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Abstract001

In Visual Question Answering (VQA) tasks,002
program-driven reasoning methods have made003
significant progress by transforming solutions004
into executable code. However, existing005
approaches often fall short due to their reliance006
on a single code generation iteration, lacking007
the flexibility to handle unforeseen errors. To008
address this limitation, we propose the Self-009
Enhancing Programming-driven Reasoning010
framework for VQA (Seper). Seper combines011
a code generator and evaluator to decompose012
questions into multistep instructions, dynami-013
cally generating Python code based on input.014
The code evaluator performs both forward and015
backward evaluations, triggering an iterative016
code regeneration process that enables continu-017
ous optimization. Additionally, we introduce018
prompt tuning to improve the quality of the019
generated code. Our experiments on the GQA020
and OK-VQA datasets demonstrate Seper’s021
superior performance, highlighting its potential022
to advance VQA programming methods. Code:023
https://anonymous.4open.science/r/Seper-024
5540/025

1 Introduction026

The pursuit of artificial general intelligence (AGI)027

has led to the development of large-scale visual028

models, which often rely on task-specific datasets,029

such as object grounding, visual question answer-030

ing, or image segmentation. These models struggle031

with complex, real-world tasks that require multi-032

step reasoning. For example, answering “What was033

the color of the first horse that crossed the finish034

line?” involves identifying the finish line, recog-035

nizing the first horse, and determining its color.036

Such intricate tasks challenge the effectiveness and037

scalability of end-to-end models.038

Early approaches, such as Modular Visual Ques-039

tion Answering(Andreas et al., 2016), decompose040

tasks into atomic units but require extensive super-041

vision, limiting their adaptability across domains.042

The emergence of large language models has driven 043

interest in automatic module integration, giving rise 044

to program-driven reasoning methods (Schick et al., 045

2023; Suróis et al., 2023; Subramanian et al., 2023; 046

Gupta and Kembhavi, 2022), which tackle complex 047

problems through step-by-step code solutions. By 048

addressing subproblems via defined APIs, these 049

methods eliminate the training costs of traditional 050

modular approaches and provide enhanced inter- 051

pretability. 052

Existing programming-driven reasoning meth- 053

ods often lack iterative and reflective processes, 054

typically performing only a single iteration of code 055

generation and execution. These methods fail to 056

address unforeseen issues, such as syntax errors 057

or erroneous API results, which can affect the fi- 058

nal outputs. While human programmers can de- 059

bug code manually, this process is time-consuming 060

and lacks real-time efficiency. Additionally, large 061

language models (LLMs) usually require specific 062

prompts to generate code, yet they struggle with 063

complex visual language tasks due to difficulties in 064

comprehending detailed task requirements, often 065

resulting in suboptimal code generation. 066

Self-iterative models have emerged as a power- 067

ful approach in AI, particularly for code generation 068

tasks that demand high precision. These models 069

rely on unit tests to detect errors and use compiler 070

outputs to inform corrections. By iteratively refin- 071

ing the generated code based on test results, they 072

can effectively handle complex programming chal- 073

lenges, ensuring both correctness and optimization. 074

When applying the self-iterative framework to 075

visual programming, several key challenges must 076

be addressed during its implementation: 077

• Without unit tests, how can we effectively de- 078

tect errors in the generated code? 079

• How can we revise the generated code based 080

on the detected errors? 081
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To address these limitations, we propose the082

Self-Enhancing Programming-Driven Reasoning083

(Seper) framework for Visual Question Answering084

(VQA), as illustrated in Figure 2. The Seper frame-085

work goes beyond traditional visual programming086

approaches by integrating multiple code evaluation087

components that automatically assess the gener-088

ated code and produce detailed reports for further089

improvement.090

To address these limitations, we propose the091

Self-enhancing programming-Driven Reasoning092

(Seper) framework for Visual Question Answering093

(VQA), as illustrated in Figure 2. The Seper frame-094

work goes beyond traditional visual programming095

approaches by integrating multiple code evaluation096

components that automatically assess the gener-097

ated code and produce detailed reports for further098

improvement.099

Our main contributions include:100

• We introduce the first iterative framework for101

Visual Question Answering that integrates102

both code generation and evaluation, mark-103

ing a significant advancement in the field.104

• We propose a supervised prompt tuning105

method for automatically adjusting prompt106

templates used by the code generator and re-107

viewers during code evaluation.108

• Experimental results on real benchmarks109

demonstrate the superior performance of our110

approach.111

2 Related Work112

The early method for the Visual Question Answer-113

ing is the Modular Visual Question Answering114

(Modular VQA), which refers to a framework used115

in Visual Question Answering (VQA) tasks that de-116

composes the question-answering process into dis-117

tinct, modular components (Andreas et al., 2016).118

For example, Promptcap(Hu et al., 2023) is the first119

to leverage the text reasoning capabilities of large120

language models in conjunction with generated121

image captions to address visual questions. Sim-122

ilarly, Prophet(Shao et al., 2023) employs a large123

language model to aggregate judgments from mul-124

tiple VQA models, improving the overall accuracy125

of answers by combining insights from different126

systems.127

In contrast to the methods described above, re-128

cent research has introduced Visual Programming129

frameworks that uses the incontext learning abil- 130

ity of large language models to generate python- 131

like modular programs, which are then executed 132

to get both the solution and a comprehensive and 133

interpretable rationale. Each line of the generated 134

program may invoke one of several off-the-shelf 135

computer vision models, image processing subrou- 136

tines, or python functions to produce intermediate 137

outputs that may be consumed by subsequent parts 138

of the program. This allows for the seamless inte- 139

gration of new components, enhancing the system’s 140

versatility and adaptability to a broad range of VQA 141

tasks. Several studies have explored visual pro- 142

gramming for VQA (Suróis et al., 2023; Subrama- 143

nian et al., 2023; Gupta and Kembhavi, 2022; Khan 144

et al., 2024; Dou et al., 2024), but these approaches 145

typically generate code in a single pass, without 146

iterative refinement. In contrast, our method con- 147

tinuously evaluates and revises the generated code, 148

enabling ongoing optimization through repeated 149

iterations, which ensures improved performance 150

and adaptability. 151

However, the code generated by visual program- 152

ming may not always run as expected. Even if exe- 153

cution is possible, issues such as incorrect interface 154

calls or parameter mismatches can arise, leading 155

to inaccurate results. Code refinement refers to 156

the process of improving, optimizing, or cleaning 157

up code while preserving its overall functionality. 158

Statistical and learning-based techniques for code 159

refinement have a long history in both program- 160

ming languages and machine learning, typically 161

focused on repairing human-written code (Long 162

and Rinard, 2016; Bader et al., 2019; Le Goues 163

et al., 2021). Self-Edit (Zhang et al., 2023) ex- 164

plores self-repair with natural language feedback 165

on apps. Similarly, T-eval (Chen et al.) assesses 166

Codex’s ability to self-repair across a variety of 167

tasks. 168

However, the aforementioned work is specifi- 169

cally designed for text-based tasks and relies on 170

correction through unit testing (Olausson et al., 171

2023), which requires knowing the correct output 172

in advance—an approach that is difficult to apply to 173

Visual Question Answering (VQA) due to the chal- 174

lenge of labeling correct outputs. To address this 175

issue, our framework incorporates a self-enhancing 176

mechanism that autonomously identifies problems 177

in the generated code and revises it accordingly. 178



3 Error Analysis Of Existing Methods179

To examine the influence of code generation180

quality and pre-trained model capabilities on181

programming-driven reasoning, we analyzed 200182

randomly selected error cases from Viper (Suróis183

et al., 2023) using the GQA (Hudson and Manning,184

2019) test-dev dataset. Figure 1 presents the evalu-185

ation results, categorizing the failure reasons into186

three main groups:187

1. Code Error: These errors arise during code188

execution and include syntax issues (e.g.,189

missing semicolons or mismatched parenthe-190

ses) and runtime problems (e.g., invalid input,191

memory overflow, or division by zero), which192

can lead to program termination.193

2. API Limitation: This refers to situations194

where API calls, particularly those involv-195

ing pre-trained models, fail to produce ex-196

pected results. This category includes: Image-197

Text-Contrastive (ITC) models, which use198

models like CLIP (Radford et al., 2021) and199

XVLm (Zeng et al., 2021) which assess image200

attributes and are affected by object names201

and properties; Visual Question Answer-202

ing (VQA) models, where slight variations203

in question phrasing can impact outcomes204

despite identical semantics; and Location205

(LOC) models, such as GroundingDINO (Liu206

et al., 2023), which detect and crop objects in207

images, with object name sensitivity influenc-208

ing detection accuracy.209

3. Logic Error: Can be classified into answer210

logic errors and potential logic errors.211

• Answer Inaccuracies: Return values212

misaligned with question format (e.g.,213

yes/no for multiple-choice).214

• Potential Logic Errors: Reflect mis-215

matches between the question-solving216

process and code logic, often arising with217

more complex images than anticipated,218

such as missing target objects, as illus-219

trated in Figure 5.220

The insights from Figure 1 reveal that Viper221

mainly faces API limitations and logic errors, with222

code errors being rare due to GPT’s robustness.223

VQA models notably contribute to API limitations,224

highlighting the importance of question representa-225

tion in visual question answering.226

Figure 1: Error analysis results.

4 Methodology 227

The Seper framework combines code generation, 228

execution, and evaluation. Given an image and 229

question, the code generator breaks down the task, 230

generates code, and passes it to the Python com- 231

piler. The code is evaluated in two stages: forward 232

evaluation checks input, and backward evaluation 233

traces errors. Language Model-based reviewers de- 234

tect issues, and if errors are found, a review report 235

is generated to refine the code iteratively until it 236

passes or the iteration limit is reached. 237

4.1 Code Generation 238

As shown in Figure 2(a), the code generation pro- 239

cess consists of two stages using a Code Large 240

Language Model (CodeLLM): rationale generation 241

and Python code generation. To enhance reason- 242

ing interpretability and soundness, CodeLLM first 243

generates rationales that break down the task into 244

subtasks, guiding the subsequent code generation. 245

These subtasks are then embedded as comments in 246

the code to improve readability. 247

A predefined prompt, as detailed in Listing 1, 248

guides the CodeLLM in generating accurate Python 249

code. This prompt combines the question q̂, API 250

specifications, examples, and a review report, pro- 251

viding a comprehensive input to steer the code gen- 252

eration process. 253

Listing 1: Prompt for code generation
254

# Here are the APIs available for 255
calling 256

${API specifications} 257
# Learn from the following examples 258
${Related examples} 259
# The question 260
${Question} 261
# The review result from previous 262

iteration 263
${Rationale} 264
# Generate python code to answer the 265

question , with variable "image" as 266
input 267268

Prompt Composition: To answer a visual ques- 269

tion using an image, the goal is to leverage a Large 270



Figure 2: Our proposed Seper framework.
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Figure 3: Supervised Prompt Tuning framework.

Language Model to generate Python code by en-271

hancing the question representation with three key272

elements:273

1. API Specifications: We use the ImagePatch274

API specification and text query q̂ as in-275

put prompts for the program generation276

model (Suróis et al., 2023). While follow-277

ing the original implementation, our approach278

differs in categorizing the APIs into VQA,279

Location, and Other types. Detailed API spec-280

ifications are in Appendix B.281

2. Related examples: The process of example282

selection is crucial. We follow the setup of283

mainstream methods by using manually con-284

structed examples as context in experiments.285

3. Rationale: Including the three subtasks de-286

composed by the LLM, as well as the pos-287

sible review report from the review process288

detailing code execution results and error289

corrections, is vital for the code generator. 290

CodeLLM uses this feedback to iteratively 291

refine and regenerate code. 292

4.2 Code Execution 293

Upon code generation, we employ the Python com- 294

piler to execute the code and gather all necessary 295

variables and intermediate data for thorough review. 296

Ultimately, a comprehensive execution result report 297

is generated, as illustrated in Figure 2(b). 298

Execute Code: Upon code generation, snippets 299

will be injected to preserve variables, which will 300

be stored in a Python dictionary for later analysis. 301

Generate Execution Result Report: Multiple exe- 302

cution result reports will be generated in structured 303

format, each covering five key components com- 304

prehensively: (1) Source code: The Python code 305

generated by the code generator; (2) Error Mes- 306

sage: Returns detailed error information (location, 307

type, stack trace) for the first encountered error, 308

or "No error" if none detected; (3) Return Value: 309

The final text-based return value or an empty string 310

in case of encountering errors; (4) Runtime vari- 311

ables: Variables are categorized as ImagePatch 312

objects with BLIP-2 descriptions, basic strings, 313

and collections with text-converted elements and 314

lengths; (5) Logical judgement result: Extracted 315

conditional statements trace execution flow through 316

loops and branches, using transformed variables to 317



indicate decisions.318

4.3 Code Evaluation319

The code evaluation process, as shown in Fig-320

ure 2(c), involves extracting the relevant execution321

results for each sub-task and conducting evalua-322

tions in two sub-stages: forward and backward.323

• Forward Evaluation: Verifying whether324

each line of code ascertain its successful ex-325

ecution, followed by validating whether the326

output of each line conforms to the expected327

results.328

• Backward Evaluation: Assessment of code329

output against intended objectives, followed330

by retrospective analysis of potential errors331

and intermediate results.332

Unlike traditional code generation tasks (Long333

and Rinard, 2016; Bader et al., 2019; Le Goues334

et al., 2021), which can be validated using test335

cases, our approach faces the challenge of missing336

test cases, leading to uncertain and unverifiable out-337

comes. To address this, we utilize heuristic-based338

reviews focused on the three components outlined339

in the previous section: code error checking to340

identify syntax and runtime issues, API checking341

to verify API calls and their results, and code logic342

checking to detect logical errors causing incorrect343

outputs. Different Language Model-based review-344

ers evaluate each component, following a two-step345

process using the prompts detailed in Appendix C:346

• Result assessment: This process identifies347

errors by analyzing execution result reports,348

examining explicit and implicit errors from349

various sources. Each report is reviewed by350

different reviewers who provide detailed re-351

sponses and a true or false answer. A majority352

vote then determines the final acceptance of353

the response.354

• Review generation: Reviewers compile as-355

sessment results to identify error types and356

underlying causes, offering specific sugges-357

tions for code improvement. The goal is to358

provide a clear and thorough analysis to guide359

code modifications and enhance quality.360

Finally, we merge the reports of each sub-task361

into a comprehensive report and provide feedback362

to the code generator.363

4.3.1 Forward Evaluation. 364

The forward evaluation stage verifies that each line 365

of code executes correctly and produces the ex- 366

pected output. It focuses on local issues, such as 367

runtime errors, syntax errors, and the proper func- 368

tioning of API calls. 369

Code Error Reviewer 370

Code error reviewer assesses the basic errors in the 371

code and generate reviews as follows: 372

Result assessment: Leveraging the error infor- 373

mation and location captured during the code ex- 374

ecution, we directly utilize the error message in 375

the execution result report. If no error message is 376

present, the review generation step is skipped. 377

Review generation: In the prompt for the Code 378

Error Reviewer, we first provide definitions for 379

syntax errors and runtime errors. Subsequently, 380

we instruct the reviewer to address syntax errors 381

directly and to add exception handling for runtime 382

errors by generating new code for the erroneous 383

part. 384

API Reviewer 385

The API reviewer’s main objective is to system- 386

atically identify and evaluate errors in API calls, 387

consolidating these results into a comprehensive 388

review. Given that VQA-type and location-type 389

APIs exhibit the most errors, the reviewer employs 390

specialized strategies tailored to these API types. 391

Result Assessment: Each API is treated as a black 392

box without disclosing intermediate results. The 393

output variable’s name indicates the expected out- 394

put type. For example, “clothing_kind” in line 395

9 suggests the answer should be a clothing type. 396

Results are assessed by checking alignment with 397

the expected type. This involves two stages: ex- 398

tracting key details from the execution report (e.g., 399

objects, parameters, and output values) and guiding 400

the reviewer to evaluate acceptability by prompt 401

template. For vqa APIs, reviewers assess the plau- 402

sibility and clarity of the answer. For location-type 403

APIs, reviewers confirm the presence of the object 404

as per the image caption and its relevance to the 405

original question. 406

Review Generation: Inspired by the Exploration- 407

Exploitation Dilemma in reinforcement learning, 408

we design two instruction sets for guiding the API 409

reviewer in generating comments. The first encour- 410

ages CodeLLM to adjust parameters of existing 411

API calls, such as using more specific parameters 412

if a “simple_query(.)” output is vague. The sec- 413

ond promotes exploration by suggesting alternative 414



Figure 4: Example of VQA type API limiation.

Figure 5: Example of lacking structure type logical error.

API calls. For example, as shown in Figure 4, when415

vqa-type APIs alone are insufficient, Seper prompts416

the code generator to combine them with loc-type417

APIs.418

4.3.2 Backward Evaluation.419

In neural networks, backpropagation calculates fi-420

nal error and updates gradients in preceding layers.421

Similarly, we propose a backward evaluation mech-422

anism to trace final errors up the source code, using423

a logic reviewer to identify and analyze error ori-424

gins.425

Logic Reviewer426

As discussed in section 3, logic errors can be cate-427

gorized into answer errors and potential errors.428

Result Assessment: Unlike APIs, which are429

treated as black boxes, a logic reviewer can ac-430

cess all code lines and runtime variables, enabling431

a thorough evaluation of the code’s logic. The as-432

sessment is conducted from two perspectives: 1)433

Answer Inaccuracies: These errors are similar to434

those in Visual Question Answering (VQA) sys-435

tems, such as misinterpretations of queries like “Is436

he to the right or left of the mirror?”. Reviewers as-437

sess whether the response aligns with the intended 438

question. 2) Potential Errors: These errors stem 439

from issues in key algorithmic constructs, includ- 440

ing sequential, branching, and looping structures. 441

Such errors may arise from missing structures (e.g., 442

absent loops) or inaccuracies within existing ones 443

(e.g., incorrect branch conditions). Reviewers iden- 444

tify these issues by analyzing the variables and 445

source code to ensure the logic is correctly imple- 446

mented. 447

Review Generation: Reviewers analyze the code 448

to identify logic errors and provide actionable feed- 449

back for improvement. The evaluation is conducted 450

from two perspectives: 1) Answer Inaccuracies: 451

For answer errors, reviewers trace the return value 452

back to the first incorrect statement to identify the 453

root cause, which may involve an API or logical 454

error. This process helps pinpoint the exact issue 455

and informs further analysis. 2) Potential Errors: 456

For potential errors, such as incorrect spatial prop- 457

erties in left-right judgment (as shown in Figure 458

5), reviewers assess the logic structure as a whole. 459

They evaluate whether the algorithm’s constructs 460

are correctly implemented and aligned with the 461



intended behavior, suggesting modifications if nec-462

essary. Finally, reviewers output “pass” if no errors463

are found; otherwise, the aggregated report is sent464

to CodeLLM for further iteration.465

4.4 Supervised Prompt Tuning466

To improve the performance of CodeLLM, we pro-467

pose a supervised prompt tuning method to opti-468

mize prompt templates for code generation. As469

shown in Figure 3, the process begins by running470

Seper on a training dataset using initial prompt tem-471

plates to generate and execute code. We construct472

a sample pool, initially populated with all training473

samples. After evaluating the results, we select474

representative examples, especially those that fre-475

quently cause errors, for prompt refinement. In an476

iterative process, error-prone samples are retained477

in the pool, while correct samples are gradually478

discarded, with only a small subset kept. These479

examples help the reviewer model identify failure480

patterns and refine the prompt templates. Details481

are provided in Appendix F.2.482

5 Experiment483

5.1 Experimental Setup484

Benchmarks. We evaluate our method on the485

GQA (Hudson and Manning, 2019) and OK-486

VQA (Marino et al., 2019) datasets. GQA focuses487

on multi-hop questions using human-annotated488

scene graphs for complex compositional queries,489

while OK-VQA assesses answering image-related490

questions requiring external knowledge.491

Implementation. We utilized ChatGPT(OpenAI,492

2023) to serve as both code generator and three493

reviewers, each with distinct sessions to ensure in-494

dependence. Choosing ChatGPT is to maintain con-495

sistency with the mainstream visual programming496

methods that have predominantly used ChatGPT,497

and also because, as previous research(Chen et al.,498

2023). We employ BLIP-2(Li et al., 2023), Ground-499

ingDINO(Liu et al., 2023), and XVLM(Zeng et al.,500

2021) as the pre-trained models underpinning our501

API. Detailed parameters are provided in the Ap-502

pendix A.503

5.2 Results504

Table 1 presents results on the GQA test-dev and505

OK-VQA validation datasets, showing that Seper506

outperforms all other zero-shot methods. Despite507

utilizing large foundational models, programming-508

based methods like ViperGPT and CodeVQA are509

Table 1: Result on the GQA and OK-VQA,*indicates
an evaluation on a stratified sample of the test set, which
may not be directly comparable to results on the full test
set.

Model GQA Acc.(%) OK-VQA Acc.(%)

Supervised
VisRep 59.2 -
LXMERT 60.0 -
NSM 63.0 -
CRF 72.1 -
KAT - 54.4
RA-VQA - 54.5
REVIVE - 58.0
PromptCap - 58.8

Zero-Shot
BLIP-2 44.7 45.9
Flamingo - 50.6
ViperGPT 48.1 51.9
CodeVQA 49.0 53.5
VisProg∗ 50.5 52.6
Seper(ours) 51.3 54.1

limited by their single-pass approach, resulting in 510

lower accuracy. Seper, with its iterative framework 511

for code generation and evaluation, achieves the 512

highest accuracy of 51.3% on GQA and 54.1% on 513

OK-VQA, outperforming the next best methods, 514

VisProg, by 0.8% and 1.5%, respectively. This 515

demonstrates the advantage of Seper’s multi-stage 516

review process in enhancing performance. 517

Figure 6 compares the accuracy of the baseline 518

and Seper across various question types in GQA. 519

With the integration of the Code Evaluation module 520

and prompt tuning, Seper outperforms the baseline 521

in several categories. Notably, the accuracy for 522

“positionChoose” questions increased dramatically 523

from 0.37 to 0.95, highlighting the effectiveness of 524

the Code Evaluation module in handling complex 525

positional relationships, as demonstrated in line 526

7 of Figure 2(a). Although some question types 527

saw a slight decrease in accuracy compared to the 528

baseline, a detailed analysis of these variations can 529

be found in Appendix F.3. 530

5.3 Ablations 531

Table 2 presents an ablation study on the GQA 532

dataset, evaluating the impact of various compo- 533

nents on model performance. The baseline model 534

achieves 48.1% accuracy. Incorporating code error 535



Figure 6: Accuracy distribution among different question types in GQA.

Table 2: Ablation results on the GQA and OK-VQA.
✓indicates the component is included in the configura-
tion.

Reviewers
Code Error API Logic P-Tuning Acc(%)
Baseline 48.1 (+0.0)
Two-component Configuration

✓ ✓ 48.7 (+0.6)
✓ ✓ 49.3 (+1.2)
✓ ✓ 48.8 (+0.7)

✓ ✓ 49.1 (+1.0)
✓ ✓ 48.6 (+0.5)

✓ ✓ 49.8 (+1.7)
Three-component Configuration

✓ ✓ ✓ 50.4 (+2.3)
✓ ✓ ✓ 49.5 (+1.4)
✓ ✓ ✓ 50.0 (+1.9)

✓ ✓ ✓ 50.9 (+2.8)
Full Configuration

✓ ✓ ✓ ✓ 51.3 (+3.2)

and API reviewers improves accuracy to 48.7%,536

while adding logic reviewers boosts it further to537

49.3%. Combining code error and logic reviewers538

results in 49.8% accuracy. The configuration with539

all three components—code error, API, and logic540

reviewers—achieves 50.4%, and adding prompt541

tuning further increases accuracy to 50.9%. The542

full configuration, including all components and543

P-Tuning, reaches the highest accuracy of 51.3%,544

representing a 3.2% improvement over the base-545

line. These results underscore the significance of546

multi-level reviews and prompt tuning in enhanc-547

ing VQA model performance, with each additional548

component contributing to more refined and accu-549

rate outcomes. 550

Error Analysis. For the GQA dataset, we manu- 551

ally inspected 100 samples to analyze error sources. 552

As shown in Figure 7, our method outperforms 553

Viper by eliminating basic code errors, significantly 554

reducing logical errors, and effectively identifying 555

API-related issues in models. 556

Figure 7: Error analysis of Seper and Viper.

6 Conclusion 557

We introduced the Seper framework, an iterative 558

approach to visual question answering that inte- 559

grates multi-level reviews and innovative evalua- 560

tion stages with distinct reviewers. We also pro- 561

posed a supervised prompt template tuning method 562

to automatically optimize prompts for code re- 563

viewers. Our approach significantly outperforms 564

existing programming-driven reasoning methods, 565

addressing API limitations and enhancing logic, 566

while showcasing the potential of LLMs as effec- 567

tive code reviewers. However, the reliance on a 568

closed-source ChatGPT for reviews has increased 569

costs, and we did not fully address the API limi- 570

tations or enhance it to resolve associated issues. 571

The logic review process also lacks the insights nec- 572

essary for generating improved solutions. Future 573

work will focus on reducing costs by leveraging 574

open-source language models. 575



7 Limitations576

In this study, our methodology did not show a577

significant advantage over existing programming-578

driven reasoning approaches. Additionally, we ac-579

knowledge that the limitations of the API were not580

fully addressed, nor was the API enhanced to ef-581

fectively tackle the underlying issues. As a result,582

the logic review was not robust enough to provide583

deeper insights, which are essential for generating584

more refined code solutions. Furthermore, the re-585

liance on a closed-source ChatGPT for multiple586

review iterations led to relatively high costs, a fac-587

tor that should be considered in future research.588
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A Implemetntion Details691

We set the temperature parameter of codellm to692

0, the temperature parameter of the reviewer to693

0.25, and the rest of the parameters remain as usual.694

Besides, we capped the maximum number of itera-695

tions at 3 to prevent infinite function iterations. For696

each dataset, we employed 16 in-context examples.697

The pre-trained model and parameter settings we698

use are shown below:699

GroundingDINO. We use the implementation700

from the official GitHub repository. The thresh-701

old of box is 0.30 and the threshold of text is 0.25.702

XVLM. We used the official implementation,703

specifically the version finetuned for retrieval on704

MSCOCO. In addition to this, we set the similarity705

threshold to 0.5. Meaning if the similarity between706

the image and the text is more than 0.5, the two are707

considered to match.708

BLIP-2. We used the Flan-T5 XXL version from709

Huggingface. We set the beams in the generation710

parameter to 5.711

B API Listings712

We provide different API definitions for different713

datasets.714

B.1 API for GQA715

1 from PIL import Image716
2 from vision_functions import717

find_in_image , simple_qa ,718
verify_property , best_text_match719

3720
4 def bool_to_yesno(bool_answer: bool)->721

str:722
5 return "yes" if bool_answer else "no723

"724
6725
7 class ImagePatch:726
8 """A Python class containing a crop727

of an image centered around a728
particular object , as well as729
relevant information.730

9 Attributes731
10 ----------732
11 cropped_image : array_like733
12 An array -like of the cropped734

image taken from the original image.735
13 left : int736
14 An int describing the position737

of the left border of the crop’s738
bounding box in the original image.739

15 lower : int740
16 An int describing the position741

of the bottom border of the crop’s742
bounding box in the original image.743

17 right : int744
18 An int describing the position745

of the right border of the crop’s746
bounding box in the original image.747

19 upper : int 748
20 An int describing the position 749

of the top border of the crop’s 750
bounding box in the original image. 751

21 752
22 Methods 753
23 ------- 754
24 find(object_name: str)->List[ 755

ImagePatch] 756
25 Returns a list of new ImagePatch 757

objects containing crops of the 758
image centered around any objects 759
found in the image matching the 760
object_name. 761

26 simple_query(question: str=None)-> 762
str 763

27 Returns the answer to a basic 764
question asked about the image. If 765
no question is provided , returns the 766
answer to "What is this ?". 767

28 exists(object_name: str)->bool 768
29 Returns True if the object 769

specified by object_name is found in 770
the image , and False otherwise. 771

30 verify_property(property: str)->bool 772
31 Returns True if the property is 773

met , and False otherwise. 774
32 best_text_match(string1: str , 775

string2: str)->str 776
33 Returns the string that best 777

matches the image. 778
34 crop(left: int , lower: int , right: 779

int , upper: int)->ImagePatch 780
35 Returns a new ImagePatch object 781

containing a crop of the image at 782
the given coordinates. 783

36 """ 784
37 785
38 def __init__(self , image , left: int= 786

None , lower: int=None , right: int= 787
None , upper: int=None): 788

39 """ Initializes an ImagePatch 789
object by cropping the image at the 790
given coordinates and stores the 791
coordinates as attributes. 792

40 If no coordinates are provided , 793
the image is left unmodified , and 794
the coordinates are set to the 795
dimensions of the image. 796

41 Parameters 797
42 ------- 798
43 image : array_like 799
44 An array -like of the 800

original image. 801
45 left : int 802
46 An int describing the 803

position of the left border of the 804
crop’s bounding box in the original 805
image. 806

47 lower : int 807
48 An int describing the 808

position of the bottom border of the 809
crop’s bounding box in the original 810
image. 811

49 right : int 812
50 An int describing the 813

position of the right border of the 814
crop’s bounding box in the original 815
image. 816

51 upper : int 817



52 An int describing the818
position of the top border of the819
crop’s bounding box in the original820
image.821

53822
54 """823
55 if left is None and right is824

None and upper is None and lower is825
None:826

56 self.cropped_image = image827
57 self.left = 0828
58 self.lower = 0829
59 self.right = image.shape [2]830

# width831
60 self.upper = image.shape [1]832

# height833
61 else:834
62 self.cropped_image = image835

[:, lower:upper , left:right]836
63 self.left = left837
64 self.upper = upper838
65 self.right = right839
66 self.lower = lower840
67841
68 self.width = self.cropped_image.842

shape [2]843
69 self.height = self.cropped_image844

.shape [1]845
70846
71 self.horizontal_center = (self.847

left + self.right) / 2848
72 self.vertical_center = (self.849

lower + self.upper) / 2850
73851
74 def find(self , object_name: str)->852

List["ImagePatch"]:853
75 """ Returns a new ImagePatch854

object containing the crop of the855
image centered around the object856
specified by object_name.857

76 Parameters858
77 -------859
78 object_name : str860
79 A string describing the name861

of the object to be found in the862
image.863

80 """864
81 return find_in_image(self.865

cropped_image , object_name)866
82867
83 def simple_query(self , question: str868

=None)->str:869
84 """ Returns the answer to a basic870

question asked about the image. If871
no question is provided , returns the872
answer to "What is this ?".873

85 Parameters874
86 -------875
87 question : str876
88 A string describing the877

question to be asked.878
89879
90 Examples880
91 -------881
92882
93 >>> # Which kind of animal is883

not eating?884
94 >>> def execute_command(image)->885

str:886

95 >>> image_patch = ImagePatch 887
(image) 888

96 >>> animal_patches = 889
image_patch.find(" animal ") 890

97 >>> for animal_patch in 891
animal_patches: 892

98 >>> if not animal_patch. 893
verify_property (" animal", "eating "): 894

99 >>> return 895
animal_patch.simple_query ("What kind 896
of animal is eating ?") # crop would 897
include eating so keep it in the 898

query 899
100 >>> # If no animal is not 900

eating , query the image directly 901
101 >>> return image_patch. 902

simple_query ("Which kind of animal 903
is not eating ?") 904

102 905
103 >>> # What is in front of the 906

horse? 907
104 >>> # contains a relation ( 908

around , next to, on, near , on top of 909
, in front of, behind , etc), so ask 910
directly 911

105 >>> return image_patch. 912
simple_query ("What is in front of 913
the horse ?") 914

106 >>> 915
107 """ 916
108 return simple_qa(self. 917

cropped_image , question) 918
109 919
110 def exists(self , object_name: str)-> 920

bool: 921
111 """ Returns True if the object 922

specified by object_name is found in 923
the image , and False otherwise. 924

112 Parameters 925
113 ------- 926
114 object_name : str 927
115 A string describing the name 928

of the object to be found in the 929
image. 930

116 931
117 Examples 932
118 ------- 933
119 >>> # Are there both cakes and 934

gummy bears in the photo? 935
120 >>> def execute_command(image)-> 936

str: 937
121 >>> image_patch = ImagePatch 938

(image) 939
122 >>> is_cake = image_patch. 940

exists ("cake") 941
123 >>> is_gummy_bear = 942

image_patch.exists ("gummy bear") 943
124 >>> return bool_to_yesno( 944

is_cake and is_gummy_bear) 945
125 """ 946
126 return len(self.find(object_name 947

)) > 0 948
127 949
128 def verify_property(self , 950

object_name: str , property: str)-> 951
bool: 952

129 """ Returns True if the object 953
possesses the property , and False 954
otherwise. 955



130 Differs from ’exists ’ in that it956
presupposes the existence of the957

object specified by object_name ,958
instead checking whether the object959
possesses the property.960

131 Parameters961
132 -------962
133 object_name : str963
134 A string describing the name964

of the object to be found in the965
image.966

135 property : str967
136 A string describing the968

property to be checked.969
137970
138 Examples971
139 -------972
140 >>> # Do the letters have blue973

color?974
141 >>> def execute_command(image)->975

str:976
142 >>> image_patch = ImagePatch977

(image)978
143 >>> letters_patches =979

image_patch.find(" letters ")980
144 >>> # Question assumes only981

one letter patch982
145 >>> if len(letters_patches)983

== 0:984
146 >>> # If no letters are985

found , query the image directly986
147 >>> return image_patch.987

simple_query ("Do the letters have988
blue color ?")989

148 >>> return bool_to_yesno(990
letters_patches [0]. verify_property ("991
letters", "blue"))992

149 """993
150 return verify_property(self.994

cropped_image , object_name , property995
)996

151997
152 def best_text_match(self ,998

option_list: List[str]) -> str:999
153 """ Returns the string that best1000

matches the image.1001
154 Parameters1002
155 -------1003
156 option_list : str1004
157 A list with the names of the1005

different options1006
158 prefix : str1007
159 A string with the prefixes1008

to append to the options1009
1601010
161 Examples1011
162 -------1012
163 >>> # Is the cap gold or white?1013
164 >>> def execute_command(image)->1014

str:1015
165 >>> image_patch = ImagePatch1016

(image)1017
166 >>> cap_patches =1018

image_patch.find("cap")1019
167 >>> # Question assumes one1020

cap patch1021
168 >>> if len(cap_patches) ==1022

0:1023
169 >>> # If no cap is found1024

, query the image directly1025

170 >>> return image_patch. 1026
simple_query ("Is the cap gold or 1027
white ?") 1028

171 >>> return cap_patches [0]. 1029
best_text_match ([" gold", "white "]) 1030

172 """ 1031
173 return best_text_match(self. 1032

cropped_image , option_list) 1033
174 1034
175 def crop(self , left: int , lower: int 1035

, right: int , upper: int)->" 1036
ImagePatch": 1037

176 """ Returns a new ImagePatch 1038
cropped from the current ImagePatch. 1039

177 Parameters 1040
178 ------- 1041
179 left : int 1042
180 The leftmost pixel of the 1043

cropped image. 1044
181 lower : int 1045
182 The lowest pixel of the 1046

cropped image. 1047
183 right : int 1048
184 The rightmost pixel of the 1049

cropped image. 1050
185 upper : int 1051
186 The uppermost pixel of the 1052

cropped image. 1053
187 ------- 1054
188 """ 1055
189 return ImagePatch(self. 1056

cropped_image , left , lower , right , 1057
upper) 1058

190 1059
191 def overlaps_with(self , left , lower , 1060

right , upper): 1061
192 """ Returns True if a crop with 1062

the given coordinates overlaps with 1063
this one , 1064

193 else False. 1065
194 Parameters 1066
195 ---------- 1067
196 left : int 1068
197 the left border of the crop 1069

to be checked 1070
198 lower : int 1071
199 the lower border of the crop 1072

to be checked 1073
200 right : int 1074
201 the right border of the crop 1075

to be checked 1076
202 upper : int 1077
203 the upper border of the crop 1078

to be checked 1079
204 1080
205 Returns 1081
206 ------- 1082
207 bool 1083
208 True if a crop with the 1084

given coordinates overlaps with this 1085
one , else False 1086

209 """ 1087
210 return self.left <= right and 1088

self.right >= left and self.lower <= 1089
upper and self.upper >= lower 1090

Listing 2: API for GQA.

B.2 API for OK-VQA 1091



1 from PIL import Image1092
2 from vision_functions import1093

obtain_query_response_from_image1094
3 from nlp_functions import llm_query ,1095

process_guesses1096
41097
5 def llm_query(question: str)->str:1098
6 ’’’Answers a text question using GPT1099

-3. The input question is always a1100
formatted string with a variable in1101
it.1102

71103
8 Parameters1104
9 ----------1105

10 question: str1106
11 the text question to ask. Must1107

not contain any reference to ’the1108
image’ or ’the photo ’, etc.1109

12 ’’’1110
13 return llm_query(question)1111
141112
15 def process_guesses(question: str ,1113

guesses: List[str])->str:1114
16 ’’’Processes a list of guesses for1115

an answer to a question and returns1116
the best answer.’’’1117

17 return process_guesses(question ,1118
guesses)1119

181120
19 class ImagePatch:1121
20 def __init__(self , image , left: int=1122

None , lower: int=None , right: int=1123
None , upper: int=None):1124

21 if left is None and right is1125
None and upper is None and lower is1126
None:1127

22 self.cropped_image = image1128
23 self.left = 01129
24 self.lower = 01130
25 self.right = image.shape [2]1131
26 self.upper = image.shape [1]1132
27 else:1133
28 self.cropped_image = image1134

[:, lower:upper , left:right]1135
29 self.left = left1136
30 self.lower = lower1137
31 self.right = right1138
32 self.upper = upper1139
331140
34 self.width = self.cropped_image.1141

shape [2]1142
35 self.height = self.cropped_image1143

.shape [1]1144
361145
37 def simple_query(self , query: str):1146
38 """ Answer basic queries about1147

the image patch.1148
39 Parameters1149
401150
411151
42 ----------1152
43 query: str1153
44 the simple query about the1154

image patch in the form of a1155
question1156

451157
46 Returns1158
47 -------1159
48 str1160
49 a guess for the answer to1161

the question 1162
50 """ 1163
51 answer = 1164

obtain_query_response_from_image( 1165
self.cropped_image , query) 1166

52 return answer 1167

Listing 3: API for OK-VQA.

C Prompt For Reviewer 1168

C.1 Prompt for vqa type APIs 1169

Prompt for result asscessment 1170

1 prompt = f’’’You are a reviewer , your 1171
task is to work hand in hand with 1172
another AI to solve a question about 1173
a certain picture , 1174

2 Your task is to check whether the answer 1175
meets the following two criteria 1176

and give a judge result with 1177
reasoning process: 1178

3 1.Is it possible that this answer is the 1179
correct answer? Output Sure , 1180

possible , or impossible. 1181
4 2.Is it this answer clear enough?Output 1182

yes or no. 1183
5 1184
6 1185
7 Examples as follows: 1186
8 expected_result: material_type 1187
9 object: airplane 1188

10 query: What is the material? 1189
11 answer: plastic 1190
12 judge: 1191
13 - Is it possible that this answer is the 1192

correct answer ?: Possible. Plastic 1193
is not a common material for 1194
airplanes ,unless it is a toy 1195
airplane. 1196

14 - Is it this answer clear enough ?:Yes.It 1197
is clear enough. 1198

15 1199
16 expected_result:skateboard_kind 1200
17 object:skateboard 1201
18 query: What is the this? 1202
19 answer:kid 1203
20 judge: 1204
21 - Is it possible that this answer is the 1205

correct answer ?: Impossible.Kid is 1206
not a kind of skateboard. 1207

22 - Is it this answer clear enough ?:Yes.It 1208
is clear enough. 1209

23 1210
24 expected_result: horse_kind 1211
25 object:horse. 1212
26 query:What kind of horse is it? 1213
27 answer:horse. 1214
28 judge: 1215
29 - Is it possible that this answer is the 1216

correct answer ?:Sure. 1217
30 - Is it this answer clear enough ?:No.It 1218

is vague. 1219
31 1220
32 expected_result: person 1221
33 object:clothing 1222
34 query:Who will love this suit? 1223
35 answer:No one. 1224
36 judge: 1225



37 - Is it possible that this answer is the1226
correct answer ?: Impossible. The1227

answer should be occupation , gender ,1228
and everything else that is used to1229
describe people.1230

38 - Is it this answer clear enough ?:No.It1231
is vague.1232

391233
401234
41 (Examples finished)1235
421236
43 expected_result :{ expected_result}1237
44 object :{ object}1238
45 query:{query}1239
46 answer :{ model_output}1240
47 judge:1241
48 ’’’1242

Listing 4: Prompt for vqa type APIs reviewer on resualt
asscessment phase.

Prompt for review generation1243

1 prompt = f’’’1244
2 You are a reviewer. You are reviewing a1245

code execution flow , and there is an1246
error in an API call statement.1247

Another large language model has1248
already identified the error and its1249
cause. Please provide suggestions1250

for modification.1251
31252
4 Here are some suggestion for you to1253

provide:1254
5 1. Replace the query parameter of1255

original function. Use a more1256
informative question.1257

6 2.Use other function to answer the1258
original visual question.1259

7 For example ,if there are options given1260
or implied in the question ,you can1261
use best_text_match with giving1262
options.1263

81264
91265

10 Some of the api’s provided to you may be1266
limited by the model resulting in1267

less than expected results , these1268
api’s include:1269

11 find(object_name): different names for1270
the same object may lead to1271
different results.1272

12 simple_query(question): for different1273
questions with the same semantics ,1274
may lead to different results.1275

13 verify_property(object_name ,property):1276
for different object_name or1277
property with same semantics , may1278
lead to different results.1279

14 best_text_match(option_list): Returns1280
the string that best matches the1281
image.1282

151283
161284
17 Examples as follows:1285
18 (Example 1)1286
19 API statement: skateboard_kind =1287

skateboard.simple_query(’What is1288
this?’)1289

20 Actual Result: Kid.1290

21 Judge from last step: Kid is not a kind 1291
of skateboard. 1292

22 Review: The original query parameter ’ 1293
What is this?’ is too simple. 1294

23 The code should use a more informative 1295
information. 1296

24 1297
25 (Example 2) 1298
26 API statement: horse_kind = horse_patch. 1299

simple_query ("What kind of horse is 1300
it?") 1301

27 Actual Result: horse 1302
28 Judge from last step: The answer is too 1303

vague. 1304
29 Review: The original query parameter ’ 1305

What kind of horse is it?’ is 1306
specific enough. But the answer is 1307
still too vague. Try to use " 1308
best_text_match" and giving some 1309
horse kind as options. 1310

30 1311
31 (Example finished) 1312
32 1313
33 API statement :{code} 1314
34 Actual Result :{ result} 1315
35 Judge from last step:{judge} 1316
36 Review: 1317
37 ’’’ 1318

Listing 5: Prompt for vqa type APIs reviewer on review
generation phase.

C.2 Prompt for location type API 1319

Prompt for result asscessment 1320

1 prompt = f’’’You are an expert in 1321
textual reasoning , and you are good 1322
at reasoning from textual 1323
information to get answers to 1324
questions. 1325

2 Now here’s a image with an AI-generated 1326
description of that image(not 100% 1327
correct), and the query designed for 1328
that image. 1329

3 You need to speculate on the answer to 1330
another question based on the 1331
original query and the description. 1332

4 1333
5 1334
6 Here are some examples: 1335
7 (Example1) 1336
8 ImageCaption: The image depict an aux 1337

and bar. 1338
9 OriginalQuery:The color of the top of 1339

the aux is green or blue? 1340
10 Question1: Does foo exists in the image? 1341
11 Answer: Although the existence of foo is 1342

not mentioned in the caption , its 1343
presence is implied in the query , 1344
because if foo does not exist , the 1345
question becomes unanswerable.Yes ,it 1346
exists. 1347

12 1348
13 1349
14 (Example2) 1350
15 ImageCaption: There is an bar in the 1351

left of the foo. 1352
16 OriginalQuery: The color of the aux of 1353

foo is green or blue? 1354



17 Question: Does aux exists in the image?1355
18 Answer: If aux does not exist , there1356

will be no answers to the query.1357
Althought it does not mention in the1358
caption ,the aux exists.1359

191360
201361
211362
22 (Example3)1363
23 ImageCaption: There are an foo and an1364

aux in the image.1365
24 OriginalQuery: Can you see bar or aux in1366

the image?1367
25 Question: Does bar exists in the image?1368
26 Answer: No ,it does not exist.Based on1369

the image caption and there is no1370
affirmation of its existence in the1371
query.So bar does not exist in the1372
image.1373

271374
28 (Example finished)1375
29 ImageCaption :{( caption)}1376
30 OriginalQuery :{( query)}1377
31 Question: Based on the the query "{(1378

query)}" and image caption ,Does "{(1379
object)}" exists in the image?1380

321381
33 Remeber:1382
34 - Learn from previous examples.1383
35 - The information in the query more1384

important than the information in1385
the caption ,because caption is1386
generated by ai that not 100 percent1387
correct.1388

36 Output:1389
37 {1390
38 ’existence ’:’Sure’ or ’Impossible ’,1391
39 }1392
40 ’’’1393

Listing 6: Prompt for location type APIs reviewer on
resualt asscessment phase.

Prompt for review generation1394

1 prompt = f’’’1395
2 You are a reviewer. You are reviewing a1396

code execution flow , and there is an1397
error in an API call statement.1398

Another large language model has1399
already identified the error and its1400
cause. Please provide suggestions1401

for modification.1402
31403
4 Here are some suggestion for you to1404

provide:1405
5 1. Replace the object parameter in1406

function. Try use more other synonym1407
object name replace the original1408

object name.1409
6 2.Use other function as error handler1410

while you can not find tagret object1411
.1412

71413
8 Some of the api’s provided to you may be1414

limited by the model resulting in1415
less than expected results , these1416
api’s include:1417

9 find(object_name): different names for1418
the same object may lead to1419
different results.1420

10 simple_query(question): for different 1421
questions with the same semantics , 1422
may lead to different results. 1423

11 verify_property(object_name ,property): 1424
for different object_name or 1425
property with same semantics , may 1426
lead to different results. 1427

12 best_text_match(option_list): Returns 1428
the string that best matches the 1429
image. 1430

13 1431
14 Previous code fail to find the {object} 1432

which should be in the image based 1433
on the {query}. Try to give some 1434
suggestions. 1435

15 1436
16 Examples as follows: 1437
17 (Example1) 1438
18 Query: What do the vase and the paper 1439

have in common? 1440
19 Object should be found: paper 1441
20 Review: Try use more other synonym 1442

object name replace ’paper’ in the 1443
paper_patches = image_patch.find(" 1444
paper") for increase chance to find 1445
paper in the image. 1446

21 1447
22 (Example2) 1448
23 Query: How are the vehicles to the right 1449

of the walking person that is 1450
walking on the sidewalk called? 1451

24 Object should be found: vehicles 1452
25 Review: Explore more parameters.Replace 1453

the vehicle with ’car’ or other 1454
words of the same semantics. 1455

26 1456
27 (Example3) 1457
28 Query: What is the color of the carpet? 1458
29 Object should be found: carpet 1459
30 Review: Add simple_query function for 1460

error handler. 1461
31 1462
32 (Examples finished) 1463
33 Query:{query} 1464
34 Object should be found:{ object} 1465
35 Review 1466
36 ’’’ 1467

Listing 7: Prompt for location type APIs reviewer on
review generation phase.

C.3 Prompt For Logic Reviewer 1468

Prompt for result asscessment of answer error 1469

1 f’’’ 1470
2 Suppose you are a checker , and you are 1471

working on a visual question task 1472
with another AI, who will give his 1473
answer to the visual question , 1474

3 and your task is to determine whether 1475
the answer conforms to the form of 1476
the question 1477

4 Output ’Accept ’ or ’Refuse ’ with your 1478
thinking process. 1479

5 Learn from examples. 1480
6 Examples as follows: 1481
7 (Example1) 1482
8 Visual Question:What kind of horse is it 1483

? 1484



9 AI Answer:horse.1485
10 Judge: Refuse.The answer is too vague.1486
111487
12 (Example2)1488
13 Visual Question:Who will love this suit?1489
14 AI Answer:No one.1490
15 Judge: Refuse. The answer should be1491

occupation , gender , and everything1492
else that is used to describe people1493
.1494

16 (Example finished)1495
171496
18 Remeber:1497
191498
20 - The AI answer does not need to be1499

extremely precise , but rather within1500
a certain range. For example , the1501

answer to the question Where is1502
here? can be "street" or "parking1503
lot", rather than a specific1504

location.1505
21 - Do not give ’correct answer ’ of the1506

question. Becuase you can not give1507
correct answer for an unseen image.1508

221509
23 Visual Question :{{( question)}}1510
24 AI Answer :{{( answer)}}1511
25 Judge:1512
26 ’’’1513

Listing 8: Prompt for logic reviewer on result
asscessment phase of answer error.

Prompt for review generation of answer error1514

1 Prompt = f’’’1515
2 I want you to serve as a senior code1516

engineer. I will provide you with1517
the code ,including its intermediate1518
states and return values.1519

3 You should be able to trace back from1520
the return values to identify the1521
root cause statements that lead to1522
these return values.1523

41524
5 Examples as follows:1525
6 (Example1)1526
7 code:1527
8 def execute_command(image)->str:1528
9 image_patch = ImagePatch(image)1529

10 person_patches = image_patch.find("1530
person ")1531

11 # Question assumes only one person1532
patch1533

12 if len(person_patches) == 0:1534
13 # If no person is found , query1535

the image directly1536
14 return image_patch.simple_query1537

("What does the person to the left1538
of the helmet hold ?")1539

15 person_patch = person_patches [0]1540
16 helmet_patches = image_patch.find("1541

helmet ")1542
17 # Question assumes only one helmet1543

patch1544
18 if len(helmet_patches) == 0:1545
19 return "no"1546
20 for helmet_patch in helmet_patches:1547
21 if helmet_patch.1548

horizontal_center > person_patch.1549
horizontal_center:1550

22 return helmet_patch. 1551
simple_query ("What does the person 1552
to the left of the helmet hold ?") 1553

23 return "no" 1554
24 intermediate_result: 1555
25 ’image_patch ’: ’a baseball game ’, 1556
26 ’person_patches ’: ’lens:4’, 1557
27 ’len(person_patches)’: ’4’, 1558
28 ’if len(person_patches) == 0?’: ’ 1559

False ’, 1560
29 ’person_patch ’: ’a baseball player 1561

holding a bat ’, 1562
30 ’helmet_patches ’: ’lens:3’, 1563
31 ’len(helmet_patches)’: ’3’, 1564
32 ’if len(helmet_patches) == 0?’: ’ 1565

False ’, 1566
33 ’helmet_patch.horizontal_center ’: 1567

’333.5’, 1568
34 ’person_patch.horizontal_center ’: 1569

’230.0’, 1570
35 ’if helmet_patch.horizontal_center > 1571

person_patch.horizontal_center ?’: ’ 1572
True’ 1573

36 return value: right 1574
37 1575
38 Return value traceability analysis The 1576

root line is the "helmet_patch. 1577
simple_query ("What does the person 1578
to the left of the helmet hold ?")" 1579
line.The reason is because 1580
horizontal_center of one of the 1581
helmet_patch bigger than that of 1582
person_patch. 1583

39 1584
40 (Example2) 1585
41 # Which color is the device the monitor 1586

is to the right of? 1587
42 def execute_command(image)->str: 1588
43 image_patch = ImagePatch(image) 1589
44 monitor_patches = image_patch.find(" 1590

monitor ") 1591
45 # Question assumes only one monitor 1592

patch 1593
46 if len(monitor_patches) == 0: 1594
47 # If no monitor is found , query 1595

the image directly 1596
48 return image_patch.simple_query 1597

("Which color is the device the 1598
monitor is to the right of?") 1599

49 for monitor_patch in monitor_patches 1600
: 1601

50 device_patches = image_patch. 1602
find(" device ") 1603

51 for device_patch in 1604
device_patches: 1605

52 if device_patch. 1606
horizontal_center < monitor_patch. 1607
horizontal_cent er: 1608

53 return device_patch. 1609
simple_query ("Which color is the 1610
device ?") 1611

54 return "unknown" 1612
55 1613
56 intermediate_result: 1614
57 "image_patch ": "a computer monitor 1615

and a laptop computer on a desk", 1616
58 "monitor_patches ":" lens:2", 1617
59 "len(monitor_patches)":"2", 1618
60 "if len(monitor_patches) == 0?":" 1619

False", 1620



61 "device_patches ":" lens:4",1621
62 "device_patch.horizontal_center1622

":"285.0" ,1623
63 "monitor_patch.horizontal_center ":1624

"319.0" ,1625
64 "if device_patch.horizontal_center1626

< monitor_patch.horizontal_center1627
?": "True"1628

65 return value: right1629
661630
67 Return value traceability analysis: The1631

root line is the "return1632
device_patch.simple_query ("Which1633
color is the device ?")" line.The1634
reason is1635

68 because horizontal_center of one of the1636
device_patch smaller than that of1637
monitor_patch.1638

69 (Examples finished)1639
701640
71 The first code is:{code}1641
72 The intermediate result :{ inter_res}1642
73 return_value :{ return_value}1643
74 Return value traceability analysis:1644
75 ’’’1645

Listing 9: Prompt for logic reviewer on review
generation phase of answer error.

Prompt for result asscessment and review gen-1646

eration phase of potential error1647

1 Prompt = f’’’1648
2 I want you to serve as a senior code1649

engineer. I will provide you with1650
the code ,including its intermediate1651
states and return values.1652

3 First.Summarize the content of the1653
intermediate variables. The term ’1654
image_patch ’ represents the content1655
of the image; the number of patches1656
indicates how many of a certain1657
object are present in the image.1658

4 Second.Analyse from questions code and1659
intermediate results. Check if there1660
are errors in the loops and1661

selection structures in this code ,1662
or if there is a lack of loops and1663
selection structures.1664

51665
6 Examples as follows:1666
7 (Example1)1667
8 code:1668
9 def execute_command(image)->str:1669

10 image_patch = ImagePatch(image)1670
11 person_patches = image_patch.find("1671

person ")1672
12 # Question assumes only one person1673

patch1674
13 if len(person_patches) == 0:1675
14 # If no person is found , query1676

the image directly1677
15 return image_patch.simple_query1678

("What does the person to the left1679
of the helmet hold ?")1680

16 person_patch = person_patches [0]1681
17 helmet_patches = image_patch.find("1682

helmet ")1683
18 # Question assumes only one helmet1684

patch1685

19 if len(helmet_patches) == 0: 1686
20 return "no" 1687
21 for helmet_patch in helmet_patches: 1688
22 if helmet_patch. 1689

horizontal_center > person_patch. 1690
horizontal_center: 1691

23 return helmet_patch. 1692
simple_query ("What does the person 1693
to the left of the helmet hold ?") 1694

24 return "no" 1695
25 intermediate_result: 1696
26 ’image_patch ’: ’a baseball game ’, 1697
27 ’person_patches ’: ’lens:4’, 1698
28 ’len(person_patches)’: ’4’, 1699
29 ’if len(person_patches) == 0?’: ’ 1700

False ’, 1701
30 ’person_patch ’: ’a baseball player 1702

holding a bat ’, 1703
31 ’helmet_patches ’: ’lens:3’, 1704
32 ’len(helmet_patches)’: ’3’, 1705
33 ’if len(helmet_patches) == 0?’: ’ 1706

False ’, 1707
34 ’helmet_patch.horizontal_center ’: 1708

’333.5’, 1709
35 ’person_patch.horizontal_center ’: 1710

’230.0’, 1711
36 ’if helmet_patch.horizontal_center > 1712

person_patch.horizontal_center ?’: ’ 1713
True’ 1714

37 return value: right 1715
38 1716
39 1717
40 Summary of intermediate variables: The 1718

image shows a baseball game ,there 1719
are 4 persons in the image and 3 1720
helmet. 1721

41 Possible problems: The code assume that 1722
there are only one person patch ,but 1723
actually there are 4 persons. The 1724
code is missing loop structure for 1725
handling of different situations 1726
when the number of people is greater 1727
than 1. 1728

42 1729
43 1730
44 (Example2) 1731
45 # Which color is the device the monitor 1732

is to the right of? 1733
46 def execute_command(image)->str: 1734
47 image_patch = ImagePatch(image) 1735
48 monitor_patches = image_patch.find(" 1736

monitor ") 1737
49 # Question assumes only one monitor 1738

patch 1739
50 if len(monitor_patches) == 0: 1740
51 # If no monitor is found , query 1741

the image directly 1742
52 return image_patch.simple_query 1743

("Which color is the device the 1744
monitor is to the right of?") 1745

53 for monitor_patch in monitor_patches 1746
: 1747

54 device_patches = image_patch. 1748
find(" device ") 1749

55 for device_patch in 1750
device_patches: 1751

56 if device_patch. 1752
horizontal_center < monitor_patch. 1753
horizontal_cent er: 1754

57 return device_patch. 1755



simple_query ("Which color is the1756
device ?")1757

58 return "unknown"1758
591759
60 intermediate_result:1760
61 "image_patch ": "a computer monitor1761

and a laptop computer on a desk",1762
62 "monitor_patches ":" lens:2",1763
63 "len(monitor_patches)":"2",1764
64 "if len(monitor_patches) == 0?":"1765

False",1766
65 "device_patches ":" lens:4",1767
66 "device_patch.horizontal_center1768

":"285.0" ,1769
67 "monitor_patch.horizontal_center ":1770

"319.0" ,1771
68 "if device_patch.horizontal_center1772

< monitor_patch.horizontal_center1773
?": "True"1774

69 return value: right1775
701776
711777
72 Summary of intermediate variables: The1778

image shows a computer monitor and a1779
laptop computer on a desk ,There are1780
2 monitor and 4 devices.1781

73 Possible problems: Although there are1782
multiple Monitors in the problem ,1783
for the device , the judgment1784
condition is already satisfied at1785
the first device , and the answer is1786
returned without obtaining the1787
colors of other devices that meet1788
the condition later. The code is1789
lack of loop structure.1790

741791
75 (Example3)1792
76 # In which part of the photo is the1793

bridge , the bottom or the top?1794
77 def execute_command(image)->str:1795
78 image_patch = ImagePatch(image)1796
79 bridge_patches = image_patch.find("1797

bridge ")1798
80 # Question assumes only one bridge1799

patch1800
81 if len(bridge_patches) == 0:1801
82 # If no bridge is found , query1802

the image directly1803
83 return image_patch.simple_query1804

("In which part of the photo is the1805
bridge , the bottom or the top?")1806

84 if bridge_patches [0]. vertical_center1807
> image_patch.vertical_center:1808

85 return "bottom"1809
86 else:1810
87 return "top"1811
881812
89 intermediate_result:1813
90 image_patch:A bridge cross the river.1814
91 bridge_patches:lens:11815
92 if bridge_patches [0]. vertical_center >1816

image_patch.vertical_center? True1817
93 ...1818
941819
95 Summary of intermediate variables: The1820

image shows 1 bridge cross the river1821
.1822

961823
97 Possible problems: The judgment of up1824

and down in the code is reversed.1825

The patch with a larger vertical 1826
center should be placed above , and 1827
similarly , the patch with a larger 1828
horizontal center should be placed 1829
on the right side of the image. The 1830
code snippet uses incorrect 1831
attributes in the selection 1832
structure. 1833

98 1834
99 (Examples finished) 1835

100 1836
101 Your return format should be as follows: 1837
102 Summary of intermediate variables: 1838

Included length of list and text 1839
description. 1840

103 Possible problems: The possible problems 1841
hide in code based on query and 1842

summary of intermediate variables. 1843
104 1844
105 The code is:{code} 1845
106 The intermediate result :{ inter_res} 1846
107 return_value :{ return_value} 1847
108 Summary of intermediate variables: 1848
109 ’’’ 1849

Listing 10: Prompt for result asscessment and review
generation phase of potential error.

C.4 Prompt For Code Error Reviewer 1850

1 f’’’Error in execution of statement { 1851
code }:{ error}. 1852

2 Here are 2 error types of code execution 1853
: 1854

3 Syntax Error: Syntax errors are the most 1855
basic type of error , typically 1856

occurring when the written code does 1857
not adhere to the syntax rules of 1858

the programming language. For 1859
example , missing semicolons , 1860
mismatched parentheses , or spelling 1861
errors in variable names. 1862

4 Runtime Error: Runtime errors occur 1863
during program execution and are 1864
often caused by invalid input data , 1865
memory overflow , or division by zero 1866
. Such errors can potentially lead 1867
to program crashes. 1868

5 1869
6 What is the type of {error}? If i t s a 1870

syntax error , please provide the 1871
corrected code directly. If i t s a 1872
runtime error , add exception 1873

handling statements at the 1874
corresponding location in the 1875
original code. 1876

7 1877
8 fixed_code:’’’ 1878

Listing 11: Prompt for code error reviewer on review
generation phase.

D Prompt For Rationale Generation 1879

1 f’’’You are currently assisting another 1880
artificial intelligence in 1881
completing a Visual Question 1882
Answering (VQA) task. You need to 1883
break down the solution process for 1884



the following question into 1-5 sub -1885
steps , allowing the AI to invoke1886
tools for each sub -step and1887
ultimately arrive at an answer.1888
Example as follows:1889

2 (Example1)1890
3 Query: Where is this?1891
4 1. Identify prominent landmarks or1892

features in the image that can help1893
determine the location.1894

5 2. Analyze the surroundings of the1895
landmarks or features to gather1896
contextual information that could1897
indicate the location.1898

6 3. Based on contextual information ,1899
infer the most likely location1900
depicted in the image.1901

71902
8 (Example2)1903
9 Query: What kind of car is near the pond1904

?1905
10 1. Find the pond in the image.1906
11 2. Determine which cars are near the1907

pond based on their positions1908
relative to the pond’s location.1909

12 3. Identify the type or model of the car1910
.1911

13 (Examples finished)1912
141913
15 Query:{query}1914
16 ’’’1915

Listing 12: Prompt for rationale generation in code
generation satge.

E Prompt For Supervised Prompt Tuning1916

1 f’’’As a professional prompt engineer1917
specializing in prompt optimization1918
based on review feedback , I’ll help1919
you create a template for analyzing1920
reports and optimizing prompts:1921

21922
3 As an experienced Prompt Optimization1923

Specialist , please carefully analyze1924
the following Review Report and1925

optimize the Prompt Template1926
accordingly.1927

41928
5 Review Report:1929
6 {Review Report}1930
71931
8 Original Prompt Template:1932
9 {Prompt Template}1933

101934
11 Please follow these steps for analysis1935

and optimization:1936
121937
13 Analyze key issues and improvement1938

suggestions mentioned in the Review1939
Report1940

14 Based on this feedback , evaluate the1941
original prompt in the following1942
aspects:1943

15 Clarity and specificity of instructions1944
16 Accuracy of role definition1945
17 Output format standardization1946
18 Reasonableness of constraints1947
19 Helpfulness of examples1948

20 Propose specific optimization 1949
suggestions 1950

21 Generate an optimized version of the 1951
prompt 1952

22 Optimization focus: 1953
23 1954
24 Maintain the core functionality of the 1955

prompt 1956
25 Enhance instruction executability 1957
26 Improve output consistency 1958
27 Supplement necessary context 1959
28 Perfect constraints 1960
29 Improve example explanations 1961
30 Please provide: 1962
31 1963
32 Problem analysis and optimization 1964

approach 1965
33 List of recommended modifications 1966
34 Complete optimized prompt 1967
35 I will optimize according to the 1968

original prompt ’s core intent while 1969
addressing issues raised in the 1970
review.’’’ 1971

Listing 13: Prompt for supervised prompt tuning.

F Additional Results 1972

F.1 GQA Validation Result 1973

We also evluate Seper on GQA Validation set, 1974

which contains 2000 balanced question typed sam- 1975

ples. As shown in 4, our method is two percent 1976

better than current visual programming method. 1977

F.2 Prompt Tuning Experiment 1978

We selected the GQA training dataset to tune the 1979

prompt templates in Seper. During each tuning iter- 1980

ation, we categorize the samples into four types: 1) 1981

Invalid: Both the previous and current prompt tem- 1982

plates result in incorrect answers for these samples. 1983

2) Valid: The previous prompt templates result in 1984

incorrect answers, but the current iteration leads to 1985

correct answers. 3) Toxic: The previous prompt 1986

templates result in correct answers, but the current 1987

iteration leads to incorrect answers. 4) Other: Both 1988

the previous and current prompt templates result in 1989

correct answers. 1990

As shown in Table 3, the prompt tuning process 1991

significantly reduces the number of toxic samples, 1992

with the 5-th iteration leading to a modest overall 1993

increase in accuracy from 55.3% to 57.2%. Conse- 1994

quently, we used the prompt templates in the 5-th 1995

iteration for subsequent experiments. 1996

F.3 Accuracy Analysis across Question Types 1997

8 As shown in Figure x, we categorized the sam- 1998

ples in GQA according to the variation in accuracy 1999

between Seper and the baseline. The five categories 2000

are: 0 to 50% increase, 50 to 100% increase, over 2001



Table 3: Accuracy results on the GQA dataset across
iterations in supervised prompt tuning.

Iteration Other Valid Invalid Toxic Acc

0 - - - - 55.3
1 44.2 10.9 33.8 11.1 55.1
3 44.8 10.7 34.0 10.5 55.5
5 46.2 11.0 33.7 9.1 57.2
10 46.0 10.8 33.9 9.3 56.8

Table 4: Result On GQA Validation.

Accuracy(%)

ViperGPT 55. 2
CodeVQA 55. 3

Seper 57. 8

100% increase, 0 to 10% decrease, and 10 to 100%2002

decrease. Nearly 70% of the samples achieved ac-2003

curacy improvements, with 17.6% of the question2004

categories seeing over 100% increases in accuracy,2005

demonstrating the effectiveness of the Seper frame-2006

work. However, 30% of the samples still saw ac-2007

curacy declines, and around 3.9% of the question2008

categories had accuracy drops of over 10%, which2009

include the following three categories:2010

Type Baseline (%) Seper (%)
activity 70.71 58.49 (-17.27%)
verifyAttrCThis 39.12 13.83 (-64.65%)
verifyAttrs 84.74 70.50 (-16.80%)

Table 5: Accuracy Reduction for Problematic Cate-
gories

Through sampling the examples for these2011

three question categories, we found that2012

these types of questions are more prone2013

to overlooking global information issues.2014

1 def execute_command(image)->str:
2 image_patch = ImagePatch(image)
3 return image_patch.simple_query("

What is the man doing?")

Listing 14: Code generated by Viper.

2015

For example, for the ’activity’ category question2016

"What is the man doing", Viper’s generated code2017

is as shown in Listing 14. Seper’s generated2018

code is as shown in Listing 15. The difference is2019

that Seper generated more detailed steps - it first2020

locates the specific person, and then judges their2021

action. However, this also led to a lack of global2022

Figure 8: Accuracy Variation between Seper and Base-
line in GQA Samples.

image_patch:

man_patch:

Throwing frisbee 

Throwing something
simple_query(.)

simple_query(.)

Figure 9: Accuracy Variation between Seper and Base-
line in GQA Samples.

information in the judgment, as shown in Figure 9. 2023

In Seper’s case, since it was unable to perceive the 2024

existence of the Frisbee, it was unable to answer 2025

the question correctly. 2026

We considered emphasizing the role of global 2027

information in the review process, such as using an 2028

image-captioning model to generate descriptions 2029

of images and enforcing these descriptions as 2030

reference information for reviewers during their 2031

evaluation. However, we found that this approach 2032

could also introduce potential biases due to inaccu- 2033

racies or distortions in the captions generated by 2034

the image-captioning model, thereby negatively 2035

impacting the review process. As a result, we ulti- 2036

mately decided to retain our current approach. In 2037

future work, we will explore more effective ways 2038

to incorporate global information into the review 2039

process while minimizing hallucinations or errors. 2040



Figure 10: (a) Proportion of samples with different itera-
tion counts for Seper in GQA, we divided samples with
different iteration counts into three groups: A, B, and
C. These three groups underwent 1, 2, and 3 iterations
respectively. (b) Accuracy of Seper and Viper in groups
A, B, and C samples.

1 def execute_command(image)->str:
2 image_patch = ImagePatch(image)
3 # subtask1: find the man
4 man_patch = image_patch.find("man")
5 # subtask2: Identify the man’s

activity
6 return man_patch.simple_query("What

is the man doing?")

Listing 15: Code generated by Seper.

2041

F.4 Group Analysis2042

Based on Seper’s iteration counts, we categorized2043

the GQA validation samples into three groups: A,2044

B, and C, corresponding to 1, 2, and 3 iterations,2045

respectively. Viper, in contrast, can be regarded as2046

having executed only a single iteration across all2047

sample types.2048

Figure 10(a) illustrates the distribution of sam-2049

ples by iteration count, with approximately one-2050

fourth undergoing a second iteration by Seper,2051

and only about 5% necessitating a third. Fig-2052

ure 10(b) contrasts Seper and ViperGPT’s perfor-2053

mance, showing a declining accuracy trend across2054

the groups. This trend highlights significant diffi-2055

culty variation, with Group A being the easiest2056

and Group C the most challenging. In Group2057

A, where only one iteration was required, the2058

self-correcting framework shows minimal devia-2059

tion from ViperGPT. However, in the more com-2060

plex Group B, the self-correcting framework sur-2061

passes ViperGPT by approximately 15% in accu-2062

racy. Even in Group C, the most difficult, Seper2063

demonstrates a clear advantage, indicating that2064

Seper’s ability to address complex problems is sub-2065

stantially enhanced by self-correcting techniques.2066

As shown in Table 6, we conducted a compara-2067

tive analysis of the average time consumption per2068

sample between Seper and Viper. The results in-2069

dicate that our method requires an average of 3.122070

Metric Viper Seper
Avg Time 2.37s 3.12s

Iteration Distribution 100% × 1
71% × 1
24% × 2
5% × 3

Table 6: Time Consume Comparison Between Viper
and Seper.

seconds per sample, while Viper completes the 2071

task in 2.37 seconds, representing a 31.6% increase 2072

in processing time. This elevated time consump- 2073

tion is primarily attributed to the multiple rounds 2074

of interaction with the Large Language Model re- 2075

quired for code generation in our approach. In 2076

future work, we aim to optimize these temporal 2077

costs through various strategies, such as minimiz- 2078

ing prompt length or deploying local LLM imple- 2079

mentations. 2080
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