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Abstract

In classifier-free guidance(CFG) for offline reinforcement learning(RL), the diffusion model
and its guidance are typically trained jointly and applied jointly as the policy network.
Before the guidance network has converged, it provides unstable or even misleading gradient
shifts for reward optimization. Such strict coupling also prevents the guidance module from
being reused across different diffusion models. We propose Guidance-First Diffusion Training
(GFDT), which pretrains and freezes the guidance model before diffusion policy learning.
This decoupling reduces peak memory and computational overhead by 38.1%, and reduces
required diffusion training steps by 65.6% and 27.66% on locomotion and navigation tasks,
respectively. Beyond these efficiency gains, the method achieves significant performance
improvements of up to 43.16% and 60.98% on these respective offline RL benchmarks.
Moreover, we uncover a strong plug-and-play property: Cross-algorithm swaps (e.g., Implicit
Q-Learning (IDQL) guidance for Diffusion Q-Learning (DQL) policies) perform comparably
to the stronger of the two, despite never being co-trained.
Our theoretical analysis also demonstrates that GFDT facilitates convergence to an optimal
guidance and accelerates the training process. We further prove that plug-and-play remains
valid as long as the guidance and the diffusion model are trained with the same data
distribution. Limitations arising from dataset mismatch are analyzed in detail, which further
underscores the necessity of distributional alignment. This work opens a new line of research
by treating diffusion and guidance as modular units that can be recombined, rather than
as a monolithic process, suggesting a paradigm that may guide the future development of
diffusion-based RL.

1 Introduction

By formulating policy learning as a conditional generative process, diffusion policies are capable of modeling
complex, multimodal behaviors. Building on this perspective, diffusion-based policies have emerged as a
powerful paradigm for behavior generation in offline decision-making. Diffusion policies for offline RL are
typically composed of two core modules: a generative diffusion model that produces actions through iterative
denoising, and a guidance module that provides gradient bias to steer generation toward higher-reward
behavioral modes. This design is known as the CFG paradigm(Ho & Salimans, 2022). This guidance–diffusion
paradigm has proven highly effective, achieving strong empirical success across diverse offline RL and robotic
control benchmarks. Despite this success, since the guidance module and the diffusion model are trained
jointly and tightly coupled in inference, two challenges exist: 1)Before the guidance module has converged,
it cannot provide effective guidance to the diffusion model or even mislead the training process (Kim et al.,
2023). 2)This tightly coupled diffusion and guidance usage prevents re-usage across different combinations of
network modules.

Existing methods solve Challenge 1 by pretraining the diffusion model and then letting the diffusion model
generate samples for the guidance training. This pipeline overlooks data distribution shift and assumes
generated samples remain unbiased. If the diffusion backbone contains modeling errors, synthetic samples
replicate and amplify those biases. Furthermore, such diffusion models are trained merely to mimic the
dataset’s empirical distribution without reward prioritization. In this work, we take the opposite approach:
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pre-training the guidance module, then freezing it to guide the diffusion model, which is called Guidance-First
Diffusion Training (GFDT). This design offers four parallel advantages. 1)Because the entire model is trained
solely on the dataset, without introducing synthetic samples that could contaminate the offline data. 2) As a
purely offline RL formulation, the method naturally does not involve exploration, removing any ambiguity
about environment sampling or online exploration requirements. 3) Unlike the existing pipelines that train
the diffusion model to generate mixed-quality samples, GFDT updates diffusion using only reward-aligned
gradient shifts. This converged guidance module ensures every generated action is already value-optimized
rather than unconstrained. 4) Since diffusion learning is guided by a well-trained guidance signal, optimization
converges substantially faster by avoiding unstable early-stage guidance updates.

To solve Challenge 2, CFG methods can be modularized: Further, we cross-combined components from
models trained under different frameworks. Specifically, we took the guidance module from an IDQL model
and paired it with a completely separate DQL diffusion model—one that had never been trained in conjunction
with the IDQL guidance. The plug-and-play (PAP) module and its reversed model are functional, and the
performance is comparable with the stronger of these two, and has a significantly better early training stage,
outperforming both the baselines. This result strongly suggests that the relationship between the guidance
module and the diffusion model is modular and flexible, and therefore, highlights a promising direction for
future research.

Figure 1: Schematic Illustration of GFDT versus Traditional CFG. GFDT (left) first trains and
freezes the guidance module before diffusion training, ensuring that diffusion is guided only by a converged
and reliable guidance signal. In contrast, traditional CFG (right) jointly trains guidance and diffusion, during
which diffusion is influenced by immature guidance for a substantial portion of training. This figure is
intended to provide intuition about training dynamics rather than to define formal modules or ablation stages.
The terms “undertrained” and “partially trained” are used qualitatively and do not correspond to specific
experimental regimes.
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Algorithm 1 Guidance-First Diffusion Training (GDFT)
Require: Offline dataset D = {(s, a, r, s′)}, Q-network Qϕ, diffusion model ϵθ, guidance scale λ, training

steps Nq, Nθ

1: // Step 1: Train Q-function (guidance model)
2: for i = 1 to Nq do
3: Sample minibatch (s, a, r, s′) ∼ D
4: TD target: y ← r + γ ·maxa′ Qϕ(s′, a′)
5: Update Qϕ to minimize LQ = ∥Qϕ(s, a)− y∥2

6: Freeze Qϕ

7: // Step 2: Train diffusion model with frozen guidance
8: for j = 1 to Nθ do
9: Sample (s, a0) ∼ D

10: Add noise: at ←
√

ᾱta0 +
√

1− ᾱt · ϵ, ϵ ∼ N (0, I)
11: Predict noise: ϵ̂← ϵθ(at, s, t)
12: Update ϵθ to minimize Ldiff = ∥ϵ̂− ϵ∥2 + LQ

▷ Qϕ frozen; LQ still updates ϵθ

13: Return trained ϵθ, frozen Qϕ

14:
15: Inference:
16: for denoise steps do
17: Sample candidate ak ∼ πθ(·|s)
18: Apply guidance: ak−1 ← ak + λ · ∇aQϕ(s, ak)

The detailed pseudo-codes the traditional CFG, and a diagram comparison can be found in Appendix A.1. In
prior works, diffusion-based policies are interpreted as actors, and Q-based guidance modules are interpreted
as critics. In this paper, we use the terms Diffusion Model and Guidance Module to emphasize that our
method relies on diffusion dynamics rather than generic Actor-Critic training.

2 Preliminaries

In offline RL, the objective is to learn a policy πθ(a|s) that maximizes the expected return using only a fixed
dataset D = {s, a, r, s′}, with interaction to the environment only at the inference stage (Levine et al., 2020).
When diffusion models are used as policies, several offline RL methods—including DQL (Yang et al., 2023),
Exponential Diffusion Process(EDP) (Kang et al., 2023), and IDQL (Hansen-Estruch et al., 2023)—adopt a
conditional denoising diffusion process. The policy is defined implicitly by the reverse denoising procedure:
â0 ∼ πθ(· | s).

Q-Guided Diffusion : Q-Guided Diffusion(Janner et al., 2022) has a forward noising process and a reverse
denoising process. The forward noising process gradually perturbs a clean action a0 into a noisy version ak:

ak =
√

ᾱk a0 +
√

1− ᾱk ϵ, ϵ ∼ N (0, I), ᾱk =
k∏

i=1
αi,

where k ∈ {1, . . . , T} denotes the diffusion timestep (or noise level), and ᾱk is the cumulative product of
noise scheduling coefficients . A denoising network ϵθ(ak, k, s) is trained to recover the clean action a0 from
its noisy counterpart ak ∼ N (0, I). During reverse diffusion, we can form an estimate of the clean action:

â0 = 1√
ᾱk

(
ak −

√
1− ᾱk · ϵθ(ak, k, s)

)
. (1)

The behavior clone loss is formulated as: LBC = Ea0,ϵ,t[∥ϵθ(at, t, s)− ϵ∥2]. To incorporate reward information,
Q-guided diffusion introduces an actor loss LQ, and the entire loss becomes: Lactor = LBC + ηLQ, which is
the sum of the behavior cloning loss, and Q-loss, which is controlled by the strength of η.

Here Qϕ(s, a) denotes the learned Q-function, i.e., an estimation of the expected discounted
return starting from state s and action a: Qφ(s, a) ≈ E[

∑∞
t=0 γrt

∣∣∣ s0 = s, a0 =
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a], (γ is the discount factor, rt the reward at step t). For stable guidance, we normalize this value by its
expectation over sampled actions, defining Q̃ϕ(s, a) = Qϕ(s, a)/Ea[Qϕ(s, a)]. This normalization ensures scale
invariance of the guidance signal and enables interchangeable use of guidance modules across actor-critic
variants (e.g., DQL and IDQL) without a mismatch in magnitude.(A more detailed derivation is provided in
section3.)

A similar design also exists at inference time, the Q-network provides explicit guidance by adjusting the
sampled actions:

ã0 = a0 + λ
∇aQϕ(s, a0)

∥∇aQϕ(s, a0)∥+ ϵ
, (2)

where λ balances exploitation of the learned Q-function against fidelity to the diffusion. The normalizing
process is inherent from (Ho et al., 2020) and is expected to be important in the modular and plug-and-play
designs.

Diffusion Q-learning (DQL): The DQL model modified the traditional Q-guided diffusion and applied a
variation of the Deep Q network called double Q to improve the accuracy of the Q-value estimation (?).

LDQL
π (θ) = −Es∼D

[
min

(
Qϕ1(s, a0), Qϕ2(s, a0)

)]
, where a0 ∼ πθ(·|s) (3)

Implicit Diffusion Q-learning (IDQL). Unlike DQL, which directly incorporates the reward target
into the diffusion training, IDQL adopts a two-stage design. During training, the diffusion model is updated
purely via behavior cloning from the dataset, without any explicit Q-guidance. In parallel, a separate Q-value
network is learned to estimate Q(s, a). At inference time, the diffusion model offers candidate actions, and
the guidance module evaluates them with the Q-network through a one-hot encoding scheme, and selects the
action with the highest estimated Q-value. Compared to traditional Q-guided diffusion, IDQL thus applies the
guidance entirely to the inference stage rather than the training stage. Although IDQL does not leverage the
Q-value estimator to directly guide diffusion during training, the implementation still places the Q-network
update within the same training loop as the diffusion model. This coupling is not theoretically necessary, and
the consequence is a substantially higher computational and memory usage. There is a detailed analysis of
the difference between IDQL and GFDT in Appendix A.2. Since IDQL does not employ diffusion guidance
during training, it tends to underperform on dense-reward tasks that require fine-grained, step-wise policy
optimization. In contrast, it performs well on in-distribution, goal-oriented environments such as AntMaze,
which are evaluated based on task success rather than on the efficiency or smoothness of the trajectory.

Efficient Diffusion Policy (EDP) introduces a key modification on traditional Q-guided diffusion: one-step
denoising. Instead of running the full reverse chain to generate actions, EDP corrupts a dataset action a0 to
ak in one step, and then one-step-reconstructs an approximate clean action â0 using the denoise backward
path as Equation 1 in Appendix ??. This action approximation replaces expensive sampling with a lightweight
inference step, making EDP orders of magnitude faster to train.

In traditional diffusion policies, generating a clean action a0 requires running a long reverse chain:
aT → aT −1 → · · · → a0,

where T is typically large (e.g., 100–1000). This iterative procedure is computationally expensive.

Instead, EDP corrupts a dataset action a0 directly into a noisy action ak in one step:
ak =

√
ᾱk a0 +

√
1− ᾱk ϵ, ϵ ∼ N (0, I). (4)

Then, it reconstructs an approximate clean action â0 by applying the denoiser once:

â0 = 1√
ᾱk

ak −
√

1− ᾱk√
ᾱk

· ϵθ(ak, k, s), (5)

where ϵθ is the learned denoising network conditioned on state s.

Role of Q-guidance Since the one-step approximation introduces bias, EDP relies more strongly on the
Q-function to refine â0. In practice, the algorithm evaluates candidate actions using Q-values and adjusts
them toward high-value regions, which compensates for the reduced accuracy of the denoising step.
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The main differences are 1)Cost reduction: iterative sampling (O(T ) steps) → one-step approximation (O(1)).
2)Trade-off:less precise denoising → stronger dependence on Q-guidance. 3)Outcome: training time reduced
by orders of magnitude (days → hours), at the expense of slightly noisier reconstructions. In summary, EDP
is an acceleration of traditional CFG diffusion.

These three methods are the baselines of our methods. Currently, our modifications are typically only applied
to TD-based methods and cannot be applied to Trajectory-Based methods(e.g., (Janner et al., 2022; Ajay et al.,
2023)) as they use return annotations for full sequences τ = (s0, a0, ..., sT ). However, experiments showed
low convergence rates and suboptimal precisions in their Q-value predictions, and therefore, Guidance-First
Diffusion Training showed little improvement. We attribute this observation to the following factors: when
the trajectory is long, the return may be noisy due to stochastic behavior policies, so reward attribution over
entire sequences can be ambiguous. (It is hard to infer which action caused the reward change.) In contrast,
TD-based methods that work on (s, a) pairs avoid this issue and support more granular, local learning signals.
Efficient Diffusion Policy (EDP) is a variant of Q-guided diffusion that primarily improves computational
efficiency. Its central idea is one-step denoising, which bypasses the expensive multi-step reverse process
used in standard diffusion policies.

3 Methodology

Having introduced the GFDT method and modular module composition in the introduction, we now extend
the discussion with a mathematical model to justify the approach. First, we explain why a pretrained,
converged model can provide more accurate guidance to the diffusion model, better than an unconverged
model that is trained jointly with it, thereby accelerating the training process. Second, we prove that as long
as the guidance model can provide a direction that leads to reward improvement and the step size is small
enough, it is sufficient for guiding the diffusion model, even if the guidance model was not co-trained with
the diffusion model.

Theoretical Motivation. We build upon the theoretical framework established by Theorem (Fujimoto
et al., 2019a), which introduces Batch-Constrained Q-Learning (BCQL) as a value-based method with provable
convergence guarantees under offline settings. Given a deterministic Markov Decision Process (MDP) and
coherent batch B, along with standard Robbins-Monro convergence conditions on the learning rate, BCQL
converges to QπB (s, a), where π∗(s) = arg maxa s.t. (s,a)∈B QπB (s, a). This policy is guaranteed to match or
outperform any behavioral policy contained in the dataset.

Batch-Constrained Guidance via Diffusion. Inspired by this result, we adopt a batch-constrained
guidance framework for training diffusion policies. Our key design choice is to pretrain a guidance policy (e.g.,
a value function Q(s, a) or behavioral prior) purely on the offline dataset, then use it to guide the sampling of
a diffusion policy. Theorem 1 guarantees, the training on the offline dataset converges to an optimal reward
estimation policy Q(s,a).

This optimized Q(s,a) is then added to the gradient update of the training process of the diffusion:
∇θLtotal = ∇θLBC + η∇θQ(s, a), (6)

where LBC is a behavior cloning loss that regularizes the learned policy to stay close to the empirical
distribution of B, and η controls the strength of the guidance. Both of these two parts are learned based on
the same dataset B, so term 1 offers regularization to avoid leaving the support of the offline dataset and
term 2 encourages reward optimization.

To further ensure batch-constrained optimization behavior during action generation(inference step), we modify
the reverse diffusion process by injecting Qvalue gradients of the pretrained module:

at−1 ← fdiffusion(at, â0, t) + λ
∇aQ(s, ât)

∥∇aQ(s, ât)∥+ ε
+
√

2τt ξt, (7)

where λ is a guidance coefficient. This operation encourages the final action a0 to lie in high-reward regions.
Importantly, because the value function Q(s, a) is trained on the offline dataset B, and the diffusion model
itself models the same data distribution. Intuitively, in every inference step, the diffusion model generates
an action, and the Q module shifts the gradient in a magnitude that is smaller than or equal to λ. So, the
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generated action must be inside the region of the dataset B. Adding the small gradient shift, the entire action
is still inside or close to the dataset B’s coverage. Thus, the value-aware perturbation can be interpreted as a
form of approximate, soft batch-constrained policy improvement. For a more detailed explanation, please
check Appendix D

On the contrary, before sufficient training, the inaccurate gradient will misshape the diffusion distribution
and prolong the training process by adding incorrect information to the optimization, which may or may not
be corrected in later training.

Admittedly, our approach does not strictly satisfy all assumptions of BCQL: the network may converge not to
the true Bellman optimum but to a local minimum, an inherent limitation of non-convex optimization that
cannot be fully avoided. However, we inherit its core principle: The guidance can be trained to an optimal
value estimator, and any value-based guidance must be constrained to the data distribution to guarantee that
the gradient guidance is reliable. This proof is also consistent with the experiment results (Section 4): in
distribution guidance improves the performance of the CFG. Validated by inverse reasoning, the application
scope of the GFDT method in Section 5 showed that out-of-distribution guidance cannot guarantee efficient
guidance, and in practice, often jeopardizes the performance.

Theorem 2: Joint training of the guidance module and the diffusion policy is not required. A pretrained
Q-network Qϕ can be modularized and directly applied to guide the diffusion model, as long as Qϕ accurately
estimates state-action values within the dataset support B.

We consider the perturbed diffusion sampling process after the action generation:

at = at + λ · ∇aQϕ(at)
∥∇aQϕ(at)∥

+
√

2τt ξt, (8)

where λ is a small step size and τt controls the annealed noise. The gradient ∇aQϕ provides a reward-sensitive
vector field over the action space.

Directional Alignment and Convergence. As long as the value gradient is directionally positive
correlation the diffusion model’s score function(i.e., cos⟨∇Qϕ,∇ log p(a)⟩ > 0), then the expected change in
Qϕ over one step is

E[Qϕ(at+1)−Qϕ(at)] ≈ λ · cos θt · ∥∇Qϕ(at)∥+O(
√

τt). (9)

Moreover, since the noise is Gaussian, we have: limT →∞
1
T

∑T
t=1 ξt = 0 (in expectation), meaning the

cumulative effect of noise diminishes over time, and the value gradient dominates in expectation. The action
will be guided towards a rewarding-increasing direction gradually.

A pretrained Q-function can reliably steer the diffusion process toward high-reward regions without
destabilizing sampling, as long as the step size is small and the guidance remains positively beneficial
and smooth. This justifies the plug-and-play design of our framework and aligns with the batch-constrained
principle in offline RL.

Heuristic sample-complexity argument. To connect our theoretical discussion to practical training
savings, we provide a heuristic estimate of how many gradient steps can be saved. A standard result in
nonparametric estimation theory states that estimating the gradient of a smooth function from N i.i.d.
samples achieves an error that decays as O(1/

√
N) (Wasserman, 2006; Stone, 1982). For a Lipschitz function

class with constant L, a guidance model Qϕ trained to accuracy on dataset B, the gradient estimation error
satisfies:

E∥∇aQϕ −∇aQ∗∥ ≤ C ∗ L√
N

+ ϵ (10)

Table 1: The parameters used in Equation (10)

∇aQϕ Pretrained Guidance Gradient ϵ Final training error of Qϕ

L Lipschitz constant of the Q-function class N Number of samples in dataset B
∇aQ∗ True gradient of the optimal Q-function C a constant depends on the underlying function class
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(a) DQL_antmaze-medium-play-v2 (b) DQL_antmaze-medium-diverse-v2 (c) EDP_antmaze-large-play-v2

Figure 2: Training performance of proposed algorithms on benchmarks.

Heuristically, although in RL practice the Lipschitz constant L is rarely specified, in related areas (e.g.,
WGAN with spectral normalization (Miyato et al., 2018)) one often enforces L = 1. Under this convention,
Eq (10) implies that achieving a guidance accuracy of E∥∇aQϕ − ∇aQ∗∥ = 0.01 would require about
N = 1/E∥∇aQϕ −∇aQ∗∥2 = 104 effective samples (equivalently, ∼ 104 gradient updates of the Q network).
In more parameter-sensitive scenarios, pushing the accuracy further to E∥∇aQϕ − ∇aQ∗∥ = 0.001 would
require as many as N = 106 effective samples (i.e., 106 gradient updates). This illustrates the significant
optimization steps that are potentially misguided before the guidance converges, and shows how our method
helps reduce otherwise wasted early training of the diffusion model. Pretraining is therefore essential to
ensure that guidance has semantic meaning before being applied in generation Appendix. I.

4 Experiments

We evaluate our method on standard tasks from the PyBullet D4RL benchmark (Fu et al., 2021; Foundation,
2024). To ensure fair comparison, we re-train three seeds of three representative diffusion-based offline RL
algorithms—EDP, DQL, and IDQL(module interchange)—based on the dataset and benchmark code from
(Wang et al., 2024). These methods serve as illustrative examples of our theory, which can be easily extended
to more diffusion methods. For more details about the environment setting, please check Appendix C. The
detail comparison between our model and the baseline models is shown in Appendix E.

4.1 Performance of GFDT

All experiments were conducted using PyTorch on a high-performance computing (HPC) cluster. We adhered
to any assigned framework for our work because the focus of this paper is not restricted to any specific
computational framework.

From the Table 10 and Table 11, in the environments and algorithms, GFDT outperformed baseline models
in 11/12 environments for DQL and 8/12 environments for EDP. More importantly, the early performance of
the GFDT is significantly better than the baseline model as shown in Table 5. On MuJoCo tasks, our method
achieves an average improvement of about 2.9%, while on AntMaze tasks, the improvement ranges from
14% to 20%. This indicates that the proposed method brings consistent yet moderate gains on dense-reward
locomotion tasks, and substantially larger benefits on sparse-reward, goal-directed environments.The improve
of the DQL model is higher than the EDP model. Formally, DQL can be abstracted as xt = f(xt+1, guidancet)
where each step depends on both the previous state xt and a step-wise guidance signal, leading to an iterative
accumulation of guidance effects. In contrast, EDP follows a single-step mapping x0 = f(xT , guidance),

7



Under review as submission to TMLR

Table 2: Comparison with standard offline RL baselines on D4RL tasks. Results ReBR, short for REBRAC
from (Wu et al., 2019) DICE (Ma et al., 2024), CQL are taken from (Kumar et al., 2020), IQL from (Kostrikov
et al., 2022), EDP-GFDT and DQL-GFDT, DGID and IGDD are ours. (These abbreviations are in the
Appendix. ??)

Env ReBR DICE CQL IQL DQL_GFDT EDP_GFDT DGID IGDD
HCME 101.1±1.5 97.3±0.6 45.3±0.3 92.7±2.8 90.2±0.4 87.2±0.0 85.61±0.01 84.77±0.00
HCMR 51.0±0.2 49.2±0.9 45.3±0.3 42.1±3.6 67.9±0.3 64.4±0.0 70.6±0.8 69.8±0.0
HCMV 65.6±1.0 60.0±0.6 46.9±0.4 50.0±0.2 67.0±0.6 59.3±0.4 60.9±0.9 60.9±0.2
HOME 107.0±6.4 112.2±0.3 96.6±2.6 85.5±29.7 172.3±1.1 163.9±0.0 182.4±0.0 182.7±0.0
HOMR 98.1±1.6 102.3±2.1 89.6±13.2 89.6±13.2 153.0±0.8 146.4±1.7 157.2±0.0 157.2±0.0
HOMV 102.0±1.0 100.2±3.2 61.9±6.4 65.2±4.2 147.0±1.1 141.6±0.0 136.5±0.2 136.5±0.2
WAME 111.6±0.3 114.1±0.5 104.6±1.1 112.1±0.5 117.6±0.3 116.6±0.0 118.1±0.0 118.4±0.0
WAMR 77.3±7.9 90.8±2.6 76.8±1.0 75.4±9.3 95.6±4.8 83.8±0.4 93.1±0.94 87.5±0.7
WAMV 82.5±3.6 89.3±1.3 79.5±3.2 80.7±3.4 87.9±0.3 84.2±0.0 87.11±0.07 87.1±0.0
L-div 54.4±25.1 91.3±3.1 14.9 27.6±7.8 90.7±5.4 31.3±6.9 33.3±6.9 46.7±7.0
L-play 60.4±26.1 85.7±4.8 15.8 42.5±6.5 89.3±5.6 22.7±6.7 28.0±6.7 59.3±7.0
M-div 76.3±13.5 68.6±8.6 53.7 61.7±6.1 97.3±4.0 52.0±7.7 58.0±7.0 68.0±6.8
M-play 84.0±4.2 72.0±6.5 61.2 64.6±4.9 91.3±5.3 118.0±10.4 56.7±7.0 74.7±6.6

Note 1 While the algorithms were proposed in the aforementioned papers, the authors did not release their
raw experimental results;all numerical values for standard baselines in Table 2 are taken from (Ma et al.,
2023). These methods are considered as the strongest methods in offline RL.
Note 2 The left four columns show results from other methods, while the right four columns present results
from our proposed method. The highest values in the left four columns are highlighted in blue. If a value in
our method (right columns) exceeds the highest value on the left, it is shown in bold with a gray background.

Table 3: Performance comparison across tasks (DQL)

Environment Baseline GFDT GAI BC Unfreeze
halfcheetah-expert 88.21± 0.28 90.43± 0.26 68.49± 1.55 85.82± 2.24 89.50± 0.23
halfcheetah-medium-expert 88.28± 0.53 90.18± 0.38 89.73± 0.43 85.53± 1.34 89.76± 0.61
halfcheetah-medium-replay 67.38± 0.34 67.93± 0.33 67.76± 0.52 55.87± 5.23 67.43± 0.37
halfcheetah-medium 59.88± 5.40 66.99± 0.60 53.36± 1.43 54.57± 4.27 55.04± 2.27
hopper-expert 166.76± 0.58 172.90± 0.56 162.68± 1.21 165.11± 0.67 155.15± 44.68
hopper-medium-expert 168.00± 1.18 172.31± 1.09 166.28± 1.03 166.88± 1.33 159.10± 31.75
hopper-medium-replay 151.59± 0.57 152.98± 0.75 121.97± 49.30 113.30± 35.20 150.50± 3.44
hopper-medium 143.92± 1.05 147.06± 1.09 71.09± 35.69 118.08± 15.41 144.59± 1.09
walker2d-expert 117.25± 0.46 120.25± 0.60 119.91± 0.52 108.05± 28.27 117.92± 0.47
walker2d-medium-expert 117.73± 0.35 117.63± 0.34 115.08± 1.32 117.45± 0.68 118.50± 0.73
walker2d-medium-replay 92.96± 0.60 95.62± 4.78 80.32± 19.52 87.14± 1.87 95.62± 4.78
walker2d-medium 87.65± 0.40 87.89± 0.27 77.33± 13.13 82.28± 0.70 87.89± 0.43
Average 112.47± 0.98 115.18± 0.92 99.50± 10.47 103.34± 8.10 110.92± 7.57
antmaze-large-diverse-v2 63.33± 48.19 90.67± 5.39 86.67± 5.83 66.00± 6.88 86.67± 5.83
antmaze-large-play-v2 90.00± 30.00 89.33± 5.56 88.67± 5.63 50.67± 7.07 91.33± 5.30
antmaze-medium-diverse-v2 93.33± 24.94 97.33± 4.01 94.00± 4.87 78.00± 6.44 96.00± 4.43
antmaze-medium-play-v2 67.33± 46.90 91.33± 5.30 88.67± 5.63 68.00± 6.83 93.33± 4.99
Average 78.50± 37.51 92.17± 5.07 89.50± 5.49 65.67± 6.80 91.83± 5.14

where the guidance is injected only once without iterative updates, which naturally limits its overall influence.
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Table 4: Performance comparison across tasks (EDP)

Environment EDP_baseline GFDT GAI BC Unfreeze
halfcheetah-expert 86.55± 0.00 86.82± 0.00 78.78± 0.52 85.82± 2.24 85.98± 0.00
halfcheetah-medium-expert 86.74± 0.00 87.16± 0.00 78.18± 0.15 85.53± 1.34 86.85± 0.01
halfcheetah-medium-replay 65.78± 0.03 64.42± 0.03 47.08± 1.90 55.87± 5.23 64.42± 0.03
halfcheetah-medium 54.59± 0.04 59.26± 0.39 53.56± 0.02 54.57± 4.27 55.33± 0.11
hopper-expert 161.23± 0.02 163.65± 0.02 151.93± 3.23 165.11± 0.67 162.24± 0.01
hopper-medium-expert 161.36± 0.02 163.95± 0.01 141.07± 10.51 166.88± 1.33 163.68± 0.01
hopper-medium-replay 112.16± 2.83 139.75± 6.69 114.32± 3.26 113.30± 35.20 119.91± 11.62
hopper-medium 141.16± 0.02 141.64± 0.01 83.25± 6.63 118.08± 15.41 141.54± 0.05
walker2d-expert 116.14± 0.00 116.34± 0.00 114.27± 0.01 108.05± 28.27 116.36± 0.00
walker2d-medium-expert 116.31± 0.01 116.59± 0.00 109.55± 3.05 117.45± 0.68 117.07± 0.00
walker2d-medium-replay 85.02± 0.01 83.77± 0.37 68.84± 3.45 87.14± 1.87 85.19± 0.02
walker2d-medium 84.24± 0.00 84.21± 0.00 58.21± 5.29 82.28± 0.70 84.44± 0.00
Average 105.94± 0.25 108.96± 0.63 91.59± 3.17 103.34± 8.10 106.92± 0.99
antmaze-large-diverse-v2 30.67± 6.99 31.33± 6.91 28.67± 46.67 10.67± 5.56 47.33± 7.25
antmaze-large-play-v2 21.33± 6.40 22.67± 6.70 18.67± 40.64 18.67± 6.24 25.33± 6.82
antmaze-medium-diverse-v2 67.33± 9.06 52.00± 7.72 2.00± 14.00 18.00± 6.46 13.33± 6.14
antmaze-medium-play-v2 73.30± 10.34 118.00± 10.35 90.00± 95.74 76.00± 9.28 113.33± 9.89
Average 48.16± 8.20 56.00± 7.92 34.83± 49.26 30.83± 6.89 49.83± 7.52

Table 5: Training gradient steps to get 95% performance and parameter statistics summary (batch size 256)

Env DQL GFDT_DQL EDP GFDT_EDP DDIG IDDG
HCEX 7600 2800 (36.84%) 18000 3600 (20.00%) 13200 (63.46%) 10400 (50.00%)
HCME 16400 2800 (17.07%) 31200 6000 (19.23%) 26400 (81.48%) 14400 (44.44%)
HCMR 8000 3200 (40.00%) 20400 8400 (41.18%) 7200 (26.47%) 35600 (130.90%)
HCM 52000 7600 (14.62%) 10800 10000 (92.59%) 6400 (7.24%) 45600 (51.60%)
HOEX 30800 15200 (49.35%) 8400 8400 (100.00%) 38400 (118.52%) 4400 (13.60%)
HOME 41600 23600 (56.73%) 24000 16800 (70.00%) 44400 (105.71%) 56000 (133.30%)
HOMR 24800 3200 (12.90%) 40800 52800 (129.41%) 71200 (127.14%) 35600 (63.60%)
HOM 79200 12800 (16.16%) 50400 76800 (152.38%) 90800 (76.95%) 19200 (16.30%)
WAEX 59600 14000 (23.49%) 10800 7200 (66.67%) 51200 (69.57%) 30400 (41.30%)
WAME 96000 72400 (75.42%) 21600 18000 (83.33%) 47600 (42.65%) 31600 (28.30%)
WAMR 26000 9600 (36.92%) 38400 10800 (28.13%) 10800 (16.07%) 400 (0.60%)
WAM 10800 3600 (33.33%) 79200 51600 (65.15%) 24000 (55.05%) 60400 (138.50%)
AVG 37733 14233 (34.40%) 29500 22533 (72.34%) 35967 (65.86%) 28667 (59.37%)
Ldiv 500000 47600 (9.52%) 1600000 900000 (56.25%) 64800 (12.96%) 400000 (80.00%)
Lplay 1300000 29200 (2.25%) 1300000 87600 (6.74%) 76400 (5.88%) 70800 (5.45%)
Mdiv 1500000 18000 (1.20%) 800000 17200 (2.15%) 37600 (2.51%) 44400 (2.96%)
Mplay 89600 15200 (16.96%) 1400000 1400000 (100.00%) 85200 (95.09%) 43200 (48.21%)
AVG 847400 27500 (7.48%) 1275000 601200 (41.28%) 66000 (29.11%) 139600 (34.16%)

4.1.1 The role of the guidance module

To analyze the role of reward guidance and whether the guidance is removable or replaceable, we conducted
an ablation study of a series of training sessions. In this experiment, we compare the performance of GFDT,
baseline models, an ablation study that removed the reward guidance part of the baseline training—behavior
clone(BC), an ablation study on a behavior clone training with a guidance at the inference stage(GAI), an
ablation study that pretrained the guidance module but did not freeze it in diffusion training.

-Beyond the superior performance of our proposed algorithm, we further investigate its other properties
through the ablation Study. The pretrained but non-frozen guidance model in diffusion training outperforms
the baseline but does not surpass GFDT, confirming that additional training of the guidance model is
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Table 6: Parameter statistics summary for different model widths. (This model has a hidden layer size of
256.)

128 256 512
Diffusion Params 172,230 (70.0%) 174,534 (38.1%) 172,230 (13.7%)
Guidance Params 73,986 (30.0%) 283,650 (61.9%) 1,082,370 (86.3%)
Total Memory 0.94 MB 1.75 MB 4.79 MB

unnecessary. The slight performance drop is likely caused by overfitting of the guidance model under
over-training. GAI, removing the guidance module, results (in training) got worse performance and higher
variance, underscoring the important role of guidance. Finally, we also tested that random guidance leads
to complete failure of the diffusion model, highlighting that inaccurate guidance signals can be detrimental.
This supports our claim that a valid guidance model is critical for successful training.

The training time of the diffusion model decreased significantly as shown in Table.5 with decreased
computational resources—while they have the same training for the guidance module, the training steps
for the diffusion module was significantly decreased. The following sections discuss how to plug and play a
pretrained module into the diffusion model, making the modules reusable.

In Table 6, we analyze the number of parameters in the guidance module and the diffusion model. The
parameter counts objectively reflect the memory footprint and computational cost of each component. Since
we pre-train the guidance module, the peak memory usage during GFDT training only needs to accommodate
the largest of these components. Therefore, we consider the effective reduction to be determined by the
smaller of the two overlapping components, which corresponds to a 38.1% decrease for our model.

4.2 Plug-and-Play Model Composition

Our research reveals that diffusion models exhibit unique plug-and-play compatibility with their guidance
modules, following the theoretical proof. We evaluate two hybrid configurations without any additional training:
1) DQL-as-Guidance + IDQL-as-Diffusion(IDDG), 2) IDQL-as-Guidance + DQL-as-Diffusion(DDIG). as
shown in Figure 3, both combinations: (1) achieve final performance comparable to the DQL baseline,
the higher one of these two models in Mujoco environments. (2)They performed lower results in Antmaze
environments because the Plug and Play method does not match with the Max Q algorithm that is applied
in Antmaze environments (3) They exhibited significant faster initial convergence speeds compared to
baselines, and (4) maintain stability despite architectural misplacement. The detailed analysis of this
ablation study is in the Appendix.F. The key point is that for environments with dense reward (Mujoco),
the discrepancy or mismatch can be compensated and corrected immediately, the module interchange is
applicable, and even beneficial for optimality and for smoothing the adjustments. However, for sparse
rewarding environments(Antmaze) that need high precision, the error can accumulate, and the reward
estimation becomes out-of-distribution, because of the mismatch.

Most importantly, despite the absence of joint training or any task-specific fine-tuning, the plug-and-play
configurations achieve performance comparable to established baselines such as CQL and IQL. Although
their results are slightly below the best-performing methods (e.g., DICE), the fact that two independently
trained modules can be directly combined to reach this level of performance highlights the strong modular
compatibility and generalization potential of our framework. This result implies that: Guidance modules can
provide effective policy improvement signals regardless of diffusion model architecture with proper setup. It
implies that the normalizing step in the training and inference parts is expected to be an important reason
why these two modules are interchangeable, as explained in the Methodology Section Theorem 2. Finally,
early-stage advantages suggest that when the modules are both under-trained and are not perfect, a differently
structured model is not only unharmful, but can cross-correct with the errors of each module. We find that a
guidance module—trained independently and even with a completely different architecture—can be directly
applied to a diffusion model. This experiment is consistent with our theoretical analysis that, as long as the
guidance model provides a reliable estimate of the reward(gradient estimate per se), it can be reused across
structurally dissimilar models. Such modularity enables flexible training pipelines and paves the way for
reusable, task-agnostic RL components. Finally, as we have mentioned in the theoretical part, if the guidance
model is not independent trained on the same data distribution, there is no guarantee that the independent
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Figure 3: Diagram of plug-and-play modular configuration

module will be beneficial. In the following section, we illustrate that pretraining on out-of-distribution(OOD)
data is more likely to be detrimental than beneficial in practice.

Table 7: Performance comparison with standard deviation in ± format (2 decimal places)

Dataset DQL IDQL DGID IGDD
halfcheetah-expert 88.21±0.28 71.07±0.02 85.59±6.92 81.64±0.86
halfcheetah-medium-expert 88.28±0.53 72.03±0.01 85.61±0.01 84.77±0.00
halfcheetah-medium-replay 67.38±0.34 55.90±0.00 70.58±0.84 69.79±0.01
halfcheetah-medium 59.88±5.40 52.70±0.00 60.87±0.89 60.87±0.23
hopper-expert 166.76±0.58 160.53±0.00 159.18±4.11 208.67±0.02
hopper-medium-expert 168.00±1.18 128.25±2.82 182.47±0.03 182.68±0.02
hopper-medium-replay 151.59±0.57 55.53±0.84 157.24±0.00 157.24±0.00
hopper-medium 143.92±1.05 65.94±0.26 136.53±0.23 136.53±0.20
walker2d-expert 117.25±0.46 113.78±0.00 116.64±0.14 116.64±0.02
walker2d-medium-expert 117.73±0.35 70.79±0.02 118.11±0.00 118.39±0.00
walker2d-medium-replay 92.96±0.60 71.83±0.05 93.10±0.94 87.35±0.07
walker2d-medium 87.65±0.40 66.78±0.01 87.11±0.07 87.11±0.01
Subset Avg 112.47±0.98 82.09±0.34 112.75±1.18 115.97±0.12
large-diverse 51.33±7.07 53.33±7.16 33.33±6.87 46.67±7.06
large-play 90.00±5.48 62.00±7.79 28.00±6.70 59.33±7.01
medium-diverse 93.33±4.99 82.67±7.98 58.00±7.03 68.00±6.83
medium-play 67.33±6.85 56.00±6.58 56.67±7.04 74.67±6.59
Full Avg 75.50±6.10 63.50±7.38 44.00±6.91 62.17±6.87
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Table 8: Default DQl with Different Guidance Strengths Experimental Results for Expert Adroit

relocate pen hammer door
mean std mean std mean std mean std

η=0(BC) 105.9296 ±0.843 144.8144 ±5.58 129.2588 ±1.261 105.9296 ±0.843
η=0.05 105.4705 ±0.906 141.9434 ±6.13 128.5337 ±1.273 105.4705 ±0.906
η=0.1 105.6861 ±1.049 130.3630 ±7.05 129.2724 ±1.091 105.6861 ±1.049
η=1 -0.2692 ±0.2 36.6698 ±7.8345 0.1452 ±2.2361 -0.1484 ±1.4142

5 Application scope and Limitations

To illustrate the distribution shift between datasets, We performed PCA analysis on the datasets and plotted
the region that contains 60% of the data points to eliminate the instability caused by outliers. The highlighted
points are the top 100 highest-reward points. The positions of these high-reward points varied significantly
across datasets, even within the same environment and the shifting trade suggests the gradual converging
process. The differences in the plot imply that for any given dataset, the data from another expertise level
often lies in an OOD region, as shown in Table.4. The dataset distributions of other environments are show
in Appendix G. Based on this observation, we conducted OOD experiments by training a guidance network
on one dataset, freezing it, and then using it to guide the training of a main diffusion model on a different
dataset. Across 36 tested models, 28/36(78%) exhibited significant performance degradation. Among the
eight cases with good performance, half benefited from guidance modules pretrained using medium replay
models, which cover a broader range of data and thus generalize better than other datasets.

From these results, we conclude that the decouple method is highly sensitive to distribution shift. Training a
guidance network on in-distribution data is critical for success. Otherwise, even expert-level data cannot
reliably guide training on a different distribution. This ablation study is consistent with the conclusion in the
Methodology part that OOD pretraining cannot guarantee performance improvement.

Another kind of limitation of Q-guided diffusion, not only in our methods but also, is whether the guidance
should exist in the training. As shown in Table 8, for high-dimensional tasks with narrow data coverage
(e.g., Adroit), even slight guidance can push the policy out-of-distribution, causing performance to drop
significantly. In these cases, relying solely on behavioral cloning proves more stable and effective. Conversely,
for tasks with moderate difficulty and abundant data, Q-guidance can successfully enhance performance.

(a) Data distribution
(b) Cross experiment expert &
median Expert

Figure 4: Cross-training of different data levels

6 Related Work

Modular and Decoupled Training: Modular training has long been pursued as a desirable paradigm.
In the context of diffusion models, the earliest attempts at modularity can be traced to classifier guidance
(Dhariwal & Nichol, 2021), where a pretrained diffusion model was paired with a separately trained classifier to
steer sampling. This approach was unstably designed to amplify the possibility of one class while suppressing
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all others, ignoring that features are often shared across categories, leading to distorted and fragile guidance.
Recently, energy-based guidance (Lu et al., 2023) was proposed, where a diffusion model is trained first and
an energy model is subsequently learned to provide guidance. However, such post-hoc modularization has
proven fragile in practice—e.g., in our own experiments, more than half of the runs diverged. In contrast,
our method inverts this order: we first train a guidance module using supervised learning from offline data,
and then use this frozen module to learn a diffusion. It serves as a general-purpose enhancement to existing
architectures of CFG. Another line of research is semi-modularized: although IQL can be seen as a modular
paradigm—learning Q-values first and then selecting one-hot action in the inference stage—it does not
apply guidance during training, and its performance often lags behind joint methods such as DQL. The
importance of stability under distributional shift has been repeatably mention in classic offline RL algorithms
such as BCQ (Fujimoto et al., 2019b), CQL (Kumar et al., 2020), and BRAC (Wu et al., 2019), our work
proposes a guidance-first modular framework that enhances training in offline RL can also be considered
as a batch-constrained or conservative regularization, using the pretrained guidance to regularize diffusion
process. Finally, modular training is valid, as on vision or text diffusion-based generation widely exists;
large language models and vision language models have Retrieval Augmented Generations or other special
models separately trained as building blocks; however, since these modules use the web-harvested data, the
limitations of OOD are not well-discussed. Offline RL must contend with severe out-of-distribution issues,
making modularization brittle. This challenge has been extensively studied, with methods such as BRAC (Wu
et al., 2019), CQL (Kumar et al., 2020), MOPO (Yu et al., 2020), and AWAC (Nair et al., 2020) proposing
different strategies to mitigate extrapolation error. Our study provides the first systematic examination
of when modular guidance is feasible and demonstrates that, under the challenges of offline RL, modular
training can succeed if designed around guidance-first principles.

Plug-and-Play Modular Composition. The idea of plug-and-play composability is to treat pretrained
modules—originally developed for other purposes—as reusable building blocks. Such composability is rarely
studied and highly empirical. We propose that plug-and-play composition requires distributional alignment.
For instance, in diffusion models, CLIP-based guidance (Nichol et al., 2021; Ramesh et al., 2021) applied
a pretrained vision–language model as guidance, but fails on noisy intermediate states, where distribution
mismatch undermines compositionality. Circumventions exist: some prior works explore modular policy
composition (Andreas et al., 2017; Peng et al., 2019), focusing on skill chaining or subpolicy selection. These
methods apply the plug-ins as subproblem solvers in heuristic models instead of direct reward guidance. A
common challenge concerns I/O calibration between modules’ signal magnitude. This issue is acute in
systems with complex plug-in connections, such as adapter-based methods (Mou et al., 2023; Zhang et al., 2023;
Ye et al., 2023), which rely heavily on the backbone’s feature space. When transferred across architectures
(e.g., from SD1.5 to SDXL), their performance collapses due to representational mismatch, showing these
adapters are not universal interfaces. The same logic applies in NLP, where Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020) often suffers when the retriever is misaligned. Related retrieval-augmented
frameworks such as REALM (Guu et al., 2020), FiD (Izacard & Grave, 2021), and Atlas (Izacard et al.,
2022) further highlight the need for careful design of retriever–generator alignment. Overall, the design of
plug-and-play models requires careful consideration to ensure alignment and stability.

Finally, plug-and-play can be beneficial if properly implemented. Value-based RL methods often suffer
from intrinsic bias, since a single network trained on limited data can easily over- or under-estimate values
in unseen regions. A classical remedy is Double Q-learning (van Hasselt, 2010; van Hasselt et al., 2016),
which decouples action selection and evaluation using two networks. Our work follows this family of ideas:
inspired by Double Q-learning and ensemble learning, we leverage two independently initialized modules to
cancel stochastic biases inherent in a single model, a technique widely adopted in RL but underexplored in
diffusion-based policies.

Relation to Inference-Time Alignment. Inference-time alignment for diffusion models as policies, enabling
controllable generation without retraining the generator (Uehara et al., 2025). They are typically formalized
using ordinary, partial, or stochastic differential equations describing diffusion sampling dynamics (Dhariwal &
Nichol, 2021). Model-agnostic methods exploit diffusion stochasticity through restarts, ensemble aggregation,
or noise search as inference-time compute scaling (Li et al., 2023; Ma et al., 2025). Model-specific
approaches formulate alignment as sampling from reward-tilted distributions modifying the original diffusion
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objective (Uehara et al., 2025). Among Model-specific methods, Gradient-based methods inject reward, value,
or classifier gradients into denoising dynamics, including classifier and classifier-free guidance (Dhariwal &
Nichol, 2021; Chung et al., 2023). Such methods require strong alignment between guidance models and
diffusion policies, and remain underexplored in offline reinforcement learning (Yang et al., 2023). Our work
contributes is closest to this direction, but also has fundamental difference from it. Derivative-free approaches
instead post-process generated samples using candidate selection, importance sampling, or sequential Monte
Carlo resampling (Ramesh et al., 2022; Zhang et al., 2024). Bayesian SMC methods rely on Feynman–Kac
formulations, emphasizing posterior correction through weighting rather than stable policy learning (Skreta
et al., 2025; Doucet et al., 2009).

Our work is orthogonal to the research on inference-time alignment, which focuses on goal-oriented
post-processing, such as selection or resampling, applied to a fixed, pre-trained model. Instead, we modify the
training and composition of the model itself: we reorder the training pipeline via Guidance-First Diffusion
Training (GFDT) to ensure guidance convergence. We also demonstrate that independently trained guidance
and diffusion modules can be recombined at inference time without performance degradation. This modular
training perspective reveals a form of compositional flexibility that is not captured by existing inference-time
alignment frameworks, and it provides a practical pathway for reusing and recombining reinforcement learning
policy components across algorithms.

7 Future work

In practice, we observe that during the early stage of training, the reconstruction loss overwhelmingly
dominates the overall objective, effectively outnumbering the guidance loss. As a result, for roughly the first
twenty thousand gradient steps, the model primarily focuses on reconstruction, and the influence of guidance
remains negligible. Once the reconstruction error has sufficiently decreased, the effect of guidance becomes
more visible—its gradients start shaping the diffusion behavior toward higher-reward regions.

However, we also notice that in some cases, both in the baselines and in GFDT, applying a guidance signal
can lead to unstable training behavior, occasionally causing a failed training performance collapse after initial
improvement. The inverse V shape curve in Fig.4 is a good example when the guidance is not applied properly.
However, OOD guidance issue is not intrinsic, but occasional failing can be fixed. A simple and effective
remedy is to gradually introduce the guidance term—for example, linearly increasing its weight after the first
few thousand training steps and finally applying the full weight to the model—which empirically stabilizes
training and consistently prevents such failures. In our experiments, after applying this trick, training failure
has never occurred.

Reproducibility and Ethics Statement

Experiments use three random seeds; hyperparameters are in Appendix C. Code, pretrained models, and
scripts are available at https://github.com/modulardiffusion-design/Modular_diffusion. The study
uses public benchmarks only and has no foreseeable negative societal impact, though safe and fair deployment
should be considered.
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A Algorithmic Details

A.1 GFDT Algorithmic Details

The entire training and inference process of GFDT is shown in Fig.5, as well as the algorithm1.

Figure 5: Training and inference stage of GFDT

Important explanation of the frozen Q network still updating the diffusion network The details of
GFDT have been thoroughly explained in the main content. A reasonable concern is the role of Qϕ. Although
Qϕ is frozen and does not update the parameters of the guidance network, its output values are still used to
adjust the parameters of the diffusion network, encouraging it to generate samples with higher Q values.

Figure 6: Training and inference stage of traditional CFG
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Algorithm 2 Traditional Gradient Guidance Training
Require: Offline dataset D = {(s, a, r, s′)}, diffusion model ϵθ, Q-function Qϕ (learned jointly), training

steps Nθ

1: for j = 1 to Nθ do
2: Sample (s, a0, r, s′) ∼ D
3: TD target: y ← r + γ ·maxa′ Qϕ(s′, a′)
4: Update Qϕ to minimize LQ = ∥Qϕ(s, a0)− y∥2

5: Add noise: at ←
√

ᾱt a0 +
√

1− ᾱt · ϵ, ϵ ∼ N (0, I)
6: Predict noise: ϵ̂← ϵθ(at, s, t)
7: Update ϵθ to minimize Ldiff = ∥ϵ̂− ϵ∥2 + LQ

8: Return trained ϵθ, jointly-trained Qϕ

9:
10: Inference:
11: for denoise steps do
12: Sample candidate ak ∼ πθ(·|s)
13: Apply guidance: ak−1 ← ak + λ · ∇aQϕ(s, ak)
14: Return a⋆

A.2 IDQL Algorithmic Details

Training. Implicit Diffusion Q-learning (IDQL) decouples the training of the diffusion model from the
Q-value estimator. The diffusion policy πθ(a|s) is trained purely by behavior cloning (BC) from the offline
dataset D = {(s, a)}, i.e.,

min
θ

E(s,a)∼D
[
∥a− πθ(s)∥2]

, (11)

without any reward or Q-guidance incorporated into the diffusion process. In parallel, a separate Q-network
Qϕ(s, a) is learned by standard temporal-difference (TD) regression:

min
ϕ

E(s,a,r,s′)∼D

[(
Qϕ(s, a)− (r + γ max

a′
Qϕ(s′, a′))

)2
]

. (12)

Notably, the Q-network is updated together with the diffusion model during training, although it does not
directly affect the diffusion optimization.

Inference. At deployment, the diffusion model generates n candidate actions {a1, a2, . . . , an} sampled from
the diffusion model πθ(·|s). These are then evaluated with the learned Q-network, and the action with the
highest Q-value is selected:

a⋆ = arg max
i=1,...,K

Qϕ(s, ai). (13)

This procedure can also be interpreted as a one-hot selection mechanism over the candidate actions, where
the Q-network acts as a ranking function. The algorithm of IDQL is in

Comparison between GFDT and IDQL The key distinction between IDQL and our proposed GFDT
lies in how Q-guidance is incorporated. In IDQL, a separate Q-guidance network is trained, but reward
information is not injected into the diffusion model during training. This design makes IDQL relatively
stable under the distribution, since the learned policy is not directly biased by Q-values that could otherwise
push the distribution toward out-of-distribution regions. However, the downside is that the policy is less
reward-optimal, because it is guided primarily by behavioral cloning rather than directly exploiting reward
signals. At inference time, IDQL applies reward guidance only as a one-hot selection among the generated
actions. While this procedure ensures the selected actions are rewarding, they remain restricted to the support
of the behaviorally cloned generator, which limits the achievable performance compared to gradient-guided
methods.

In contrast, GFDT explicitly integrates Q-guidance into the generative diffusion process. Reward information
actively shapes the learned distribution during training, which leads to more reward-aligned behaviors.
At inference time, GFDT further applies a gradient shift, using gradient descent to nudge the generated
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Figure 7: Training and inference stage of traditional CFG.

Algorithm 3 Implicit Diffusion Q-learning (IDQL)
1: Input: offline dataset D
2: Initialize diffusion policy πθ and Q-network Qϕ

3: while not converged do
4: Sample batch (s, a, r, s′) from D
5: Update πθ by behavior cloning on (s, a)
6: Update Qϕ by TD regression on (s, a, r, s′)

7: Inference:
8: Input: state s
9: for k = K, K − 1, . . . , 1 do

10: for n = 1, . . . , N do
11: Sample candidate action a

(k)
n ∼ πθ(· | s)

12: Evaluate Qϕ(s, a
(k)
n )

13: Select best action at step k:
a(k)⋆ = arg max

n=1,...,N
Qϕ(s, a(k)

n )

14: Return a(1)⋆

action toward the locally optimal point. As a result, GFDT consistently outperforms both the baseline
CFG and IDQL in experiments. Although gradient-based guidance has the potential to destabilize training,
normalization and a staged training scheme mitigate this risk: reconstruction dominates in the early phase
and Q-guidance gradually takes effect afterwards, and therefore, destabilized training can manifest a certain
V-shape mode. (see Appendix G).

B Trajectory-based Guidance: Why it Fails in Offline RL

This algorithm currently does not apply to trajectory-based methods. We trained several trajectory-return
guided variants; however, the guidance estimates did not converge in the actionable sense: they moved from
near-zero to a coarse range (e.g., 200−300 in a median expert dataset with Q values of ≈ 200−300) but
could not refine within that band, making the guidance ineffective. If the guidance itself is not converged,
our method also does not make a difference. We attribute this to (i) noisy returns and (ii) long-horizon credit
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assignment, both exacerbated in offline settings without on-policy rollouts. By contrast, TD-based (s, a)-level
guidance provides stable, local gradients that are compatible with diffusion updates.

C Experimental Setup and Hyperparameters

.All models are trained using the D4RLMuJoCoTD Dataset (Fu et al., 2021). It provides pre-collected
trajectories of varying quality, including expert, medium-expert, medium-replay, and medium datasets,
enabling rigorous training of offline RL algorithms under diverse data distributions. The evaluation is done in
randomly initialized environments. All the gradient steps mentioned are with respect to a batch size of 256.

Wherever possible, we adopt the original hyperparameter settings from the paper of (Wang et al., 2024).
Intentionally, we do not modify any training-related components—including the optimizer, learning rate,
batch size, architecture, or loss function. Because a key strength of our method is that it achieves superior
performance without requiring any changes to the other parameters other than pretraining or modularize. This
highlights the robustness and plug-and-play nature of our approach. Final results are reported, averaged over
50 evaluation episodes. Performance is measured by normalized return, and we report both the mean(Section
4.1) ).

All experiments were implemented in PyTorch and based on the CleanDiffuser framework (Wang et al.,
2024). We strictly followed the hyperparameter settings from the baseline implementations to ensure fair
comparison. Table 9 summarizes the key values.

Table 9: Hyperparameters used in our experiments (inherited from CleanDiffuser).

Parameter Value Notes
Optimizer Adam
Learning Rate 3× 10−4 fixed across all models
Batch Size 256
Discount Factor γ 0.99
Noise Schedule cosine unless otherwise specified
Number of Diffusion Steps T 5,10,20,30,40
Actor Loss Weight η 1.0 scales LQ

For reproducibility, we will release full training scripts and environment configurations in our code repository.

D Why the generated action with the GFDT and the modular methods are in
distribution

Addressing a Key Concern One might naturally worry that even if the guidance module (e.g., the
Q-function Qϕ) and the diffusion model are both trained solely on the offline dataset B, their combination
during sampling could still produce out-of-distribution actions. The value guidance term ∇aQϕ(a) may have
a large magnitude or steep gradients, which could push the sampled action at away from the data manifold
if not properly controlled. Therefore, the perturbation magnitude and the guidance magnitude are tightly
controlled, and the guidance gradient is normalized :

∥at+1 − at∥ ≤ λ +O(
√

τt), λ > 0 and λ→ 0
ensuring that each sampling step stays within a small neighborhood of the current point. Since the diffusion
model is trained on the dataset B and generates samples close to it, and since the guidance is applied as a
soft correction, the overall sampling trajectory remains near the support of B. Thus, even when guided by
Qϕ, the diffusion process remains effectively batch-constrained.

E Comparison Table of GFDT

This section contains two performance comparison tables Table.10 and Table. 11, that shows the percentages
of improvement of GDFT and as other methods, compared to baseline models.
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Table 10: Mujoco and Antmaze results of DQL. Each cell shows the raw score and the relative performance
(%).

Environment Baseline GFDT GFDT(%) GAI GAI(%) BC BC(%) Unfreeze(%)
halfcheetah-expert 88.21 90.43 102.51% 68.49 77.65% 85.82 97.29% 101.47%
halfcheetah-medium-expert 88.28 90.18 102.15% 89.73 101.64% 85.53 96.88% 101.67%
halfcheetah-medium-replay 67.38 67.93 100.81% 67.76 100.57% 55.87 82.92% 100.08%
halfcheetah-medium 59.88 66.99 111.88% 53.36 89.12% 54.57 91.13% 91.93%
hopper-expert 166.76 172.90 103.68% 162.68 97.55% 165.11 99.01% 93.03%
hopper-medium-expert 168.00 172.31 102.56% 166.28 98.98% 166.88 99.33% 94.70%
hopper-medium-replay 151.59 152.98 100.91% 121.97 80.46% 113.30 74.74% 99.28%
hopper-medium 143.92 147.06 102.18% 71.09 49.40% 118.08 82.04% 100.47%
walker2d-expert 117.25 120.25 102.56% 119.91 102.28% 108.05 92.16% 100.57%
walker2d-medium-expert 117.73 117.63 99.91% 115.08 97.75% 117.45 99.76% 100.65%
walker2d-medium-replay 92.96 95.62 102.86% 80.32 86.40% 87.14 93.74% 102.86%
walker2d-medium 87.65 87.89 100.27% 77.33 88.22% 82.28 93.87% 100.27%
Average 112.47 115.18 102.69% 99.50 89.17% 103.34 91.91% 98.91%
antmaze-large-diverse-v2 63.33 90.67 143.16% 86.67 136.84% 66.00 104.21% 136.84%
antmaze-large-play-v2 90.00 89.33 99.26% 88.67 98.52% 50.67 56.30% 101.48%
antmaze-medium-diverse-v2 93.33 97.33 104.29% 94.00 100.71% 78.00 83.57% 102.86%
antmaze-medium-play-v2 67.33 91.33 135.64% 88.67 131.68% 68.00 100.99% 138.61%
Average 78.50 92.17 120.59% 89.50 116.94% 65.67 86.27% 119.95%

Table 11: Mujoco and Antmaze results of EDP. Each cell shows the raw score and the relative performance
(%).

Environment EDP_baseline GFDT GFDT(%) GAI GAI(%) BC BC(%) Unfreeze(%)
halfcheetah-expert 86.55 86.82 100.30% 78.78 91.02% 85.82 99.15% 99.34%
halfcheetah-medium-expert 86.74 87.16 100.48% 78.18 90.14% 85.53 98.61% 100.12%
halfcheetah-medium-replay 65.78 64.42 97.94% 47.08 71.57% 55.87 84.94% 97.94%
halfcheetah-medium 54.59 59.26 108.57% 53.56 98.12% 54.57 99.96% 101.36%
hopper-expert 161.23 163.65 101.50% 151.93 94.23% 165.11 102.41% 100.63%
hopper-medium-expert 161.36 163.95 101.61% 141.07 87.43% 166.88 103.42% 101.44%
hopper-medium-replay 112.16 139.75 124.60% 114.32 101.93% 113.30 101.02% 106.91%
hopper-medium 141.16 141.64 100.35% 83.25 58.98% 118.08 83.65% 100.27%
walker2d-expert 116.14 116.34 100.18% 114.27 98.39% 108.05 93.04% 100.19%
walker2d-medium-expert 116.31 116.59 100.24% 109.55 94.19% 117.45 100.98% 100.65%
walker2d-medium-replay 85.02 83.77 98.53% 68.84 80.97% 87.14 102.49% 100.19%
walker2d-medium 84.24 84.21 99.96% 58.21 69.10% 82.28 97.67% 100.24%
Average 105.94 108.96 102.86% 91.59 86.34% 103.34 97.28% 100.77%
antmaze-large-diverse-v2 30.67 34.67 113.05% 28.67 93.48% 10.67 34.78% 154.35%
antmaze-large-play-v2 21.33 22.67 106.25% 18.67 87.50% 18.67 87.50% 118.75%
antmaze-medium-diverse-v2 67.33 52.00 77.23% 2.00 2.97% 18.00 26.73% 19.80%
antmaze-medium-play-v2 73.30 118.00 160.98% 90.00 122.78% 76.00 103.68% 154.62%
Average 48.16 56.83 114.38% 34.83 76.68% 30.83 63.17% 111.88%

F Detailed Analysis of Plug-and-play
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DGID: DGID (DQL-Guidance +
IDQL-Diffusion): DGID follows the
overall pipeline of IDQL, meaning
that its generation and diffusion
process are still driven by IDQL’s
methodology. The key difference is
that the component responsible for
selecting optimal action candidates
has been replaced by a DQL module.

IGDD: IGDD (IDQL-Guidance
+ DQL-Diffusion): IGDD is
built upon DQL’s architecture and
training logic, but replaces its
gradient-based optimization module
with the advantage-guided update
mechanism from IDQL.

MUJOCO Environment
Characteristics: MuJoCo’s
dense-reward nature provides
immediate evaluative feedback
at every timestep. This
continuous supervision allows
the agent to quickly identify
and correct suboptimal actions,
effectively smoothing the
learning curve. Consequently,
the environment is forgiving
to small deviations or
approximation errors, as
incorrect behaviors are rapidly
penalized and adjusted.

Compared to the original IDQL,
DGID achieves a significant
performance improvement, with
an average score of 112.75, and
becomes competitive with the
baseline DQL model. The DQL
module offers a strong optimization
signal that effectively give IDQL
a most deterministically optimal
guidance on the action choice,
during inference. Since the MuJoCo
environment provides dense and
continuous rewards, the system
can directly benefit from DQL’s
precise action evaluation. The
dense-reward setting also makes
the model more tolerant to small
distribution mismatches between
DQL and IDQL(errors corrected
immediately), leading to stable and
superior overall performance.

This effectively smooths the
optimization trajectory and
regularizes the learning process.
IGDD performs slightly better
than the original DQL, achieving
an average score of 115.97 and
showing improved stability during
diffusion. The IDQL-style advantage
guidance provides smoother gradients
and prevents overly aggressive
Q-value maximization, which
is a known issue in pure DQL
setups. The result is a more
balanced and robust optimization
process that preserves DQL’s
iterative refinement strength while
improving convergence reliability.
In dense-reward environments
like MuJoCo, where feedback is
immediate and continuous, this
regularized update leads to steady
and consistent performance gains.

antmaze: the task follows a
typical sparse-reward setting,
where the agent only receives a
positive signal upon successful
completion of the maze.
Due to the extremely long
horizons—often spanning
thousands of steps—the model
requires high precision and
the accumulated errors are not
easily corrected. Moreover,
the environment is heavily
affected by noise and stochastic
dynamics, making it highly
sensitive to approximation
errors.

It is suspected that When the
DQL guidance is applied to
out-of-distribution actions generated
by IDQL, which does not generate the
most rewarding signal every step, its
Q-values become unreliable and often
misleadingly high.(recall that mujoco
is less noisy and easy to correct
errors). The sharp, deterministic
MaxQ operator further amplifies
these estimation errors, leading to
unstable and degraded performance.
The main reason for the lower
performance of PAP is antmaze
needs conservative high precision
and the broken of assumption of
"small enough steps and long enough
trajectory" became several in this
sensitive environment.

(DGID follows IDQL’s pipeline, but
replaces its action selection with
DQL’s MaxQ-guided module). IGDD
achieves a suboptimal result in
AntMaze, with an average score of
62.17. It underperforms relative to
original DQL but remains noticeably
better than DGID. Because the
IDQL-style guidance provides weaker
but smoother signals, it is insufficient
for the sparse-reward nature of
AntMaze. This environment only
provides a final success reward,
so precise long-horizon navigation
depends on sharp gradient signals
to correctly guide early steps. The
lack of strong feedback causes gradual
error accumulation across iterations,
leading to less efficient exploration
and reduced success rates.

G Details of Application Scope

These are all the plots of cross experiments. We did not perform data mixing experiments because, as shown
in the study by Miao et al. (2023), mixing datasets Generated from different policies can lead to degraded
performance. Our ablation on the OOD dataset does not involve dataset mixing, since the diffusion model
and the guidance model are each trained on only one dataset. Consequently, the diffusion model does not
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learn from multiple policies. However, when the guidance model is trained on a different dataset, it may fail
to provide correct gradient signals.

(a) density hulls (top 100, k = 20) of Half Cheetah (b) PCA hull and top 100 samples of Half Cheetah

(a) density hulls (top 100, k = 20) of Hopper (b) PCA hull and top 100 samples of hopper

(a) density hulls (top 100, k = 20) of Walker2d (b) PCA hull and top 100 samples of Walker2d
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(a) Across Experiments of Expert (EX) and
Medium Expert (ME)

(b) Across Experiments of Expert(EX) and
Medium Replay(MR)

(c) Across Experiments of Medium
Expert(ME) and Medium Replay(MR)

(d) Across Experiments of Medium
Replay(MR) and Medium(MV)
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H Notation and Terminology

Symbol Meaning

D Offline dataset consisting of tuples (s, a, r, s′), collected by an unknown
behavior policy and fixed throughout training.

s, a, r, s′ State, action, reward, and next state sampled from the offline dataset D.
πθ Diffusion-based policy parameterized by θ. The policy is defined implicitly

by a conditional reverse diffusion process, not by an explicit density.
θ Parameters of the diffusion (denoising) network that generates actions.
a0 Clean (final) action generated by the diffusion policy or taken from the

dataset.
at Noisy action at diffusion timestep t.
ϵθ Denoising network used in the diffusion policy, trained to predict the injected

noise during diffusion.
Q(s, a) state–action value function, defined as the expected discounted return starting

from (s, a).
Qθ Parameterized guidance module (Q-network) trained on the offline dataset

using temporal-difference learning. It serves as a different reward estimator
from and provides gradient-based guidance to the diffusion model.

ϕ Parameters of the guidance module Qϕ.
Qϕ A pretrained and frozen guidance module. This Q-network is trained

independently (e.g., via DQL or IDQL) and reused to guide diffusion training
or inference without further updates.

Q̃ϕ Normalized Q-value used for guidance, obtained by rescaling Qϕ(s, a) to
ensure scale invariance across different algorithms and modules.

∇aQϕ Gradient of the guidance module with respect to the action, used to bias
diffusion sampling toward higher-value actions.

Table 12: Symbol definitions and meanings
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Table 13: Algorithm Abbreviations

Abbreviation Explanation
Env Environment. The benchmark task or environment in which

the algorithm is evaluated (e.g., HalfCheetah, Hopper, Walker2d,
AntMaze).

ReBR Regularized Behavior Regularized Actor Critic
(ReBRAC). A conservative offline RL algorithm emphasizing
stability through behavior regularization (Wu et al., 2019).

DICE Dynamic Importance Sampling Correction Estimator. An
offline RL method that uses importance weighting to correct
distribution mismatch during policy evaluation (Ma et al., 2024).

CQL Conservative Q-Learning. A value-based offline RL algorithm
that penalizes overestimation of unseen actions to ensure
conservative value estimation (Kumar et al., 2020).

IQL Implicit Q-Learning. A decoupled offline RL method that learns
Q-values and implicitly defines a policy via advantage-weighted
regression without explicit policy optimization (Kostrikov et al.,
2022).

DQL_GF Diffusion Q-Learning with Guidance-First (GFDT). The
DQL algorithm trained under the Guidance-First Diffusion
Training paradigm, where the Q-network is pretrained and frozen
before diffusion training.

EDP_GF Efficient Diffusion Policy with Guidance-First (GFDT).
A one-step denoising diffusion policy algorithm enhanced with
pretrained frozen guidance to accelerate convergence and improve
efficiency.

GFDT Guidance-First Diffusion Training. A training paradigm
where the guidance (Q-network) is pretrained and frozen before
training the diffusion policy.

Baseline The original implementation of the corresponding diffusion-based
offline RL algorithm (e.g., DQL, IDQL, or EDP) without our
proposed modifications.

D-Baseline Double-Guidance Baseline. A variant of the baseline model
where the guidance module used during inference is replaced
with an independently initialized version of the same architecture
(different random seed).

Double_GFDT GFDT equipped with Double Guidance at inference time, reducing
variance through independent initialization.

GAI Guidance at Inference. A behavior cloning model trained
without reward guidance during training, but augmented with
Q-guidance only at inference.

Unfreeze A variant of GFDT where the pretrained guidance module is not
frozen but continues to be updated during policy training.

BC Behavior Cloning. A supervised learning baseline that trains a
policy to imitate dataset actions without reward guidance.

DGID DQL-Guidance with IDQL-Diffusion. A plug-and-play
configuration where the guidance module is taken from DQL
(D), while the diffusion policy is taken from IDQL (I). Here, D
denotes DQL, I denotes IDQL, G denotes the guidance module,
and the final D denotes the diffusion model.

IGDD IDQL-Guidance with DQL-Diffusion. A plug-and-play
configuration where the guidance module is taken from IDQL (I),
while the diffusion policy is taken from DQL (D). The notation
follows the same convention: I/D indicate the algorithm source
(IDQL or DQL), G denotes the guidance module, and D denotes
the diffusion model. 24
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Table 14: D4RL Benchmark Environment Abbreviations

Abbreviation Explanation
HCEX HalfCheetah-Expert. Dataset generated by an expert policy in

the HalfCheetah environment.
HCME HalfCheetah-Medium-Expert. Dataset generated by a mixture

of medium and expert policies in HalfCheetah.
HCMR HalfCheetah-Medium-Replay. Dataset generated by replay

buffer data collected from medium-performance policies.
HCMV HalfCheetah-Medium. Dataset generated by a

medium-performance policy in HalfCheetah.
HOEX Hopper-Expert. Dataset generated by an expert policy in the

Hopper environment.
HOME Hopper-Medium-Expert. Dataset generated by a mixture of

medium and expert policies in Hopper.
HOMR Hopper-Medium-Replay. Replay buffer dataset in Hopper.
HOMV Hopper-Medium. Dataset generated by a medium policy in

Hopper.
WAEX Walker2d-Expert. Expert policy dataset in Walker2d.
WAME Walker2d-Medium-Expert. Mixed dataset in Walker2d.
WAMR Walker2d-Medium-Replay. Replay dataset in Walker2d.
WAMV Walker2d-Medium. Medium policy dataset in Walker2d.
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I Error bound calculation with respect to gradient steps

In this appendix, we provide a simple scaling calculation to clarify how the number of training steps depends
on the desired relative error reduction. This calculation is intended purely for intuition and does not constitute
a formal convergence guarantee.

We start from a generic estimation bound of the form

E
[
∥∇aQϕ −∇aQ∗∥

]
≤ C

(
L√
N

+ ϵ

)
, (14)

where C is a constant depending on the function class, L is a Lipschitz-related constant ensuring continuity,
N denotes the number of training steps (or effective samples), and ϵ captures lower-order optimization or
approximation error.

Ignoring ϵ. In practice, ϵ is typically much smaller than the dominant statistical term once optimization
has progressed, and is therefore neglected in the following back-of-the-envelope calculation.

Reference error level. When N = 1, the bound reduces to
E

[
∥∇aQϕ −∇aQ∗∥

]
≤ CL, (15)

which corresponds to an untrained or randomly initialized network. We take this quantity as a reference
level, corresponding to a 100% relative error under a normalized scale.

Relative error reduction. Suppose we aim to reduce the error to a fraction δ ∈ (0, 1) of its initial level.
E

[
∥∇aQϕ −∇aQ∗∥

]
≤ δ CL. (16)

Substituting the bound and canceling the shared constants C and L (which are fixed for the same network
and function class) yields

CL√
N
≤ δCL. (17)

Solving for N gives
N ≥ 1

δ2 . (18)

Examples. For a 1% relative error (δ = 0.01), this requires N ≥ 104 training steps. For a 10% relative
error (δ = 0.1), this requires N ≥ 102 training steps. The same calculation applies to an error requirement
of 0.1%.This illustrates that even modest relative accuracy targets can correspond to large differences in
training cost.

Discussion. This calculation depends on the relative error reduction under fixed function-class constants.
Since the quantity under consideration is already normalized to lie in [0, 1], a 1% error directly corresponds
to a 1% relative deviation under this normalized scale. This is exactly the same notion of relative error
used in the preceding discussion. The specific values of C and L are not critical, as they cancel when
comparing different accuracy levels for the same network. The purpose of this appendix is solely to provide
an order-of-magnitude intuition for computational savings, rather than a task- or environment-specific error
interpretation.
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