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Abstract

Scientific information extraction (SciIE) has001
primarily relied on entity-relation extraction002
in narrow domains, limiting its applicability003
to interdisciplinary research and struggling to004
capture the necessary context of scientific infor-005
mation, often resulting in fragmented or con-006
flicting statements. In this paper, we intro-007
duce SciEvent1, a novel multi-domain bench-008
mark of scientific abstracts annotated via a uni-009
fied event extraction (EE) schema designed010
to enable structured and context-aware under-011
standing of scientific content. It includes 500012
abstracts across five research domains, with013
manual annotations of event segments, trig-014
gers, and fine-grained arguments. We define015
SciIE as a multi-stage EE pipeline: (1) seg-016
menting abstracts into core scientific activities—017
background, methods, results, and conclusions;018
and (2) extracting the corresponding triggers019
and arguments. Experiments with fine-tuned020
EE models, large language models (LLMs),021
and human annotators reveal a performance022
gap, with current models struggling in domains023
such as sociology and humanities. SciEvent024
serves as a challenging benchmark and a step025
toward generalizable, multi-domain SciIE.026

1 Introduction027

Scientific information extraction (SciIE) distills028

structured knowledge from unstructured scientific029

articles and supports key scientific applications030

such as literature review (Hong et al., 2021), pa-031

per recommendation (Ikoma and Matsubara, 2023),032

and knowledge discovery (Stavropoulos et al.,033

2023), especially in recent years as many domains034

are facing a publication deluge.035

Existing works on SciIE generally follow an036

entity-relation extraction (ERE) paradigm that aims037

to extract isolated scientific concepts and connect038

them by identifying semantic relations, either bi-039

1We will release the dataset and code upon publication of
the paper.

Figure 1: Conflicting statements in entity-relation ex-
traction. ⟨GPT-3.5-Turbo, better than, GPT-4-Turbo⟩ vs.
⟨GPT-4-Turbo, better than, GPT-3.5-Turbo⟩

nary (Luan et al., 2018; Zhang et al., 2024) or N - 040

ary (Jain et al., 2020; Zhuang et al., 2022). Despite 041

remarkable contributions made by prior studies, 042

one major concern is that representing scientific 043

content as disconnected entity-relation tuples may 044

fragment the underlying narrative and even intro- 045

duce conflicting statements, especially when syn- 046

thesizing information across multiple publications. 047

As shown in Figure 1, one paper may generate 048

the tuple ⟨ “GPT-3.5-Turbo”, “better than”, “GPT- 049

4-Turbo”⟩, while another produces the opposite. 050

Without contextual cues such as task setup or eval- 051

uation criteria, these tuples alone fail to convey 052

meaningful or reliable scientific insights. 053

Inspired by the heavily context-dependent nature 054

of scientific publications, we adopt an event extrac- 055

tion (EE) paradigm. This paradigm focuses on iden- 056

tifying triggers that best represent each event and 057

extracting associated arguments, which are then 058

assigned specific semantic roles. This enables a 059

more structured and context-aware representation 060

of important scientific information. Despite its po- 061

tential for representing scientific information, a ma- 062

jor limitation of existing EE efforts in the scientific 063

domain is their narrow focus on specific fields, of- 064

ten resulting in the development of domain-specific 065

EE schemas. For example, (Zhang et al., 2024) 066

and (Jain et al., 2020) focus on machine learning, 067

and (Kim et al., 2011) focus on bio-molecule area. 068

Given the rapid growth of interdisciplinary research 069
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in recent years, there is an increasing need for a uni-070

fied scientific EE schema capable of generalizing071

across diverse scholarly domains.072

To address this gap, we introduce SciEvent,073

a unified EE schema for scientific texts, along074

with a dataset featuring manually annotated events075

and fine-grained arguments drawn from diverse re-076

search abstracts. Building on this dataset, we define077

three SciIE tasks: (1) event segmentation, which078

involves dividing the text into spans that represent079

core scientific activities such as background, meth-080

ods, results, and conclusions; (2) trigger identifica-081

tion, which aims to detect the key anchor of each082

scientific event; and (3) argument extraction, which083

focuses on identifying the arguments involved in084

each scientific activity and assigning them roles085

such as context, method, or result. Differing from086

conventional EE pipelines, we introduce event seg-087

mentation as a preliminary task, recognizing that088

events in scientific texts often span multiple sen-089

tences and lack clear boundaries. Additionally,090

trigger words in scientific texts—such as "show",091

"demonstrate", or "present"—are frequently shared092

across different event types. Without first segment-093

ing the text into discrete events, it becomes chal-094

lenging to accurately delineate event boundaries,095

increasing the risk of misinterpreting or misclassi-096

fying both triggers and their associated arguments.097

SciEvent contains 500 abstracts from five diverse098

scientific domains, each fully annotated using an099

EE paradigm. To evaluate the challenges posed100

by this dataset, we assess the performance of fine-101

tuned EE models, tuning-free large language mod-102

els (LLMs), and human annotators. The results103

demonstrate SciEvent’s broad domain coverage104

and reveal that existing models consistently lag105

behind human performance. This gap highlights106

the limitations of current approaches and the ab-107

sence of EE models capable of generalizing across108

scientific domains.109

2 Related Work110

Event Extraction Existing work on event ex-111

traction (EE) typically frames the task via two112

paradigms. One is trigger-argument extraction113

(Walker et al., 2006; Hsu et al., 2022; Lin et al.,114

2020), where the trigger serves as the event an-115

chor, most clearly signaling the occurrence of an116

event, while the arguments represent entity men-117

tions that participate in the event, each fulfilling dis-118

tinct roles. The other one treats EE as a trigger-free119

template-filling task (muc, 1992; Du and Cardie, 120

2020a; Huang et al., 2021), aiming to extract event- 121

relevant arguments and assigning them to specific 122

roles within each event template. The latter mainly 123

focuses on document-level EE (Du and Cardie, 124

2020a), while the former has been widely used 125

in both sentence-level (Walker et al., 2006) and 126

document-level EE (Li et al., 2021). Our bench- 127

mark follows the trigger-argument paradigm. 128

Regarding EE benchmarks, prior studies have 129

largely focused on data in generic domains. Pop- 130

ular examples include newswire (Grishman and 131

Sundheim, 1996; Nguyen et al., 2016; Dodding- 132

ton et al., 2004; Ebner et al., 2020; Song et al., 133

2015), Wikipedia (Li et al., 2021; Pouran Ben Vey- 134

seh et al., 2022), social media (Sharif et al., 2024; 135

Wang and Zhang, 2017; Comito et al., 2019) and 136

widely-used knowledgebases like FrameNet (Baker 137

et al., 1998) and PropBank (Bonial et al., 2014). 138

While some researchers have broadened the scope 139

of EE to scientific literature, their efforts tend to 140

center the biomedical domain, particularly em- 141

phasizing state changes and interactions between 142

biomolecules such as genes and proteins (Kim 143

et al., 2011; Pyysalo et al., 2012; Kim et al., 2013). 144

Differing from prior work, we extend EE to encom- 145

pass a broader range of scientific domains, creating 146

a unified annotation schema designed to facilitate 147

interdisciplinary information extraction. 148

Scientific Information Extraction Research on 149

scientific information extraction (IE) primarily tar- 150

gets two main types of information: (1) citation- 151

based analysis, which involves identifying either 152

binary citation influence classification (Kunnath 153

et al., 2020; N. Kunnath et al., 2021; Maheshwari 154

et al., 2021) or multi-class citation intents (pur- 155

pose) classification (Cohan et al., 2019; Jurgens 156

et al., 2018), and (2) content-based analysis (Gupta 157

and Manning, 2011; Tsai et al., 2013; Gábor et al., 158

2016; Pronesti et al., 2025), which primarily fo- 159

cuses on extracting scientific entities, supporting 160

evidence, and semantic relationships among them, 161

with the ultimate goal of building concept-centric 162

knowledge graphs (Ma et al., 2022; Zhang et al., 163

2020; Sap et al., 2019). For example, SciERC 164

(Luan et al., 2018), consists of 500 scientific ab- 165

stracts annotated with scientific entities, their pair- 166

wise relations, and coreference clusters. SciREX 167

(Jain et al., 2020) provides annotations across 438 168

full documents, covering four entity types: TASK, 169

DATASET, METHOD, and METRIC. Beyond gen- 170
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eral knowledge extraction, some studies further fo-171

cus on specific research subjects. This line of work172

designs domain-specific event extraction tasks to173

capture fine-grained scientific activities (He et al.,174

2024,Kim et al., 2011, Huang et al., 2020, Björne175

et al., 2010). For example, various biomedical EE176

tasks have been proposed to investigate biological177

processes such as protein-protein and gene-disease178

interactions (Kim et al., 2013; Kim et al., 2011;179

Björne et al., 2010). Our work similarly focuses180

on scientific EE. However, differing from prior181

works targeting specific domain, we aim to design182

a unified schema for organizing general scientific183

activities across diverse scientific domains.184

3 SciEvent Benchmark185

Figure 2: An example from SciEvent, each event in
SciEvent is annotated with trigger and argument roles.

Data Collection To support cross-domain evalua-186

tion and capture diverse writing conventions, we se-187

lected publicly available, peer-reviewed English ab-188

stracts from 2023 to reflect contemporary language189

use. We selected five domains: natural language190

processing (NLP) from the Annual Meeting of the191

Association for Computational Linguistics (ACL)2,192

social computing (SC) from Proceedings of the193

ACM on Human-Computer Interaction (CSCW)3,194

medical informatics (MI) from Journal of Medical195

Internet Research (JMIR)4, computational biology196

(CB) from Bioinformatics5, and digital humanities197

(DH) from Digital Humanities Quarterly (DHQ)6.198

These domains were selected for their methodolog-199

ical diversity, different resource availability, rele-200

vance to interdisciplinary research, and representa-201

tiveness of their respective fields. NLP and biomed-202

ical domains are well-studied and offer structured,203

2https://aclanthology.org/events/acl-2023/
3https://dl.acm.org/toc/pacmhci/2023/7/CSCW1
4https://www.jmir.org/2023
5https://pubmed.ncbi.nlm.nih.gov/
6https://www.digitalhumanities.org/dhq/

technical abstracts, while SC and DH are under- 204

represented and characterized by more narrative, 205

context-rich writing. To support document-level 206

modeling, we retained abstracts with at least three 207

sentences and two identifiable events, filtering out 208

those that were too short to provide meaningful 209

structure. In total, we collected 500 scientific 210

abstracts—100 each in NLP, SC, and CB, 120 211

in DH, and 80 in MI. DH has fewer publications 212

and shorter abstracts, so we extended the sampling 213

range to 2021–2023 and included 120 abstracts to 214

ensure sufficient coverage of domain variation. MI 215

abstracts are longer and denser, so we selected 80 216

abstracts to balance event content comparability 217

across all five domains. 218

Annotation Pipeline Our overall pipeline of an- 219

notation schema consist of (1) event segmentation, 220

and (2) trigger-argument extraction. In the first step, 221

we segment an abstract into four event types: back- 222

ground, methods, results, and conclusions, which 223

are adopted from the most common aspects of sci- 224

entific publications (Ripple et al., 2012). In the 225

second step, each segment is annotated with a tuple 226

representing the event trigger, and is enriched with 227

role-specific arguments. 228

In prior event extraction work, particularly in 229

newswire and broadcast domains, triggers like "at- 230

tack" define clear and stable event frames, with 231

roles such as "attacker" and "target" naturally 232

grounded in the trigger’s semantics. In scientific 233

texts, however, single word triggers like "show" 234

lack this clarity. Even after event segmentation and 235

the event type (e.g., "Result") is known, the trig- 236

ger alone does not specify what the event is about. 237

Roles like "shower" or "shown item" are not mean- 238

ingful on their own, as the event’s meaning depends 239

on the full proposition. For example, "showing a 240

promising result" differs from "showing a method- 241

ological limitation". To capture this, we represent 242

the trigger as a tuple of (Agent, Action, Object), 243

anchoring the event in its core semantics. 244

To fully capture a scientific event, we then anno- 245

tate its arguments. We defined nine argument roles: 246

Context, Purpose, Method, Results, Analysis, Chal- 247

lenge, Ethical, Implication, and Contradiction 7. 248

Each role targets a specific dimension of scientific 249

abstract, adapted from Core Scientific Concepts 250

(Liakata et al., 2012) and inspired by scientific writ- 251

ing guides (Paltridge, 2002; Alley, 1996). While 252

some argument roles share names with event types 253

7Detailed definitions in appendix B
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(e.g., Methods, Results), they are not restricted to254

those events; for example, evaluation methods of-255

ten appear within the Results event.256

Annotation Quality We employed five graduate257

student annotators, all specializing in NLP and ei-258

ther native English speakers or PhD students. Each259

annotator had domain expertise in at least one of260

the five annotated domains, and collectively they261

covered all five diverse scientific areas. They were262

instructed to prepare gold annotations, beginning263

with event segmentation, followed by trigger iden-264

tification and argument extraction. To evaluate the265

quality of event segment annotations, we randomly266

sampled 10 abstracts per domain and had two an-267

notators independently annotate each. Intercoder268

reliability, measured by Cohen’s Kappa (Cohen,269

1960), is 0.83, showing strong agreement.270

Given any extracted event, annotators then ex-271

tract the trigger tuple and associated arguments272

within the event, following definitions and exam-273

ples provided in the codebook7. Unlike event seg-274

mentation, assessing intercoder reliability for trig-275

gers and arguments is challenging due to span-level276

granularity and variability in trigger selection. Mi-277

nor boundary differences can lead to large mis-278

matches under strict metrics. To ensure quality, we279

conducted multiple annotation rounds with author-280

led review. To assess usability and estimate human281

upper bound, six additional untrained annotators re-282

ceived brief tutorials and annotated independently,283

providing a baseline for model comparison. All an-284

notations were done using a custom-built interface285

shown in appendix B.1.286

Figure 3: Distribution of (a) argument roles and (b)
event types across the dataset.

Data Analysis Using the above annotation287

pipeline, we construct a dataset of 500 annotated288

scientific abstracts containing 8,911 structured289

mentions, as shown in Table 1. Its broad domain290

coverage supports robust cross-domain analysis.291

As shown in Figure 3, the most frequently an-292

notated arguments are Context (CTX), Method 293

(MET), and Results (RES), highlighting the 294

dataset’s emphasis on core components of scientific 295

reporting. Rare arguments such as Contradictions 296

(CTD) and Ethical (ETH) suggest that such aspects 297

are rarely discussed in abstracts. The most common 298

event types are Methods, consistent with typical 299

abstract structure. Moreover, Figure 4 shows that 300

argument types align well with event types—for 301

example, Context appears predominantly in Back- 302

ground events, supporting the reliability and inter- 303

nal consistency of our annotations. 304

Figure 4: Distribution of argument across event types

4 Experiment and Evaluations Settings 305

We show the challenges of SciEvent by conducting 306

comprehensive experiments on various state-of-the- 307

art models. We define three tasks: Scientific Event 308

Segmentation, SciEvent Trigger Identification, and 309

SciEvent Argument Extraction. 310

Definition on Notations The input is a doc- 311

ument represented as a sequence of sentences 312

D = {S1, . . . , SN}. Formally, the goal is to ex- 313

tract a set of scientific events E = {E1, . . . , EM}, 314

where each event Ei is defined as: Ei = 315

(si, sj , tk,Triggeri,Argi) Here, (si, sj) denotes a 316

contiguous sentence span in D, and tk ∈ T is the 317

event type. The trigger Triggeri is a tuple of three 318

core argument spans: 319

Triggeri = (σagent, σaction, σobject) 320

Each σ ∈ D is a token span represented as (σs, σe) 321

indicating the start and end token indices of the 322

Agent, Action, and Object, respectively. The set 323

Argi contains argument-role pairs: 324

Argi = {((as, ae), rl) | 1 ≤ as ≤ ae, rl ∈ R} 325

where (as, ae) denotes a token span and rl is a 326

semantic role from the predefined schema R. 327

Task 1: Scientific Event Segmentation We de- 328

fine this task as segmenting the abstract into con- 329

tiguous spans, where each segment is treated as an 330

event and labeled with one of four event types. 331
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Dataset #Doc #Mentions Arg./Ent. Types Avg Sent./Evt Paradigm Source Domains

SCIREX 438 8,592 4 - ERE Full paper ML
SCIERC 500 8,089 6 - ERE Abstract Speech, ML, CV, AI
SEMEVAL17 493 8,529 3 - ERE Paragraph CS, MS, Physics
SEMEVAL18 500 7,505 1 - ERE Abstract CL
SCIER 106 24,518 3 - ERE Full paper ML
GENIA2011 1,224 21,549 10 1 EE Abstract/Full BioMol
SCIEVENT (OURS) 500 8,911 9 2.95 EE Abstract NLP, SC, CB, MI, DH

Table 1: Comparison of scientific IE datasets. Abbreviations: Arg./Ent. Types = Argument/Entity Types, Avg
Sent./Evt = Average Sentence Per Event, NLP = Natural Language Processing, SC = Social Computing, CB
= Computational Biology, MI = Medical Informatics, DH = Digital Humanities, ML = Machine Learning,
AI = Artificial Intelligence, CV = Computer Vision, CS = Computer Science, MS = Material Science, CL =
Computational Linguistics, BioMol = Biomolecular.

Formally, this task predicts a set of labeled sen-332

tence {(si, sj , tk)}, where 1 ≤ i ≤ j ≤ N and333

tk ∈ T . We evaluate model predictions using Ex-334

act Match (EM) and Intersection over Union (IoU)335

metrics, adapted from span-based evaluation met-336

rics in SemEval (Segura-Bedmar et al., 2013) and337

MUC-5 (Chinchor and Sundheim, 1993). A pre-338

dicted tuple (ŝi, ŝj , t̂k) is considered correct under:339

• Exact Matching (EM): (ŝi, ŝj) = (si, sj) and340

t̂k = tk341

• Intersection over Union (IoU): |ŝ∩s|
|ŝ∪s| > 0.5342

and t̂k = tk, where ŝ and s are the sets of sen-343

tence indices in the predicted and gold spans.344

For both strategies, we report Precision (P), Recall345

(R), and F1-score (F1) over the set of predicted and346

gold event segments.347

Task 2: SciEvent Trigger Identification This348

task involves extracting the trigger tuple (Agent,349

Action, Object) within each detected event span.350

As this is a document-level task, and scientific351

events often contain multiple candidate triggers,352

we treat this step separately to explicitly evaluate353

the model’s ability to accurately locate the core354

semantic components of an event after its span and355

type have been identified.356

Formally, for each detected event Ei, the model357

predicts: Triggeri = (σagent, σaction, σobject).358

We use macro ROUGE-L (Lin, 2004) to evaluate359

predicted triggers, as it captures longest common360

subsequence (LCS) overlap, reflecting both lexical361

and structural alignment. Let Ci denote the concate-362

nated text of the trigger, ordered as Agent, Action,363

and Object. We compute: ROUGE− L(Ĉi, Ci)364

Task 3: SciEvent Argument Extraction This365

task focuses on extracting arguments using a pre-366

defined set of roles R. For each event Ei, the367

model predicts: Argi = {((as, ae), rl) | 1 ≤368

as ≤ ae, rl ∈ R}. Each argument is represented 369

by a token span (as, ae) and its role label rl. 370

We decompose this task into two sub-tasks: 371

• Argument Identification (Arg-I): Predict the 372

set of argument spans {(as, ae)} for each event. 373

• Argument Classification (Arg-C): Assign a 374

role rl ∈ R to each identified span. 375

we evaluate both Arg-I and Arg-C using F1 scores 376

under two span matching strategies: Exact Match 377

(EM) and Intersection over Union (IoU), with a 378

threshold of 0.5. 379

A predicted argument ((âs, âe), r̂l) matches a 380

gold argument ((as, ae), rl) in Arg-I sub-task if: 381

• Exact Matching (EM): (âs, âe) = (as, ae) 382

• Intersection over Union (IoU): |â∩a|
|â∪a| > 0.5 383

where â and a denote the sets of token indices 384

spanned by the predicted and gold arguments, re- 385

spectively. If the role label of predicted argument 386

also match with gold argument, i.e. r̂l = rl, then 387

predicted argument also matches a gold argument 388

in Arg-C sub-task. 389

LLM baselines We use LLM baselines for 390

the above tasks: (1) meta-Llama-3.1-8B-Instruct 391

(Llama) (Meta AI, 2024) , (2) Qwen2.5-7B-Instruct 392

(Qwen) (Qwen Team, 2024), (3) DeepSeek-R1- 393

Distill-Llama-8B (DeepSeek-R1) (DeepSeek-AI, 394

2025), and (4) GPT-4.1 (GPT) (OpenAI, 2025) as 395

baseline models. For Task 1, we conducted prelim- 396

inary research on zero-shot prompting, and we use 397

the best prompt, adapted from Sharif et al., 2024. 398

For Task 2 and 3, we use zero-shot and one-shot 399

prompting, also preliminarily tested and adapted 400

from Sharif et al., 2024. 401

Tuning-based baselines For Task 2 and 3, we 402

also consider three supervised models: (1) DE- 403

GREE (Hsu et al., 2022), a data-efficient generative 404
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approach to event argument extraction that lever-405

ages prompt-based learning for better generaliza-406

tion. (2) OneIE (Lin et al., 2020), a joint informa-407

tion extraction framework that simultaneously per-408

forms entity, relation, and event extraction using a409

unified representation. (3) EE_QA (Du and Cardie,410

2020b), a transformer-based model that frames in-411

formation extraction as a question-answering task,412

enabling contextualized argument extraction.413

5 Experiment Results414

Model EM IoU
P R F1 P R F1

DeepSeek-R1 31.26 34.13 32.63 58.97 64.38 61.56
Qwen 43.51 36.30 39.58 70.30 58.65 63.95
Llama 38.67 31.70 34.84 62.04 50.85 55.89
GPT 59.07 62.96 60.95 82.98 88.45 85.63

Table 2: Scientific event segmentation performance (%)
on zero-shot LLMs using Exact Match (EM) and Inter-
section over Union (IoU) metrics, showing Precision
(P), Recall (R), and F1-score

Scientific event segmentation We experiment415

Zero-shot LLMs on Task 1. As Table 2 presents,416

GPT-4.1 clearly outperforms all others by a wide417

margin, achieving 60.95% F1 under EM and418

85.63% under IoU, indicating its strong ability419

to identify and segment coherent scientific spans.420

Qwen ranks second, while Llama and DeepSeek-421

R1 trail closely with modest differences. These422

results suggest that segmentation is best handled423

by higher-capacity models like GPT-4.1.424

Methods P R F1
Tuning-based models
EEQA 81.93 34.57 45.05
DEGREE 64.56 63.49 56.85
OneIE 73.73 79.40 72.40
Zero-shot LLMs
DeepSeek-R1 29.12 27.10 26.74
Qwen 43.84 55.25 47.57
Llama 54.88 61.07 55.83
GPT 65.38 72.73 67.57
One-shot LLMs
DeepSeek-R1 41.81 41.94 40.72
Qwen 56.17 68.48 59.98
Llama 53.08 63.83 56.45
GPT 72.67 77.77 74.05

Table 3: ROUGE-L scores (%) for baseline models on
the SciEvent trigger identification task, showing Preci-
sion (P), Recall (R), and F1.

SciEvent Trigger Identification We evaluate425

Task 2 with tuning-based models and LLMs using426

ROUGE-L metrics (Table 3). GPT-4.1 (One-shot)427

Methods Arg-I (IoU) Arg-C (IoU)
P R F1 P R F1

Tuning-based models
EEQA 32.09 33.77 32.91 25.85 27.20 26.51
DEGREE 67.79 19.13 29.84 48.99 13.83 21.57
OneIE 51.11 56.29 53.57 39.69 43.71 41.61
Zero-shot LLMs
DeepSeek-R1 31.11 16.46 21.53 16.32 8.63 11.29
Qwen 35.68 26.41 30.35 17.58 13.01 14.96
Llama 24.37 24.90 24.63 11.68 11.93 11.80
GPT 43.03 55.56 48.50 30.40 39.25 34.26
One-shot LLMs
DeepSeek-R1 42.62 17.67 24.98 19.59 8.12 11.48
Qwen 46.33 30.36 36.69 20.96 13.74 16.60
Llama 44.70 34.08 38.68 18.93 14.44 16.38
GPT 50.14 50.22 50.18 34.60 34.66 34.63

Table 4: IoU-based Precision (P), Recall (R), and F1-
score (%) on baseline models for argument identification
(Arg-I) and classification (Arg-C) tasks.

performs the best (F1: 74.05%). OneIE also per- 428

forms competitively (F1: 72.40%). EEQA shows 429

extremely high precision (P: 81.93%) but poor re- 430

call (R: 34.57%), suggesting over-conservative pre- 431

dictions. All LLMs improve with one-shot prompt- 432

ing, especially DeepSeek-R1 (F1: +13.98%), show- 433

ing that in-context examples enhance LLM perfor- 434

mance for scientific trigger identification. 435

SciEvent Argument Extraction We evaluate 436

Task 3 with tuning-based models and LLMs us- 437

ing argument identification (Arg-I) and classifi- 438

cation (Arg-C) under the IoU metric (Table 4). 439

OneIE achieves the highest scores (Arg-I: 53.57%, 440

Arg-C: 41.61%), benefiting from its structured de- 441

coding and joint modeling framework. DEGREE 442

exhibits high precision but low recall, indicating 443

that the model consistently misses relevant argu- 444

ments in scientific abstracts. Among LLMs, GPT- 445

4.1 (one-shot) performs best (Arg-I: 50.18%, Arg- 446

C: 34.63%), while other models perform notably 447

worse, especially on argument classification (Arg- 448

C around 15%). One-shot prompting offers a mod- 449

est improvement over zero-shot settings. 450

Figure 5 reports IoU-based F1 scores for argu- 451

ment classification across argument roles. Among 452

tuning-based and LLM-based models, OneIE and 453

GPT-4.1 achieve the strongest performance across 454

nearly all argument roles. Qwen achieves a spike 455

on Contradiction, due to a few correct extractions, 456

but shows worse performance overall. Across all 457

models, Challenge, Result, and Method yield the 458

highest F1 scores, due to their clearer lexical cues 459

and more regular positioning in scientific abstracts. 460
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Figure 5: Intersection-over-Union (IoU) on Arg-C F1-scores (%) across different argument roles for various models
on Analysis (ANA), Challenge (CHA), Context (CTX), Method (MET), Purpose (PUR), Result (RES), Ethical
(ETH), Implication (IMP), Contradictions (CTD).

In contrast, arguments like Ethical, Contradiction,461

and Analysis remain challenging due to data spar-462

sity and a lack of consistent lexical patterns.463
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Figure 6: Human performance compared to all baselines
on argument classification (Arg-C) using IoU F1 scores.
Human performance We compare model and464

human performance on argument classification. We465

do not report results for event segmentation, as the466

Cohen’s kappa score of 0.83 (exact match) on a sub-467

set indicates consistently high agreement among468

annotators, suggesting that event segmentation is469

relatively unambiguous for humans. As shown in470

Figure 6, there is a substantial gap between hu-471

man performance and the best model (20%). This472

highlights the challenge of multi-domain scientific473

event extraction and the value of SciEvent for ad-474

vancing argument level scientific event extraction.475

What is the impact of event type in SciEvent476

tasks? The arguments in Methods exhibit a477

notable gap: strong performance with supervi-478

sion (OneIE, EEQA) but poor with zero-/one-shot 479

LLMs on argument classification task (Figure 7). 480

This finding suggests that arguments in the Method 481

events are most demanding, due to event’s com- 482

plex structure, arguments’ varied phrasing, and 483

dependence on technical details, making perfor- 484

mance poorer without supervision. Furthermore, 485

Conclusion shows the lowest Arg-C performance 486

for most models. EEQA performs better because 487

its QA-based prompts help extract the implicit and 488

interpretive content typical of Conclusion events. 489

What is the impact of scientific domains in Sci- 490

Event tasks? In the argument classification task 491

(Figure 8), natural language processing and com- 492

putational biology domains yield the highest F1 493

scores, benefiting from consistent linguistic pat- 494

terns and clearer argument structures. In contrast, 495

digital humanities and medical informatics present 496

greater challenges, due to varied rhetorical styles 497

and longer, denser abstracts, respectively. 498

How does removal of domain affect perfor- 499

mance? We compare the argument classification 500

performance of the OneIE model under the Exact 501

Match (EM) setting using the full training set ver- 502

sus ablated training sets (Figure 9). Removing a 503

domain from training data leads to a noticeable 504

drop in its corresponding performance, confirm- 505

ing that domain-specific knowledge contributes 506

directly to accurate argument classification. The 507

largest declines are observed in Digital Humanities 508

and Computational Biology, indicating that these 509

domains contain more unique or specialized lin- 510

guistic patterns that are not easily generalized from 511
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Figure 7: Comparison of Intersection-over-Union (IoU) on Arg-C F1-scores (%) across different event types for
various models on background, methods, results, and conclusions events.
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Figure 8: Comparison of Intersection-over-Union (IoU) on Arg-C F1-scores (%) across different academic domains
for various models on Natural Language Processing (NLP), Computational Biology (CB), Social Computing (SC),
Digital Humanities (DH), and Medical Informatics (MI).

other domains. In contrast, Medical Informatics512

shows relatively smaller drop, suggesting better513

generalizability or partial overlap with language514

patterns present in the other domains.515

6 Conclusion516

In this paper, we introduce SciEvent, a novel517

benchmark for SciIE across multiple domains. By518

framing scientific texts as a sequence of universal519

events and corresponding fine-grained argument520

roles, SciEvent provides a unified and domain-521

independent structure for representing scientific522

information. Specifically, We developed an an-523

notation pipeline comprising event segmentation,524

trigger identification, and argument extraction, and525

defined three corresponding tasks: Scientific Event526

Segmentation, SciEvent Trigger Identification, and527

SciEvent Argument Extraction. Our benchmark528

covers five diverse domains with manual annota-529

tions, enabling robust evaluation of EE. Experi-530

ments on diverse state-of-the-art tuning-based EE531

systems and tuning-free LLMs show clear perfor- 532

mance gaps (∼20%) between model predictions 533

and human annotations, especially on argument ex- 534

traction tasks. SciEvent serves as a challenging and 535

realistic benchmark for advancing multi-domain 536

scientific EE.
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Figure 9: Arg-C F1-scores reported for full training
versus training with one domain removed for OneIE
under Exact Match (EM). 537
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Limitations538

One limitation of our work is the potential for539

data contamination in large language models, as540

our dataset is constructed from recent publications541

(mostly from 2023, and 2021–2023 for Digital542

Humanities), which may overlap with LLM pre-543

training corpora. This could inflate model perfor-544

mance and should be considered when interpreting545

results. Additionally, SciEvent is built on abstracts546

only, which, while concise and widely available,547

may omit key discourse elements found in full pa-548

pers limiting applicability to document-level in-549

formation extraction. In future work, we plan to550

extend SciEvent to include full papers to better sup-551

port comprehensive scientific IE, and also consider552

more event types and arguments roles since the553

full paper can contain more information such as554

Assumptions.555

Ethical Considerations556

We provide details about compensation rate for an-557

notators. We recruited eleven graduate students in558

total and provided a compensation rate of $12.80559

per hour. This rate applied to both gold-standard560

annotation and human performance baseline anno-561

tations.562
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A Detailed data analysis885

Figure 10: Distribution of argument types across all
domains

We provided more details and insights into our886

SciEvent data. Figure 10 shows domain-wise dis-887

tribution of argument types. DH focus on context,888

more than other domains. MI have nearly equal889

focus in context, method and result. Through all890

domains, context, method and results are the most891

commonly discussed arguments. Ethical, contra-892

diction are really mentioned at all, and ethical only893

present in DH domain, showing its difference from894

other domains. It is also worth noting that DH ab-895

stracts are shorter than average (156.25 tokens vs.896

207.72), while MI abstracts are considerably longer897

(359.41 tokens). To balance domain-specific con-898

tent across the dataset, we sampled 60 DH abstracts899

and 40 MI abstracts accordingly.900

B codebook details 901

B.1 Annotation Tool 902

We deploy our annotation tool on Render8. Fig- 903

ure 11 shows our annotation interface. 904

B.2 Event Type Definition 905

• Background/Introduction: Briefly outlines 906

the context, motivation, and problem being 907

addressed. It highlights the research gap and 908

the paper’s objectives or research questions. 909

• Method/Approach: Summarizes the method- 910

ologies, frameworks, or techniques used to 911

conduct the study, including experimental se- 912

tups, algorithms, datasets, or analytical tools. 913

• Results/Findings: Reports the main out- 914

comes of the research, emphasizing key data, 915

trends, or discoveries. Focuses on what was 916

achieved or learned. 917

• Conclusions/Implications: Discusses the sig- 918

nificance of the findings, their impact on the 919

field, potential applications, and how they ad- 920

dress the initial problem or research gap. May 921

include recommendations or future research 922

directions. 923

B.2.1 Trigger Definition 924

• Action: The most representative verb or verb 925

phrase in the event, including auxiliary verbs 926

like am, is, are, have, and has. 927

• Agent: The entity responsible for initiating 928

or performing the Action, such as a person, 929

system, method, or organization. 930

• Object: The entity that receives, is affected 931

by, or is the focus of the Action, such as a 932

concept, result, or entity being acted upon. 933

B.3 Argument Definition 934

• Context: Provides foundational or situational 935

information of the event. 936

• Purpose: Defines the purpose or aim of the 937

event. 938

• Method: Techniques, tools, methodology, or 939

frameworks used in the event. 940

• Results: Observations or outputs of the event. 941

8https://render.com/
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Figure 11: Annotation Tool Interface

• Analysis: Interpretation or explanation of942

other arguments.943

• Challenge: Constraints or weaknesses of the944

context, method, or results.945

• Ethical: Ethical concerns, implications, and946

justifications of the event.947

• Implication: Broader applicability, signifi-948

cance, or potential for future research.949

• Contradiction: Disagreements with existing950

knowledge.951

B.4 Additional Annotation Rules952

• Annotate by Breaking Down Sentences:953

Please annotate segments of a sentence (a part954

of a sentence) instead of a full sentence if dif-955

ferent segments of the sentence can be fit into956

different arguments.957

• Passive Tense: In a passive tense structure:958

Something (Agent) + is done (Passive Verb) +959

by Someone/Something (Object).960

• Indirect Object: There is no direct ob-961

ject sometimes; you should leave the Object962

empty.963

• Entire Part of Sentence as Object: In the964

following structure, the entire clause is the965

<Primary Object>: <Agent> + <Actions like:966

show, demonstrate, illustrate, prove, found,967

explain, indicate, conclude, etc.> + that / what968

/ who / which / where / when / how / whether969

+ clause.970

• Text that Fits Multiple Arguments: If a text 971

span can fit into multiple <Arguments>, fol- 972

low this order of importance: Results > Pur- 973

pose > Method > Analysis > Implication > 974

Challenge > Contradiction > Context > Ethi- 975

cal. Results is the most important, and Ethical 976

is the least. 977

• Abbreviation: You should use both the orig- 978

inal term and its abbreviation, when both 979

are given next to each other, e.g., Chain-of- 980

Thought (CoT), not only Chain-of-Thought or 981

CoT. 982
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C Prompts983

In this section, we present the prompt designs for each task. We include the Zero-Shot prompt for Scientific984

Abstract Segmentation and for SciEvent Trigger Identification & Argument Extraction, as well as the985

One-Shot prompt for SciEvent Trigger Identification & Argument Extraction.986

Zero-Shot Scientific Abstract Segmentation Prompt

You are a strict extraction assistant. Never explain, never repeat, only extract in the required format.
# # # Abstract: # # #
{abstract}
# # # Extraction Rules: # # #

• Copy full, continuous sentences from the abstract. No changes, summaries, or guessing
allowed.

• Each sentence must belong to only one section.

• Sections must use continuous text spans. No skipping around.

• If no content fits a section, output exactly <NONE>.

• No explanations, no extra text, no format changes.

# # # Section Definitions: # # #

• Background: Problem, motivation, context, research gap, or objectives.

• Method: Techniques, experimental setups, frameworks, datasets.

• Results: Main findings, discoveries, statistics, or trends.

• Implications: Importance, impact, applications, or future work.

# # # Exact Output Format: # # #
[Background]: <EXACT TEXT or <NONE>>

[Method]: <EXACT TEXT or <NONE>>

[Results]: <EXACT TEXT or <NONE>>

[Implications]: <EXACT TEXT or <NONE>>

987
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Zero-Shot SciEvent Trigger Identification & Argument Extraction Prompt

You are an expert argument annotator. Given a part of a scientific abstract, you need to identify
the key trigger for the event (the main verb or action that signals an important research activity)
and annotate the abstract with the corresponding argument components related to this trigger.
Extractions should capture complete phrases around this key trigger and be organized in a single
JSON format, containing only what is explicitly stated in the text without adding any interpretation.
# # # Abstract Segment to Analyze:
{abstract}
# # # Argument Components to Extract:
Action: What is the SINGLE most representative trigger (verb or verb phrase) in the segment?
Agent: Who or what is performing this Action?
Object:

• Primary Object: What is directly receiving or affected by the Action?

• Secondary Object: What is a secondary entity also receiving the Action?

Context: What provides foundational or situational information of the event?
Purpose: What is the purpose or aim of the event?
Method: What techniques, tools, approaches, or frameworks are used in the event?
Results: What are the outcomes, observations or findings of the event?
Analysis: What are the interpretations or explanations of other arguments?
Challenge: What are the constraints or weaknesses of the event?
Ethical: What are the ethical concerns, justifications or implications of the event?
Implications: What is the broader significance or potential for future applications/research?
Contradictions: What are the disagreements with existing knowledge?
# # # Extraction Rules:

1. Extract complete phrases, not just single words.

2. Only extract elements that are explicitly present. Mark missing elements as ["<NONE>"].

3. Use the exact text from the abstract.

4. Break down sentences when different parts fit different arguments.

5. NEVER use the same span of text for multiple arguments - each piece of text must be assigned
to exactly one argument type. However, multiple text spans can be part of the same argument
(e.g., ["text span 1", "text span 2".....] can be used for a single argument type) if
different parts of the text contribute to the same argument.

6. If text could fit multiple arguments, prioritize in this order: Results > Purpose > Method >
Analysis > Implication > Challenge > Contradiction > Context > Ethical

# # # Output Format:
{
"Action": "EXACT TEXT or <NONE>",
"Agent": ["EXACT TEXT or <NONE>"],
"Object": {
"Primary Object": ["EXACT TEXT or <NONE>"],
"Secondary Object": ["EXACT TEXT or <NONE>"]
},
"Context": ["EXACT TEXT or <NONE>"],
"Purpose": ["EXACT TEXT or <NONE>"],
"Method": ["EXACT TEXT or <NONE>"],
"Results": ["EXACT TEXT or <NONE>"],
"Analysis": ["EXACT TEXT or <NONE>"],
"Challenge": ["EXACT TEXT or <NONE>"],

988
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"Ethical": ["EXACT TEXT or <NONE>"],
"Implications": ["EXACT TEXT or <NONE>"],
"Contradictions": ["EXACT TEXT or <NONE>"]

}

# # # IMPORTANT INSTRUCTIONS:

• You MUST return ONLY ONE JSON structure.

• NO explanation text, thinking, or commentary before or after the JSON.

• NEVER repeat the JSON structure.

• ALL fields must use arrays with ["<NONE>"] for missing arguments.

• Follow the EXACT format shown in the template.

• ONLY extract arguments that are explicitly present in the text. DO NOT hallucinate or add
any information not found in the abstract.

# # # Output (JSON only)
989
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One-Shot SciEvent Trigger Identification & Argument Extraction Prompt

You are an expert argument annotator. Given a part of a scientific abstract, you need to identify
the key trigger for the event (the main verb or action that signals an important research activity)
and annotate the abstract with the corresponding argument components related to this trigger.
Extractions should capture complete phrases around this key trigger and be organized in a single
JSON format, containing only what is explicitly stated in the text without adding any interpretation.
# # # Abstract Segment to Analyze:
{abstract}
# # # Argument Components to Extract:
Action: What is the SINGLE most representative trigger (verb or verb phrase) in the segment?
Agent: Who or what is performing this Action?
Object:

• Primary Object: What is directly receiving or affected by the Action?

• Secondary Object: What is a secondary entity also receiving the Action?

Context: What provides foundational or situational information of the event?
Purpose: What is the purpose or aim of the event?
Method: What techniques, tools, approaches, or frameworks are used in the event?
Results: What are the outcomes, observations or findings of the event?
Analysis: What are the interpretations or explanations of other arguments?
Challenge: What are the constraints or weaknesses of the event?
Ethical: What are the ethical concerns, justifications or implications of the event?
Implications: What is the broader significance or potential for future applications/research?
Contradictions: What are the disagreements with existing knowledge?
# # # Extraction Rules:

1. Extract complete phrases, not just single words.

2. Only extract elements that are explicitly present. Mark missing elements as ["<NONE>"].

3. Use the exact text from the abstract.

4. Break down sentences when different parts fit different arguments.

5. NEVER use the same span of text for multiple arguments - each piece of text must be assigned
to exactly one argument type. However, multiple text spans can be part of the same argument
(e.g., ["text span 1", "text span 2".....] can be used for a single argument type) if
different parts of the text contribute to the same argument.

6. If text could fit multiple arguments, prioritize in this order: Results > Purpose > Method >
Analysis > Implication > Challenge > Contradiction > Context > Ethical

Here is a one-shot example of a complete abstract:
Background/Introduction Event
For abstract: "Second language acquisition (SLA) research has extensively studied cross-linguistic
transfer, the influence of linguistic structure of a speaker’s native language [L1] on the successful
acquisition of a foreign language [L2]. Effects of such transfer can be positive (facilitating
acquisition) or negative (impeding acquisition). We find that NLP literature has not given enough
attention to the phenomenon of negative transfer."
Output:
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{
"Action": "has extensively studied",
"Agent": ["Second language acquisition (SLA) research"],
"Object": {
"Primary Object": ["cross-linguistic transfer"],
"Secondary Object": ["<NONE>"]
},
"Context": ["Effects of such transfer can be positive (facilitating acquisition) or negative (impeding acquisition)"],
"Purpose": ["<NONE>"],
"Method": ["<NONE>"],
"Results": ["<NONE>"],
"Analysis": ["<NONE>"],
"Challenge": ["We find that NLP literature has not given enough attention to the phenomenon of negative transfer"],
"Ethical": ["<NONE>"],
"Implications": ["<NONE>"],
"Contradictions": ["<NONE>"]

}

Methods/Approach Event
For abstract: "To understand patterns of both positive and negative transfer between L1 and L2,
we model sequential second language acquisition in LMs. Further, we build a Multilingual Age
Ordered CHILDES (MAO-CHILDES) — a dataset consisting of 5 typologically diverse languages,
i.e., German, French, Polish, Indonesian, and Japanese — to understand the degree to which native
Child-Directed Speech (CDS) [L1] can help or conflict with English language acquisition [L2]."
Output:
{
"Action": "model",
"Agent": ["we"],
"Object": {
"Primary Object": ["sequential second language acquisition in LMs"],
"Secondary Object": ["<NONE>"]
},
"Context": ["<NONE>"],
"Purpose": ["To understand patterns of both positive and negative transfer between L1 and L2"],
"Method": ["we build a Multilingual Age Ordered CHILDES (MAO-CHILDES)"],
"Results": ["<NONE>"],
"Analysis": ["a dataset consisting of 5 typologically diverse languages, i.e., German, French, Polish, Indonesian, and

Japanese"],
"Challenge": ["<NONE>"],
"Ethical": ["<NONE>"],
"Implications": ["<NONE>"],
"Contradictions": ["<NONE>"]

}

Results/Findings Event
For abstract: "To examine the impact of native CDS, we use the TILT-based cross lingual transfer
learning approach established by Papadimitriou and Jurafsky (2020) and find that, as in human SLA,
language family distance predicts more negative transfer. Additionally, we find that conversational
speech data shows greater facilitation for language acquisition than scripted speech data."
Output:
{
"Action": "use",
"Agent": ["we"],
"Object": {
"Primary Object": ["the TILT-based cross lingual transfer learning approach"],
"Secondary Object": ["<NONE>"]
},
"Context": ["<NONE>"],
"Purpose": ["To examine the impact of native CDS"],
"Method": ["<NONE>"],
"Results": ["as in human SLA, language family distance predicts more negative transfer", "conversational speech data

shows greater facilitation for language acquisition than scripted speech data"],
"Analysis": ["<NONE>"],
"Challenge": ["<NONE>"],
"Ethical": ["<NONE>"],
"Implications": ["<NONE>"],
"Contradictions": ["<NONE>"]

}

Conclusions/Implications Event
For abstract: "Our findings call for further research using our novel Transformer-based SLA models
and we would like to encourage it by releasing our code, data, and models."
Output:
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{
"Action": "call for",
"Agent": ["Our findings"],
"Object": {
"Primary Object": ["further research"],
"Secondary Object": ["<NONE>"]
},
"Context": ["<NONE>"],
"Purpose": ["<NONE>"],
"Method": ["using our novel Transformer-based SLA models"],
"Results": ["<NONE>"],
"Analysis": ["<NONE>"],
"Challenge": ["<NONE>"],
"Ethical": ["<NONE>"],
"Implications": ["we would like to encourage it by releasing our code, data, and models"],
"Contradictions": ["<NONE>"]

}

# # # Output Format:
{
"Action": "EXACT TEXT or <NONE>",
"Agent": ["EXACT TEXT or <NONE>"],
"Object": {
"Primary Object": ["EXACT TEXT or <NONE>"],
"Secondary Object": ["EXACT TEXT or <NONE>"]
},
"Context": ["EXACT TEXT or <NONE>"],
"Purpose": ["EXACT TEXT or <NONE>"],
"Method": ["EXACT TEXT or <NONE>"],
"Results": ["EXACT TEXT or <NONE>"],
"Analysis": ["EXACT TEXT or <NONE>"],
"Challenge": ["EXACT TEXT or <NONE>"],
"Ethical": ["EXACT TEXT or <NONE>"],
"Implications": ["EXACT TEXT or <NONE>"],
"Contradictions": ["EXACT TEXT or <NONE>"]

}

# # # IMPORTANT INSTRUCTIONS:

• You MUST return ONLY ONE JSON structure.

• NO explanation text, thinking, or commentary before or after the JSON.

• NEVER repeat the JSON structure.

• ALL fields must use arrays with ["<NONE>"] for missing arguments.

• Follow the EXACT format shown in the template.

• ONLY extract arguments that are explicitly present in the text. DO NOT hallucinate or add
any information not found in the abstract.

• Carefully study the one-shot examples to understand how arguments should be correctly
annotated from the text.

# # # Output (JSON only)
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Methods Arg-I (EM) Arg-C (EM)
P R F1 P R F1

Tuning-based models
EEQA 14.26 15.01 14.63 11.59 12.20 11.88
DEGREE 44.97 12.69 19.79 34.23 9.66 15.07
OneIE 32.03 35.27 33.57 25.38 27.95 26.61
Zero-shot LLMs
DeepSeek-R1 10.33 5.46 7.15 6.23 3.30 4.31
Qwen 9.59 7.10 8.16 5.08 3.76 4.33
Llama 7.01 7.17 7.09 3.73 3.81 3.77
GPT 17.84 23.03 20.10 13.37 17.27 15.07
One-shot LLMs
DeepSeek-R1 13.28 5.51 7.79 7.08 2.93 4.15
Qwen 13.98 9.16 11.07 7.24 4.74 5.73
Llama 13.02 9.93 11.27 6.55 5.00 5.67
GPT 25.75 25.79 25.77 19.38 19.41 19.4

Table 5: EM-based Precision (P), Recall (R), and F1-
score (%) on baseline models for argument identification
(Arg-I) and classification (Arg-C) tasks.

D Domain-wise Arguments Distribution993

Analysis994

We also report the distribution of argument types995

across scientific domains (Figure 10). While all do-996

mains emphasize Results, Digital Humanities (DH)997

is a notable exception, being dominated by Con-998

text arguments. Among STEM domains—Natural999

Language Processing (NLP), Computational Biol-1000

ogy (CB), and Medical Informatics (MI)—Method1001

arguments are the most prevalent, reflecting their1002

methodological focus. In contrast, DH and Social1003

Computing (SC) place more emphasis on Context1004

and Results, respectively, aligning with the rhetori-1005

cal nature of these fields. Notably, MI contains the1006

highest number of arguments overall, likely due to1007

the length of its abstracts, even though fewer were1008

annotated to balance domain coverage.1009

E SciEvent Argument Extraction with1010

EM Metrics and detailed Human1011

Performance Comparison1012

In Section 5, we analyzed argument extraction un-1013

der the IoU metric and examined the human–model1014

performance gap for argument classification (Arg-1015

C) using IoU. Here, we complement that analysis1016

by reporting results under the EM metric for argu-1017

ment extraction, as well as argument identification1018

(Arg-I) and trigger identification with ROUGE-L1019

human–model gaps, to provide a more comprehen-1020

sive evaluation. As shown in Table 5, OneIE re-1021

mains the best-performing model, while DEGREE1022

continues to exhibit high precision but low recall.1023

Among LLMs, GPT-4.1 consistently achieves the1024
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Figure 12: Performance comparison of various methods
on argument identification (Arg-I) using IoU F1 scores.
Methods are grouped by type: Human baseline, tuning-
based models, zero-shot LLMs, and one-shot LLMs.
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Figure 13: Performance comparison of various methods
on ROUGE-L F1 scores. Methods are grouped by type:
Human baseline, tuning-based models, zero-shot LLMs,
and one-shot LLMs.

best performance, and one-shot prompting again 1025

improves results across all LLMs. Overall, the 1026

findings remain consistent—switching from IoU 1027

to EM does not alter the relative comparison be- 1028

tween models, but EM results in lower scores for 1029

all models due to its stricter matching criteria. 1030

Figure 12 shows the Arg-I performance gap be- 1031

tween humans and models, which closely mirrors 1032

the Arg-C results. The gap remains around 20%, 1033

highlighting the need for multi-domain scientific 1034

EE models. In contrast, Figure 13 reveals a smaller 1035

gap in ROUGE-L scores for trigger identification, 1036

indicating that this task is considerably easier and 1037

most models perform well. Nevertheless, since 1038

argument extraction is the core challenge, there 1039

remains significant room for improvement in ad- 1040

dressing multi-domain scientific EE. 1041
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Figure 14: Comparison of Rouge-L F1 scores (%) across different event types for various models on Background,
Methods, Results, and Conclusion sections of scientific papers.
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Figure 15: Comparison of Intersection-over-Union (IoU) on Arg-I F1-scores (%) across different event types for
various models on Background, Methods, Results, and Conclusions sections.

F Trigger and Argument Identification by1042

Event Types and Domains1043

Results for trigger identification and argument iden-1044

tification are presented by event type and domain,1045

providing supplementary detail to the analysis in1046

Section 5 and offering deeper insight into how1047

event types and domains impact SciEvent perfor-1048

mance.1049

Figure 14 presents ROUGE-L scores for trigger1050

identification by event type, where the Conclusion1051

event achieves the highest performance. This is1052

likely due to its shorter and simpler structure, offer-1053

ing fewer candidate verbs, making trigger extrac-1054

tion easier. The performance trends for other event1055

types are similar to those discussed in Sections 51056

on argument classification. Figure 15 reports IoU1057

scores for argument identification, which closely1058

mirror the argument classification results but show1059

an overall performance increase of about 20%, due 1060

to a looser matching metric. Figure 16 shows 1061

some difference in the Medical Informatics (MI) 1062

domain compared to argument classification. MI 1063

exhibits lower trigger identification performance, 1064

due to longer texts containing more verbs, which 1065

increases ambiguity and makes trigger extraction 1066

more difficult. Figure 17 again shows a 20% per- 1067

formance boost across all models, due to the looser 1068

IoU matching metric, while preserving trends con- 1069

sistent with those observed in argument classifica- 1070

tion. 1071
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Figure 16: Comparison of Rouge-L F1 scores (%) across different academic domains for various models on Natural
Language Processing (NLP), Computational Biology (CB), Social Computing (SC), Digital Humanities (DH), and
Medical Informatics (MI).
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Figure 17: Comparison of Intersection-over-Union (IoU) on Arg-I F1-scores (%) across different academic domains
for various models on Natural Language Processing (NLP), Computational Biology (CB), Social Computing (SC),
Digital Humanities (DH), and Medical Informatics (MI).
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G Effects of removal of domains on each1072

tuning-based model1073

We present domain ablation results for DEGREE1074

and EEQA under the EM setting in Figure 18 and1075

Figure 19, respectively. For DEGREE, removing1076

a domain consistently leads to performance drops,1077

similar to OneIE, though the impact is generally1078

smaller. This suggests DEGREE benefits from1079

domain-specific training but is somewhat more re-1080

silient, possibly due to its generative nature. In con-1081

trast, EEQA shows minimal sensitivity to domain1082

removal. This may be because its QA-based design1083

relies more on question formulation and span selec-1084

tion, making it less dependent on domain-specific1085

linguistic patterns.1086
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Figure 18: F1-scores reported for full training versus
training with one domain removed for DEGREE under
Exact Match (EM).
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Figure 19: F1-scores reported for full training versus
training with one domain removed for EEQA under
Exact Match (EM).
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H Detailed example of SciEvent dataset1087

We show one detailed example of SciEvent dataset, including event segmentation and event extraction in1088

Figrue 20

Figure 20: Full event extraction example from SciEvent, including event segmentation and event extraction, where
trigger is a tuple including Agent, Action and Object.

1089
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