GQA and OK-VQA,*indicates
an evaluation on a stratified sample of the test set, which
may not be directly comparable to results on the full test
set.

Model GQA Acc.(%) OK-VQA Acc.(%)
Supervised

VisRep 59.2 -
LXMERT 60.0 -
NSM 63.0 -
CRF 72.1 -
KAT - 54.4
RA-VQA - 54.5
REVIVE - 58.0
PromptCap - 58.8
Zero-Shot

BLIP-2 44.7 45.9
Flamingo - 50.6
ViperGPT 48.1 51.9
CodeVQA 49.0 53.5
VisProg* 50.5 52.6
Seper(ours) 51.3 54.1

limited by their single-pass approach, resulting in
lower accuracy. Seper, with its iterative framework
for code generation and evaluation, achieves the
highest accuracy of 51.3% on GQA and 54.1% on
OK-VQA, outperforming the next best methods,
VisProg, by 0.8% and 1.5%, respectively. This
demonstrates the advantage of Seper’s multi-stage
review process in enhancing performance.

Figure 6 compares the accuracy of the baseline
and Seper across various question types in GQA.
With the integration of the Code Evaluation module
and prompt tuning, Seper outperforms the baseline
in several categories. Notably, the accuracy for
“positionChoose” questions increased dramatically
from 0.37 to 0.95, highlighting the effectiveness of
the Code Evaluation module in handling complex
positional relationships, as demonstrated in line
7 of Figure 2(a). Although some question types
saw a slight decrease in accuracy compared to the
baseline, a detailed analysis of these variations can
be found in Appendix F.3.

5.3 Ablations

Table 2 presents an ablation study on the GQA
dataset, evaluating the impact of various compo-
nents on model performance. The baseline model
achieves 48.1% accuracy. Incorporating code error



Accuracy Distribution by Question Type

Accuracy Increase
109 Accuracy Decrease . f . 2
@ Baseline Accuracy | ! ] | ,: |
@ Seper Accuracy ] 1 1 I i e
o i i o t f ::.:.,...alofbo:ao
] (. : TP T :
. |
| T T ‘
- (] i | e | TP (T o bl
i
g %7 t ] [ el (T 10 # Sesseeg®™® o .
g | Il p io fn | lnie TR
] | - ol Bie U HEEE o fe _ HE,06Q
[T 1 e TRl IR ssoeps®l
04 ] -, it TIRIIARU | 2l
- N | lelle BUEL geestpet e
| iR i LHlRele88e® i
| Rl o [ ek I‘.St f
ple 0 FHHHY.obgbnds® |
ST || | L !
o i i N (@ i 1 .
TR
Seeseee
0.0 L e L |
$ G2 ?A\") O, (\(;v o b«\ z»é o < u @ zo« \ \o\
Lt S sanal @ %‘g“ Sy w*’%x« sz SURNE w%@‘* SRS
835 %i’gﬁ@ @\““« %b%\” xw?r 05‘}@5 X & e % er” \,, 734 QP *“’&o \%}% Jg g c&i@w‘o
FEONGE RGOS g S ¢ S ‘o VSR e
U & S ‘9 * @ & ® &
& & @ & LP <

Question Types

Figure 6: Accuracy distribution among different question types in GQA.

Table 2: Ablation results on the GQA and OK-VQA.
v'indicates the component is included in the configura-
tion.

Reviewers
Code Error API Logic | P-Tuning  Acc(%)
Baseline 48.1 (+0.0)
Two-component Configuration
v v 48.7 (+0.6)
v v 49.3 (+1.2)
v v 48.8 (+0.7)
v v 49.1 (+1.0)
v v 48.6 (+0.5)
v v 49.8 (+1.7)
Three-component Configuration
v v v 50.4 (+2.3)
v v v 49.5 (+1.4)
v v v 50.0 (+1.9)
v v v 50.9 (+2.8)
Full Configuration
v v v v 51.3 (+3.2)

and API reviewers improves accuracy to 48.7%,
while adding logic reviewers boosts it further to
49.3%. Combining code error and logic reviewers
results in 49.8% accuracy. The configuration with
all three components—code error, API, and logic
reviewers—achieves 50.4%, and adding prompt
tuning further increases accuracy to 50.9%. The
full configuration, including all components and
P-Tuning, reaches the highest accuracy of 51.3%,
representing a 3.2% improvement over the base-
line. These results underscore the significance of
multi-level reviews and prompt tuning in enhanc-
ing VQA model performance, with each additional
component contributing to more refined and accu-

rate outcomes.

Error Analysis. For the GQA dataset, we manu-
ally inspected 100 samples to analyze error sources.
As shown in Figure 7, our method outperforms
Viper by eliminating basic code errors, significantly
reducing logical errors, and effectively identifying
API-related issues in models.

‘ orrec
Correct 64.4
69%

Seper Viper

Figure 7: Error analysis of Seper and Viper.

6 Conclusion

We introduced the Seper framework, an iterative
approach to visual question answering that inte-
grates multi-level reviews and innovative evalua-
tion stages with distinct reviewers. We also pro-
posed a supervised prompt template tuning method
to automatically optimize prompts for code re-
viewers. Our approach significantly outperforms
existing programming-driven reasoning methods,
addressing API limitations and enhancing logic,
while showcasing the potential of LLMs as effec-
tive code reviewers. However, the reliance on a
closed-source ChatGPT for reviews has increased
costs, and we did not fully address the API limi-
tations or enhance it to resolve associated issues.
The logic review process also lacks the insights nec-
essary for generating improved solutions. Future
work will focus on reducing costs by leveraging
open-source language models.



7 Limitations

In this study, our methodology did not show a
significant advantage over existing programming-
driven reasoning approaches. Additionally, we ac-
knowledge that the limitations of the API were not
fully addressed, nor was the API enhanced to ef-
fectively tackle the underlying issues. As a result,
the logic review was not robust enough to provide
deeper insights, which are essential for generating
more refined code solutions. Furthermore, the re-
liance on a closed-source ChatGPT for multiple
review iterations led to relatively high costs, a fac-
tor that should be considered in future research.

References

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 39—48.

Johannes Bader, Andrew Scott, Michael Pradel, and
Satish Chandra. 2019. Getafix: Learning to fix bugs
automatically. Proceedings of the ACM on Program-
ming Languages, 3(OOPSLA):1-27.

Xinyun Chen, Maxwell Lin, Nathanael Scharli, and
Denny Zhou. Teaching large language models to
self-debug.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, et al. 2023.
T-eval: Evaluating the tool utilization capability step
by step. arXiv preprint arXiv:2312.14033.

Zi-Yi Dou, Cheng-Fu Yang, Xueqing Wu, Kai-Wei
Chang, and Nanyun Peng. 2024. Re-rest: Reflection-
reinforced self-training for language agents. In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pages 15394—
15411.

Tanmay Gupta and Aniruddha Kembhavi. 2022. Vi-
sual programming: Compositional visual reasoning
without training.

Yushi Hu, Hang Hua, Zhengyuan Yang, Weijia Shi,
Noah A Smith, and Jiebo Luo. 2023. Promptcap:
Prompt-guided image captioning for vqa with gpt-
3. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2963-2975.

Drew A Hudson and Christopher D Manning. 2019.
Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 6700-6709.

Zaid Khan, Vijay Kumar BG, Samuel Schulter, Yun
Fu, and Manmohan Chandraker. 2024. Self-training

large language models for improved visual program
synthesis with visual reinforcement. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14344-14353.

Claire Le Goues, Michael Pradel, Abhik Roychoudhury,
and Satish Chandra. 2021. Automatic program repair.
IEEE Software, 38(4):22-27.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. arXiv preprint arXiv:2301.12597.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang
Su, Jun Zhu, et al. 2023. Grounding dino: Marrying
dino with grounded pre-training for open-set object
detection. arXiv preprint arXiv:2303.05499.

Fan Long and Martin Rinard. 2016. Automatic patch
generation by learning correct code. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
pages 298-312.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,
and Roozbeh Mottaghi. 2019. Ok-vqa: A visual ques-
tion answering benchmark requiring external knowl-
edge. In Proceedings of the IEEE/cvf conference
on computer vision and pattern recognition, pages
3195-3204.

Theo X Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2023. Is self-repair a silver bullet for code genera-
tion. arXiv preprint arXiv:2306.09896.

OpenAl. 2023. Chatgpt (march 14 version) [large lan-
guage model]. https://chat.openai.com.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748-8763. PMLR.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.

Zhenwei Shao, Zhou Yu, Meng Wang, and Jun Yu. 2023.
Prompting large language models with answer heuris-
tics for knowledge-based visual question answering.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14974—
14983.

Sanjay Subramanian, Medhini Narasimhan, Kushal
Khangaonkar, Kevin Yang, Arsha Nagrani, Cordelia
Schmid, Andy Zeng, Trevor Darrell, and Dan Klein.
2023. Modular visual question answering via code
generation.


https://chat.openai.com

Doéidac Suréis, Sachit Menon, and Carl Vondrick. 2023.

Vipergpt: Visual inference via python execution for
reasoning.

Yan Zeng, Xinsong Zhang, and Hang Li. 2021.
Multi-grained vision language pre-training: Align-
ing texts with visual concepts. arXiv preprint
arXiv:2111.08276.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023.
Self-edit: Fault-aware code editor for code genera-
tion. arXiv preprint arXiv:2305.04087.



A Implemetntion Details

We set the temperature parameter of codellm to
0, the temperature parameter of the reviewer to
0.25, and the rest of the parameters remain as usual.
Besides, we capped the maximum number of itera-
tions at 3 to prevent infinite function iterations. For
each dataset, we employed 16 in-context examples.
The pre-trained model and parameter settings we
use are shown below:

GroundingDINO. We use the implementation
from the official GitHub repository. The thresh-

old of box is 0.30 and the threshold of text is 0.25. ,

XVLM. We used the official implementation,
specifically the version finetuned for retrieval on
MSCOCO. In addition to this, we set the similarity

threshold to 0.5. Meaning if the similarity between >

the image and the text is more than 0.5, the two are
considered to match.

BLIP-2. We used the Flan-T5 XXL version from -

Huggingface. We set the beams in the generation
parameter to 5.

B API Listings

We provide different API definitions for different
datasets.

B.1 API for GQA

i from PIL import Image
> from vision_functions
find_in_image,
verify_property,

import
simple_qa,
best_text_match

3

4 def bool_to_yesno(bool_answer: bool)->
str:
5 return "yes"” if bool_answer else "no

n

6

7 class ImagePatch:

8 """A Python class containing a crop
of an image centered around a
particular object, as well as
relevant information.

9 Attributes

0w TToms======

11 cropped_image array_like

12 An array-like of the cropped
image taken from the original image.

13 left : int

14 An int describing the position

of the left border of the crop’s

bounding box in the original image.
15 lower : int
16 An int describing the position

of the bottom border of the crop’s

bounding box in the original image.
17 right : int
18 An int describing the position

of the right border of the crop’s
bounding box in the original image.

19
20

28

39

40

47
48

49
50

upper : int

An int describing the position
of the top border of the crop’s
bounding box in the original image.

find(object_name:
ImagePatch]

Returns a list of new ImagePatch
objects containing crops of the
image centered around any objects
found in the image matching the
object_name.
simple_query (question:
str

str)->List[

str=None) ->

Returns the answer to a basic
question asked about the image. If
no question is provided, returns the

answer to "What is this?".
exists(object_name: str)->bool

Returns True if the object
specified by object_name is found in

the image, and False otherwise.
verify_property(property: str)->bool

Returns True if the property is
met, and False otherwise.
best_text_match(stringl:
string2: str)->str

Returns the string that best

str,

matches the image.
crop(left: int, lower: int, right:
int, upper: int)->ImagePatch

Returns a new ImagePatch object
containing a crop of the image at
the given coordinates.

nnn

def __init__(self, image, left: int=
None, lower: int=None, right: int=
None, upper: int=None):

"""Initializes an ImagePatch
object by cropping the image at the
given coordinates and stores the
coordinates as attributes.

If no coordinates are provided,
the image is left unmodified, and
the coordinates are set to the
dimensions of the image.

Parameters

image array_like
An array-like of the
original image.
left : int

An int describing the
position of the left border of the
crop’s bounding box in the original
image.

lower : int
An int describing the
position of the bottom border of the
crop’s bounding box in the original
image.
right : int

An int describing the
position of the right border of the
crop’s bounding box in the original
image.

upper : int



[T
B

w
O

w oW
o 9 &

v

60

61
62

63
64
65
66
67
68

69

70
71

73
74

75

76
71
78
79

80
81

82
83

84

89
90
91
92

93

94

An int describing the
position of the top border of the
crop’s bounding box in the original
image.

nonon

if left is None and right is
None and upper is None and lower is
None:
self.cropped_image = image
self.left = 0@
self.lower = 0

self.right = image.shape[2]
# width
self.upper = image.shapel[1]
# height
else:
self.cropped_image = image

[:, lower:upper, left:right]
self.left = left
self.upper = upper
self.right = right
self.lower = lower

self.width = self.cropped_image.
shape[2]

self.height = self.cropped_image
.shape[1]

self.horizontal_center = (self.
left + self.right) / 2
self.vertical_center = (self.

lower + self.upper) / 2

def find(self, object_name: str)->
List["ImagePatch"]:

"""Returns a new ImagePatch
object containing the crop of the
image centered around the object
specified by object_name.

Parameters

object_name : str

A string describing the name
of the object to be found in the
image.

return find_in_image (self.
cropped_image, object_name)

def simple_query(self, question: str
=None)->str:

"""Returns the answer to a basic
question asked about the image. If
no question is provided, returns the

answer to "What is this?".
Parameters
question : str
A string describing the
question to be asked.

Examples

>>> # Which kind of animal is
not eating?

>>> def execute_command(image)->
str:

96

97

98

99

100

101

102

103

104

105

106
107
108

109
110

111

112
113
114
115

116
117
118
119

120

129

>>> image_patch = ImagePatch

(image)

>>> animal_patches =
image_patch.find("animal")

>>> for animal_patch in
animal_patches:

>>> if not animal_patch.
verify_property("animal”, "eating"):

>>> return

animal_patch.simple_query ("What kind
of animal is eating?"”) # crop would
include eating so keep it in the

query
>>> # If no animal is not

eating, query the image directly
>>> return image_patch.

simple_query ("Which kind of animal
is not eating?")

>>> # What is in front of the
horse?

>>> # contains a relation (
around, next to, on, near, on top of
, in front of, behind, etc), so ask
directly

>>> return image_patch.
simple_query ("What is in front of
the horse?")

>>>

return simple_qga(self.
cropped_image, question)

def exists(self, object_name: str)->
bool:

"""Returns True if the object
specified by object_name is found in
the image, and False otherwise.

Parameters

object_name : str

A string describing the name

of the object to be found in the
image.

Examples

>>> # Are there both cakes and
gummy bears in the photo?
>>> def execute_command(image)->

str:

>>> image_patch = ImagePatch
(image)

>>> is_cake = image_patch.
exists ("cake")

>>> is_gummy_bear =
image_patch.exists ("gummy bear")

>>> return bool_to_yesno(

is_cake and is_gummy_bear)
W

return len(self.find(object_name

)) > 0

def verify_property(self,
object_name: str, property: str)->
bool:

"""Returns True if the object
possesses the property, and False
otherwise.



130

131
132
133
134

135

136

137

138

139
140

143

144

145

146

147

148

149
150

154
155
156
157

160

161

162

163

164

165

166

167

168

169

Differs from ’exists’ in that it
presupposes the existence of the
object specified by object_name,
instead checking whether the object
possesses the property.
Parameters
object_name : str
A string describing the name
of the object to be found in the
image.
property : str
A string describing the
property to be checked.

Examples

>>> # Do the letters have blue
color?
>>> def execute_command(image)->

str:

>>> image_patch = ImagePatch
(image)

>>> letters_patches =
image_patch.find("letters"”)

>>> # Question assumes only
one letter patch

>>> if len(letters_patches)
== 0:

>>> # If no letters are
found, query the image directly

>>> return image_patch.

simple_query ("Do the letters have
blue color?")

>>> return bool_to_yesno(
letters_patches[0].verify_property ("
letters”, "blue"))

nonn

return verify_property(self.
cropped_image, object_name, property

)

def best_text_match(self,
option_list: List[str]) -> str:
"""Returns the string that best
matches the image.
Parameters
option_list : str
A list with the names of the
different options
prefix : str
A string with the prefixes
to append to the options

Examples

>>> # Is the cap gold or white?
>>> def execute_command(image)->

str:

>>> image_patch = ImagePatch
(image)

>>> cap_patches =
image_patch.find("cap")

>>> # Question assumes one
cap patch

>>> if len(cap_patches) ==
0:

>>> # If no cap is found

, query the image directly

170

171

172
173

174
175

176

177
178
179
180

181
182

183
184

185
186

187
188
189

190
191

192

193
194
195
196
197

198
199

200
201

202
203

204
205
206
207
208

209
210

>>> return image_patch.
simple_query("Is the cap gold or
white?")

>>> return cap_patches[@].
best_text_match(["gold"”, "white"])

return best_text_match(self.
cropped_image, option_list)

def crop(self, left: int, lower: int
, right: int, upper: int)->"
ImagePatch”:
"""Returns a new ImagePatch
cropped from the current ImagePatch.
Parameters
left : int
The leftmost pixel of the
cropped image.
lower : int
The lowest pixel of the
cropped image.
right : int
The rightmost pixel of the
cropped image.
upper : int
The uppermost pixel of the
cropped image.

nnn

return ImagePatch(self.
cropped_image, left, lower, right,
upper)

def overlaps_with(self, left, lower,
right, upper):

"""Returns True if a crop with
the given coordinates overlaps with
this one,

else False.

Parameters

left : int

the left border of the crop
to be checked

lower : int

the lower border of the crop
to be checked

right : int

the right border of the crop
to be checked

upper : int

the upper border of the crop
to be checked

Returns

True if a crop with the
given coordinates overlaps with this
one, else False
return self.left <= right and
self.right >= left and self.lower <=
upper and self.upper >= lower

Listing 2: API for GQA.

B.2 APIfor OK-VQA



1

2

3

4
5

6

22
23

24

26
27
28

29

39
40
41
42
43
44

45
46
47
48
49

from PIL import Image

from vision_functions import
obtain_query_response_from_image

from nlp_functions import llm_query,
process_guesses

def 1lm_query(question: str)->str:
’??Answers a text question using GPT
-3. The input question is always a
formatted string with a variable in
it.

Parameters
question: str

the text question to ask.
not contain any reference to
image’ or ’the photo’, etc.

LRI}

Must
’the

return llm_query(question)
def process_guesses(question:
guesses: List[str])->str:
’??’Processes a list of guesses for
an answer to a question and returns
the best answer.’’’
return process_guesses(question,
guesses)

str,

class ImagePatch:

def __init__(self, image, left: int=
None, lower: int=None, right: int=
None, upper: int=None):

if left is None and right is
None and upper is None and lower is

None:
self.cropped_image = image
self.left = 0
self.lower = 0
self.right = image.shape[2]
self.upper = image.shapel[1]
else:
self.cropped_image = image
[:, lower:upper, left:right]
self.left = left
self.lower = lower
self.right = right
self.upper = upper
self.width = self.cropped_image.
shape[2]
self.height = self.cropped_image
.shape[1]

def simple_query(self, query: str):
"""Answer basic queries about
image patch.

Parameters

the

query: str
the simple query about the
image patch in the form of a
question

Returns

a guess for the answer to

51

[
)

S}

22

24
25
26
27
28
29

3(

31
32

D

34
35

36

the question

answer =
obtain_query_response_from_image (
self.cropped_image, query)

return answer

Listing 3: API for OK-VQA.

C Prompt For Reviewer

C.1 Prompt for vqa type APIs
Prompt for result asscessment

prompt = f’’’You are a reviewer, your
task is to work hand in hand with
another AI to solve a question about
a certain picture,
Your task is to check whether the answer
meets the following two criteria
and give a judge result with
reasoning process:
1.Is it possible that this answer is the
correct answer? OQutput Sure,
possible, or impossible.
2.Is it this answer clear enough?Qutput
yes or no.

Examples as follows:

expected_result: material_type

object: airplane

query: What is the material?

answer: plastic

judge:

- Is it possible that this answer is the
correct answer?:Possible. Plastic
is not a common material for
airplanes,unless it is a toy
airplane.

- Is it this answer clear enough?:Yes.It

is clear enough.

expected_result:skateboard_kind
object:skateboard

query: What is the this?
answer : kid
judge:

- Is it possible that this answer is the
correct answer?: Impossible.Kid is
not a kind of skateboard.
- Is it this answer clear enough?:Yes.It
is clear enough.
expected_result: horse_kind
object:horse.
query:What kind of horse is it?
answer : horse.
judge:
- Is it possible that this answer
correct answer?:Sure.
- Is it this answer clear enough?:No.It
is vague.

is the

expected_result:
object:clothing
query:Who will love this suit?
answer :No one.

judge:

person



39
40
41
42
43
44
45
46
47
48

9
1C

S

20

- Is it possible that this answer is the
correct answer?:Impossible. The
answer should be occupation, gender,
and everything else that is used to
describe people.
- Is it this answer clear enough?:No.It
is vague.

(Examples finished)

expected_result:{expected_result}
object:{object?}

query:{query}

answer :{model_output}

judge:

LRI

Listing 4: Prompt for vqa type APIs reviewer on resualt
asscessment phase.

Prompt for review generation

prompt = f’’’
You are a reviewer. You are reviewing a
code execution flow, and there is an
error in an API call statement.
Another large language model has
already identified the error and its
cause. Please provide suggestions
for modification.

Here are some suggestion for you to
provide:

1.Replace the query parameter of
original function. Use a more
informative question.

2.Use other function to answer the

original visual question.

example ,if there are options given

or implied in the question,you can

use best_text_match with giving

options.

For

Some of the api’s provided to you may be
limited by the model resulting in

less than expected results, these
api’s include:

find(object_name): different names for
the same object may lead to
different results.

simple_query (question): for different
questions with the same semantics,
may lead to different results.

verify_property(object_name, property):
for different object_name or

property with same semantics, may
lead to different results.
best_text_match(option_list): Returns

the string that best matches the
image.

Examples as follows:

(Example 1)

API statement: skateboard_kind =
skateboard.simple_query (’What is
this?’)

Actual Result: Kid.

22

)
@

24
25

26

©

11

Judge from last step: Kid is not a kind
of skateboard.

Review: The original query parameter
What is this?’ is too simple.

The code should use a more informative

information.

)

(Example 2)

API statement: horse_kind = horse_patch.
simple_query ("What kind of horse is
it?")

Actual Result: horse

Judge from last step:
vague.

Review: The original query parameter
What kind of horse is it?’ is
specific enough. But the answer is
still too vague. Try to use "
best_text_match” and giving some
horse kind as options.

The answer is too

)

(Example finished)

API statement:{code}

Actual Result:{result}

Judge from last step:{judge}
Review:

’

Listing 5: Prompt for vqa type APIs reviewer on review
generation phase.

C.2 Prompt for location type API

Prompt for result asscessment

prompt = f’’’You are an expert in
textual reasoning, and you are good
at reasoning from textual
information to get answers to
questions.
here’s a image with an AI-generated
description of that image(not 100%
correct), and the query designed for
that image.
need to speculate on the answer to
another question based on the
original query and the description.

Now

You

Here are some examples:
(Examplel)
ImageCaption:
and bar.
OriginalQuery:The color of the top of
the aux is green or blue?
Questionl: Does foo exists in the image?
Answer: Although the existence of foo is
not mentioned in the caption, its
presence is implied in the query,
because if foo does not exist, the
question becomes unanswerable.Yes,it
exists.

The image depict an aux

(Example?2)

ImageCaption: There is an bar in the
left of the foo.

OriginalQuery: The color of the aux of
foo is green or blue?



24

25
26

27
28
26
3(

)

6

o

Question: Does aux exists in the image?
Answer: If aux does not exist, there
will be no answers to the query.
Althought it does not mention in the
caption,the aux exists.

(Example3)

ImageCaption: There are an foo and an
aux in the image.

OriginalQuery: Can you see bar or aux in
the image?

Question: Does bar exists in the image?

Answer: No,it does not exist.Based on
the image caption and there is no
affirmation of its existence in the
query.So bar does not exist in the
image.

(Example finished)
ImageCaption:{(caption)}
OriginalQuery:{(query)?}

Question: Based on the the query "{(
query)}” and image caption,Does "{(
object)}"” exists in the image?

Remeber:

- Learn from previous examples.

- The information in the query more
important than the information in
the caption,because caption is

generated by ai that not 100 percent
correct.
OQutput:
{
’existence’:’Sure’ or ’Impossible’,
3

LRI

Listing 6: Prompt for location type APIs reviewer on -

resualt asscessment phase.

Prompt for review generation

prompt = f’’’
You are a reviewer. You are reviewing a
code execution flow, and there is an
error in an API call statement.
Another large language model has
already identified the error and its
cause. Please provide suggestions
for modification.

Here are some suggestion for you to
provide:

1.Replace the object parameter in
function. Try use more other synonym
object name replace the original
object name.

2.Use other function as error handler
while you can not find tagret object

Some of the api’s provided to you may be
limited by the model resulting in
less than expected results, these
api’s include:
find(object_name): different names for
the same object may lead to
different results.

19
20

21
22
23

24
25

31
32
33
34

36

S}

5
6
7
8

simple_query(question): for different
questions with the same semantics,
may lead to different results.

verify_property(object_name,property):
for different object_name or

property with same semantics, may
lead to different results.
best_text_match(option_list): Returns

the string that best matches the
image.

Previous code fail to find the {object}
which should be in the image based
on the {query}. Try to give some
suggestions.

Examples as follows:

(Examplel)

Query: What do the vase and the paper
have in common?

Object should be found: paper

Review: Try use more other synonym
object name replace ’paper’ in the
paper_patches = image_patch.find ("
paper"”) for increase chance to find
paper in the image.

(Example2)

Query: How are the vehicles to the right
of the walking person that is
walking on the sidewalk called?

Object should be found: vehicles

Review: Explore more parameters.Replace
the vehicle with ’car’ or other
words of the same semantics.

(Example3)

Query: What is the color of the carpet?

Object should be found: carpet

Review: Add simple_query function for
error handler.

(Examples finished)
Query:{query}

Object should be found:{object}
Review

LR

Listing 7: Prompt for location type APIs reviewer on
review generation phase.

C.3 Prompt For Logic Reviewer

Prompt for result asscessment of answer error

f‘??!

Suppose you are a checker, and you are

working on a visual question task

with another AI, who will give his

answer to the visual question,

your task is to determine whether

the answer conforms to the form of

the question

Output ’Accept’ or ’Refuse’
thinking process.

Learn from examples.

Examples as follows:

(Examplel)

Visual Question:What kind of horse is it
?

and

with your



20

21

22
23
24
25

26

)

o v

AI Answer:horse.
Judge: Refuse.The answer is too vague.

(Example2)

Visual Question:Who will love this suit?

AI Answer:No one.

Judge: Refuse. The answer should be
occupation, gender, and everything
else that is used to describe people

(Example finished)
Remeber :

- The AI answer does not need to be
extremely precise, but rather within

a certain range. For example, the
answer to the question Where is
here? can be "street” or "parking

lot", rather than a specific
location.

- Do not give ’correct answer’ of the
question. Becuase you can not give

correct answer for an unseen image.
Visual Question:{{(question)}}

AI Answer:{{(answer)}}

Judge:

LRI

Listing 8: Prompt for logic reviewer on result
asscessment phase of answer error.

Prompt for review generation of answer error

Prompt = f’ 7’

I want you to serve as a senior code
engineer. I will provide you with
the code,including its intermediate
states and return values.

should be able to trace back from
the return values to identify the
root cause statements that lead to
these return values.

You

Examples as follows:

(Examplel)

code:

def execute_command(image)->str:
image_patch = ImagePatch(image)
person_patches = image_patch.find ("

person”)
# Question assumes only one person
patch

if len(person_patches) == 0:

# If no person is found, query
the image directly

return image_patch.simple_query
("What does the person to the left
of the helmet hold?")
person_patch = person_patches[0]
helmet_patches = image_patch.find ("

helmet")

# Question assumes only one helmet

patch

if len(helmet_patches) == 0:
return "no"

for helmet_patch in helmet_patches:
if helmet_patch.

horizontal_center > person_patch.

horizontal_center:

30

31

32

33

34

36

37

39
0

&

42

43

44

45

46
47

48

49

50

51

52

53

55
6
57

v

58
59
60

return helmet_patch.

simple_query ("What does the person
to the left of the helmet hold?")
return "no”

intermediate_result:
’image_patch’: ’a baseball game’,
’person_patches’: ’lens:4’,
’len(person_patches)’: 4’ ,
’if len(person_patches) ==
False’,
’person_patch’:
holding a bat’,
"helmet_patches’:

0?’: ’
’a baseball player

’lens:37,

’len(helmet_patches)’: ’37,

’if len(helmet_patches) == 0?’: ’
False’,
"helmet_patch.horizontal_center’:
’333.57,
’person_patch.horizontal_center’:
’230.0°

’if helmet_patch.horizontal_center >
person_patch.horizontal_center?’: ’
True’

return value: right

Return value traceability analysis The
root line is the "helmet_patch.
simple_query ("What does the person
to the left of the helmet hold?")"”
line.The reason is because
horizontal_center of one of the
helmet_patch bigger than that of
person_patch.

(Example2)
# Which color is the device the monitor
is to the right of?
execute_command(image)->str:
image_patch = ImagePatch(image)
monitor_patches = image_patch.find ("
monitor™)
# Question assumes only one monitor
patch
if len(monitor_patches) 0:
# If no monitor is found,
the image directly
return image_patch.simple_query
("Which color is the device the
monitor is to the right of?")
for monitor_patch in monitor_patches

def

query

device_patches =
find("device")
for device_patch in
device_patches:
if device_patch.
horizontal_center < monitor_patch.
horizontal_cent er:
return device_patch.
simple_query ("Which color is the
device?")
return "unknown"

image_patch.

intermediate_result:

"image_patch”: "a computer monitor
and a laptop computer on a desk”,
"monitor_patches"”:"lens:2",
"len(monitor_patches)":"2",

"if len(monitor_patches) == 0@?":"
False”,



62

63

64

65

66
67

68

69
70
71

73
74
75

)

"device_patches"”:"lens:4",
"device_patch.horizontal_center
"."285.0",
"monitor_patch.horizontal_center”:
"319.0",

"if device_patch.horizontal_center

< monitor_patch.horizontal_center
?": "True”

return value: right

Return value traceability analysis: The
root line is the "return
device_patch.simple_query ("Which
color is the device?"”)” line.The
reason 1is

because horizontal_center of one of the
device_patch smaller than that of
monitor_patch.

(Examples finished)

The first code is:{code}

The intermediate result:{inter_res}
return_value:{return_value}

Return value traceability analysis:

LRI

Listing 9: Prompt for logic reviewer on review
generation phase of answer error.

Prompt for result asscessment and review gen-
eration phase of potential error

Prompt = f’ 7’

I want you to serve as a senior code
engineer. I will provide you with
the code,including its intermediate
states and return values.

First.Summarize the content of the
intermediate variables. The term
image_patch’ represents the content
of the image; the number of patches
indicates how many of a certain
object are present in the image.

Second.Analyse from questions code and
intermediate results. Check if there

are errors in the loops and
selection structures in this code,
or if there is a lack of loops and
selection structures.

)

Examples as follows:

(Examplel)

code:

def execute_command(image)->str:
image_patch = ImagePatch(image)
person_patches = image_patch.find ("

person")
# Question assumes only one person
patch

if len(person_patches) == 0:

# If no person is found, query
the image directly

return image_patch.simple_query
("What does the person to the left
of the helmet hold?")
person_patch = person_patches[0]
helmet_patches = image_patch.find ("
helmet")
# Question assumes only one helmet
patch

24

26

27

28

30

31

32

33

34

36

37

38

40

41

42

43
4

=

46

47

48

49

50
51

52

53

54

55

56

if len(helmet_patches)
return "no”
for helmet_patch in helmet_patches:
if helmet_patch.
horizontal_center > person_patch.
horizontal_center:
return helmet_patch.

simple_query ("What does the person
to the left of the helmet hold?")
return "no”

intermediate_result:
’image_patch’: ’a baseball game’,
’person_patches’: ’lens:4’,
’len(person_patches)’: 4’ ,
’if len(person_patches) ==
False’,
’person_patch’:
holding a bat’,
"helmet_patches’:
’len(helmet_patches) ’:
’if len(helmet_patches)
False’,
"helmet_patch.horizontal_center’:
’333.57,
’person_patch.horizontal_center’:
’230.0°
’if helmet_patch.horizontal_center >
person_patch.horizontal_center?’: ’
True’

return value:

== 0:

0?’:
’a baseball player

’lens:37,
737
’

0?’:

right

Summary of intermediate variables: The
image shows a baseball game, there
are 4 persons in the image and 3
helmet.

Possible problems: The code assume that
there are only one person patch,but
actually there are 4 persons. The
code is missing loop structure for
handling of different situations
when the number of people is greater

than 1.

(Example2)
# Which color is the device the monitor
is to the right of?
execute_command(image)->str:
image_patch = ImagePatch(image)
monitor_patches = image_patch.find ("
monitor")
# Question assumes only one monitor
patch
if len(monitor_patches) == 0:

# If no monitor is found, query
the image directly

return image_patch.simple_query
("Which color is the device the
monitor is to the right of?")
for monitor_patch in monitor_patches

def

device_patches =
find("device")

for device_patch in
device_patches:

if device_patch.
horizontal_center < monitor_patch.
horizontal_cent er:
return device_patch.

image_patch.



simple_query ("Which color is the
device?")
58 return "unknown”

60 intermediate_result:

61 "image_patch"”: "a computer monitor
and a laptop computer on a desk”,

62 "monitor_patches”:"lens:2",

63 "len(monitor_patches)":"2",

64 "if len(monitor_patches) == 0?":."
False",

65 "device_patches”:"lens:4",

66 "device_patch.horizontal_center
"."285.0",

67 "monitor_patch.horizontal_center”:
"319.0",

68 "if device_patch.horizontal_center
< monitor_patch.horizontal_center
?2": "True"

0 return value: right

70

71

72 Summary of intermediate variables: The
image shows a computer monitor and a

laptop computer on a desk,There are
2 monitor and 4 devices.

73 Possible problems: Although there are
multiple Monitors in the problem,
for the device, the judgment
condition is already satisfied at
the first device, and the answer is
returned without obtaining the
colors of other devices that meet
the condition later. The code is
lack of loop structure.

74

75 (Example3)

76 # In which part of the photo is the
bridge, the bottom or the top?

77 def execute_command(image)->str:

78 image_patch = ImagePatch(image)

79 bridge_patches = image_patch.find ("
bridge")

80 # Question assumes only one bridge
patch

81 if len(bridge_patches) == 0:

82 # If no bridge is found, query
the image directly

83 return image_patch.simple_query

("In which part of the photo is the
bridge, the bottom or the top?")

84 if bridge_patches[0].vertical_center
> image_patch.vertical_center:

85 return "bottom”

86 else:

87 return "top"

88

89 intermediate_result:

90 image_patch:A bridge cross the river.

91 bridge_patches:lens:1

9 if bridge_patches[0].vertical_center >
image_patch.vertical_center? True

93

94

95 Summary of intermediate variables: The
image shows 1 bridge cross the river

96
97 Possible problems: The judgment of up
and down in the code is reversed.

103

104
105
106
107
108
109

)

w

~

v

o

The patch with a larger vertical
center should be placed above, and
similarly, the patch with a larger
horizontal center should be placed
on the right side of the image. The
code snippet uses incorrect
attributes in the selection
structure.

(Examples finished)

Your return format should be as follows:
Summary of intermediate variables:
Included length of list and text
description.
Possible problems: The possible problems
hide in code based on query and
summary of intermediate variables.

The code is:{code}

The intermediate result:{inter_res}
return_value:{return_value}

Summary of intermediate variables:

’

Listing 10: Prompt for result asscessment and review
generation phase of potential error.

C.4 Prompt For Code Error Reviewer

f’’’Error in execution of statement {
code}:{error}.
Here are 2 error types of code execution

Syntax Error: Syntax errors are the most
basic type of error, typically
occurring when the written code does
not adhere to the syntax rules of
the programming language. For
example, missing semicolons,
mismatched parentheses, or spelling
errors in variable names.

Runtime Error: Runtime errors occur
during program execution and are
often caused by invalid input data,
memory overflow, or division by zero

Such errors can potentially lead
to program crashes.

What is the type of {error}? If i ts a
syntax error, please provide the
corrected code directly. If i ts a
runtime error, add exception
handling statements at the
corresponding location in the
original code.

fixed_code:’’’

Listing 11: Prompt for code error reviewer on review
generation phase.

D Prompt For Rationale Generation

f’?’’You are currently assisting another
artificial intelligence in
completing a Visual Question
Answering (VQA) task. You need to
break down the solution process for



S}

6

© oo

)

16
17
18
9

the following question into 1-5 sub-
steps, allowing the AI to invoke
tools for each sub-step and
ultimately arrive at an answer.
Example as follows:

(Examplel)

Query: Where is this?

1. Identify prominent landmarks or
features in the image that can help
determine the location.

2. Analyze the surroundings of the
landmarks or features to gather
contextual information that could
indicate the location.

3. Based on contextual information,
infer the most likely location
depicted in the image.

(Example2)

Query: What kind of car
?

1. Find the pond in the image.

2. Determine which cars are near the
pond based on their positions
relative to the pond’s location.

3. Identify the type or model of the car

is near the pond

(Examples finished)

Query:{query}

LRI

Listing 12: Prompt for rationale generation in code
generation satge.

E Prompt For Supervised Prompt Tuning

f’’’As a professional prompt engineer
specializing in prompt optimization
based on review feedback, I’11l help
you create a template for analyzing
reports and optimizing prompts:

As an experienced Prompt Optimization
Specialist, please carefully analyze
the following Review Report and
optimize the Prompt Template
accordingly.

Review Report:
{Review Report}

Original Prompt Template:
{Prompt Template}

Please follow these steps for analysis
and optimization:

improvement
in the Review

Analyze key issues and
suggestions mentioned
Report

Based on this feedback, evaluate the
original prompt in the following
aspects:

Clarity and specificity of instructions

Accuracy of role definition

Output format standardization

Reasonableness of constraints

Helpfulness of examples

20

25
26
27
28
29
30
31

32

33
34

35

Propose specific optimization
suggestions

Generate an optimized version of the
prompt

Optimization focus:

Maintain the core functionality of the
prompt

Enhance instruction executability

Improve output consistency

Supplement necessary context

Perfect constraints

Improve example explanations

Please provide:

Problem analysis and optimization
approach

List of recommended modifications

Complete optimized prompt

I will optimize according to the
original prompt’s core intent while
addressing issues raised in the
review.’’’

Listing 13: Prompt for supervised prompt tuning.

F Additional Results

F.1 GQA Validation Result

We also evluate Seper on GQA Validation set,
which contains 2000 balanced question typed sam-
ples. As shown in 4, our method is two percent
better than current visual programming method.

F.2 Prompt Tuning Experiment

We selected the GQA training dataset to tune the
prompt templates in Seper. During each tuning iter-
ation, we categorize the samples into four types: 1)
Invalid: Both the previous and current prompt tem-
plates result in incorrect answers for these samples.
2) Valid: The previous prompt templates result in
incorrect answers, but the current iteration leads to
correct answers. 3) Toxic: The previous prompt
templates result in correct answers, but the current
iteration leads to incorrect answers. 4) Other: Both
the previous and current prompt templates result in
correct answers.

As shown in Table 3, the prompt tuning process
significantly reduces the number of toxic samples,
with the 5-th iteration leading to a modest overall
increase in accuracy from 55.3% to 57.2%. Conse-
quently, we used the prompt templates in the 5-th
iteration for subsequent experiments.

F.3 Accuracy Analysis across Question Types

8 As shown in Figure x, we categorized the sam-
ples in GQA according to the variation in accuracy
between Seper and the baseline. The five categories
are: 0 to 50% increase, 50 to 100% increase, over



Table 3: Accuracy results on the GQA dataset across
iterations in supervised prompt tuning.

Iteration Other Valid Invalid Toxic Acc
0 - - - - 55.3
1 442 109 338 11.1 55.1
3 448 107 340 105 555
5 46.2 11.0 337 91 57.2
10 46.0 10.8 339 93 56.8

Table 4: Result On GQA Validation.

Accuracy(%)
ViperGPT 55.2
CodeVQA 55.3
Seper 57. 8

100% increase, 0 to 10% decrease, and 10 to 100%
decrease. Nearly 70% of the samples achieved ac-
curacy improvements, with 17.6% of the question
categories seeing over 100% increases in accuracy,
demonstrating the effectiveness of the Seper frame-
work. However, 30% of the samples still saw ac-
curacy declines, and around 3.9% of the question
categories had accuracy drops of over 10%, which
include the following three categories:

Type Baseline (%) Seper (%)

activity 70.71 58.49 (-17.27%)
verifyAttrCThis 39.12 13.83 (-64.65%)
verifyAttrs 84.74 70.50 (-16.80%)

Table 5: Accuracy Reduction for Problematic Cate-
gories

Through sampling the examples for these
three question categories, we found that
these types of questions are more prone
to overlooking global information issues.

| def execute_command(image)->str:

2 image_patch = ImagePatch(image)

3 return image_patch.simple_query ("
What is the man doing?")

Listing 14: Code generated by Viper.
For example, for the ’activity’ category question
"What is the man doing", Viper’s generated code
is as shown in Listing 14. Seper’s generated
code is as shown in Listing 15. The difference is
that Seper generated more detailed steps - it first
locates the specific person, and then judges their
action. However, this also led to a lack of global

Light Red (-10%~0%)

Deep Red (-100%~-10%)

Deep Green (>100%)

Light Green (0%~50%)
Normal Green (50%~100%)

Figure 8: Accuracy Variation between Seper and Base-
line in GQA Samples.

image_patch: &2 simple_query(.)

> Throwing frisbee

man_patch:
simple_query(.)

> Throwing something

Figure 9: Accuracy Variation between Seper and Base-
line in GQA Samples.

information in the judgment, as shown in Figure 9.
In Seper’s case, since it was unable to perceive the
existence of the Frisbee, it was unable to answer
the question correctly.

We considered emphasizing the role of global
information in the review process, such as using an
image-captioning model to generate descriptions
of images and enforcing these descriptions as
reference information for reviewers during their
evaluation. However, we found that this approach
could also introduce potential biases due to inaccu-
racies or distortions in the captions generated by
the image-captioning model, thereby negatively
impacting the review process. As a result, we ulti-
mately decided to retain our current approach. In
future work, we will explore more effective ways
to incorporate global information into the review
process while minimizing hallucinations or errors.



@ ®

Figure 10: (a) Proportion of samples with different itera-
tion counts for Seper in GQA, we divided samples with
different iteration counts into three groups: A, B, and
C. These three groups underwent 1, 2, and 3 iterations
respectively. (b) Accuracy of Seper and Viper in groups
A, B, and C samples.

def execute_command(image)->str:

2 image_patch = ImagePatch(image)

3 # subtaskl: find the man

4 man_patch = image_patch.find("man")
5 # subtask2: Identify the man’s

activity
6 return man_patch.simple_query("What
is the man doing?")

Listing 15: Code generated by Seper.

F.4 Group Analysis

Based on Seper’s iteration counts, we categorized
the GQA validation samples into three groups: A,
B, and C, corresponding to 1, 2, and 3 iterations,
respectively. Viper, in contrast, can be regarded as
having executed only a single iteration across all
sample types.

Figure 10(a) illustrates the distribution of sam-
ples by iteration count, with approximately one-
fourth undergoing a second iteration by Seper,
and only about 5% necessitating a third. Fig-
ure 10(b) contrasts Seper and ViperGPT’s perfor-
mance, showing a declining accuracy trend across
the groups. This trend highlights significant diffi-
culty variation, with Group A being the easiest
and Group C the most challenging. In Group
A, where only one iteration was required, the
self-correcting framework shows minimal devia-
tion from ViperGPT. However, in the more com-
plex Group B, the self-correcting framework sur-
passes ViperGPT by approximately 15% in accu-
racy. Even in Group C, the most difficult, Seper
demonstrates a clear advantage, indicating that
Seper’s ability to address complex problems is sub-
stantially enhanced by self-correcting techniques.

As shown in Table 6, we conducted a compara-
tive analysis of the average time consumption per
sample between Seper and Viper. The results in-
dicate that our method requires an average of 3.12

Metric Viper Seper

Avg Time 2.37s 3.12s
71% x 1

Iteration Distribution | 100% x 1 | 24% x 2
5% % 3

Table 6: Time Consume Comparison Between Viper
and Seper.

seconds per sample, while Viper completes the
task in 2.37 seconds, representing a 31.6% increase
in processing time. This elevated time consump-
tion is primarily attributed to the multiple rounds
of interaction with the Large Language Model re-
quired for code generation in our approach. In
future work, we aim to optimize these temporal
costs through various strategies, such as minimiz-
ing prompt length or deploying local LLM imple-
mentations.



	Introduction
	Related Work
	Error Analysis Of Existing Methods
	Methodology
	Code Generation
	Code Execution
	Code Evaluation
	Forward Evaluation.
	Backward Evaluation.

	Supervised Prompt Tuning

	Experiment
	Experimental Setup
	Results
	Ablations

	Conclusion
	Limitations
	Implemetntion Details
	API Listings
	API for GQA
	API for OK-VQA

	Prompt For Reviewer
	Prompt for vqa type APIs
	Prompt for location type API
	Prompt For Logic Reviewer
	Prompt For Code Error Reviewer

	Prompt For Rationale Generation
	Prompt For Supervised Prompt Tuning
	Additional Results
	GQA Validation Result
	Prompt Tuning Experiment
	Accuracy Analysis across Question Types
	Group Analysis


