
Assessing Coherence via Dialogue Reconstruction Tasks

Edwin Chan
University of Michigan
edwnchan@umich.edu

Shruti Jain
University of Michigan
shrujain@umich.edu

Jai Narayanan
University of Michigan
jainara@umich.edu

Abstract

In this paper, we aim to analyze alternative
coherence measurements for conversational en-
tailment of a dialogue for a variety of models
through evaluating their accuracy on two dis-
tinct tasks. We hope that this motivates other
approaches to quickly adapt existing datasets
for coherence measurement while minimizing
the need for further human annotation.

1 Introduction

In the past few years LLMs have become increas-
ingly better at a variety of complex language com-
prehension tasks. However, despite promising high
performance, the question of whether the models
are able to actually gain a semantic understanding
of both their input and their task remains — it is un-
clear how much ‘coherence’ pre-trained language
models really have. Previous work has looked at
assessing model coherence through textual entail-
ment and plausibility classification tasks, the for-
mer performed on dialogue sequences that reflect
organic human conversation. In this paper we aim
to extend and enhance coherence evaluation for
LLMs by proposing and performing a dialogue re-
construction task in conjunction with a hypothesis
entailment task across 4 different models in 3 differ-
ent architectures. We hope that our results show the
nuances of coherence levels via these two different
types of tasks that build on each other and require
the models to have a strong semantic understanding
of their input to complete successfully.

2 Related Works

Coherence evaluation in language models has been
a hot area of research over the last decade. Many
papers and research aim to optimize a model’s ac-
curacy at entailment tasks. At the same time, other
papers focus on understanding whether a model’s
performance on a benchmark is truly representative
of a model’s capability to understand a dialog. Our

paper builds upon prior work in coherence evalu-
ation by drawing insights from two prior notable
studies: Towards Conversation Entailment: An Em-
pirical Investigation (Zhang and Chai, 2010) and
Beyond the Tip of the Iceberg: Assessing Coher-
ence of Text Classifiers. (Storks and Chai, 2021)
Towards Conversation Entailment discusses entail-
ment in the context of conversational dialogues.
Specifically, they evaluate whether a hypothesis
logically follows from a transcript of a conversa-
tion. The paper’s focus differs from traditional
textual entailment tasks, as those often rely on iso-
lated sentence pairs, whereas conversational entail-
ment instead focuses on multi-turn dialogues that
are more similar to organic human conversation.
The paper importantly points out that conversa-
tional dialogue inherently contains more complex
structure, through deeper contextual dependencies
that result from the turn taking nature of conversa-
tion. Overall, Towards Conversational Entailment
provides a valuable look into conversational entail-
ment. Beyond the Tip of the Iceberg extends much
of the foundation laid out in Towards Conversa-
tional Entailment. The paper comes at a time when
large-scale pre-trained language models are able
to achieve human-level and superhuman accuracy
on language understanding tasks. The paper calls
into question the coherence capabilities of these
models. Coherence, or the ability for a model to
show it’s work when reaching a conclusion, is less
understood, and the paper points out that this leads
to model’s being rewarded for shallow understand-
ings in conversational entailment tasks. The paper
asserts that for text classification tasks requiring
reasoning over a discourse, models should be eval-
uated on their ability to show their work for how
they reached that conclusion. To address this, the
paper introduces a novel framework for measuring
a model’s prediction coherence. The framework
aims to require more robust explanation from the
models that go beyond understanding only surface

level patterns in the semantic relationships of di-
alogue. We aim to build on the work presented
in these papers by contributing a new design for a
task that extends the ability to evaluate coherence
of Large Language Models. By incorporating the
insights from these two studies, our research looks
to extend the overall understanding and measuring
of coherence evaluation in LLMs.

3 Approach

3.1 Selecting Models

Since our purpose was to measure model coherence,
we chose to conduct our research across a variety
of different model architectures to see the varying
capabilities of different types of LLMs. Specifi-
cally, we wanted to see the performance of models
that are decoder-only, encoder-decoder, encoder-
only, and RNN based. However, since our project
scope was related only to evaluation rather than
training a model from scratch and we were unable
to find any pre-trained RNNs on platforms such
as HuggingFace that fit the types of tasks we were
to perform, we limited our study to the remain-
ing 3 categories. We chose to select sufficiently
state-of-the-art models to represent each category.

3.1.1 Decoder-Only
For the decoder-only category, we chose Mistral-
7B-Instruct-v0.3 and Llama-3.1-8B-Instruct. We
chose these models as opposed to Llama-13B,
Llama-70B, and Mistral Large because we kept in
mind computational constraints, especially when
limited by the computational power available on
GreatLakes. We also considered but eventually re-
jected GPT models. This was mainly due to the
fact that GPT-2 was the only free and open-source
option available to fine tune. From previous ex-
periences, we were aware that GPT-2 has signifi-
cantly worse performance as compared to Mistral-
7B-Instruct-v0.3 and Llama-3.1-8B-Instruct across
various tasks.

3.1.2 Encoder-Decoder
For the encoder-decoder model, we chose the
BART-base model. We considered using Google-
T5 and T5-small, however, existing research (Dhar-
rao D, 2024) showed that BART models generally
outperformed T5 across many tasks. We used the
base model again due to computational constraints
and because it had the capabilities to complete both
of our tasks properly.

3.1.3 Encoder-Only
We chose BERT-base-cased as our encoder-only
model. We chose the cased version of the tokenizer
and the model because we believe that some of the
semantic information in the datasets we used was
better captured by the case-sensitive tokenizer. Fur-
thermore, because BERT does not offer the same
capabilities as encoder-decoder or decoder-only
models, we used two different pre-trained BERT
versions in our project. For the first task of dia-
logue sequence reconstruction, we chose to use the
pre trained BertForTokenClassification with [CLS]
tokens and for the second task of hypothesis en-
tailment, we used the pre-trained BertForMultiple-
Choice. We explain in more detail the implementa-
tion and methodologies later.

3.2 Task 1

On a high-level, our first task requires the model
to reconstruct the original order of dialogues in a
two person conversation sequence given a permu-
tation. Our aim with this task is to see whether a
model can comprehend raw human dialogue with
enough accuracy to be able to differentiate between
a logical conversational sequence and an illogical,
random sequence. However, rather than simply
being able to pick between what is a logical con-
versation order and what is not (as this could rely
on factors such as turn-taking analysis rather than
semantic analysis), we have the model actually try
and reconstruct the conversation.

3.2.1 Datasets and Preprocessing
We initially wanted to use only the SLED Research
Lab’s Conversational Entailment dataset from Hug-
gingFace as it was the dataset used in previous
works on model coherence assessment. However,
upon further analysis we soon realized that the
dataset was very small and consisted of many re-
peats as it had been initially formulated for sub-
set hypothesis entailment tasks. Therefore, we de-
cided to choose the DialogSum dataset available
on GitHub (Chen et al., 2021). We came across
this dataset while searching for data that included
relatively long back and forth conversations, and
potentially included a hypothesis to summarize the
conversation. We ended up picking this dataset as
we saw that it included a diverse range of conversa-
tional examples. Although this dataset was initially
developed to be used for summarization tasks, it
provided us with a sufficiently large database of
dialogue sequences and served as a good starting

dataset for our dialogue reconstruction task.
For the second task, however, we decided to use

the SLED dataset for reasons we will detail later.
Because the SLED dataset generally has much

shorter sequences of dialogues and due to model
limitations in prompt/input length, we filtered the
DialogSum dataset to include only those dialogue
sequences that were 20 dialogues or less in length.
We then generated a permuted file that had a ran-
domly permuted version of each of the dialogue
sequences. Our input file was a JSON file in the
following format, where the correct order was the
label that we wanted the labels to ultimately pre-
dict.

[
{

"items": <int>,
"permuted_sentences":
[<list of strings>],
"correct_order": [<list of ints>]

},
. . .

]

The DialogSum dataset came with different
splits, so we used a split of 479 inputs for our
testing data, a split of 11424 inputs for our training
data, and a split of 486 inputs for our validation
data. We kept our training data significantly larger
than testing and validation data to ensure better
training and quicker evaluations.

3.2.2 Decoder-Only
The decoder-only models were trained using SFT-
Trainer and fine-tuned using LoRA (Low-Rank
Adaptation of Large Language Models. The de-
cision to use SFTTrainer was made as it can be
easily integrated with a data collator which helps
prepare batches of training data thus facilitating
both training efficiency and computation time. The
decision to finetune using LoRA instead of fine-
tuning the entire model was also made to reduce
the number of trainable parameters and further re-
duce the computational cost.

This is the prompt that was passed to the model
for fine-tuning and training for Task 1.

“Below is a list of sentences labeled from
1 to {num_sentences} that have been
permuted from their original order in a
dialogue. Using the numerical label for
each sentence, write only the original or-
der of the sentences as a list of numbers

inside square brackets, separated by com-
mas.
Sentences:
{permuted_dialogue}
Answer:
{label} "

3.2.3 Encoder-Decoder
When training, the BART (facebook/bart-base)
model requires both input and target sequences.
For tokenizing the input, the BartTokenizer was
chosen. This was a straightforward decision, as it
was a premade tokenizer that could be used for con-
verting text input into tokens that the model could
understand. When using the BART model, there
are several options to go for. One can use the stan-
dard BartModel, or instead pick a task specific ex-
tension variant, such as BartForConditionalGenera-
tion, or BartForSequenceClassification. These pre-
defined options are built to perform specific tasks
while leveraging the pre-trained BART encoder-
decoder architecture. None of the task specific
options seemed to particularly fit our use case, so
we went with the base BartModel variant. Out of
interest, we also tried the BartForConditionalGen-
eration model, to see how its performance would
compare. When using the base BartModel, it in-
volved adding a simple layer for having the model
output the correct order of input dialogues.

In both cases, the model requires the dialogue
inputs and labels to be strings, so preprocessing
required combining the conversation into a single
text, and converting the correct order of dialogues
from a list of indices into a combined text.

3.2.4 Encoder-Only
The BERT model does not accept user prompts and
only takes in input sequences. Furthermore, as an
encoder-only architecture made for understanding
text, it cannot generate natural language responses.
Therefore, completing Task 1 on the BERT-base-
cased model posed a unique challenge.

We considered multiple approaches on how to
adapt the reconstruction task to the BERT model.
The first approach was to modify the task to instead
have the models simply choose which permutation
of the original dialogue sequence was the closest
to the correct sequence (the ground truth was to be
the permutation that had the lowest mean squared
distance from the original). However, this modifi-
cation would significantly change the original task,
which would reduce the consistency across models

and would not allow us to perform the second task.
Our second approach was to add a linear layer at

the end of the model to get the output in the desired
shape. We initially worked to implement this idea,
however, since labels were of all different lengths
between a size of 3 dialogues to 20 dialogues, con-
structing the linear layer at the end posed many
challenges.

We looked through various pre-trained BERT
models and the tasks they were used for to see if any
of these could be modified to suit our task. Finally,
to bypass the difficulties of adding a variable length
linear layer but retain the essence of the task, we
finally chose to use BertForTokenClassification as
our pre-trained model for the first task. Since BERT
uses the [CLS] token for sentence level classifica-
tion, we modified the input permuted_sentences
to be as follows, using [SEP] separator tokens to
further make the input structure clear to the model.

“permuted_sentences” = “[CLS] 1)
<dialogue> [SEP] [CLS] 2)
<dialogue> [SEP] . . . [SEP]”

Furthermore, when processing the data in a cus-
tom dataset object, we also padded the input per-
muted sentences to a fixed maximum length. To
prepare the labels to now reflect the token classifi-
cation task, we created them as follows:

1. create a label of the same length as the padded
sentences, with each element being -100

2. find the positions of all the [CLS] tokens in
the particular input

3. set those positions in the label to be the integer
corresponding to the actual correct order for
those dialogues

To make sure that the unnecessary -100 values were
not considered when performing gradient updates,
we set up our loss function (which used cross-
entropy loss) to ignore the index -100 in the labels.

3.3 Task 2
On a high-level, Task 2 required that we test the
reconstructions from the Task 1 models with the
best hyperparameters on a conversational entail-
ment task. We then compared the conversational
entailment accuracy for 3 different test files:

1. The original (non-permuted) dialogue se-
quences with the hypotheses and entailment
values

2. The randomly permuted dialogue sequences
with the hypotheses and entailment values

3. The reconstructed dialogue sequences with
the hypotheses and entailment values

The reason that we compared accuracy on the
third (target) test file with the other two was to
establish a best and worst baseline. The model’s
performance on File 1 would be the best possible
conversational entailment accuracy that it could get,
so we used it as our baseline for the best perfor-
mance that would be possible. The model’s perfor-
mance on File 2 would then serve as our baseline
for the worst possible conversational entailment
accuracy, while File 3 would be the accuracy we
were trying to test. The reason that we established
these baselines is because we acknowledge that dif-
ferent models will have different accuracies on a
conversational entailment task, and to better con-
textualize their performance specifically on recon-
structed dialogues, we needed to understand what
their performance was on other variations. Further-
more, we wanted to measure if the order of the
dialogues even affected performance of the mod-
els on the conversational entailment task or if the
models ignored inter-dialogue positional informa-
tion and only focused on intra-dialogue position
for semantic comprehension.

Because we wanted to use this task as an exten-
sion of the first task (our aim was to have a more nu-
anced way of measuring reconstruction value), and
because we wanted to simply assess a model rather
than train it for our project, we initially decided to
only use a zero-shot non-fine tuned approach for
Task 2. However, this approach was modified later
and will be explained in detail in later sections.

3.3.1 Datasets and Preprocessing
Although we trained, validated, and tested the
model in Task 1 only on the DialogSum dataset,
we used the models from Task 1 on a subset of the
SLED-dataset to complete our second task.

The reason for this choice even though the SLED
dataset is significantly smaller than the DialogSum
dataset is because the DialogSum dataset did not in-
clude any false hypotheses, and we needed a dataset
that would include both false and true hypotheses
to properly measure the accuracy of our models on
this task.

As in Task 1, we filtered out any dialogue se-
quences from the SLED dataset that were less than
3 dialogues in length. The SLED dataset did not

have any dialogue sequences that were larger than
20 dialogues in length. After this filtering, we com-
bined the existing validation and test splits on Hug-
gingFace. We chose to combine these splits and cre-
ate our own splits as necessary because we wanted
any splits to reflect the proportions of true/false
values for the entailment in the complete filtered
dataset.

Our input data was in the following format:

{
"Items": <int>,
"Hypothesis": <str>,
"Conversation": [<list of str>],
"Entailment": <bool>

}

3.3.2 SLED Dataset Peculiarities and
Implications

Although that only dataset that we were able to find
that sufficiently fit our criteria of having two-person
dialogue sequences, hypotheses, and entailment
values, we acknowledge that the SLED dataset had
certain peculiarities because its initial use case dif-
fered from the use case in our project. We list out
these specific properties of the dataset below:

• The SLED dataset is very small in length -
and after filtering it was only 350 examples in
total.

• The SLED dataset is biased towards ‘True’
entailment values with a 60:40 split between
true and false entailment values

• The SLED datasets has occasional repeats of
exact dialogue sequences with different hy-
potheses

• The SLED dataset has many repeats of subsets
of dialogue sequences (ex. example A will
have dialogues 1-5 and example B will have
dialogues 1-3) because it was originally used
for a subset dialogue entailment task

Due to property 1 (dataset length) it is hard to
determine whether our findings will hold for larger
datasets and any fine tuning is limited to very few
examples. Furthermore, the conversations in the
dataset were very specific types of conversations,
so results may not include all possible other con-
versation sequences and hypotheses.

Due to property 2, we cannot establish a baseline
random accuracy of 0.5, and it is possible for us to
get worse accuracy than just answering ‘True’ (0.6

accuracy). We contemplated removing a portion of
examples that had ‘True’ entailment, but eventually
decided against it because of our already small
dataset. However, to address this issue we did
ensure that both our training data and testing data
had a 60:40 proportional split of ‘True’ and ‘False’
entailment examples.

Property 3 does not negatively impact Task 2,
however it does impact the overall accuracy when
the reconstruction task (Task 1) is carried out on
the SLED dataset, because the model will have less
“real” data to both fine tune and test on.

Property 4 also reduces our confidence level in
our results on the SLED dataset for the purposes of
Task 1 (since certain examples are partial repeats),
although it does not affect Task 2 much.

Due to our time constraints we were unable to
construct our own datasets, however we point out
these potential issues with our dataset usage as
guidance for future work on this subject and en-
courage the creation and usage of datasets that do
not come with these caveats if replicating these
tasks on any model.

3.3.3 Decoder-Only
For this task, we used the base model of Mistral and
Llama. For the reconstructed dialogue approach of
this task, each model received the dialogue recon-
struction from the output of running their respective
Task 1 model. The following prompt was what was
settled on.

"Below is a dialogue paired with a hy-
pothesis. Your task is to decide whether
the hypothesis is directly supported or
implied by the dialogue. If yes output
only 1. If no output 0
Dialogue:
{dialogue}
Hypothesis:
{hypothesis}
Answer:
{entailment}"

3.3.4 Encoder-Decoder
For this task, we used BartForConditionalGener-
ation. We formatted inputs to have the dialogues,
hypothesis, and the True or False answer choices
concatenated. We ran it without fine tuning, and
processed the output by taking the generated token
IDs, and converting them back into text using the
tokenizer. From there we looked for the predicted

output and used that to test for accuracy. We didn’t
finetune the Bart model in this case.

3.3.5 Encoder-Only
For this task, we used BertForMultipleChoice,
where we formatted the input such that the full
dialogues and hypothesis were concatenated with
each of the answer choices of ‘True’ and ‘False’.

Although our initial plan was to not finetune
the model at all, BertForMultipleChoice gave us a
very low accuracy without fine tuning. To address
this issue, we split the data into a finetune and
a testing set (skipping validation due to the very
small length of our dataset). The fine tune split had
100 examples and the testing set had 250 examples,
and both of these splits reflected the 60:40 ‘True’ to
’False’ ratio. We recorded accuracies on different
hyperparameter configurations for the fine tuned
version as well as the initial accuracy on the non-
fine tuned version.

4 Evaluation

4.1 Task

We have two different accuracy measures that we
used for this task. The first was binary accuracy,
which 1 if the model correctly predicted the whole
sequence for an example and 0 otherwise. The sec-
ond was element accuracy, which was the fraction
of the sequence that the model correctly predicted
(ex. 1

3 if the label was [3,1,2] and the model pre-
dicted [3,2,1]).

Although our initial plan was to only calculate
the binary accuracy, we also calculated the element
accuracy because some models had very low ac-
curacy and we wanted to be able to give ‘partial
credit’ for mostly correct reconstructions.

We considered using mean squared distance and
absolute distance as measures for accuracy but ulti-
mately abandoned those because the dialogue se-
quence lengths differed.

4.1.1 Decoder-Only
With regards to the hyperparameters selected, we
were limited due to the computational memory
available to us. Both Mistral and Llama shared
the following hyperparameters.

Epochs = 3
Sequence Length = 1024
Lora Alpha = 16
Learning Rate = 5e-5
Max Grad Norm = 0.3

Warmup Ratio = 0.03
Lora Dropout = 0.1
Optimizer = "paged_adamw_32bit"
LR Scheduler Type = “linear”

Figure 1: Mistral performance on different hyperparam-
eter configurations

Figure 2: Llama performance on different hyperparame-
ter configurations

4.1.2 Encoder-Decoder

The various hyperparameters used when fine tuning
and testing for Task 1 can be found in the table
below. Higher epochs seemed to be an interesting
parameter to play with, but their long runtime only
allowed for a few runs with higher epoch counts.

Figure 3: BART performance on different hyperparame-
ter configurations

4.1.3 Encoder-Only
The best hyperparameters when fine tuning and
testing on the DialogSum dataset are bolded below
and the corresponding model was saved and used
to generate the input file for Task 2.

Figure 4: BERT performance on different hyperparame-
ter configurations

4.2 Task 2
Measuring accuracy for Task 2 was done by simply
calculating the percentage of questions for which
the model answered correctly. We have also
included the reconstruction accuracy on the SLED
dataset from Task 1.

4.2.1 Decoder-Only
Below we report the dialogue reconstruction task
accuracy and entailment for the SLED Dataset.

Figure 5: Mistral performance on SLED reconstruction
and Task 2

Figure 6: Llama performance on SLED reconstruction
and Task 2

On Task 2, Llama showed better performance
than Mistral.

4.2.2 Encoder-Decoder

Below is the accuracy on the BART model.

Figure 7: BART performance on SLED reconstruction
and Task 2

BART performance was very poor on the SLED
dataset reconstruction.

4.2.3 Encoder-Only

Below we report the BERT accuracy of the
reconstruction and the entailment accuracy without
fine tuning of the multiple choice BERT model.

Figure 8: BERT performance on SLED reconstruction
and Task 2 without fine tuning

Since the entailment task accuracy without fine
tuning was as bad as random, we decided to fine
tune BertForMultipleChoice on the fine tuning
split of the original dataset (not the reconstructed
or permuted versions). For a select few hyper-
parameter configurations that seemed promising,
we noted the accuracies on the permuted and
reconstructed datasets. The best hyperparameters
are bolded below.

Figure 9: BERT performance on Task 2 with fine tuning

5 Discussion of Results

5.1 Comparing Models

Across all models, we found that the decoder mod-
els consistently performed better on both Task 1
and Task 2 even with additional finetuning for
Task 2. Much of this was due to the ability of
decoder-only models to better comprehend and
execute given instructions in a prompt which al-
lowed for more flexibility compared to the encoder-
decoder models and the encoder models. As the
encoder-decoder models are less suited to open-
ended generation tasks, they often struggled to
structure their outputs in a manner that can be eas-
ily parsed or would completely ignore the task goal.
The encoder-only models were worse as they are
not suited to language generation and could not be
given system prompts.

5.2 Decoder-Only

For Task 1, we were limited on the limits of the
hyperparameters that we can change as there were
memory constraint issues. As a result, we decided
to settle with the shared hyperparameters above.
When varying the other hyperparameters, we ini-
tially believed that a higher r value along with more
linear layers in the target modules would lead to
increased performance. However, subsequent tests

showed that it actually decreased performance in
some aspects for this task. For both models, we
weren’t able to achieve over a 50% binary accuracy
even with the best hyperparameters. We believe
that this accuracy has a lot of room for improve-
ment with more training and experimentation, such
as larger epochs or different target modules.

The performance of dialogue reconstruction on
the SLED dataset seemed relatively low at below
50% for both binary and element accuracy. This
raised some issues about how this would affect the
later entailment task as the difference may not be
statistically significant between the permuted and
reconstructed dataset. With Mistral, we noticed
that this held true as no significant difference was
observed between the accuracy on entailment for
the permuted and reconstructed dialogue. Surpris-
ingly, the model performed better on the permuted
and reconstructed dialogue over the original dia-
logue. However with Llama, we noticed a much
bigger gap between the accuracies of the permuted
and reconstructed dialogue showing that the recon-
structed dialogue gave the model a higher overall
understanding of the dialogue. It was surprising
again to see that the reconstructed dialogue per-
formed better than the original dialogue again. The
reconstructed dialogue outperforming the original
dialogue for both models may be due to the recon-
structed dialogue cutting out some sentences of
the original dialogue and duplicating others which
may place more emphasis on the sentences that con-
tribute to the overall entailment of the hypothesis.
Another issue that we faced was the tendency of the
Mistral model to gravitate towards whichever inte-
ger was specified first. For example if the prompt
was, “If yes, output 1. If no, output 0, then 1 would
be output with overwhelming frequency. When we
swapped the order, then 0 would be output with
overwhelming frequency. We tried a variety of dif-
ferent prompts, but we were not able to change this
behavior. It is difficult to see what extent Llama
was affected as its overall accuracy is relatively
high but this may be due to the skewed dataset.
However, we believe that Llama was able to com-
prehend instructions in the given prompt better than
Mistral resulting in a higher accuracy on Task 2.

5.3 Encoder-Decoder
The performance of BART-base for Task 1 peaked
at around 14.5%. This is fairy low, showing BART
was unable to reconstruct the majority of conver-
sations in their correct order. Looking at the par-

tial accuracy, BART was capable of achieving a
slightly higher accuracy at 34.41%. While still
low, this accuracy was a relatively high jump from
the 20% partial accuracy that was found when run-
ning the model with only 3 epochs and a smaller
batch size. Through the various runs that gradu-
ally incremented the epoch count and batch size,
the model’s accuracy improved as both increased.
Ideally, we would have been able to test with a
greater number of epochs and potentially a larger
batch size. A limiting factor was the time taken
and resources required for the training process to
complete with more than 5 epochs. While the train-
ing of BERT in our encoder-only tests allowed for
up to 20 epochs, the training for BART appeared
to be much more intensive, with each epoch taking
far longer to run. While speculation, it is likely
that given more epochs the model could achieve a
higher partial and binary accuracy as well.

For Task 2, BART achieved an accuracy of 52%,
slightly worse than what it could achieve by simply
outputting True for every response. While fine
tuning could potentially help, the poor accuracy
seems more of a result of the poor accuracy of the
model from the reconstruction task.

5.4 Encoder-Only
The performance of BERT-base-cased on the first
task initially seemed very low, as the overall accu-
racy was <16% even with the best hyperparameters.
However, upon analysis of the output, we realized
that the model was often reconstructing parts of the
dialog correctly even if it was not correctly predict-
ing the overall sequence perfectly. To make sure
that this was captured, we added the accuracy mea-
sure that looked at each element in the predicted
and label lists and calculated accuracy accordingly.
To make sure that this accuracy was actually better
than random (that it was not by coincidence that
the permuted versions had the correct ordering),
we also calculated the accuracy of the permutations
before any processing - their element accuracy was
9.62% and binary accuracy was 0.00%, showing
that our models were able to successfully partially
reconstruct the dialogues. This is promising in
showing that although it cannot compare to the per-
formance of the decoder-only models which are
built for generative tasks, the BERT model does
have a fair amount of coherence in comprehending
natural conversational content. We do, however,
acknowledge that it may be relying on factors other
than the content (ex. taking benefit of the turn-

taking structure of the dialogues), but believe that
such accuracy would not be possible based only on
non-semantic understanding.

The reconstruction model performed reasonably
well on the SLED dataset test split considering that
it had been fine tuned on a different dataset entirely.
However, our results on the conversational entail-
ment task were not very promising. Without fine
tuning the model performed worse than it would
have if it had just answered ‘True’ on every ques-
tion. With fine tuning we were able to get slightly
better accuracy, however, this accuracy was still
capped at 60%, and did not change based on the
ordering of the dialogues. This accuracy may be
artificially created by simply answering ‘True’ on
most questions, but even upon analysis of hyper-
parameter configurations that give different accu-
racies, we see that the performance of the model
does not change much by the input type (original,
permuted, or reconstructed). This result can mean
any combination of the following factors:

1. We failed in finding optimal hyperparameters
for training, getting stuck at a local maximum

2. the dataset was far too small and biased to
‘True’ to evaluate

3. the model is bad at comprehending inter-
dialogue positional information in the context
of hypothesis entailment

4. the model simply was unable to properly com-
prehend any semantic information in a the
dialogue input in a manner that would suit
this task

Although we cannot conclusively say which of the
factors played a role in the results we got, our take-
aways on how this task can be replicated with more
decisive results by addressing the above issues are
as follows:

1. More hyperparameter configurations and fine
tuning with experiment tracking tools

2. A larger non-repetitive dataset with equal pro-
portions of ‘True’ and ‘False’ entailment ex-
amples

3. Different input formatting (ex. omitting
[CLS], [SEP] tokens between dialogues in
conversational entailment input) to enhance
model comprehension of input

4. Replicating this task on different encoder-only
models (such as BERT large)

6 Conclusion

Our work establishes the performance of differ-
ent model types on coherence tasks involving
conversation reconstruction and hypothesis entail-
ment. We show that the chosen decoder-only mod-
els are better at conversation reconstruction than
both encoder-decoder and encoder-only models.
The chosen encoder-decoder and encoder-only per-
formed largely similar on the conversation recon-
struction tasks. On the hypothesis entailment task,
decoder-only models again outperformed models
in both other categories, with the encoder-decoder
and encoder-only models giving performance lev-
els that were similar to random guessing. Our re-
sults conclude that the coherence of decoder-only
models across a variety of tasks that involve the
comprehension of human dialogue is much higher
than the coherence of encoder-decoder models and
encoder-only models, though we emphasize that
further work is needed to see if these results hold
across larger versions of models and with more
diverse and balanced datasets. While not perfect,
we have explored a potential approach in taking
an existing conversational entailment dataset and
quickly adapting it for some measure of coherence
without the need for further human annotation. We
hope that this inspires later work on generating
alternative measures of coherence and leveraging
existing datasets as we become increasingly reliant
on conversing with these models.

7 Division of Work

When handling the division of work, our project
was split into three parts with subtasks within each
category. For clarification, the categories will be
iterated again: Processing the Data, Dialogue Re-
construction, Zero-Shot Entailment prompting.

For data processing, Shruti(SLED) and
Jai(DialogSum) chose one of the two main datasets
and created their own data parser to handle the
unique formatting of each. Edwin was responsible
for generating permuted dialogues from the
processed datasets.

For the subsequent model tasks, our project in-
volved handling different model types and thus we
divided the following tasks based on the model
types selected as shown below.

Shruti: Encoder (BERT)
Jai: Encoder-Decoder (BART)
Edwin: Decoder (MISTRAL, LLAMA)

Edwin was assigned more models due to the plug
and play nature of the decoder models that were ob-
served in previous assignments in this class where
much of the code needed to train the model could
be reused by simply swapping the model that was
loaded at the start. In contrast, the BERT and BART
models required much more complex and com-
plicated integration at times as mentioned above.
Once the models were assigned, much of the work
from this point forth was independent.

While the training and testing of the models
were largely independent, our group agreed that
we should have biweekly meetings to ensure that
everything was going smoothly and address any
potential issues that may arise. In addition, these
meetings helped us divide tasks for deadlines that
weren’t inherent to just training the models, such
as preparing for the final presentation and drafting
our final paper submission.

For the presentation, Shruti took a large role in
formatting and organizing the slides. She was es-
pecially helpful in ensuring that slides weren’t too
visually cluttered and keeping track of any informa-
tion that may have been missed. Outside of this, the
division of work on the slides were divided evenly
with each member taking time to review everyone’s
slides and make suggestions as needed. In addition,
we also set aside time to practice going through
the presentation as we knew that timing may be
an issue given the tight time constraints for each
presentation and the amount of information that we
were presenting.

For the final paper submission, each member
handled the subsections related to the models they
chose for approaches and evaluations. what models
they handled. Shruti, again, helped a lot in format-
ting the final paper by splitting the paper into more
manageable subsections which helped the other
members know how their information should fit
into the structure as a whole.

Our overall division of work was much different
from what we initially set out in the project
proposal due to evolving project guidelines and
directions as we progressed. The final division of
work can be summarized in the following figure.

Figure 10: Task Distribution

References
Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang.

2021. DialogSum: A real-life scenario dialogue sum-
marization dataset. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 5062–5074, Online. Association for Computa-
tional Linguistics.

Kazi A Pangavhane M Pise P Bongale A Dharrao D,
Mishra M. 2024. Evaluating bart, t5, and pegasus for
effective information extraction. In International In-
formation and Engineering Technology Association.
International Information and Engineering Technol-
ogy Association.

Shane Storks and Joyce Chai. 2021. Beyond the tip of
the iceberg: Assessing coherence of text classifiers.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 3169–3177, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Chen Zhang and Joyce Chai. 2010. Towards conver-
sation entailment: An empirical investigation. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 756–
766, Cambridge, MA. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18280/ria.380311
https://doi.org/10.18280/ria.380311
https://doi.org/10.18653/v1/2021.findings-emnlp.272
https://doi.org/10.18653/v1/2021.findings-emnlp.272
https://aclanthology.org/D10-1074
https://aclanthology.org/D10-1074

	Introduction
	Related Works
	Approach
	Selecting Models
	Decoder-Only
	Encoder-Decoder
	Encoder-Only

	Task 1
	Datasets and Preprocessing
	Decoder-Only
	Encoder-Decoder
	Encoder-Only

	Task 2
	Datasets and Preprocessing
	SLED Dataset Peculiarities and Implications
	Decoder-Only
	Encoder-Decoder
	Encoder-Only

	Evaluation
	Task
	Decoder-Only
	Encoder-Decoder
	Encoder-Only

	Task 2
	Decoder-Only
	Encoder-Decoder
	Encoder-Only

	Discussion of Results
	Comparing Models
	Decoder-Only
	Encoder-Decoder
	Encoder-Only

	Conclusion
	Division of Work

