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ABSTRACT
BACKGROUND: Imitation deficits are prevalent in autism spectrum conditions (ASCs) and are associated with core
autistic traits. Imitating others’ actions is central to the development of social skills in typically developing pop-
ulations, as it facilitates social learning and bond formation. We present a Computerized Assessment of Motor
Imitation (CAMI) using a brief (1-min), highly engaging video game task.
METHODS: Using Kinect Xbox motion tracking technology, we recorded 48 children (27 with ASCs, 21 typically
developing) as they imitated a model’s dance movements. We implemented an algorithm based on metric learning
and dynamic time warping that automatically detects and evaluates the important joints and returns a score
considering spatial position and timing differences between the child and the model. To establish construct validity
and reliability, we compared imitation performance measured by the CAMI method to the more traditional human
observation coding (HOC) method across repeated trials and two different movement sequences.
RESULTS: Results revealed poorer imitation in children with ASCs than in typically developing children (ps , .005),
with poorer imitation being associated with increased core autism symptoms. While strong correlations between the
CAMI and HOC methods (rs = .69–.87) confirmed the CAMI’s construct validity, CAMI scores classified the children
into diagnostic groups better than the HOC scores (accuracyCAMI = 87.2%, accuracyHOC = 74.4%). Finally, by
comparing repeated movement trials, we demonstrated high test-retest reliability of CAMI (rs = .73–.86).
CONCLUSIONS: Findings support the CAMI as an objective, highly scalable, directly interpretable method for
assessing motor imitation differences, providing a promising biomarker for defining biologically meaningful ASC
subtypes and guiding intervention.

https://doi.org/10.1016/j.bpsc.2020.09.001
Imitating others’ actions is crucial for social bond formation
and learning (1–3), with atypical imitation indicating social-
communicative impairments in autism spectrum conditions
(ASCs) (4–8). The current standard in imitation assessment is
manual human observation coding (HOC), which is subjective
and time-consuming and requires intensive coder training.
These drawbacks render HOC impractical for use in clinics and
home settings. Automatic assessment of imitation is chal-
lenging because human motion data are highly heterogeneous
(e.g., range of movements is virtually unlimited) and high
dimensional (motion data involve spatial and temporal as-
pects), and human supervision (e.g., expert knowledge) is
limited and error prone. Addressing these issues, we present a
Computerized Assessment of Motor Imitation (CAMI) that can
improve diagnosis and treatment efforts by providing an
objective, continuous, and scalable score of imitation
performance.

Examining imitation performance with HOC methods re-
quires identifying individual steps involved in an action, the
action’s style, the order of occurrence, repetitions, and the end
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goal, if it exists (9–12). Participants receive an ordinal score
depending on the correct actions and errors made. Thus, the
accuracy and precision (i.e., sampling frequency) of HOC is
restricted by human subjectivity. First, what constitutes a
“good enough” resemblance to the target action is at the hu-
man observers’ discretion. Moreover, the defined action cat-
egories may likely miss preliminary forms of that action (e.g.,
flexing the fingers wide open without moving the hand when
assessing the action of waving). Finally, assessments are
subjective even within agreed-upon standards, an issue often
circumvented by seeking high interrater reliability from multiple
coders. Although this workaround alleviates subjectivity, it
adds to coder training and assessment time. As such, the HOC
method is largely confined to research settings and is not
conducive to practical use as a diagnostic or treatment tool.

Prior attempts to develop automated methods for assessing
imitation performance have focused on determining the match
between a participant’s movements and those of a template.
The two most commonly used methods are rule-based algo-
rithms (13,14) and algorithms based on dynamic time warping
logical Psychiatry. Published by Elsevier Inc. All rights reserved. 321
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(DTW) (15,16). Similar to HOC, rule-based algorithms require
the researchers to manually define a set of rules. How well the
participants meet these rules is automatically assessed by the
algorithm. Despite its demonstrated utility in robot-mediated
therapy settings with children with ASCs (13,14), rule-based
methods have very limited generalizability, as they require a
priori human input for selecting the rules specific to the ges-
tures under study.

In contrast, DTW-based methods assess the spatial simi-
larity between two time series after correcting for discrep-
ancies in the temporal dimension (17) without requiring human
input. DTW-based approaches have been widely used in
gesture recognition tasks, in which a decision about which
gesture the participant performed is outputted based on the
similarity between the participant and the template (18–21).
Existing DTW-based imitation assessment approaches define
a metric that is either dichotomous (imitated vs. not) (15) or
categorical (good vs. bad performance) (16), thereby not uti-
lizing the continuous distance metric obtained from DTW.
These approaches can only capture relatively large variations
in imitation performance because these approaches have
categorical outputs, an issue that becomes even more prom-
inent in clinical populations such as ASCs that display high
behavioral variability. Moreover, given the importance of timing
in social coordination (22) and in characterizing autism-specific
imitation impairments (23,24), a valid imitation assessment
system must also consider temporal differences.

Machine learning techniques that learn motor patterns and
classify individuals into diagnostic groups is another popular
approach (25–27). Yet, prior studies did not directly assess
imitation ability even when some tasks involved imitation
(25,26). Therefore, it is unclear if the observed differences
represent general motor abnormalities or specific imitation
impairments. This lack of specificity restricts the use of these
methods for intervention purposes.

Characterizing and addressing imitation impairments is
crucial because imitation plays an important role in social bond
formation and learning (1–3), joint attention (12), children’s play
initiation (28), and social affiliation and prosocial behaviors
(29,30). Extant research shows that as compared with their
typically developing (TD) peers, imitation in children with ASCs
is less frequent, less precise, and more delayed (9,10,31,32).
These imitation deficits are more pronounced when the actions
appear meaningless or lack an obvious end goal (5,6,9,11,24).
Impaired imitation is associated with poorer social-
communicative functioning in children with ASCs, as demon-
strated in social responsiveness, social attention, engagement
in joint play, and social reciprocity (33–35).

An automated method that 1) specifically measures imita-
tion performance, 2) does not require manual feature selection,
3) generalizes to a range of movement types, 4) provides
continuous scores, and 5) integrates spatial and timing differ-
ences would significantly improve diagnosis efforts and robot-
mediated and other social-communication interventions for
autism.

The CAMI method that we developed uses 3-dimensional
motion data obtained from sensorless Kinect Xbox cameras
(Microsoft, Redmond, WA). Using DTW and metric learning
techniques, CAMI considers differences in both motion tra-
jectories and timing differences. We applied CAMI to a dataset
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comprising 48 children (27 with ASCs, 21 TD) as they imitated
the dance-like movements of a video model. In this article, we
report on the construct validity of the CAMI method, assessed
by comparing the children’s CAMI scores with their imitation
scores obtained by the HOC method. We also established the
test-retest reliability of the CAMI by comparing the children’s
scores across repeated imitation trials. We demonstrate how
well imitation scores from the CAMI versus HOC methods
classify the children into diagnostic categories. Finally, we
present the CAMI’s clinical significance by examining imitation
performance in the ASC and TD groups and its association
with core autism symptoms.

We hypothesized that while CAMI scores would highly
correlate with HOC scores and show high test-retest reliability,
the CAMI would outperform HOC when used for distinguishing
the diagnostic groups. Further, we expected that CAMI scores
would yield clinically meaningful results by revealing poorer
imitation in children with ASCs as compared with TD children
and showing strong associations with core autism symptoms.

METHODS AND MATERIALS

Participants

The data reported here were collected as part of a wider-scale
study examining imitation skills in autism. Our participants
were 48 children (27 with ASC, 21 TD) 8 to 12 years of age.

Autism diagnosis was based on DSM-5 criteria and was
confirmed on site by research-reliable assessors using the
Autism Diagnostic Observation Schedule, Second Edition
(ADOS-2), the Autism Diagnostic Interview–Revised, and the
parent-report of the Social Responsiveness Scale, Second
Edition (SRS-2). To be included in the study, children needed a
full-scale IQ score $80 or at least one index score $80 (verbal
comprehension; visual, spatial, or fluid reasoning index) on the
Wechsler Intelligence Scale for Children–Fifth Edition. For all
participants, ADOS-2 module 3 was used. In addition, to ac-
count for autism-associated differences in general motor
abilities, we used the Movement Assessment Battery for
Children, Second Edition. Descriptive statistics of participant
characteristics can be found in Table 1. See the Supplement
for full inclusion/exclusion criteria.

Ethics approval was received from the Johns Hopkins
University School of Medicine Institutional Review Board prior
to study commencement. Written informed consent was ob-
tained from all participants’ legal guardians, and verbal assent
from all children. All recruitment took place through contacts
with local schools and community events. Participants were
invited to the Center for Neurodevelopmental and Imagine
Research at the Kennedy Krieger Institute for 2-day visits and
received $100 compensation for their time.

Procedure

Children took part in an imitation task comprising 14 trials
presented at varying movement speeds. To avoid any
confound of changing movement speeds, in this study, we
report only on 4 trials presented at 100% speed: the first two
trials (trials 1a and 2a) and the last two trials (trials 1b and 2b).
The last two trials were repetitions of the first two trials. These
trials were of two separate movement sequences (sequence
arch 2021; 6:321–328 www.sobp.org/BPCNNI
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Table 1. Participant Characteristics

ASC Group TD Group

Test Statistic (ASC vs. TD Group)Mean (SD) or n Range Mean (SD) or n Range

Chronological Age, Years 10.34 (1.42) 8.03–12.83 10.41 (1.26) 8.55–12.73 t46 = 20.19, p . .05

SRS-2 Total Score 75.73 (7.40) 60–87 44.81 (4.04) 39–54 t40 = 15.33, p , .0001

ADOS-2 Total Score 15.54 (4.34) 8–27 – – –

WISC-V Full Scale IQ 98.41 (15.62) 70–130 109.86 (12.06) 94–143 t46 = 22.78, p = .008

Boys/Girls 24/3 – 18/3 – c2
1,48 = 0.11, p . .05

ADOS-2, Autism Diagnostic Observation Scale, Second Edition; ASC, autism spectrum condition; SRS-2, Social Responsiveness Scale, Second
Edition; TD, typically developing; WISC-V, Wechsler Intelligence Scale for Children, Fifth Edition.
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1 = trials 1a and 1b, sequence 2 = trials 2a and 2b). The se-
quences comprised 14 to 18 individual movement types, which
were relatively unfamiliar (e.g., moving arms up and down like a
puppeteer), did not have an end goal, and required moving
multiple limbs simultaneously. The choice of these movement
sequences was based on prior research showing particular
difficulties in ASCs with these types of movements (5,6,8,9,11).

The stimulus video was displayed on a large TV screen and
depicted dance-like whole-body movements of a young
woman without any background music/sound. The children’s
movements were recorded using two Kinect Xbox cameras at
30 frames/s, one located in front of the child and one at the
back. Because the Kinect Xbox records depth data, no sen-
sors or special clothing were needed for this data collection.
For more information about the study setup, see the
Supplement.

The session began with a brief training phase, familiarizing
the participants to the kinds of movements that they would
perform and how much to move their bodies. All participants
were instructed to perform whole-body movements and to try
their best to copy the model.
Data Coding

Calculation of CAMI Scores. The x-y-z coordinates of 20
joints were extracted from the children’s depth recordings using
iPi Motion Capture Software (IpiSoft, Moscow, Russia). Chil-
dren’s motion data were compared with the “gold standard,”
defined here as the motion data of the video model imitating
herself. Imitation scores for each child were obtained following
the steps outlined below. The details of the CAMI method and
equations used can be found in Computerised Assessment of
Motor Imitation (CAMI) Algorithm in the Supplement.

1. Preprocessing. The child’s and the gold standard’s motion
data are translated by locating their hips’ positions at the
origin. The child’s limb lengths are normalized to the gold
standard’s skeleton, and the child’s spatial orientation in
the first frame is adjusted to match the gold standard.

2. Automatic joint importance estimation. Using the gold
standard data, the relative contributions of each joint for
each movement type are computed based on the amount
of displacement observed. Joints that were displaced more
in the gold standard data for a given movement type are
considered to contribute more to the movement and hence
Biological Psychiatry: Cognitive Neuroscience and Ne
affected the imitation score more than joints that stayed
static.

3. Computation of the distance feature. Using DTW (17), the
child’s time course is aligned to the model’s time course
for the entirety of the sequence by finding a time warp
that minimizes the Euclidean distance between them. The
DTW distances of each movement type are calculated
considering the relative importance of each joint as
computed in step 2. The distances for the movement
types are then averaged to make up the child’s total DTW
distance (dist), which is then transformed into a distance
score (sdist).

4. Computation of the time features. Using the DTW warping
path information, time asynchrony features are computed
for the entire sequence (36): the duration that children were
delayed with respect to the model (tdelay) and the duration
that children performed the movements in advance of the
model (tadv).

5. Computation of the CAMI score. Using metric learning
techniques, the 3 variables (sdist, tdelay, and tadv) are line-
arly combined to make up the child’s imitation score. The
weights used for this linear combination are determined in
a data-driven manner using a 3-fold cross-validation
technique. In this technique, first, the dataset is split into
3 nonoverlapping groups with equal proportions of chil-
dren with ASCs and TD children in each group. Then, two
of these groups (i.e., training set) are used to learn the
weights in a way that maximizes the average correlation
between the CAMI and HOC across the trials of the
training set. Using the learned parameters, the CAMI
scores of the third group (i.e., the test set) are calculated.
Using cross-validation ensures that children’s CAMI
scores are calculated completely independently from and
without reference to their HOC scores. The same pro-
cedure is repeated by assigning a new group as the test
set until the CAMI scores are obtained for all three groups.
The formula used for learning the weights, and the
parameter values can be found in Parameter Learning in
the Supplement.

Regarding the number of cross-validation folds, studies
have shown that too few folds can lead to biased estimators,
and too many folds generate high variance in the estimations
(37). Hence, we repeated the analyses using 10 folds, which
replicated the same findings (see Supplemental Results).
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Because variability was considerably larger in the 10-fold
scheme (12.2%) as compared with the 3-fold scheme (3.6%),
we are reporting the findings from the 3-fold scheme in the
main text.

Calculation of HOC Scores

To establish construct validity of the CAMI method, we
analyzed 3 trials (trials 1a, 1b, and 2a) using the more tradi-
tional HOC method. At least 40% of the videos within each
trial, evenly split across diagnostic groups, were reliability-
coded by 2 diagnosis-blind coders (all K . .92, ps , .001).
No HOC was done for trial 2b videos so that this trial could be
used as the replication dataset.

Our HOC scheme identified the components of all move-
ment types within a sequence (e.g., bring right arm to the right),
the style of the movements (e.g., twirl arm, right/left side), and
the number of repetitions. Children’s total HOC score was the
sum of positive items (spos) and negative items (sneg) for each
movement type, divided by the maximum possible score for
that movement type. (spos) comprised scores given to com-
ponents successfully completed (score of 11). ðsnegÞ
comprised scores given to movements performed on the
reverse side (score of 20.5) and to movements that were
repeated more times than demonstrated by the model (score
of 21). Consequently, the children could receive a score within
the range of 0 to 166 for sequence 1, which had 176 compo-
nents, and 0 to 202 for sequence 2, which had 216 compo-
nents. These scores were then normalized to a range of 0 to 1,
where 1 indicates perfect imitation and 0 indicates worst
imitation [see Human Observation Coding (HOC) Scheme in
the Supplement].

RESULTS

To enable replications and use by future research, we provide
the learned parameters of the CAMI in the Supplemental
Results. While developing the CAMI method, we proposed
that it would have 3 main advantages to alternative methods:
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Figure 1. Imitation performance per diagnostic group (blue = autism spectrum
Computerized Assessment of Motor Imitation (CAMI) (left) and human observatio
the box plots, horizontal lines indicate medians, boxes indicate data within the
percentiles.
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1) considering temporal, in addition to spatial, differences in
imitation performance; 2) assessing imitation ability with high
sensitivity by yielding continuous, rather than discrete, scores;
and 3) automatically detecting which joints are important for
different movement types without human input. Beyond
theoretical plausibility of these arguments, we conducted
rigorous experiments, which empirically confirmed that these
properties did indeed improve the CAMI’s performance (see
Supplemental Results).
Construct Validity and Test-Retest Reliability of the
CAMI

To establish the CAMI’s construct validity, we examined its
correlation with the scores obtained from HOC in three trials of
movement data. The results revealed strong positive correla-
tions between the two methods for all 3 trials (trial 1a: r43 = .82,
p , .0001; trial 1b: r40 = .87, p , .0001; trial 2a: r46 = .69,
p , .0001) (Figure 1A). Notably, the correlation between the
two methods was lowest for trial 2a. It is worth highlighting
here that the CAMI scores are calculated using a 3-fold cross-
validation method, which means that children’s CAMI scores
were calculated independently from their HOC scores. Further
supporting this point, when the same correlation tests were run
between HOC scores and the distance output of DTW, which
is completely unsupervised by HOC, we still observed strong
correlations between the two variables (trial 1a: r43 = 2.78,
p , .0001; trial 1b: r40 = 2.82, p , .0001; trial 2a: r46 = 2.70,
p , .0001), such that increased spatial difference between the
child and the model was correlated with worse HOC scores.

We assessed the CAMI’s test-retest reliability by comparing
performance scores between repetitions trials, comparing trial
1a with trial 1b and trial 2a with trial 2b with Pearson’s corre-
lation tests. The results revealed excellent test-retest reliability
(trials 1a and 1b: r37 = .86, p, .0001; trials 2a and 2b: r36 = .73,
p , .0001).
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Figure 2. Comparisons between the Computerized Assessment of Motor Imitation (CAMI) and human observation coding (HOC) methods using motion data
of 4 imitation trials from a sample of 48 children (27 with autism spectrum conditions [ASCs], 21 typically developing [TD]). (A) Correlations between the CAMI
scores and HOC scores in 3 trials, showing strong correspondence between the two methods. An r = 1 indicates perfect positive association, r = 0 indicates no
association and r = 21 indicates perfect negative association (ps , .0001). (B) Three-dimensional plots of the CAMI and HOC scores in which scores from
trials 1a, 1b, and 2a correspond to the respective axes. Each marker represents 1 subject, and the reported accuracy (Acc) corresponds to average classi-
fication accuracy in 3-fold cross-validation of a linear support vector machine (SVM) classifier (best possible Acc is 100%, meaning all participants categorized
to diagnostic groups accurately). (C) Receiver-operating characteristic curves: true positive rate vs. false positive rate as classification threshold is varied. The
area under the curve (AUC) indicates the diagnostic ability of the method (left panel for CAMI, right panel for HOC) in each of the 3 trials (best possible AUC is 1,
meaning 0 false positives and 100% true positives). (D) Receiver-operating characteristic curve (left) and CAMI scores (right) of trial 2b only. Because this trial
did not have any HOC scores, its CAMI scores were computed based on parameters learnt from the other 3 trials, complying with the splits used for 3-fold
cross-validation. The area under the receiver-operating characteristic curve (0.937) and SVM accuracy value (84.6%) demonstrate the diagnostic classification
ability of CAMI scores with this single trial. Dx, diagnosis.
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Diagnostic Classification Ability of the CAMI

We assessed how well imitation scores obtained from the
CAMI and HOC methods would classify children into diag-
nostic groups in two ways: 1) by training a standard machine
learning algorithm (linear support vector machines [SVMs]) to
classify the subjects into diagnostic groups using their imita-
tion scores as the sole features; and 2) by computing the
receiver-operating characteristic curve of each trial, with larger
areas under the curve indicating better discriminative ability.
Notably, the features used in SVMs carry no prior information
about the children’s diagnosis status; the only feature used for
classification was the diagnosis-blind imitation scores.

For all 3 trials that had both CAMI and HOC scores, the
discriminative ability of the CAMI was either comparable to or
better than the discriminative ability of HOC. The SVM method
showed that when the participants are characterized by their
imitation performance across the trials, the diagnostic groups
(ASCs vs. TD) are more vividly separated by CAMI scores as
compared with HOC scores (Figure 1B). This visible trend is
supported by the higher average classification accuracy ob-
tained by a linear SVM classifier trained in a 3-fold cross vali-
dation scheme (accuracyCAMI = 87.2%, accuracyHOC = 74.4%).

The area under the curve was comparable between the
CAMI and HOC methods for trials 1a and 1b, while it was
Biological Psychiatry: Cognitive Neuroscience and Ne
considerably higher for CAMI scores in trial 2a (Figure 1C).
Considered together with the lower correlation between
CAMI and HOC in trial 2a (Figure 1A), this finding attests
to CAMI’s validity and superior diagnostic classification
ability.

Finally, we replicated these findings in a single, 1-minute
imitation trial (trial 2b), which had only CAMI scores and no
HOC scores. Figure 1D shows the classification accuracy
(84.6%) and area under the curve of the CAMI based only on
trial 2b scores. Overall, these findings show that the CAMI
outperforms HOC in distinguishing children into diagnostic
groups.

Clinical Relevance of the CAMI

To confirm that the imitation ability assessed by the CAMI is
relevant for a clinical autism sample, we examined the hy-
potheses that poorer imitation would be observed in children
with ASCs than in TD children, and that imitation deficits would
be associated with increased autism symptoms.

We conducted a mixed analysis of variance with diagnosis
(ASCs vs. TD), assessment method (CAMI vs. HOC), age, IQ,
and motor abilities (scores from the Movement Assessment
Battery for Children–Second Edition) as the independent vari-
ables, and imitation score as the dependent variable. One TD
uroimaging March 2021; 6:321–328 www.sobp.org/BPCNNI 325
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Table 2. Correlation Between Imitation Ability and Core Autism Symptoms

Imitation Ability

SRS-2 (Parent Report) ADOS-2 (in the ASC Group Only)

SA Subscale RRB Subscale Total Score SA Subscale RRB Subscale Total Score

CAMI Method r40 = 2.48b r40 = 2.52c r40 = 2.50b r24 = 2.17 r24 = 2.23b r24 = 2.34a

HOC Method r40 = 2.42b r40 = 2.45b r40 = 2.43b r24 = 239a r24 = 2.21 r24 = 2.42b

r = 1 indicates perfect positive association, r = 0 indicates no association, and r = 21 indicates perfect negative association. Higher scores in the
SRS-2 and ADOS-2 indicate greater autism severity.

ADOS-2, Autism Diagnostic Observation Scale, Second Edition; ASC, autism spectrum condition; CAMI, Computerized Assessment of Motor
Imitation; HOC, human observation coding; RRB, restricted interests and repetitive behavior; SA, social affect; SRS-2, Social Responsiveness
Scale, Second Edition.

ap , .10.
bp , .05.
cp , .001.
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child and 2 children with ASCs were dropped from analysis
owing to violation of normality assumptions (62 SDs from the
mean); including these children did not change the findings.
These statistical analyses were done using open-source R
software version 3.6.2 (R Foundation for Statistical Computing,
Vienna, Austria).

The results revealed significant main effects of diagnosis
(F1,23 = 13.41, p = .001) and assessment method (F1,25 =
221.69, p , .0001) as well as significant interaction effects of
diagnosis 3 trial (F2,92 = 3.56, p = .03), diagnosis 3 method
(F1,25 = 14.80, p = .0007), and trial 3method (F1,92 = 10.55, p =
.0001). No other variable had a significant effect on imitation
scores. Owing to its relevance for our hypothesis, we further
examined the diagnosis 3 trial interaction with Bonferroni-
corrected pairwise tests. We found that within each trial and
for both CAMI and HOC scores, children with ASCs imitated
more poorly than TD children (all ps, .0001) (Figure 2). That no
ceiling effects were observed in either group indicates that, as
reported in the prior literature (5,6,8,9,11), the types of move-
ments included in these sequences were challenging for both
the ASC and TD groups.

To examine the associations between imitation perfor-
mance and core autism symptoms, we created composite
scores by averaging the children’s scores in 3 trials (trials 1a,
1b, and 2a). Core autism symptoms were measured by 1)
parental reports of the SRS-2 and 2) the ADOS-2 administered
to children with ASCs. Better imitation ability, as measured by
both the CAMI and HOC methods, was moderately and sta-
tistically significantly correlated with lower scores on the
subscales of the SRS-2 and the total SRS-2 scores (Table 2).
Correlations between the imitation scores and ADOS-2 scores
were less strong, with the total scores reaching or approaching
significance. The decreased association of CAMI scores with
ADOS-2 scores likely stemmed from insufficient power
because the ADOS-2 was administered only to the ASC group,
while the SRS-2 was administered to all participants. These
findings support the clinical relevance of CAMI by revealing
significant links between the CAMI-assessed imitation deficits
and core autism symptoms.
DISCUSSION

In this study, we developed a method called CAMI, which uses
an automated, DTW-based algorithm, and presented its suc-
cessful application to a clinical autism population to examine
326 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging M
imitation deficits. Strong correspondence of the CAMI with the
standard HOC method confirmed our method’s construct
validity. Applying the CAMI on two sets of repeated imitation
trials involving two different movement sequences, we estab-
lished the CAMI’s test-retest reliability. Further, the findings
revealed that imitation ability as assessed by CAMI scores can
distinguish children’s clinical diagnosis (ASCs vs. TD) better
than HOC scores. Clinical relevance of the CAMI has been
further confirmed with findings of CAMI-assessed poorer
imitation in children with ASC than in TD children, and a strong
link between imitation deficits and core autism symptom
severity.

The CAMI addresses the outstanding issues with auto-
matic assessment of human motion and imitation. The issues
of heterogeneity (i.e., range of movements being virtually
unlimited) and requirement for high sensitivity to detect nu-
ances are addressed by using a continuous instead of a
discrete output. The issues of high dimensionality (i.e.,
involving spatial and temporal aspects of movements) and
limited human supervision (i.e., lacking expert knowledge on
importance of movement elements) are addressed by
imposing a structure in the model that reduces the number of
learnable parameters based on guidance from expert-based
observations (i.e., HOC scores). Using expert knowledge to
guide the features (i.e., dist, tadv, and tdelay) improved CAMI’s
interpretability, while deviance from HOC as a result of
automatized learning processes improved CAMI’s diagnostic
discriminative ability. Finally, automatic detection of impor-
tant joints enables combining high-dimensional data in a
meaningful way for other movements, improving the CAMI’s
scalability.

One advantage of the CAMI is that unlike other automated
methods that classify children into diagnostic groups based on
broad differences in movement patterns (25–27), it specifically
measures imitation ability and provides an interpretable score
indicating how well the children performed with respect to a
model. Assessing imitation ability with a sensitive, automatic,
and objective method is important because there is robust
evidence that imitation crucially impacts social bonding,
learning, communication, and interaction throughout devel-
opment (1,2,3,30). Because our method targets imitation ability
in particular, it can be used to detect deficiencies from at least
school age onward and to track performance during in-
terventions designed to improve social-communicative func-
tion through imitation training.
arch 2021; 6:321–328 www.sobp.org/BPCNNI
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Contrary to previous methods providing only dichotomous
or categorical scores for imitation performance (15,16), CAMI
produces a fine-grained, continuous score within a range of
0 (worst imitation) to 1 (best imitation). Continuous scores
allow for capturing minute differences in imitation ability, which
is especially important for populations with high variability such
as children with ASCs. Moreover, the CAMI considers timing
differences in addition to spatial differences. Given known
deficits in coordinating the timing of actions in ASCs (24,31),
timing measures may importantly improve the assessment of
autism-specific imitation impairments.

Using an SVM approach with 3-fold cross-validation, we
demonstrated that CAMI scores designated children into
diagnostic groups better than HOC scores. The CAMI method
outperformed the HOC method in trial 2a, which was the trial
with lowest correlation between the two methods. Further,
applied to another trial without HOC scores (trial 2b), CAMI
scores from a single, 1-minute trial distinguished the children
into diagnostic groups with 84.6% success. Altogether, our
findings show that as compared with HOC, the CAMI is more
sensitive in detecting autism-associated differences in imita-
tion performance.

Given the heterogeneity of the behavioral phenotypes in the
autism spectrum, the sample size of 27 children with ASCs and
21 TD children can be considered relatively small. While such
inherent limitations of a small sample size should be consid-
ered while interpreting the findings, it is important to clarify that
the CAMI machine learning approach does not suffer from a
sample size problem in either the calculation of the CAMI
scores or SVM classification. First, because estimating the
minimum sample size needed by canonical correlation analysis
(a general case of the method we used to learn the CAMI
scores) is nontrivial, studies suggest the “1-in-10 rule,” which
states that 10 samples per variable is enough to estimate the
parameters (38,39). In our case, when we maximize the cor-
relation, we are working with 3 variables; thus, 30 samples
should suffice. In the 3-fold cross-validation scheme, we are
using approximately 90 samples (two-thirds of subjects, 3 tri-
als) to estimate 3 variables. Second, for binary max-margin
linear classifiers such as the SVMs we used, Raudys (40)
provided a formula to estimate the mean expected classifica-
tion error in terms of the number of parameters, distance be-
tween classes, and sample size. Applying equation 12 from
Raudys (40) to our problem, in which p = 3 (number of pa-
rameters), delta = 3.83 (the distance between normalized class
centers), and n = 13 (the approximate number of samples per
class for training in the 3-fold cross-validation scheme), we
obtained a mean expected classification error of 5.9%. Given
that the minimum possible mean expected classification error
for this problem (i.e., if we had infinite samples) would be 2.8%,
our error rate can be considered sufficiently good. Notably, the
parameter-to-sample-size ratio used here is higher than pre-
vious applications of machine learning to distinguish motor
patterns in autism. For example, Li et al. (26) trained a model
with 40 parameters using data from 30 subjects, and Crippa
et al. (27) trained a model with 7 parameters using data from 30
subjects.

Future research is needed to improve the scalability of
CAMI. At present, this method uses data obtained from Kinect
Xbox depth cameras, which, owing to imperfections of the
Biological Psychiatry: Cognitive Neuroscience and Ne
motion tracking technology, require some manual processing
that can be time-consuming. Future research should explore
the use of this method on 2-dimensional data obtained from
high-resolution cameras. Moreover, in order for the CAMI to be
used widely as a clinical assessment tool, we need to establish
norm standardization with larger datasets, including younger
age groups and varied demographics. Relatedly, given the
relatively small sample size of this study for the highly het-
erogeneous autism population, it is crucial that the current
findings be replicated in future research; administering the
ADOS-2 to the entire population would be informative in future
replication attempts.

The CAMI method presented here is a major step forward in
examining motor imitation automatically without requiring
extensive human input or coder training. This method provides an
objective, continuous, highly scalable, and directly interpretable
score. As such, the CAMI can be used in clinics and home set-
tings to assess imitation ability, to help inform diagnostic decision
making based on the children’s imitation performance (e.g., ASCs
vs. non-ASCs), and to advance biomarker-based in-
terventions for improving social-communicative functioning
through imitation-based strategies.
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