SciEvent: Benchmarking Multi-domain Scientific Event Extraction

Anonymous EMNLP submission

Abstract

Scientific information extraction (ScilE) has
primarily relied on entity-relation extraction
in narrow domains, limiting its applicability
to interdisciplinary research and struggling to
capture the necessary context of scientific infor-
mation, often resulting in fragmented or con-
flicting statements. In this paper, we intro-
duce SciEvent', a novel multi-domain bench-
mark of scientific abstracts annotated via a uni-
fied event extraction (EE) schema designed
to enable structured and context-aware under-
standing of scientific content. It includes 500
abstracts across five research domains, with
manual annotations of event segments, trig-
gers, and fine-grained arguments. We define
ScilE as a multi-stage EE pipeline: (1) seg-
menting abstracts into core scientific activities—
background, methods, results, and conclusions;
and (2) extracting the corresponding triggers
and arguments. Experiments with fine-tuned
EE models, large language models (LLMs),
and human annotators reveal a performance
gap, with current models struggling in domains
such as sociology and humanities. SciEvent
serves as a challenging benchmark and a step
toward generalizable, multi-domain ScilE.

1 Introduction

Scientific information extraction (ScilE) distills
structured knowledge from unstructured scientific
articles and supports key scientific applications
such as literature review (Hong et al., 2021), pa-
per recommendation (Ikoma and Matsubara, 2023),
and knowledge discovery (Stavropoulos et al.,
2023), especially in recent years as many domains
are facing a publication deluge.

Existing works on ScilE generally follow an
entity-relation extraction (ERE) paradigm that aims
to extract isolated scientific concepts and connect
them by identifying semantic relations, either bi-
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Figure 1: Conflicting statements in entity-relation ex-
traction. (GPT-3.5-Turbo, better than, GPT-4-Turbo) vs.
(GPT-4-Turbo, better than, GPT-3.5-Turbo)

nary (Luan et al., 2018; Zhang et al., 2024) or N-
ary (Jain et al., 2020; Zhuang et al., 2022). Despite
remarkable contributions made by prior studies,
one major concern is that representing scientific
content as disconnected entity-relation tuples may
fragment the underlying narrative and even intro-
duce conflicting statements, especially when syn-
thesizing information across multiple publications.
As shown in Figure 1, one paper may generate
the tuple ( “GPT-3.5-Turbo”, “better than”, “GPT-
4-Turbo”), while another produces the opposite.
Without contextual cues such as task setup or eval-
uation criteria, these tuples alone fail to convey
meaningful or reliable scientific insights.

Inspired by the heavily context-dependent nature
of scientific publications, we adopt an event extrac-
tion (EE) paradigm. This paradigm focuses on iden-
tifying triggers that best represent each event and
extracting associated arguments, which are then
assigned specific semantic roles. This enables a
more structured and context-aware representation
of important scientific information. Despite its po-
tential for representing scientific information, a ma-
jor limitation of existing EE efforts in the scientific
domain is their narrow focus on specific fields, of-
ten resulting in the development of domain-specific
EE schemas. For example, (Zhang et al., 2024)
and (Jain et al., 2020) focus on machine learning,
and (Kim et al., 2011) focus on bio-molecule area.
Given the rapid growth of interdisciplinary research



in recent years, there is an increasing need for a uni-
fied scientific EE schema capable of generalizing
across diverse scholarly domains.

To address this gap, we introduce SciEvent,
a unified EE schema for scientific texts, along
with a dataset featuring manually annotated events
and fine-grained arguments drawn from diverse re-
search abstracts. Building on this dataset, we define
three ScilE tasks: (1) event segmentation, which
involves dividing the text into spans that represent
core scientific activities such as background, meth-
ods, results, and conclusions; (2) trigger identifica-
tion, which aims to detect the key anchor of each
scientific event; and (3) argument extraction, which
focuses on identifying the arguments involved in
each scientific activity and assigning them roles
such as context, method, or result. Differing from
conventional EE pipelines, we introduce event seg-
mentation as a preliminary task, recognizing that
events in scientific texts often span multiple sen-
tences and lack clear boundaries. Additionally,
trigger words in scientific texts—such as "show",
"demonstrate”, or "present"—are frequently shared
across different event types. Without first segment-
ing the text into discrete events, it becomes chal-
lenging to accurately delineate event boundaries,
increasing the risk of misinterpreting or misclassi-
fying both triggers and their associated arguments.

SciEvent contains 500 abstracts from five diverse
scientific domains, each fully annotated using an
EE paradigm. To evaluate the challenges posed
by this dataset, we assess the performance of fine-
tuned EE models, tuning-free large language mod-
els (LLMs), and human annotators. The results
demonstrate SciEvent’s broad domain coverage
and reveal that existing models consistently lag
behind human performance. This gap highlights
the limitations of current approaches and the ab-
sence of EE models capable of generalizing across
scientific domains.

2 Related Work

Event Extraction Existing work on event ex-
traction (EE) typically frames the task via two
paradigms. One is trigger-argument extraction
(Walker et al., 2006; Hsu et al., 2022; Lin et al.,
2020), where the trigger serves as the event an-
chor, most clearly signaling the occurrence of an
event, while the arguments represent entity men-
tions that participate in the event, each fulfilling dis-
tinct roles. The other one treats EE as a trigger-free

template-filling task (muc, 1992; Du and Cardie,
2020a; Huang et al., 2021), aiming to extract event-
relevant arguments and assigning them to specific
roles within each event template. The latter mainly
focuses on document-level EE (Du and Cardie,
2020a), while the former has been widely used
in both sentence-level (Walker et al., 2006) and
document-level EE (Li et al., 2021). Our bench-
mark follows the trigger-argument paradigm.
Regarding EE benchmarks, prior studies have
largely focused on data in generic domains. Pop-
ular examples include newswire (Grishman and
Sundheim, 1996; Nguyen et al., 2016; Dodding-
ton et al., 2004; Ebner et al., 2020; Song et al.,
2015), Wikipedia (Li et al., 2021; Pouran Ben Vey-
seh et al., 2022), social media (Sharif et al., 2024,
Wang and Zhang, 2017; Comito et al., 2019) and
widely-used knowledgebases like FrameNet (Baker
et al., 1998) and PropBank (Bonial et al., 2014).
While some researchers have broadened the scope
of EE to scientific literature, their efforts tend to
center the biomedical domain, particularly em-
phasizing state changes and interactions between
biomolecules such as genes and proteins (Kim
et al., 2011; Pyysalo et al., 2012; Kim et al., 2013).
Differing from prior work, we extend EE to encom-
pass a broader range of scientific domains, creating
a unified annotation schema designed to facilitate
interdisciplinary information extraction.

Scientific Information Extraction Research on
scientific information extraction (IE) primarily tar-
gets two main types of information: (1) citation-
based analysis, which involves identifying either
binary citation influence classification (Kunnath
et al., 2020; N. Kunnath et al., 2021; Maheshwari
et al., 2021) or multi-class citation intents (pur-
pose) classification (Cohan et al., 2019; Jurgens
et al., 2018), and (2) content-based analysis (Gupta
and Manning, 2011; Tsai et al., 2013; Gabor et al.,
2016; Pronesti et al., 2025), which primarily fo-
cuses on extracting scientific entities, supporting
evidence, and semantic relationships among them,
with the ultimate goal of building concept-centric
knowledge graphs (Ma et al., 2022; Zhang et al.,
2020; Sap et al., 2019). For example, SciERC
(Luan et al., 2018), consists of 500 scientific ab-
stracts annotated with scientific entities, their pair-
wise relations, and coreference clusters. SCiIREX
(Jain et al., 2020) provides annotations across 438
full documents, covering four entity types: TASK,
DATASET, METHOD, and METRIC. Beyond gen-



eral knowledge extraction, some studies further fo-
cus on specific research subjects. This line of work
designs domain-specific event extraction tasks to
capture fine-grained scientific activities (He et al.,
2024,Kim et al., 2011, Huang et al., 2020, Bjorne
et al., 2010). For example, various biomedical EE
tasks have been proposed to investigate biological
processes such as protein-protein and gene-disease
interactions (Kim et al., 2013; Kim et al., 2011;
Bjorne et al., 2010). Our work similarly focuses
on scientific EE. However, differing from prior
works targeting specific domain, we aim to design
a unified schema for organizing general scientific
activities across diverse scientific domains.

3 SciEvent Benchmark

Event Extraction:
Event type: Background

Health-related speech datasets often lack size and consistency in
focus. This makes it difficult to leverage them to effectively support
healthcare goals. Robust transfer of linguistic features across
different datasets orbiting the same goal carries potential to address
this concern.

Trigger and Argument roles:

Agent Action Object Context
Purpose Method Result Challenge
Ethical Implication Contradiction Analysis

Figure 2: An example from SciEvent, each event in
SciEvent is annotated with trigger and argument roles.

Data Collection To support cross-domain evalua-
tion and capture diverse writing conventions, we se-
lected publicly available, peer-reviewed English ab-
stracts from 2023 to reflect contemporary language
use. We selected five domains: natural language
processing (NLP) from the Annual Meeting of the
Association for Computational Linguistics (ACL)?,
social computing (SC) from Proceedings of the
ACM on Human-Computer Interaction (CSCW)?,
medical informatics (MI) from Journal of Medical
Internet Research (JMIR)*, computational biology
(CB) from Bioinformatics’, and digital humanities
(DH) from Digital Humanities Quarterly (DHQ)°.
These domains were selected for their methodolog-
ical diversity, different resource availability, rele-
vance to interdisciplinary research, and representa-
tiveness of their respective fields. NLP and biomed-
ical domains are well-studied and offer structured,
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technical abstracts, while SC and DH are under-
represented and characterized by more narrative,
context-rich writing. To support document-level
modeling, we retained abstracts with at least three
sentences and two identifiable events, filtering out
those that were too short to provide meaningful
structure. In total, we collected 500 scientific
abstracts—100 each in NLP, SC, and CB, 120
in DH, and 80 in MI. DH has fewer publications
and shorter abstracts, so we extended the sampling
range to 2021-2023 and included 120 abstracts to
ensure sufficient coverage of domain variation. MI
abstracts are longer and denser, so we selected 80
abstracts to balance event content comparability
across all five domains.

Annotation Pipeline Our overall pipeline of an-
notation schema consist of (1) event segmentation,
and (2) trigger-argument extraction. In the first step,
we segment an abstract into four event types: back-
ground, methods, results, and conclusions, which
are adopted from the most common aspects of sci-
entific publications (Ripple et al., 2012). In the
second step, each segment is annotated with a tuple
representing the event trigger, and is enriched with
role-specific arguments.

In prior event extraction work, particularly in
newswire and broadcast domains, triggers like "at-
tack" define clear and stable event frames, with
roles such as "attacker" and "target" naturally
grounded in the trigger’s semantics. In scientific
texts, however, single word triggers like "show"
lack this clarity. Even after event segmentation and
the event type (e.g., "Result") is known, the trig-
ger alone does not specify what the event is about.
Roles like "shower" or "shown item" are not mean-
ingful on their own, as the event’s meaning depends
on the full proposition. For example, "showing a
promising result" differs from "showing a method-
ological limitation". To capture this, we represent
the trigger as a tuple of (Agent, Action, Object),
anchoring the event in its core semantics.

To fully capture a scientific event, we then anno-
tate its arguments. We defined nine argument roles:
Context, Purpose, Method, Results, Analysis, Chal-
lenge, Ethical, Implication, and Contradiction 7,
Each role targets a specific dimension of scientific
abstract, adapted from Core Scientific Concepts
(Liakata et al., 2012) and inspired by scientific writ-
ing guides (Paltridge, 2002; Alley, 1996). While
some argument roles share names with event types

"Detailed definitions in appendix B
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(e.g., Methods, Results), they are not restricted to
those events; for example, evaluation methods of-
ten appear within the Results event.

Annotation Quality We employed five graduate
student annotators, all specializing in NLP and ei-
ther native English speakers or PhD students. Each
annotator had domain expertise in at least one of
the five annotated domains, and collectively they
covered all five diverse scientific areas. They were
instructed to prepare gold annotations, beginning
with event segmentation, followed by trigger iden-
tification and argument extraction. To evaluate the
quality of event segment annotations, we randomly
sampled 10 abstracts per domain and had two an-
notators independently annotate each. Intercoder
reliability, measured by Cohen’s Kappa (Cohen,
1960), is 0.83, showing strong agreement.

Given any extracted event, annotators then ex-
tract the trigger tuple and associated arguments
within the event, following definitions and exam-
ples provided in the codebook’. Unlike event seg-
mentation, assessing intercoder reliability for trig-
gers and arguments is challenging due to span-level
granularity and variability in trigger selection. Mi-
nor boundary differences can lead to large mis-
matches under strict metrics. To ensure quality, we
conducted multiple annotation rounds with author-
led review. To assess usability and estimate human
upper bound, six additional untrained annotators re-
ceived brief tutorials and annotated independently,
providing a baseline for model comparison. All an-
notations were done using a custom-built interface
shown in appendix B.1.

ETH 3,CID 3 Conclusion 520
RES 1,143 c1x 1,352 Background 1,373
IMP 285 Results 1,241
ANA 90 PUR 323
CHA 511 MET 1,219 Methods 1,795

(a) Arguments Distribution (b) Events Distribution

Figure 3: Distribution of (a) argument roles and (b)
event types across the dataset.

Data Analysis Using the above annotation
pipeline, we construct a dataset of 500 annotated
scientific abstracts containing 8,911 structured
mentions, as shown in Table 1. Its broad domain
coverage supports robust cross-domain analysis.
As shown in Figure 3, the most frequently an-

notated arguments are Context (CTX), Method
(MET), and Results (RES), highlighting the
dataset’s emphasis on core components of scientific
reporting. Rare arguments such as Contradictions
(CTD) and Ethical (ETH) suggest that such aspects
are rarely discussed in abstracts. The most common
event types are Methods, consistent with typical
abstract structure. Moreover, Figure 4 shows that
argument types align well with event types—for
example, Context appears predominantly in Back-
ground events, supporting the reliability and inter-
nal consistency of our annotations.
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Figure 4: Distribution of argument across event types
4 Experiment and Evaluations Settings

We show the challenges of SciEvent by conducting
comprehensive experiments on various state-of-the-
art models. We define three tasks: Scientific Event
Segmentation, SciEvent Trigger Identification, and
SciEvent Argument Extraction.

Definition on Notations The input is a doc-
ument represented as a sequence of sentences
D = {Si,...,Sn}. Formally, the goal is to ex-
tract a set of scientific events € = {E1,..., Enm},
where each event F; is defined as: FE; =
(si,sj,ty, Trigger;, Arg;) Here, (s;, s;) denotes a
contiguous sentence span in D, and ¢, € T is the
event type. The trigger Trigger; is a tuple of three
core argument spans:
Tl“iggel"i = (Uagenty Oaction; Uobject)

Each o € D is a token span represented as (o, o)
indicating the start and end token indices of the
Agent, Action, and Object, respectively. The set
Arg, contains argument-role pairs:

Arg, = {((as,ae), 1) | 1 < as < ae, 11 € R}
where (as,a.) denotes a token span and 7; is a
semantic role from the predefined schema R.

Task 1: Scientific Event Segmentation We de-
fine this task as segmenting the abstract into con-
tiguous spans, where each segment is treated as an
event and labeled with one of four event types.



Dataset #Doc #Mentions Arg./Ent. Types Avg Sent./Evt Paradigm Source Domains

SCIREX 438 8,592 4 - ERE Full paper ML

SCIERC 500 8,089 6 - ERE Abstract Speech, ML, CV, Al
SEMEVAL17 493 8,529 3 - ERE Paragraph CS, MS, Physics
SEMEVALI8 500 7,505 1 - ERE Abstract CL

SciER 106 24,518 3 - ERE Full paper ML

GENIA2011 1,224 21,549 10 1 EE Abstract/Full BioMol

SCIEVENT (OURS) 500 8,911 9 2.95 EE Abstract NLP, SC, CB, MI, DH

Table 1: Comparison of scientific IE datasets. Abbreviations: Arg./Ent. Types = Argument/Entity Types, Avg
Sent./Evt = Average Sentence Per Event, NLP = Natural Language Processing, SC = Social Computing, CB
= Computational Biology, MI = Medical Informatics, DH = Digital Humanities, ML = Machine Learning,
Al = Artificial Intelligence, CV = Computer Vision, CS = Computer Science, MS = Material Science, CL =

Computational Linguistics, BioMol = Biomolecular.

Formally, this task predicts a set of labeled sen-
tence {(s;,s;,t)}, where 1 <4 < j < N and
tx € T. We evaluate model predictions using Ex-
act Match (EM) and Intersection over Union (IoU)
metrics, adapted from span-based evaluation met-
rics in SemEval (Segura-Bedmar et al., 2013) and
MUC-5 (Chinchor and Sundheim, 1993). A pre-
dicted tuple (3;, 3, %) is considered correct under:

* Exact Matching (EM): (5;, 5;) = (s4, s;) and
by =ty

¢ Intersection over Union (IoU): 80|

and t;. = t;, where § and s are the sets of sen-
tence indices in the predicted and gold spans.

For both strategies, we report Precision (P), Recall
(R), and F1-score (F1) over the set of predicted and
gold event segments.

Task 2: SciEvent Trigger Identification This
task involves extracting the trigger tuple (Agent,
Action, Object) within each detected event span.
As this is a document-level task, and scientific
events often contain multiple candidate triggers,
we treat this step separately to explicitly evaluate
the model’s ability to accurately locate the core
semantic components of an event after its span and
type have been identified.

Formally, for each detected event E;, the model
predicts: Trigger; = (Cagent, Tactions Tobject)-
‘We use macro ROUGE-L (Lin, 2004) to evaluate
predicted triggers, as it captures longest common
subsequence (LCS) overlap, reflecting both lexical
and structural alignment. Let C; denote the concate-
nated text of the trigger, ordered as Agent, Action,
and Object. We compute: ROUGE — L(C‘i7 )

Task 3: SciEvent Argument Extraction This
task focuses on extracting arguments using a pre-
defined set of roles R. For each event F;, the
model predicts: Arg, = {((as,ae), 1) | 1 <

as < ae, 1 € R}. Each argument is represented
by a token span (as, a.) and its role label r;.
We decompose this task into two sub-tasks:

* Argument Identification (Arg-I): Predict the
set of argument spans {(as, a.)} for each event.

* Argument Classification (Arg-C): Assign a
role r; € R to each identified span.

we evaluate both Arg-I and Arg-C using F1 scores
under two span matching strategies: Exact Match
(EM) and Intersection over Union (IoU), with a
threshold of 0.5.

A predicted argument ((as, a.),7;) matches a
gold argument ((as, a.), r;) in Arg-1 sub-task if:

» Exact Matching (EM): (a5, a.) = (as, ae)

¢ Intersection over Union (IoU): }ZSZ} > 0.5

where a and a denote the sets of token indices
spanned by the predicted and gold arguments, re-
spectively. If the role label of predicted argument
also match with gold argument, i.e. #; = r;, then
predicted argument also matches a gold argument
in Arg-C sub-task.

LLM baselines We use LLM baselines for
the above tasks: (1) meta-Llama-3.1-8B-Instruct
(Llama) (Meta AI, 2024) , (2) Qwen2.5-7B-Instruct
(Qwen) (Qwen Team, 2024), (3) DeepSeek-R1-
Distill-Llama-8B (DeepSeek-R1) (DeepSeek-Al,
2025), and (4) GPT-4.1 (GPT) (OpenAl, 2025) as
baseline models. For Task 1, we conducted prelim-
inary research on zero-shot prompting, and we use
the best prompt, adapted from Sharif et al., 2024.
For Task 2 and 3, we use zero-shot and one-shot
prompting, also preliminarily tested and adapted
from Sharif et al., 2024.

Tuning-based baselines For Task 2 and 3, we
also consider three supervised models: (1) DE-
GREE (Hsu et al., 2022), a data-efficient generative



approach to event argument extraction that lever-
ages prompt-based learning for better generaliza-
tion. (2) OnelE (Lin et al., 2020), a joint informa-
tion extraction framework that simultaneously per-
forms entity, relation, and event extraction using a
unified representation. (3) EE_QA (Du and Cardie,
2020b), a transformer-based model that frames in-
formation extraction as a question-answering task,
enabling contextualized argument extraction.

S Experiment Results

EM ToU
Model P R FI P R TFI
DeepSeck-R1 31.26 34.13 32.63 58.97 64.38 61.56

Qwen 43.51 36.30 39.58 70.30 58.65 63.95
Llama 38.67 31.70 34.84 62.04 50.85 55.89
GPT 59.07 62.96 60.95 82.98 88.45 85.63

Table 2: Scientific event segmentation performance (%)
on zero-shot LLMs using Exact Match (EM) and Inter-
section over Union (IoU) metrics, showing Precision
(P), Recall (R), and F1-score

Scientific event segmentation We experiment
Zero-shot LLMs on Task 1. As Table 2 presents,
GPT-4.1 clearly outperforms all others by a wide
margin, achieving 60.95% F1 under EM and
85.63% under IoU, indicating its strong ability
to identify and segment coherent scientific spans.
Qwen ranks second, while Llama and DeepSeek-
R1 trail closely with modest differences. These
results suggest that segmentation is best handled
by higher-capacity models like GPT-4.1.

Methods P R F1
Tuning-based models
EEQA 81.93 34.57 45.05

DEGREE
OnelE
Zero-shot LLMs
DeepSeek-R1

64.56 63.49 56.85
73.73 79.40 72.40

29.12 27.10 26.74

Qwen 43.84 55.25 47.57
Llama 54.88 61.07 55.83
GPT 65.38 72.73 67.57
One-shot LLMs

DeepSeek-R1 41.81 41.94 40.72
Qwen 56.17 68.48 59.98
Llama 53.08 63.83 56.45
GPT 72.67 77.77 74.05

Table 3: ROUGE-L scores (%) for baseline models on
the SciEvent trigger identification task, showing Preci-
sion (P), Recall (R), and F1.

SciEvent Trigger Identification We evaluate
Task 2 with tuning-based models and LLMs using
ROUGE-L metrics (Table 3). GPT-4.1 (One-shot)

Arg-1I (IoU) Arg-C (IoU)
P R F1 P R F1

Methods

Tuning-based models

EEQA 32.09 33.77 32.91 25.85 27.20 26.51
DEGREE 67.79 19.13 29.84 48.99 13.83 21.57
OnelE 51.11 56.29 53.57 39.69 43.71 41.61

Zero-shot LLMs

DeepSeek-R1 31.11 16.46 21.53 16.32 8.63 11.29

Qwen 35.68 26.41 30.35 17.58 13.01 14.96
Llama 24.37 24.90 24.63 11.68 11.93 11.80
GPT 43.03 55.56 48.50 30.40 39.25 34.26

One-shot LLMs

DeepSeek-R1 42.62 17.67 24.98 19.59 8.12 11.48

Qwen 46.33 30.36 36.69 20.96 13.74 16.60
Llama 44.70 34.08 38.68 18.93 14.44 16.38
GPT 50.14 50.22 50.18 34.60 34.66 34.63

Table 4: ToU-based Precision (P), Recall (R), and F1-
score (%) on baseline models for argument identification
(Arg-I) and classification (Arg-C) tasks.

performs the best (F1: 74.05%). OnelE also per-
forms competitively (F1: 72.40%). EEQA shows
extremely high precision (P: 81.93%) but poor re-
call (R: 34.57%), suggesting over-conservative pre-
dictions. All LLMs improve with one-shot prompt-
ing, especially DeepSeek-R1 (F1: +13.98%), show-
ing that in-context examples enhance LLM perfor-
mance for scientific trigger identification.

SciEvent Argument Extraction We evaluate
Task 3 with tuning-based models and LLMs us-
ing argument identification (Arg-I) and classifi-
cation (Arg-C) under the IoU metric (Table 4).
OnelE achieves the highest scores (Arg-1: 53.57%,
Arg-C: 41.61%), benefiting from its structured de-
coding and joint modeling framework. DEGREE
exhibits high precision but low recall, indicating
that the model consistently misses relevant argu-
ments in scientific abstracts. Among LLMs, GPT-
4.1 (one-shot) performs best (Arg-1: 50.18%, Arg-
C: 34.63%), while other models perform notably
worse, especially on argument classification (Arg-
C around 15%). One-shot prompting offers a mod-
est improvement over zero-shot settings.

Figure 5 reports IoU-based F1 scores for argu-
ment classification across argument roles. Among
tuning-based and LLM-based models, OnelE and
GPT-4.1 achieve the strongest performance across
nearly all argument roles. Qwen achieves a spike
on Contradiction, due to a few correct extractions,
but shows worse performance overall. Across all
models, Challenge, Result, and Method yield the
highest F1 scores, due to their clearer lexical cues
and more regular positioning in scientific abstracts.
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Figure 5: Intersection-over-Union (IoU) on Arg-C Fl-scores (%) across different argument roles for various models
on Analysis (ANA), Challenge (CHA), Context (CTX), Method (MET), Purpose (PUR), Result (RES), Ethical

(ETH), Implication (IMP), Contradictions (CTD).

In contrast, arguments like Ethical, Contradiction,
and Analysis remain challenging due to data spar-
sity and a lack of consistent lexical patterns.
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Figure 6: Human performance compared to all baselines
on argument classification (Arg-C) using IoU F1 scores.
Human performance We compare model and
human performance on argument classification. We
do not report results for event segmentation, as the
Cohen’s kappa score of 0.83 (exact match) on a sub-
set indicates consistently high agreement among
annotators, suggesting that event segmentation is
relatively unambiguous for humans. As shown in
Figure 6, there is a substantial gap between hu-
man performance and the best model (20%). This
highlights the challenge of multi-domain scientific
event extraction and the value of SciEvent for ad-
vancing argument level scientific event extraction.

What is the impact of event type in SciEvent
tasks? The arguments in Methods exhibit a
notable gap: strong performance with supervi-

sion (OnelE, EEQA) but poor with zero-/one-shot
LLMs on argument classification task (Figure 7).
This finding suggests that arguments in the Method
events are most demanding, due to event’s com-
plex structure, arguments’ varied phrasing, and
dependence on technical details, making perfor-
mance poorer without supervision. Furthermore,
Conclusion shows the lowest Arg-C performance
for most models. EEQA performs better because
its QA-based prompts help extract the implicit and
interpretive content typical of Conclusion events.

What is the impact of scientific domains in Sci-
Event tasks? In the argument classification task
(Figure 8), natural language processing and com-
putational biology domains yield the highest F1
scores, benefiting from consistent linguistic pat-
terns and clearer argument structures. In contrast,
digital humanities and medical informatics present
greater challenges, due to varied rhetorical styles
and longer, denser abstracts, respectively.

How does removal of domain affect perfor-
mance? We compare the argument classification
performance of the OnelE model under the Exact
Match (EM) setting using the full training set ver-
sus ablated training sets (Figure 9). Removing a
domain from training data leads to a noticeable
drop in its corresponding performance, confirm-
ing that domain-specific knowledge contributes
directly to accurate argument classification. The
largest declines are observed in Digital Humanities
and Computational Biology, indicating that these
domains contain more unique or specialized lin-
guistic patterns that are not easily generalized from
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Figure 7: Comparison of Intersection-over-Union (IoU) on Arg-C F1-scores (%) across different event types for

various models on background, methods, results, and conclusions events.
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for various models on Natural Language Processing (NLP), Computational Biology (CB), Social Computing (SC),

Digital Humanities (DH), and Medical Informatics (MI).

other domains. In contrast, Medical Informatics
shows relatively smaller drop, suggesting better
generalizability or partial overlap with language
patterns present in the other domains.

6 Conclusion

In this paper, we introduce SciEvent, a novel
benchmark for ScilE across multiple domains. By
framing scientific texts as a sequence of universal
events and corresponding fine-grained argument
roles, SciEvent provides a unified and domain-
independent structure for representing scientific
information. Specifically, We developed an an-
notation pipeline comprising event segmentation,
trigger identification, and argument extraction, and
defined three corresponding tasks: Scientific Event
Segmentation, SciEvent Trigger Identification, and
SciEvent Argument Extraction. Our benchmark
covers five diverse domains with manual annota-
tions, enabling robust evaluation of EE. Experi-
ments on diverse state-of-the-art tuning-based EE

systems and tuning-free LL.Ms show clear perfor-
mance gaps (~20%) between model predictions
and human annotations, especially on argument ex-
traction tasks. SciEvent serves as a challenging and
realistic benchmark for advancing multi-domain
scientific EE.

40 Full Training

Ablated

10

w/oNLP w/oCB w/oSC w/oDH w/oMI
Domains
Figure 9: Arg-C Fl-scores reported for full training
versus training with one domain removed for OnelE
under Exact Match (EM).



Limitations

One limitation of our work is the potential for
data contamination in large language models, as
our dataset is constructed from recent publications
(mostly from 2023, and 2021-2023 for Digital
Humanities), which may overlap with LLM pre-
training corpora. This could inflate model perfor-
mance and should be considered when interpreting
results. Additionally, SciEvent is built on abstracts
only, which, while concise and widely available,
may omit key discourse elements found in full pa-
pers limiting applicability to document-level in-
formation extraction. In future work, we plan to
extend SciEvent to include full papers to better sup-
port comprehensive scientific IE, and also consider
more event types and arguments roles since the
full paper can contain more information such as
Assumptions.

Ethical Considerations

We provide details about compensation rate for an-
notators. We recruited eleven graduate students in
total and provided a compensation rate of $12.80
per hour. This rate applied to both gold-standard
annotation and human performance baseline anno-
tations.
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Figure 10: Distribution of argument types across all
domains

We provided more details and insights into our
SciEvent data. Figure 10 shows domain-wise dis-
tribution of argument types. DH focus on context,
more than other domains. MI have nearly equal
focus in context, method and result. Through all
domains, context, method and results are the most
commonly discussed arguments. Ethical, contra-
diction are really mentioned at all, and ethical only
present in DH domain, showing its difference from
other domains. It is also worth noting that DH ab-
stracts are shorter than average (156.25 tokens vs.
207.72), while MI abstracts are considerably longer
(359.41 tokens). To balance domain-specific con-
tent across the dataset, we sampled 60 DH abstracts
and 40 MI abstracts accordingly.
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B codebook details
B.1 Annotation Tool

We deploy our annotation tool on Render®. Fig-
ure 11 shows our annotation interface.

B.2 Event Type Definition

* Background/Introduction: Briefly outlines
the context, motivation, and problem being
addressed. It highlights the research gap and
the paper’s objectives or research questions.

Method/Approach: Summarizes the method-
ologies, frameworks, or techniques used to
conduct the study, including experimental se-
tups, algorithms, datasets, or analytical tools.

Results/Findings: Reports the main out-
comes of the research, emphasizing key data,
trends, or discoveries. Focuses on what was
achieved or learned.

Conclusions/Implications: Discusses the sig-
nificance of the findings, their impact on the
field, potential applications, and how they ad-
dress the initial problem or research gap. May
include recommendations or future research
directions.

B.2.1 Trigger Definition

 Action: The most representative verb or verb
phrase in the event, including auxiliary verbs
like am, is, are, have, and has.

» Agent: The entity responsible for initiating
or performing the Action, such as a person,
system, method, or organization.

* Object: The entity that receives, is affected
by, or is the focus of the Action, such as a
concept, result, or entity being acted upon.

B.3 Argument Definition

¢ Context: Provides foundational or situational
information of the event.

* Purpose: Defines the purpose or aim of the
event.

* Method: Techniques, tools, methodology, or
frameworks used in the event.

* Results: Observations or outputs of the event.

8https://r‘ender‘.com/
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Abstract

Event Type: Background/Introduction

Summarization models often generate text that is poorly calibrated to quality metrics because they

are trained to maximize the likelihood of a single reference (MLE). To address this, recent work has

added a calibration step, which exposes a model to its own ranked outputs to improve relevance

or, in a separate line of work, contrasts positive and negative sets to improve faithfulness. While

effective, much of this work has focused on how to generate and optimize these sets. Less is known

about why one setup is more effective than another.
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Figure 11: Annotation Tool Interface

Analysis:
other arguments.

Interpretation or explanation of

Challenge: Constraints or weaknesses of the
context, method, or results.

Ethical: Ethical concerns, implications, and
justifications of the event.

Implication: Broader applicability, signifi-
cance, or potential for future research.

Contradiction: Disagreements with existing
knowledge.

Additional Annotation Rules

Annotate by Breaking Down Sentences:
Please annotate segments of a sentence (a part
of a sentence) instead of a full sentence if dif-
ferent segments of the sentence can be fit into
different arguments.

Passive Tense: In a passive tense structure:
Something (Agent) + is done (Passive Verb) +
by Someone/Something (Object).

Indirect Object: There is no direct ob-
ject sometimes; you should leave the Object
empty.

Entire Part of Sentence as Object: In the
following structure, the entire clause is the
<Primary Object>: <Agent> + <Actions like:
show, demonstrate, illustrate, prove, found,
explain, indicate, conclude, etc.> + that / what
/ who / which / where / when / how / whether
+ clause.
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* Text that Fits Multiple Arguments: If a text
span can fit into multiple <Arguments>, fol-
low this order of importance: Results > Pur-
pose > Method > Analysis > Implication >
Challenge > Contradiction > Context > Ethi-
cal. Results is the most important, and Ethical
is the least.

» Abbreviation: You should use both the orig-
inal term and its abbreviation, when both
are given next to each other, e.g., Chain-of-
Thought (CoT), not only Chain-of-Thought or
CoT.



C Prompts

In this section, we present the prompt designs for each task. We include the Zero-Shot prompt for Scientific
Abstract Segmentation and for SciEvent Trigger Identification & Argument Extraction, as well as the
One-Shot prompt for SciEvent Trigger Identification & Argument Extraction.

Zero-Shot Scientific Abstract Segmentation Prompt

You are a strict extraction assistant. Never explain, never repeat, only extract in the required format.
# # # Abstract: # # #

{abstract}

# # # Extraction Rules: # # #

* Copy full, continuous sentences from the abstract. No changes, summaries, or guessing
allowed.

» Each sentence must belong to only one section.
* Sections must use continuous text spans. No skipping around.
* If no content fits a section, output exactly <NONE>.
* No explanations, no extra text, no format changes.
# # # Section Definitions: # # #
* Background: Problem, motivation, context, research gap, or objectives.
* Method: Techniques, experimental setups, frameworks, datasets.
* Results: Main findings, discoveries, statistics, or trends.
» Implications: Importance, impact, applications, or future work.

# # # Exact Output Format: # # #

[Background]: <EXACT TEXT or <NONE>>
[Method]: <EXACT TEXT or <NONE>>
[Results]: <EXACT TEXT or <NONE>>

[Implications]: <EXACT TEXT or <NONE>>
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Zero-Shot SciEvent Trigger Identification & Argument Extraction Prompt

You are an expert argument annotator. Given a part of a scientific abstract, you need to identify
the key trigger for the event (the main verb or action that signals an important research activity)
and annotate the abstract with the corresponding argument components related to this trigger.
Extractions should capture complete phrases around this key trigger and be organized in a single
JSON format, containing only what is explicitly stated in the text without adding any interpretation.
# # # Abstract Segment to Analyze:

{abstract}

# # # Argument Components to Extract:

Action: What is the SINGLE most representative trigger (verb or verb phrase) in the segment?
Agent: Who or what is performing this Action?

Object:

* Primary Object: What is directly receiving or affected by the Action?
* Secondary Object: What is a secondary entity also receiving the Action?

Context: What provides foundational or situational information of the event?

Purpose: What is the purpose or aim of the event?

Method: What techniques, tools, approaches, or frameworks are used in the event?
Results: What are the outcomes, observations or findings of the event?

Analysis: What are the interpretations or explanations of other arguments?

Challenge: What are the constraints or weaknesses of the event?

Ethical: What are the ethical concerns, justifications or implications of the event?
Implications: What is the broader significance or potential for future applications/research?
Contradictions: What are the disagreements with existing knowledge?

# # # Extraction Rules:

1. Extract complete phrases, not just single words.

2. Only extract elements that are explicitly present. Mark missing elements as ["<NONE>"].
3. Use the exact text from the abstract.

4. Break down sentences when different parts fit different arguments.

5. NEVER use the same span of text for multiple arguments - each piece of text must be assigned
to exactly one argument type. However, multiple text spans can be part of the same argument
(e.g., ["text span 1", "text span 2"..... ] can be used for a single argument type) if
different parts of the text contribute to the same argument.

6. If text could fit multiple arguments, prioritize in this order: Results > Purpose > Method >
Analysis > Implication > Challenge > Contradiction > Context > Ethical

# # # Output Format:

{
"Action”: "EXACT TEXT or <NONE>",
"Agent": ["EXACT TEXT or <NONE>"],
"Object”: {
"Primary Object”: ["EXACT TEXT or <NONE>"],
"Secondary Object”: ["EXACT TEXT or <NONE>"]
3,
"Context”: ["EXACT TEXT or <NONE>"],
"Purpose”: ["EXACT TEXT or <NONE>"],
"Method”: ["EXACT TEXT or <NONE>"],
"Results"”: ["EXACT TEXT or <NONE>"],
"Analysis”: ["EXACT TEXT or <NONE>"],
"Challenge": ["EXACT TEXT or <NONE>"],
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"Ethical”: ["EXACT TEXT or <NONE>"],
"Implications”: ["EXACT TEXT or <NONE>"],
"Contradictions”: ["EXACT TEXT or <NONE>"]
}

# # # IMPORTANT INSTRUCTIONS:
* You MUST return ONLY ONE JSON structure.
* NO explanation text, thinking, or commentary before or after the JSON.
* NEVER repeat the JSON structure.
* ALL fields must use arrays with ["<NONE>"] for missing arguments.
* Follow the EXACT format shown in the template.

* ONLY extract arguments that are explicitly present in the text. DO NOT hallucinate or add
any information not found in the abstract.

# # # Output (JSON only)
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One-Shot SciEvent Trigger Identification & Argument Extraction Prompt

You are an expert argument annotator. Given a part of a scientific abstract, you need to identify
the key trigger for the event (the main verb or action that signals an important research activity)
and annotate the abstract with the corresponding argument components related to this trigger.
Extractions should capture complete phrases around this key trigger and be organized in a single
JSON format, containing only what is explicitly stated in the text without adding any interpretation.
# # # Abstract Segment to Analyze:

{abstract}

# # # Argument Components to Extract:

Action: What is the SINGLE most representative trigger (verb or verb phrase) in the segment?
Agent: Who or what is performing this Action?

Object:

* Primary Object: What is directly receiving or affected by the Action?
* Secondary Object: What is a secondary entity also receiving the Action?

Context: What provides foundational or situational information of the event?

Purpose: What is the purpose or aim of the event?

Method: What techniques, tools, approaches, or frameworks are used in the event?
Results: What are the outcomes, observations or findings of the event?

Analysis: What are the interpretations or explanations of other arguments?

Challenge: What are the constraints or weaknesses of the event?

Ethical: What are the ethical concerns, justifications or implications of the event?
Implications: What is the broader significance or potential for future applications/research?
Contradictions: What are the disagreements with existing knowledge?

# # # Extraction Rules:

1. Extract complete phrases, not just single words.

2. Only extract elements that are explicitly present. Mark missing elements as ["<NONE>"].
3. Use the exact text from the abstract.

4. Break down sentences when different parts fit different arguments.

5. NEVER use the same span of text for multiple arguments - each piece of text must be assigned
to exactly one argument type. However, multiple text spans can be part of the same argument
(e.g., ["text span 1", "text span 2"..... ] can be used for a single argument type) if
different parts of the text contribute to the same argument.

6. If text could fit multiple arguments, prioritize in this order: Results > Purpose > Method >
Analysis > Implication > Challenge > Contradiction > Context > Ethical

Here is a one-shot example of a complete abstract:

Background/Introduction Event

For abstract: "Second language acquisition (SLA) research has extensively studied cross-linguistic
transfer, the influence of linguistic structure of a speaker’s native language [L1] on the successful
acquisition of a foreign language [L2]. Effects of such transfer can be positive (facilitating
acquisition) or negative (impeding acquisition). We find that NLP literature has not given enough
attention to the phenomenon of negative transfer."

Output:
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{

"Action"”: "has extensively studied”,
"Agent": ["Second language acquisition (SLA) research"],
"Object”: {

"Primary Object”: ["cross-linguistic transfer"],
"Secondary Object”: ["<NONE>"]
i
"Context”: ["Effects of such transfer can be positive (facilitating acquisition) or negative (impeding acquisition)"],
"Purpose”: ["<NONE>"],
"Method"”: ["<NONE>"],
"Results”: ["<NONE>"],
"Analysis”: ["<NONE>"],
"Challenge”: ["We find that NLP literature has not given enough attention to the phenomenon of negative transfer”],
"Ethical”: ["<NONE>"T,
"Implications”: ["<NONE>"],
"Contradictions”: ["<NONE>"]
3

Methods/Approach Event

For abstract: "To understand patterns of both positive and negative transfer between L1 and L2,
we model sequential second language acquisition in LMs. Further, we build a Multilingual Age
Ordered CHILDES (MAO-CHILDES) — a dataset consisting of 5 typologically diverse languages,
i.e., German, French, Polish, Indonesian, and Japanese — to understand the degree to which native
Child-Directed Speech (CDS) [L1] can help or conflict with English language acquisition [L2]."

Output:

{
"Action”: "model”,
"Agent”: ["we"],
"Object”: {

"Primary Object”: ["sequential second language acquisition in LMs"],
"Secondary Object”: ["<NONE>"]
3,
"Context”: ["<NONE>"],
"Purpose”: ["To understand patterns of both positive and negative transfer between L1 and L2"],
"Method”: ["we build a Multilingual Age Ordered CHILDES (MAO-CHILDES)"],
"Results”: ["<NONE>"],
"Analysis”: ["a dataset consisting of 5 typologically diverse languages, i.e., German, French, Polish, Indonesian, and
Japanese"],
"Challenge": ["<NONE>"],
"Ethical”: ["<NONE>"T,
"Implications”: ["<NONE>"],
"Contradictions”: ["<NONE>"]
3

Results/Findings Event

For abstract: "To examine the impact of native CDS, we use the TILT-based cross lingual transfer
learning approach established by Papadimitriou and Jurafsky (2020) and find that, as in human SLA,
language family distance predicts more negative transfer. Additionally, we find that conversational
speech data shows greater facilitation for language acquisition than scripted speech data."
Output:

"Action”: "use",
"Agent": ["we"],
"Object”: {

"Primary Object”: ["the TILT-based cross lingual transfer learning approach”],
"Secondary Object”: ["<NONE>"]
3,
"Context”: ["<NONE>"],
"Purpose”: ["To examine the impact of native CDS"],
"Method”: ["<NONE>"],
"Results”: ["as in human SLA, language family distance predicts more negative transfer”, "conversational speech data
shows greater facilitation for language acquisition than scripted speech data"],
"Analysis”: ["<NONE>"],
"Challenge”: ["<NONE>"],
"Ethical”: ["<NONE>"],
"Implications”: ["<NONE>"],
"Contradictions”: ["<NONE>"]
}

Conclusions/Implications Event

For abstract: "Our findings call for further research using our novel Transformer-based SLA models
and we would like to encourage it by releasing our code, data, and models."

Output:
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{

"Action"”: "call for",
"Agent": ["Our findings"],
"Object”: {

"Primary Object”: ["further research”],
"Secondary Object”: ["<NONE>"]
i
"Context”: ["<NONE>"],
"Purpose”: ["<NONE>"],
"Method”: ["using our novel Transformer-based SLA models”],
"Results”: ["<NONE>"],
"Analysis”: ["<NONE>"],
"Challenge": ["<NONE>"],
"Ethical”: ["<NONE>"],
"Implications”: ["we would like to encourage it by releasing our code, data, and models"],
"Contradictions”: ["<NONE>"]
3

# # # Output Format:

{
"Action"”: "EXACT TEXT or <NONE>",
"Agent": ["EXACT TEXT or <NONE>"],
"Object”: {
"Primary Object”: ["EXACT TEXT or <NONE>"],
"Secondary Object”: ["EXACT TEXT or <NONE>"]
3,
"Context": ["EXACT TEXT or <NONE>"],
"Purpose"”: ["EXACT TEXT or <NONE>"],
"Method”: ["EXACT TEXT or <NONE>"],
"Results”: ["EXACT TEXT or <NONE>"],
"Analysis”: ["EXACT TEXT or <NONE>"],
"Challenge"”: ["EXACT TEXT or <NONE>"],
"Ethical”: ["EXACT TEXT or <NONE>"],
"Implications”: ["EXACT TEXT or <NONE>"],
"Contradictions”: ["EXACT TEXT or <NONE>"]
}

# # # IMPORTANT INSTRUCTIONS:

¢ You MUST return ONLY ONE JSON structure.

NO explanation text, thinking, or commentary before or after the JSON.

NEVER repeat the JSON structure.

ALL fields must use arrays with ["<NONE>"] for missing arguments.

Follow the EXACT format shown in the template.

ONLY extract arguments that are explicitly present in the text. DO NOT hallucinate or add
any information not found in the abstract.

Carefully study the one-shot examples to understand how arguments should be correctly
annotated from the text.

# # # Output (JSON only)
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Arg-I (EM) Arg-C (EM)

Meth
ethods P R Fl P R FI

Tuning-based models

EEQA 14.26 15.01 14.63 11.59 12.20 11.88
DEGREE 44.97 12.69 19.79 34.23 9.66 15.07
OnelE 32.03 35.27 33.57 25.38 27.95 26.61

Zero-shot LLMs

DeepSeek-R1 10.33 546 7.15 6.23 3.30 4.31

Qwen 959 7.10 8.16 5.08 3.76 4.33
Llama 7.01 7.17 7.09 3.73 3.81 3.77
GPT 17.84 23.03 20.10 13.37 17.27 15.07

One-shot LLMs

DeepSeek-R1 13.28 5.51 7.79 7.08 2.93 4.15

Qwen 13.98 9.16 11.07 7.24 4.74 5.73
Llama 13.02 9.93 11.27 6.55 5.00 5.67
GPT 25.75 25.79 25.77 19.38 19.41 194

Table 5: EM-based Precision (P), Recall (R), and F1-
score (%) on baseline models for argument identification
(Arg-I) and classification (Arg-C) tasks.

D Domain-wise Arguments Distribution
Analysis

We also report the distribution of argument types
across scientific domains (Figure 10). While all do-
mains emphasize Results, Digital Humanities (DH)
is a notable exception, being dominated by Con-
text arguments. Among STEM domains—Natural
Language Processing (NLP), Computational Biol-
ogy (CB), and Medical Informatics (MI)—Method
arguments are the most prevalent, reflecting their
methodological focus. In contrast, DH and Social
Computing (SC) place more emphasis on Context
and Results, respectively, aligning with the rhetori-
cal nature of these fields. Notably, MI contains the
highest number of arguments overall, likely due to
the length of its abstracts, even though fewer were
annotated to balance domain coverage.

E SciEvent Argument Extraction with
EM Metrics and detailed Human
Performance Comparison

In Section 5, we analyzed argument extraction un-
der the IoU metric and examined the human—model
performance gap for argument classification (Arg-
C) using IoU. Here, we complement that analysis
by reporting results under the EM metric for argu-
ment extraction, as well as argument identification
(Arg-I) and trigger identification with ROUGE-L
human—model gaps, to provide a more comprehen-
sive evaluation. As shown in Table 5, OnelE re-
mains the best-performing model, while DEGREE
continues to exhibit high precision but low recall.
Among LL.Ms, GPT-4.1 consistently achieves the

100 Human
Tuning-based
80 Zero-shot LLMs
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Figure 12: Performance comparison of various methods
on argument identification (Arg-I) using IoU F1 scores.
Methods are grouped by type: Human baseline, tuning-
based models, zero-shot LLMs, and one-shot LLMs.
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Figure 13: Performance comparison of various methods
on ROUGE-L F1 scores. Methods are grouped by type:
Human baseline, tuning-based models, zero-shot LLMs,
and one-shot LLMs.

best performance, and one-shot prompting again
improves results across all LLMs. Overall, the
findings remain consistent—switching from IoU
to EM does not alter the relative comparison be-
tween models, but EM results in lower scores for
all models due to its stricter matching criteria.

Figure 12 shows the Arg-I performance gap be-
tween humans and models, which closely mirrors
the Arg-C results. The gap remains around 20%,
highlighting the need for multi-domain scientific
EE models. In contrast, Figure 13 reveals a smaller
gap in ROUGE-L scores for trigger identification,
indicating that this task is considerably easier and
most models perform well. Nevertheless, since
argument extraction is the core challenge, there
remains significant room for improvement in ad-
dressing multi-domain scientific EE.
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Figure 14: Comparison of Rouge-L F1 scores (%) across different event types for various models on Background,
Methods, Results, and Conclusion sections of scientific papers.
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Figure 15: Comparison of Intersection-over-Union (IoU) on Arg-I F1-scores (%) across different event types for
various models on Background, Methods, Results, and Conclusions sections.

F Trigger and Argument Identification by
Event Types and Domains

Results for trigger identification and argument iden-
tification are presented by event type and domain,
providing supplementary detail to the analysis in
Section 5 and offering deeper insight into how
event types and domains impact SciEvent perfor-
mance.

Figure 14 presents ROUGE-L scores for trigger
identification by event type, where the Conclusion
event achieves the highest performance. This is
likely due to its shorter and simpler structure, offer-
ing fewer candidate verbs, making trigger extrac-
tion easier. The performance trends for other event
types are similar to those discussed in Sections 5
on argument classification. Figure 15 reports loU
scores for argument identification, which closely
mirror the argument classification results but show
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an overall performance increase of about 20%, due
to a looser matching metric. Figure 16 shows
some difference in the Medical Informatics (MI)
domain compared to argument classification. MI
exhibits lower trigger identification performance,
due to longer texts containing more verbs, which
increases ambiguity and makes trigger extraction
more difficult. Figure 17 again shows a 20% per-
formance boost across all models, due to the looser
IoU matching metric, while preserving trends con-
sistent with those observed in argument classifica-
tion.
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Figure 16: Comparison of Rouge-L F1 scores (%) across different academic domains for various models on Natural
Language Processing (NLP), Computational Biology (CB), Social Computing (SC), Digital Humanities (DH), and
Medical Informatics (MI).
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Figure 17: Comparison of Intersection-over-Union (IoU) on Arg-I F1-scores (%) across different academic domains
for various models on Natural Language Processing (NLP), Computational Biology (CB), Social Computing (SC),
Digital Humanities (DH), and Medical Informatics (MI).
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G Effects of removal of domains on each
tuning-based model

We present domain ablation results for DEGREE
and EEQA under the EM setting in Figure 18 and
Figure 19, respectively. For DEGREE, removing
a domain consistently leads to performance drops,
similar to OnelE, though the impact is generally
smaller. This suggests DEGREE benefits from
domain-specific training but is somewhat more re-
silient, possibly due to its generative nature. In con-
trast, EEQA shows minimal sensitivity to domain
removal. This may be because its QA-based design
relies more on question formulation and span selec-
tion, making it less dependent on domain-specific
linguistic patterns.
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Figure 18: Fl-scores reported for full training versus
training with one domain removed for DEGREE under
Exact Match (EM).
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Figure 19: Fl-scores reported for full training versus
training with one domain removed for EEQA under
Exact Match (EM).



H Detailed example of SciEvent dataset

We show one detailed example of SciEvent dataset, including event segmentation and event extraction in
Figrue 20

Access to and understanding one's
medical history is crucial to
maintaining long-term care. As
adolescents and young adults childhood
cancer survivors age, they must
transition and transfer their health care
from their pediatric to an adult care
institution. In this study, we provide
empirical evidence reporting on the
after-cancer treatment experiences of
childhood cancer survivors through
their transition. We report findings from
24 semi-structured interviews with
adolescent and young adult cancer
survivors participating in a childhood
cancer survivorship program that
prepares them for adult care. Our
findings reveal three parts of their atter-
cancer treatment experience: the
assumption of responsibility for their
complex care needs and medical
information and the overall transfer and
maintenance of the continuity of their
care to an adult clinician. Our findings
suggest that survivors may play an
essential yet unrecognized role in the
patient hand-off. Thus, we introduce
patient-mediate handoffs and suggest
design opportunities.
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play an essential yet unrecognized role in

the patient hand-off. Thus, we introduce
patient-mediate handoffs and suggest
design opportunities.
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Agent: they

Action: transition and transfer

Object: their health care

Purpose: to maintaining long-term care

Context: As adolescents and young
adults childhood cancer survivors age

Agent: we
Action: provide

Object: empirical evidence

Context: adolescent and young adult
cancer survivors participating in a
childhood cancer survivorship program

Agent: Our findings

Action: reveal

Object: three parts of their after-cancer
treatment experience

Result: the assumption of
responsibility for their complex care
needs

Result: medical information and the
overall transfer

Result: maintenance of the continuity
of their care to an adult clinician

Agent: Our findings

Action: reveal

Object: survivors may play an essential
yet unrecognized role in the patient
Result: patient-mediate handoffs
Implications: design opportunities

Figure 20: Full event extraction example from SciEvent, including event segmentation and event extraction, where
trigger is a tuple including Agent, Action and Object.



