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ABSTRACT

We aim to improve the reasoning capabilities of language models via reinforcement
learning (RL). Recent RL post-trained models like DeepSeek-R1 have demon-
strated reasoning abilities on mathematical and coding tasks. However, prior
studies suggest that using RL alone to improve reasoning on inherently difficult
tasks is less effective. Here, we draw inspiration from curriculum learning and pro-
pose to schedule tasks from easy to hard (E2H), allowing LLMs to build reasoning
skills gradually. Our method is termed E2H Reasoner. Empirically, we observe
that, although easy tasks are important initially, fading them out through appro-
priate scheduling is essential in preventing overfitting. Theoretically, we establish
convergence guarantees for E2H Reasoner within an approximate policy iteration
framework. We derive finite-sample complexity bounds and show that, when tasks
are appropriately decomposed and conditioned, learning through curriculum stages
requires fewer total samples than direct learning.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated reasoning capabilities in tasks such as multi-step
arithmetic, planning, and code generation. However, the notion of reasoning in LLMs remains vague,
with some works equating it to generating intermediate steps during problem solving (Wei et al.,
2022;|Cobbe et al.| 2021)). This view, although intuitive, blurs the line between genuine reasoning
and surface-level pattern recognition (Stechly et al.|[2024; Valmeekam et al.| 2023). Therefore, we
adopt a view focusing on generalization, defining reasoning as the ability to extract principles from
simpler tasks and apply them to harder ones. Supporting this capability requires training methods
that go beyond imitation and help models learn underlying problem-solving strategies.

In this direction, the success of DeepSeek R1 (Guo et al., 2025) and OpenAl ol (Jaech et al.l 2024)
shows that reinforcement learning (RL) based post-training enhances reasoning. RL uses task-specific
rewards based on output correctness, unlike supervised fine-tuning (SFT), which trains models to
imitate fixed input-output examples (Zelikman et al., [2022). However, RL struggles on harder tasks
on which pre-trained models have low zero shot performance (Shao et al., [2024; Zeng et al., 2025)
and since rewards are granted only for correct answers, resulting in sparse learning signals.

To address the sparse reward problem, curriculum learning has been applied to reinforcement
learning (CRL) by structuring training from easier to harder tasks (Bengio et al.| 2009). This
idea has recently been extended to LLM post-training (Team et al., 2025} |Bercovich et al., [2025]).
However, these initial efforts primarily rely on simplified strategies, such as training on easy tasks
before switching to hard ones after a fixed number of iterations. In contrast, we introduce E2H
Reasoner (E2H), a CRL approach with a probabilistic scheduler that gradually shifts focus from
easy to hard tasks, enabling even LLMs to develop core reasoning abilities and generalize to more
complex problems. We show that LLMs can learn tasks they initially failed in the zero-shot setting
(Fig. [I). Empirically, E2H achieves state-of-the-art performance across five reasoning tasks, i.e.
Blocksworld (Valmeekam et al., 2024)) and Countdown (Gandhi et al., [2024), as well as three
arithmetic reasoning benchmarks (Hendrycks et al.l 2021} |Agarwal et al.| 20215 |Cobbe et al., [2021)).
On the theoretical front, we provide a comprehensive analysis of CRL through the lens of Approximate
Policy Iteration, establishing convergence guarantees for the final performance gap and finite-sample
complexity bounds. Importantly, we prove that with a well-designed curriculum, CRL requires fewer
total samples than direct learning, aligning with and supporting our empirical observations.
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Figure 1: (a, b) Reinforcement learning (RL) based post-training is believed to improve accuracy at low k values
in pass@Fk evaluation (Guo et al.| [2025] |Yue et al.|[2025), we show that E2H Reasoner, a curriculum-based
RL (CRL) approach, enables LLMs to solve tasks they previously could not, outperforming base models even
at higher k. (c) LLaMA 3.2 3B reasoning trace for Countdown (Gandhi et al.} 2024) after E2H Reasoner
post-training.
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Figure 2: Task Decomposition of Easy 2 Hard Reasoner (E2H). E2H first decomposes the overall task into
levels of increasing difficulty, namely trivial, easy, and , to help the LLM acquire core skills. As training
progresses, E2H schedules harder tasks accordingly. See Section[3;2]for scheduling details.

2 BACKGROUND AND RELATED WORK

Reasoning in Large Language Models remains loosely defined, with interpretations varying by
tasks and contexts|Yu et al.|(2024). Prior work describes it as generating logical chains of thought Wei
et al.| (2022);|Wang et al.|(2023)), performing multi-step deductions (Saparov & Hel [2023}|Yao et al.,
2023} Ling et al.| 2025)), or simulating human-like problem solving (Parashar et al., |2025). These
views, lack clear boundaries between reasoning and pattern recognition. To address this gap, we
are inspired by prior work that frames reasoning as generalization or abstraction (Valmeekam et al.|
2024;[2023), building on the idea that reasoning involves learning core principles and applying them
broadly (Stechly et al.,|2024; Huang et al., 2024).

Post-training of Large Language Models has emerged as a popular approach to improve rea-
soning (Snell et al.| |2025). These methods are grouped into Supervised Fine-Tuning (SFT) and
Reinforcement Learning (RL) based techniques. In SFT, the model is trained to imitate outputs from
carefully curated human-like reasoning examples (Zelikman et al., [2022; [Muennighoft et al.| [2025)).
However, studies have shown that SFT can lead models to overfit to surface-level patterns (Chu et al.,
2025)), limiting generalization. In contrast, RL-based post-training uses task-specific rewards and
updates the model through policy optimization algorithms (Schulman et al., |2017; Rafailov et al.,
2023} Shao et al.| [2024)), instead of imitation. This approach has shown greater potential in improving
reasoning performance, as demonstrated by the success of models fine-tuned with RL (Guo et al.|
2025; Jaech et al., [2024). Still, for inherently difficult tasks that LLMs struggle to solve in zero-shot
settings, post-training with RL alone has been insufficient|Shao et al.|(2024); |Zeng et al.[(2025).

Curriculum Learning organizes tasks by increasing difficulty to promote smoother and more
effective training (Bengio et al., 2009; (Graves et al.,[2017). In the context of RL, it has been applied
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to help agents acquire complex behaviors by first mastering simpler tasks (Narvekar et al.| [2020).
Recently efforts have been made to investigate how curriculum-based RL can enhance reasoning
and generalization in LLMs (Q1u et al., 2025} |Bae et al.,[2025}; Zeng et al., |2025). Others improve
learning by removing examples that are too easy or too hard [Bae et al.|(2025)), or by maintaining a
balanced mix of task difficulties Zeng et al.|(2025). Similarly, (Chen et al.|(2025)), and |Foster et al.
(2025)) adaptively sample problems with a 50% solve rate to maximize the GRPO advantage during
training. Other recent efforts implement manual curricula switching from easy to hard tasks after
a fixed number of training iterations (Xie et al., 2025} Team et al., 2025} [Bercovich et al.| |2025).
In contrast, our work schedules tasks probabilistically from easy to hard, improving reasoning and
generalization to out-of-distribution tasks.

3 METHOD

RL for LLM reasoning. We formulate the reasoning process of LLMs as a RL problem defined
over a discounted Markov Decision Process (MDP) M = (S, A, P, r,~), where S is the state space,
A is the finite action space, P : S x A — A(S) is the transition kernel, 7 : S x A — [0, Ryax]
is the reward function, and v € (0, 1) is the discount factor. The state space S consists of all
valid token prefixes, where each state s; = (zo,21,...,2¢) is a sequence of tokens from the
vocabulary 3. The action space is the vocabulary itself, A = 3. A policy 7y corresponds to the
pre-trained LLM, which defines a distribution over the next token conditioned on the current prefix:
mo(xer1lst) = po(xis1]zo,-..,2:). We adopt the tags used in (Guo et al., 2025)), i.e., <think>
</think> and <answer> </answer>, to distinguish intermediate reasoning from final answers. The
reward function is sparse: (s, a, s’) = 0 for all intermediate states, and r(s, a, s") = r(y) only when
the final predicted answer y wrapped by <answer> </answer> is completed. The goal is to optimize
the policy to maximize the expected cumulative reward, encouraging the model to generate correct
and well-formatted answers through effective reasoning.

3.1 TASK DECOMPOSITION FOR RL POST-TRAINING

While SFT provides strong supervision signals, (Chu et al.| (2025)) suggest that reasoning and general-
ization ability are more effectively enhanced through RL-based post-training. However, applying
RL techniques similar to DeepSeek-R1-Zero (Guo et al.| 2025) to learn complicated reasoning tasks
remains challenging. In this work, we analyze these challenges in two key aspects, the distribution
gap and reward design.

Challenge 1: Distribution gap. Learning tasks that exceed the base LLM’s reasoning capabilities
introduce significant learning challenges. These challenges are often caused by a non-trivial distribu-
tion gap between the model pre-training source data distribution dj and the target data distribution
dg . As shown in Fig. [2] because rewards are only given for correct outputs, large distribution shifts
can lead to low accuracy and sparse reward signals (Shao et al., [2024} |[Zeng et al., 2025). Moreover,
fitting the model to a single target distribution can lead to overfitting and memorization, undermining
the model’s generalization and reasoning ability.

Challenge 2: Reward design. Challenging reasoning tasks often require LLMs to combine multiple
skills to arrive at a solution. While designing a fine-grained, step-by-step reward function could
potentially guide the model effectively, such design is generally task-specific and labor-intensive. For
example, a computer science student is supposed to learn basic mathematics and linear algebra before
learning machine learning. Similarly, a typical Countdown (Gandhi et al.l 2024)) task involves skills
like basic arithmetic, estimating the distance to the goal, and backtracking. While it is possible to
include a supervision signal for each intermediate step, doing so is not sustainable and generalizable
across diverse tasks.

To overcome these RL learning challenges, we propose task decomposition by splitting training data
into subsets of increasing difficulty, based on either human annotations or model performance. This
aligns with curriculum learning, where we interpolate between the pre-training distribution dy and
target task distribution dx via intermediate stages dy, 521, reducing distribution shift and improving
training stability (see Fig.[2). From the reward design perspective, decomposing tasks by difficulty
breaks complex skill acquisition into simpler steps. For instance, the 6-number Countdown task
involves using six integers and four operators (4, —, X, =) to reach a target number, requiring the
model to perform arithmetic, estimate distances to the goal, and backtrack effectively. In contrast,
a 2-number problem focuses primarily on arithmetic, allowing the model to build foundational
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competence before scaling to harder variants. This avoids handcrafted reward shaping and improves
transferability.

For tasks like Blocksworld, MATH, and Countdown, we use human-aligned difficulty signals such as
plan length, labeled difficulty, or operand count (see Table[6). For others like AQuA and GSM8K,
where such annotations are unavailable, we automatically estimate difficulty based on model error
rates under CoT prompting and group examples accordingly (see Figs. [5]and [6).

In this work, we simplify a hard reasoning task into 3 progressively challenging tasks, namely, trivial,
easy, and , then we adapt our pre-trained LLM to these tasks in a sequential curriculum. We
adopt the reward design from |Guo et al.|(2025), where outputs with the correct format receive partial
rewards, and full rewards are given only when both format and answer are correct. In Section [3.3] we
provide a theoretical justification that, under fixed sampling and training resources, learning step by
step leads to better performance than training directly on the hard task. Cosine Sampler

3.2 TRAINING SCHEDULERS FOR LLM REASONING ABILITY 40
While task decomposition simplifies RL post-training, traditional

curriculum learning poses two main challenges, mainly task forget- £
ting and overfitting, due to the rigid progression through tasks in a
fixed task order. & 020
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Challenges: Task forgetting and overfitting. The first challenge,

task forgetting, refers to the degradation in performance on earlier 0 200 400 600 800 1000
(easier) tasks as the model adapts to later (harder) tasks. According B i

to the traditional model generalization literature (Arjovsky et al.,

2019; Gulrajani & Lopez-Paz, [2021), the task distribution shifts are Figure 3: Illustration of cosine
considered as explicit signals for the model generalization direction; scheduling.

thus, retaining strong performance across all task distributions is essential for generalization. There-
fore, the task forgetting will undermine the model’s generalization capability, i.e., the reasoning
ability. Task overfitting, the second challenge, arises when the model overfits to trivial tasks and
prefers simplistic patterns or short answers that bypass meaningful reasoning. This phenomenon
is called reward hacking (Laidlaw et al.| 2025)), where the model exploits shortcuts on easy tasks
and fails to learn harder ones, resulting in poor reasoning performance. To address both challenges,
we explore different training sampling techniques, forming four different scheduling strategies as
follows.

Traditional scheduling. We first formulate the traditional sequential curriculum learning sampler
with T training steps as Sy.q(t, k) = 1 when 7, < ¢ < 7441, otherwise, 0, where ¢ denotes the
current training step; for K tasks £ = 1,..., K, 7i denotes the threshold when the curriculum
learning proceeds to the k-th stage, while 71 = 0 and 7x 11 = T'. The output of the sampler denotes
the probability of sampling data from the k-th task; therefore, at the ¢ step, the sampling distribution
will be [Strad(t7 1), Strad(ty 2), ey Slrad(t7 K)]

Balanced scheduling. To avoid forgetting, the simplest way is to mix all data with different
difficulties together and sample randomly, which can be considered as a trivial case of curriculum
learning. Alternatively, this can be interpreted as the default behavior of any policy optimization
algorithm (Shao et al., 2024; Schulman et al.,|2017), where training occurs without considering task
difficulty. This balanced sampler can be written as: Spajanced (¢, k) = %, where each task difficulties
have the same probability to be selected at each training step. Although this is an efficient way
to avoid forgetting, this sampling introduces harder tasks too early, leading to sparser rewards and

suboptimal CRL.

Cosine scheduling (E2H-C). To alleviate both the reward sparsity and forgetting issues, we propose
a non-parametric scheduling strategy, namely, cosine sampling. This strategy can be written as:
Scosine(t, k) =y - (K —k—1)+ (1 —y) - k, and ay = 0.5- (1 + cos(%E)), where the resulting
probabilities need to be normalized before sampling. Intuitively, this cosine sampler sets both the
initial and ending sampling probabilities simply according to their ordinal number and interpolates
the intermediate probabilities using a cosine function. As shown in Figure[3] the easiest task has
the highest probability of being sampled at the beginning, and has the lowest probability of being
sampled at the end.

Gaussian scheduling (E2H-G). Although cosine scheduling addresses reward sparsity and forgetting,
the parameter-free design limits flexibility in handling issues like trivial task overfitting and fine-
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Figure 4: Gaussian Sampler. (a) This figure represents the Gaussian sampling process. (bcd) These
figures denote the sampling probabilities of different tasks changing along the training steps with
different Gaussian sampler hyperparameters.

grained control over different learning stages. Empirically, while adding the trivial task can boost the
model performance, it is also easy for the model to overfit to trivial tasks. To overcome this challenge,
we propose a Gaussian scheduling strategy inspired by the Gaussian mixture model (Reynolds et al.,
2009).

As shown in Figure 4] (a), in a one-dimensional space, we assume the data distributions of tasks
follow Gaussian distributions with the same variance o. The means of the adjacent task’s Gaussian
distributions are assumed to have the same distance 1, i.e., ux = k — 1. Then the sampling probability
is defined as the likelihood of a given position x; belonging to different task Gaussian distributions,
similar to the expectation—-maximization algorithm (McLachlan & Krishnan| 2008)). Therefore, the
Gaussian scheduling strategy can be expressed as:

. 2 B
SGaussian(tvk) = exp (_M> ’ and z; = (;) (K - 1)7 (D

202

where we ignore the normalization term, and the probabilities will be normalized for sampling. In
this sampling scheduler, we only have two hyperparameters, i.e., o and 5. While the variance o
controls the sampling concentration, 8 > 0 controls the sampling position x;’s moving speed. When
o is smaller, the training is more focused, more similar to traditional curriculum learning. When
B < 1, the sampling process will assign fewer training steps focusing on easier tasks and train
harder tasks longer, avoiding easy task overfitting. As shown in Figure [ (bcd), we use three typical
hyperparameter settings for this Gaussian sampler, i.e., 5 = 0.25 0 = 0.75, 8 = 0.75 0 = 0.25, and
B8=0.50=0.5.

3.3 THEORETICAL ANALYSIS

In this section, we analyze our curriculum reinforcement learning framework for LLMs under the
lens of Approximate Policy Iteration (API). We follow the theoretical structure of Chen & Maguluri
(2025); |Scherrer| (2014), adapting it to our curriculum setting. Specifically, we show how sequentially
solving interpolated curriculum distributions enables convergence guarantees and improved sample
complexity bounds, under function approximation errors. Our analysis considers action-value
functions and explicitly tracks the impact of approximation and distribution shift across curriculum
stages. All proofs are presented in Appendix [A]

3.3.1 THEORETICAL SETUP

Recall our MDP M = (S, A, P, r,v). We denote the policy space as II, where each policy 7 € IT is
a mapping from states to distributions over actions, 7 : S — A(.A). In our curriculum setting, we
introduce a sequence of MDPs { M, }X_| where each MDP shares the same state and action spaces
but may differ in reward functions and/or transition dynamics. Each MDP induces a state visitation
distribution dj, under the optimal policy for that curriculum, with {dj } &, interpolating between an
easy source distribution d; and the final hard task dy. Let m; be the learned policy at curriculum
step k, and let 7} be the optimal policy under the final target task. The goal is to learn a sequence of
policies {7y} | such that the final policy 7x performs well under the target distribution d .

The action-value function of a policy = is defined as Q7(s,a) =
E 2oy (se,ae)so = s,a0 = a,ap ~ w(+|s¢), S¢41 ~ P(:|s,a0)]. Let 7™ be the Bell-
man operator for policy =, defined as 7" Q(s,a) := 7(s,a) + YEy < p(.|s,a),a ~n(-|s) [Q(s",a")] .
We define the optimal Bellman operator 7, 7Q(s, a) := r(s, a) +VEgp(|s,a) [Mmaxe Q(s',a')].
The fixed point of the optimal Bellman operator is 7Q* = Q*.
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The Approximate Policy Iteration (API) framework is a generalization of classical policy iteration
that accommodates function approximation and inexact updates. It serves as a foundational tool for
analyzing practical reinforcement learning algorithms including actor-critic and deep RL methods.
The API algorithm alternates between two stages. At iteration k, the algorithm performs two
algorithmic steps. () Policy Evaluation: Given policy 7, compute an approximate estimate Q) of
its action-value function Q™*, (i) Policy Improvement: Update the policy to 71, which is greedy
or approximately greedy with respect to @ k- In the context of CRL, API offers a natural framework
to study how sequentially adapted policies, defined over interpolated curriculum distributions, evolve
toward the optimal policy and shape the final policy 7.

We adopt the following API assumptions from |Chen & Maguluri| (2025)); |Scherrer| (2014), adapted to
the curriculum setting. Let Q := Q™* be the action-value function for the policy 7 at curriculum k.

Approximate Policy Evaluation. At each iteration £, a function approximator @k is used to estimate
Q. The estimated Q-function Q7" satisfies ||Q;* — Q7" [loo < J%.

Approximate Greedy Policy Improvement. Let 751 be an €;-greedy policy with respect to @k:
Egpy, [QTF (s, Try1(5))] > Egnp, |max, @k(s, a)} — €y, for a sampling distribution i, at step
TQr — Qoo < ex-

Distribution Mismatch (Concentrability). Let 1 be the sampling distribution for policy improve-

ment at step k, and dy, the true task distribution. We assume the distribution mismatch between i,

and dy, is bounded by Cy, i.e., sup,cg Z’Zgg < C.

k,ie.,

Bounded Curriculum Drift. For the weighted norm, ||Q||l4, = /Es~a,[max, Q(s,a)?]. The
deviation between successive optimal Q-functions satisfies |Q% — Q7|4 is bounded for all k.

3.3.2 CONVERGENCE GUARANTEE

Let Q7} be the optimal Q-function for the final task under distribution dg, and let Q™ be the
Q-function of the policy learned at the final step. Define the performance loss of the final policy
compared to the optimal target policy as: Ex = ||Qf — Q™ || ax -

Theorem 3.1 (CRL Performance Guarantee). Let T' be the number of API policy updates within each
task. B > 0 is a tunable parameter for stepsizes specified in|Chen & Maguluri|(2025)). Under the
approximate greedy update and evaluation error assumptions above, the final performance gap i
satisfies:

K

A S CRR LR P I ol et
K > 7 Mk k - )
— (1-7)? B(l—7)2) " e 0 R
where ny, = ||Qy — Q" ||oc is the per-task Bellman error, 0y, is the evaluation error, and €, is

absorbed in n.

The first term represents the convergence bias of the actor, and goes to zero geometrically fast as
T goes to infinity. The second term captures accumulated evaluation errors, which involves the
stochastic error due to sampling and the error due to function approximation The third term captures
the error introduced by the policy update rule, which can be made arbitrarily small by using large
enough . Alternatively, we can use geometrically increasing stepsizes, in which case the third
term goes to zero at a geometric rate. The last term captures the deviation in optimal Q-functions
across curriculum stages, representing the cumulative gap between intermediate curriculum-optimal
values and the final optimal value, which we refer to as the curriculum approximation error. This
decomposition highlights the dual effect of CRL in improving sample efficiency (small dy, €;) and
ensuring smooth interpolation (small | Q% — Q7).

3.3.3 FINITE SAMPLE APPROXIMATION ERROR ANALYSES

In this section, we perform finite-sample analysis. Considering the critic, i.e., how to obtain an
estimate of ™, we can estimate the Q-function Q™ of a given target policy 7 using TD-learning. In
TD-learning, especially when the state-action space size is large, the use of function approximation
is natural. In linear function approximation, a set of basis vectors is selected to approximate the
target value function Q™ using linear combinations of the basis vectors. Let ® € RISIIAIXd pe
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the matrix of basis vectors ® = [¢q, -, ¢q]. Then, the goal is to find from the linear subspace

Q = {Q, = dw | w € R?} the “best” approximation of the Q-function Q™, where w € R? is the
weight vector.

Following Section 3 and 4 of |(Chen & Maguluri| (2025)), we derive the finite-sample theorem for
CRL. Theorem [A.T] and its analyses are provided in Appendix [A.T.T} The result of Theorem [A.T]
suggests that smoother curriculum trajectories, together with smaller approximation errors under
finite samples, can lead to improved final policy performance. These effects are closely tied to the
choice of stepsize and the number of updates per iteration.

Following (Chen & Maguluri|(2025), let Ks 4 € RISIAIXISIAl be a diagonal matrix and let s 4 min
be the minimal diagonal entry. .J;, is the number of critic updates per policy iteration at curriculum k.
The bootstrapping parameter 7 is chosen such that v, := 7" /1/KsA min < 1. L, is the parameter
defined by 1+ (fypmax, B Eapprox,k = SUD, || gkp — <I>w§7’;) ||Oo is the critic’s function approximation
error, ||Q% — Q7 |l is the gap between the curriculum subtask and the final task, and A,y is the
mininum eigenvalue of the positive definite matrix ®7KCs 4®. The term Ny 1 = Zé{:l 2215 ffy‘;zk

Theorem [A.T]is the function approximation error and equals zero when using a complete basis. A
term of similar form is present in all existing work studying RL with function approximation (Munos|
2003; [Agarwal et al.| [2021). Based on Theorem [A.T] we next derive the sample complexity result.

Theorem 3.2 (Sample Complexity). For a given accuracy level € > 0, to achieve E[||Q% —
Q™ ||loo] < €4 Nag + ZkK:? Q% — Qilldw, the total number of samples (i.e., the integer
T Zszl Ji) required across all K curriculum stages is of the order:

K og3(1/e ~ L?n
O<Z i (e e >>

k=1 min

in

, . K
where €}, is the target accuracy for curriculum k, and ), € < €.

Let Mcgy = Z,[f:l My, be the total number of samples needed by CRL with K curriculum steps to
achieve error eon the final task, and let Mp;rec: = m * Mg be the number of samples needed by direct
learning, where m > 1 represents the relative difficulty factor of direct learning. Under geometric
error and Ly, allocation e, = ex - eX % and L, = lﬁ—{‘kfor curriculums, we have:

(ex1)20-K) _1

Mcrr < Mpireer <=
CRL Direct 1— (ex1)?

<m—1. @

The geometric error and Ly, allocation reflect the curriculum gradually increases in difficulty while

. . . . . LK _ .
allowing larger errors in earlier stages. Since the function f(z) = *5— L monotonically decrease
for z > 1 when K is a integer larger than 1, the final condition can be reasonably satisfied, e.g., with

K =3,exl=1.4,and m = 1.8 in practice.

The first half of Theorem [3.2] analysis highlights the dual benefit of curriculum design in CRL.
First, by constructing intermediate distributions dy, ..., dx 1 close to d, the curriculum error term
|Q% — Q5| can be made small. Second, easier curriculum tasks improve estimation accuracy and
yield more stable approximate greedy updates, enhancing sample efficiency and policy improvement.
For the second half of Theorem [3.2] the final condition in Eq. [2]is satisfied when curriculums are
appropriately learned, the allocation of accuracy targets €, is gradually optimized across curriculum
steps, and the designed curriculums with increasing difficulties effectively bridge the gap between
source and target distributions. This mathematical derivation shows CRL requires fewer total samples
than direct learning on the final task, aligning with experimental observations (see Appendix [B).

4 EXPERIMENTS

We conduct experiments investigating the following research questions. RQ1: What role does task
decomposition play in RL-based post-training? RQ2: How does task scheduling impact the learning
process? RQ3: Can small-scale LLMs learn to reason on hard tasks?

4.1 EXPERIMENTAL SETUP

We evaluate our method on a diverse set of reasoning and planning tasks, covering both datasets with
and without human-annotated difficulty levels. For datasets with difficulty labels, such as Blocksworld
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Table 1: Impact of task decomposition for LLM post-training. Trivial and easy examples help the model learn
core principles that enable success on harder tasks.

Blocksworld Countdown MATH
Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD
Hard 0.0 0.0 0.0 0.0 0.0 00 439 164 18.1 6.5 823 647 534 382 206
Med + Hard 2.0 0.0 0.0 0.0 0.0 129 478 33.1 19.2 8.8 87.1 689 581 425 210
Easy + Med + Hard 00 555 155 0.0 0.0 625 793 301 212 9.5 848 682 568 425 215
Trivial + Easy + Med + Hard 98.0 100 833 211 2.6 96.1 649 288 18.1 9.2 872 720 61.6 463 257

Table 2: Effect of scheduling strategies in LLM post-training. We compare balanced scheduling, traditional
curriculum learning (CL), and our proposed E2H Reasoner variants, namely, E2H-G and E2H-C. CoT is
reported as a reference.

Blocksworld Countdown MATH
Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD
CoT 4.0 0.0 0.0 0.0 0.0 160 56 1.7 0.1 0.1 40.1 279 227 176 8.2
Balanced 98.0 100 845 263 53 96.1 649 288 18.1 9.2 872 72 616 463 25.7
CL 46.0 100 452 5.8 0.7 577 858 572 315 126 862 715 624 467 25.6
E2H-G (0.25, 0.75) 98.0 1000 953 329 7.3 989 873 514 189 7.3 85.5 72 641 479 26.5
E2H-G (0.5, 0.5) 100 100 345 105 0.7 979 872 704 41.0 192 853 717 625 487 27.6
E2H-G (0.75, 0.25) 980 933 179 2.0 0.0 957 560 288 17.1 102 86.0 724 620 467 26.3
E2H-C 100 100 155 0.0 0.0 96.7 640 259 158 6.4 846 69.6 630 47.6 28.6

(using plan length)(Valmeekam et al.| |2023)), Countdown (using number of operations)(Gandhi et al.
2025), and MATH (using problem levels) (Hendrycks et al.,[2021), we use the provided annotations
and define an out-of-distribution (OOD) split to assess generalization. For datasets without explicit
difficulty, namely GSM8K (Cobbe et al.,|2021)) and AQuA (Ling et al.|[2017a)), we estimate difficulty
using the zero shot error rate of the base model. Specifically, for each question in the training set,
we generate 20 responses and compute the error rate as 1 — Numberof Corgw Responses and bucket the
samples into trivial, easy, medium, and hard, based on quartiles Fig.[5] More dataset details are in
Appendix [C] We conduct experiments on Qwen 2.5/1.5B Instruct (Yang et all 2024), LLaMa 3.2 3B
Instruct (Grattafiori et al., [2024). More models are included in Appendix We use Qwen 1.5B for
research questions RQ1 and RQ2.

4.2 BASELINES

First, we report the Chain of Thought (Wei et al., 2022)) (CoT) performance for all models. All
post-training experiments use GRPO (Shao et al.| [2024) as the reinforcement learning algorithm (see
Appendix [E] for implementation). GRPO, by default, employs balanced scheduling over all tasks,
which we use as our baseline and refer to as GRPO in Table Bl We also assess whether models
can learn directly from the most challenging examples by training only on the Hard and OOD
subsets. In addition, we evaluate traditional curriculum learning (CL) as used by [Team et al.| (2025);
Bercovich et al.[(2025). We compare against Self-Evolve (Chen et al.,[2025)), an adaptive curriculum
baseline that samples problems with a 50% solve rate to maximize learnability. Finally, we provide a
comparison against SFT in Appendix [F}

4.3 EXPERIMENTAL RESULTS

We conduct experiments addressing the research questions listed above. We examine how task
decomposition impacts LLM post-training using Qwen-1.5B-Instruct (RQ1) with a balanced scheduler
(Table[I). We find that including trivial and easy examples helps the model build core skills. This
enables effective transfer from simpler to harder tasks and better OOD performance, consistent with
our view of reasoning as learning core principles and applying them to harder tasks.

Next, we examine how scheduling impacts post-training (RQ2) in Table. 2] Balanced scheduling
serves as a strong baseline but lacks structure, leading to suboptimal learning. CL schedules tasks
in a fixed difficulty order, which can cause forgetting of earlier tasks or overfitting to easier ones.
In our experiments, easier tasks help initiate learning due to their dense rewards, but overexposure
hinders generalization to harder, sparse-reward tasks. We address this through our two schedulers, i.e.,
E2H-C and E2H-G (see Section[3.2)). For tasks like MATH, where models perform reasonably well
across all difficulty levels (as seen with CoT in Table @, the cosine scheduling in E2H-C is effective,
beginning with a focus on trivial and easy tasks and gradually shifting toward harder ones. However,
on tasks like Blocksworld, where rewards are sparse since harder examples are more challenging,
this leads to overfitting and degraded performance. E2H-G addresses this issue by using a Gaussian
schedule that quickly decays the sampling probability of trivial and easy tasks. As shown in Fig. ] it
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Table 3: Results of E2H Reasoner across three models on Blocksworld (Valmeekam et al.l [2023), Count-
down (Gandhi et al.} |2024) and MATH Hendrycks et al.| (2021). Our method consistently improves performance
especially on HARD and OOD tasks, demonstrating effective reasoning, results on more models are in Ap-
pendix Best numbers are in bold and second-best are underlined.

Blocksworld Countdown MATH
Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD
CoT 40 00 00 00 00 160 56 17 0.1 0.1 40.1 279227 176 82

GRPO (All) 98.0 100 833 21.1 2.6 96.1 649288 18.1 92 87.2 72.0 61.6 463 257
GRPO (Hard) 00 0.0 00 00 0.0 00439 164 18.1 6.5 823 64.7 534 382 20.6
Qwen 1.5B Instruct ~ GRPO (OOD) 0.0 0.0 00 00 00 31231181 11.3 53 37.021.1150 85 37

CL 46.0 100 452 5.8 0.7 57.7 858 57.2 31.5 12.6 86.2 71.5 62.4 46.7 25.6
Self Evolve 100 100 70.2 13.8 2.1 96.6 653 342 17.8 9.5 84.0 70.6 62.6 48.6 26.1
E2H-G 98.0 100 95.3 329 7.3 979 87.2 704 41.0 19.2 853 71.7 62.5 48.7 27.6
E2H-C 100 100 15.5 0.0 0.0 96.7 64.0259 158 64 846 69.6 63.0 47.6 28.6
CoT 240 00 12 1.0 0.0 371 46 03 00 00 659 44.6352 24.1 13.6

GRPO (All) 100 100 94.1 389 133 99.9 89.5 71.6 47.9 2.7 659 47.0 36.0 22.0 102
GRPO (Hard) 0.0 0.0 00 00 00 405 338 3.0 97 14 227 144103 75 03
LLaMa 3.2 3B Instruct GRPO (OOD) 0.0 0.0 0.0 0.0 00 80 03 00 00 00 63.6 390313 190 7.6

CL 100 0.0 00 00 0.0 172 36.0227 112 4.1 741 54.1 439 280 125
Self-Evolve 100 100 91.1 358 16.6 96.7 66.6 37.9 27.5 185 79.1 61.4 48.9 33.1 14.1
E2H-G 100 100 98.8 44.1 17.6 95.0 89.9 73.3 46.5 243 78.7 58.4 464 323 14.5
E2H-C 100 0.0 0.0 0.0 0.0 100 553 00 0.0 0.0 748 60.6 48.3 343 15.8

Table 4: Performance of E2H Reasoner on Figure 5: GSM8K Difficulty distribution based on error
GSMSK and AQuA, where difficulty splits are de- rates, grouped into quartiles.

rived from error rates due to the absence of human

labels. Fig.[5]shows these splits, and Table [T2]con-

firms robustness to the number of SplitS Error Rate Distribution by Difficulty Bucket

Trivial
600 Easy
Qwen 1.5B Instruct " r:fd‘um
GSMSK AQuA 5
Trivial Easy Med Hard Avg Trivial Easy Med Hard Avg :3; 400
CoT 90.2 87.3 76.5 38.167.7 70.8 51.320.8 2.640.9 5 300
GRPO 99.0 95.3 84.1 49.977.1 95.8 68.0 48.6 21.063.3 2
CL 98.0 97.2 85.8 52.278.6 88.8 72.236.1 18.458.6 E 200
Self-Evolve  98.1 95.3 87.0 50.377.8 94.4 75.0 40.3 31.6 64.2
E2H-G 97.6 94.789.0 51.878.7 90.2 81.9 43.0 34.266.1 100
E2H-C 98.0 95.3 83.9 46.675.7 86.1 72.2 48.6 26.362.5
*" 00 0.2 0.4 0.6 0.8 1.0

Error Rate

provides enough exposure early on to support initial learning while rapidly shifting focus to harder
examples. This prevents overfitting and improves generalization in sparse-reward settings where
E2H-C struggles.

Next, we investigate whether models can learn to reason directly from difficult examples (RQ3). As
shown in Table 3] the answer is largely no. For instance, Qwen-2.5 1.5B when trained on Level
5 MATH directly, underperforms the CoT baseline on the model! This failure highlights the need
for CRL methods for LLM reasoning. To this end, we compare with a CRL method, Self-Evolve
(Table [3). Empirically, we find that its reasoning performance varies significantly across models and
tasks. Self-Evolve during training, samples problems at a 50% success rate to maximize learnability
and gradually reduces easier ones once this threshold is surpassed. However, being only halfway
proficient at solving a problem is often not enough. For example, learning calculus requires strong
command of school mathematics. In contrast, E2H Reasoner guides learning scheduling tasks from
easy to hard, improving generalization, as reflected in stronger OOD performance (RQ3). Note
that for E2H-G we report the best numbers out of our 3 parameter settings with extensive results in
Table Finally, E2H Reasoner remains effective even without human difficulty labels by using
error rates as a proxy for difficulty (Table ).

5 CONCLUSION

We introduce the E2H Reasoner (E2H), a CRL-based method for LLM post-training. E2H enables
models to learn tasks they initially failed at by scheduling tasks from easy to hard. E2H challenges the
assumption that small LLMs cannot reason and demonstrates strong empirical performance supported
by theoretical analysis, offering convergence guarantees and improved sample efficiency over direct
RL. In summary, E2H provides a scalable, theoretically grounded, and practical method for LLM
reasoning.
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APPENDIX

A PROOFS

We now present the proofs for the main theoretical results stated above. Our analysis closely follows
the derivation style of (Chen & Maguluri| (2025); |[Scherrer| (2014)), extending it to the curriculum
setting.

A.1 PROOF OF THEOREM [3.1]

Proof. We aim to derive a tight bound for the final performance error in task T :
Ex = Q% — QK Nlax

where Q7 is the optimal Q-function for the final task Tx, and Q7 is the Q-function under the
learned policy 7k .

12
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We begin by analyzing the policy performance error under API. For each task k, we define:

M= 1@k — Q" [loo-

By norm monotonicity, we have:

1@k — QK" llax < 1@ — QK" lloo-

We proceed by recalling the result from Theorem 2.1 of |Chen & Maguluri| (2025) for a fixed task &,
applied with a step size 3:

T o 2y T—1—t 2y
Q5 — Qi lloe <ATNQ% = Qoo + =D ok + =,
BRI BoR —7; Bl —1)?

0
where dj, is the approximate value evaluation error at curriculum step k; Y7 [|Qf — Q% || oo reflects
initialization at 7{; and 3 > 0 is the API soft update step size parameter. The finite geometric series

T-1
AT=1-t
t=0
has closed-form expression
_ T—1
Z for’y#l and Z’yfl fory = 1.
=0 =0
Thus we simplify with
T—1
N = 147"
, 1—x
=0

Since we denote:

M= 1@k — Q" [loos

then, the bound becomes:
")

2v(1 — 2
me < e+ il 72 0k + 1
(1—=7)

Bl —7)?

We isolate n:

_ AT
(1l —~7) < 27(51_ ,;)lg )5k +

v 1 (29(1—-9") 2y )
=1 < O + .
B(1 —~)? nkl—vT( —E ¥

We want to bound:
QK — QK" Mlaxs
using triangle inequality:

K-1
Q% = QF Nlaxe < Q% — QFlloe < i + D Q% — Qe

k=1

Let us now plug in the bound for nx:

K—-1
. o L (29(1=77) 2y . o
193 - Qe < = ( St gy )+ 3 1@~ Qilay
e

-2 %5 1
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The distribution mismatch is defined by Cj := H H If dj, is constructed by curriculum to

smoothly interpolate toward dx, and both dx and dk are supported on the same or growing state
space. In our analysis, we use:

1Qk — Q" llax < C - 1Qk — Q" lloos
where || - || 4, is the Ly norm under the distribution dx and || - || is the sup norm (worst-case).

In general, for any probability distribution x, and any function f,

losio = ([ 1Pau) " <151

So, in fact, we have the reverse:

[fllax <[ flle = Cp <1

If we do want to write

[fllaze < C - [ fllsos
then the tightest possible value for CY, is exactly 1, and any value Cj < 1 may be possible depending
on the support of f under dx . This holds when later curriculum stages subsume earlier ones, a design
principle in CRL. Hence, using C < 1 simplifies bounds without loosening them unnecessarily.

Because curriculum proceeds sequentially, and assuming that earlier tasks are easier and learned
more accurately, we can sum the per-step bounds for curriculum steps:

K

* T 1 27(1 77T) 27 >:| = * *
Ex = - QK E ) — .
K HQK QK ||dK < p |:1 . ,YT ( (1 . 7)2 k+ 6(1 _,7)2 + — ||QK Qk”d;{

This completes the proof.

Optionally, assuming 7 is small for large 7', 1/(1 — 4T) < 2 leads to:
K

- 4y
Ex < 2(4“ st o) + ZHQK Qi .

k=1

A.1.1 THEOREM[A.I]AND PROOF

Theorem A.1 (Finite-Sample Guarantee). Consider the sequence of tasks {7};},5:1, where the final
task Ty has optimal action-value function Q7. Suppose that Tk is the final policy produced by
CRL and assumptions hold for all curriculum stages. Following |Chen & Maguluri| (2025), let
Ksa € RISIAXISIAL pe g diagonal matrix and let Ks.A min be the minimal diagonal entry. J
is the number of critic updates per policy iteration at curriculum k. The bootstrapping parameter
n is chosen such that v, := y"/\/Ksamin < 1. Then, when using constant stepsize o satisfying

alta +n+1) < % we have for all J, > t, +n + 1:

TK X 2’760 rox,k 2726111'(19 k
E[Qk — @ ll] < 7" 1@k — QMo + > (G755 + 1)
1 Y v

N1
Na 1 2,
K 1 L Je—(tat+n+1)] K 1/2
+261 (1 = ve) Amina) 2 Z OLk (ta —|—n+1)]
=R O LA Wit = (1= 7)1 =)
N2 3 N2 4
K—1
278K
+t a3 (1 '7) + Z HQK Qk”dKa
———
N3

Curriculum discrepancy
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where ¢(-,-) and p(-,-) are generalized importance sampling factors, Ly, is the parameter defined
by 1+ (Yomax,e)™ Eapprox,ks 1= SUP, H g’kp — @wg’;Hm is the critic’s function approximation error,
Epias,k = MaXo<i<T MaXses (1 — A(5)) [|7x,e(+|8) — 7Trp(-|8)[, is the importance sampling bias
at curriculum k, || Q% — Q%llo is the gap between the curriculum subtask and the final task, and
Amin IS the mininum eigenvalue of the positive definite matrix 7Kg 4 P.

The terms N7 and N3 are the same as appeared in Thm. [3.1] and together capture the error in actor
update. Term N, ; is the function approximation error and equals zero when using a complete
basis. A term of similar form is present in all existing work studying RL with function approxima-
tion (Munos, 2003;|Agarwal et al.,2021). Term N, 5 is the bias introduced by generalized importance
sampling factors c(-, ) and p(-,-), and N2 2 = 0 when ¢(s, a) = p(s,a) = w(als)/mp(als). Term
N, 3 represents the convergence bias in the critic and goes to zero geometrically fast as the inner loop
iteration index Jj, goes to infinity. The term V5 4 represents the variance in the critic and is propor-

tional to \/at, = O(y/alog(1l/a)), thus arbitrarily small given small enough stepsize «.. Together,
{N3,;}i=1~4 correspond to the second term in Thm. Finally, the curriculum approximation
error is the same as the last term in in Theorem [3.1] This result suggests that smoother curriculum
trajectories and smaller approximation errors under finite samples, which is closely related with the
stepsize and number of updates per iteration, can lead to better final policy performance.

Proof. We proceed by mathematical induction across the curriculum steps. Let 7 7 denote the final
policy after T iterations at curriculum step k. Base case: For the first curriculum step (k = 1), we
directly apply Theorem 4.1 from |Chen & Maguluri| (2025)):

E[|Q1 — Q™" lo] <471Q1 — Q7|0 (3)
27Eapproz,1 272Ebias,1
Ao T @
6(1 — (1 = Ye) Aina) 211~ Uetrt ) )
(1—7)3(1 — 1) V/20002,
T0L1[a(te +n + 1)]1/2 278 ©

A’min(l - ryc)(l - 7)3 (1 - 7)2
Inductive step: Assume that for curriculum step &k, we have:

E[|Qr — Q™ [loe] <7"*(|Q1 = QT°loo
k
Z Q'YEapprox,j 272Ebias,j
=\ =72 (L=m)*
6(1 — (1 — 7o) Amine) 21Ji—(tatnt1)]
(L= 7)3(1 =) /20,00

min

70L [a(ty +n+1)]1/2 273
Amin(1 = 7e) (1 —7)3 (1—7)2

k—1
+ ) 1Qk — Qjlla,
i=1

For curriculum step k + 1, we initialize with policy 7 7 and apply Theorem 4.1 from |Chen &
Maguluri| (2025)):

E[[|Qk1 — Q™7 o] < AT Q141 — Q55T lloo
2YE approz.k+1 . 27 Ebias k+1
(-2 ")
6(1 — (1 — Ye) Amina) 2l/r+1—(Fatn+1)]
(1—7)3(1 - 7(:)1/2/\;{;
T0Lg11[a(te +n + 1)}1/2 240
ML= 70177 " T=7P

_|_
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Eif |loo to our induction hypothesis. By triangle inequality:

Q1 — Qi lloo < N1Qki1 — Qlloo + 1Qr — Q" Moo + 1R — Q4T lloo
< 1Qk41 = Qlloe + 1Q% — Q1" [loo +

We need to relate [|Qf, | —

1 1 ||7’k - 7’k+1||oo
-7

where the last inequality follows from the performance difference lemma with respect to rewards. For
curriculum learning, we design the reward functions to satisfy |75 — k+1]/co < d;- for some small
0,. Thus:

7r ™ YOy
1Qr+1 = QT lloo < N1Qk41 = Qklloe + QK — Q" [loo + —— 7
Substituting our induction hypothesis:
™ Tk, 'Y(Sr
E[|Qur1 — Q™7 oc] < VTE[|Qk+1 — Qlloo + Q1 — Q" lloo + +— 7}

Q'YEapprorc,k—&-l 272Ebias,k+1
(1—=9)? (1=)*
6(1 - (1 - ’Yc)/\mina)%[Jk+1_(ta+n+1)]
(1= 7)3(1 =) 2\ 0,
T0Lg 11 [o(te +n + 1)]1/2 2y
Amzn(l _’VC)(l _’7)3 5(1 _’7)2

71' Y
S’YTHQIC+1 Qk”oo‘f"yT]E[HQk kT”oo} + 1_,7

+

T+16T

27Eapproa:,k+1 + 2’72Ebias7k+1
(1-7)2 (I—m)*
6(1 — (1 — 7o) Amina) 2 Trr1—(tatnt1)]
(1 =931 — )2\
T0Lj11[a(te +mn+ 1)]/2 278
Amin (L —=7e) (1 —7)? (1 =)

+

Applying the induction hypothesis:
E[|Qr+1 — Q™7 o] < AT 11Qk+41 = Qlloo + 77 -2 Q1 = Q7 lloo

27Ea rox 272Ebias .

T pP j J
+

3 (5 i

6(1—(1-— %))\mma)%[Jj—(taJrnJrl)]
(1 =931 = )2\,

T0L;[a(ty +n + 1)]1/2 2y
)\mzn(]-_'}/c)(]-_’Y)g ﬁ( _7)2>
k—1
AT @k~ @l + L
j=1
+ Q'YEapproa;,k—&-l 272Ebias,k+1
(1—79)? (1—7)*

6(1 — (1 = 7o) Amina) 2 es1—(tatnt )]
(=731 — ) 22

T0Lp 1 [a(te +n +1)]1/2 278
Amin (1 =) (1 _7)3 (1 _7)2
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Simplifying:
E[|Qkr1 — Q™ ||oc] < 4T* Q1 — QF [l
k+1 2
2'7Eappror 7 2'7 Ebias,j
i Z ( JEE=E

6(1 _ (1 o ’Yc))\mma)lw‘i(t atn+1)]
+
(=71 =) 120,0

70L;[a(ty +n+1)]1/2 273
)\min(l - ’Yc)(l - '7)3 (1 - 7)2

k
+ Z ||Qk+1 - Qj||dk+1

Jj=1

where we used the fact that
k—1 k
”QZ+1 - QZ||dk+1 + PYT Z ||QZ - Q;lldk < Z ||QZ+1 - Q;||dk+1 N
j=1 j=1

due to the triangle inequality and the curriculum design. By induction, for the final curriculum step
K, we have:

E[|Qx — Q7 o] <" MNQ1 = QT [l
27Eapproa: k 272Ebias k
+ + :
§:< (=)
6(1—(1— 70) minC)? 5[k —(tatnt1)]
(1= 7)3(1 = 7e) 2\

min

T0Lg[a(te +n +1)]1/2 278
Am1n(1 - 7(')(1 - 7)3 (1 - FY)Q

K-1
+ Z 1Q@x — Qrllax

k=1

This completes the proof.

A.1.2 PROOF OF THEOREM[3.2]

Proof. From the Finite-Sample Theorem for CRL, we aim to control all error terms to achieve the
desired accuracy. We allocate the total error budget € across the K curriculum steps, with ¢; being

the error allocation for step k, such that Zszl € < e. For each curriculum &, we need to control the
following terms:

* m €
I Q< ®
6(1 — (1 — Vo) Aniner) 2 Te—(tatnt1)]
(1= (1 = 7)Aminar)? o <& ©)
(1 - 7) ( )1/2>\mzn 4
70Lk[a(ta —+n 4+ 1)]1/2 €L
— (10)
)\mzn<1 - 76)(1 - 7)3 4
298 €k
—_— < = 11
(1-7) " 4 (a
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We can solve each of these constraints. For the first constraint, we need:

1 €
2 L, (o)
K77\ 4@ = Q||

Since [|Q] — Q7°[lo < 25, we have:

e (447 <o (5

For the second constraint, we need:
ex(1—7)*(1 = 7)YV 2 Al

(1 - (1 - "}/C)Ami7LO‘)%[Jk7(ta+n+1)] < 24 )

thus by taking log,

E[Jk — (ta +n+ D]log(l — (1 — ve) Amine) < log (

2

er(1=7)2(1 = 7o) A2
24 ’

thus

e (1=7)*(1—7e) V2N 7
QIOg( . 5
log(l - (1 - VC))‘minO‘)

(I=ve)Amin
130L2

24

(1 - P)/c))\mina

_ _ / 1/2
210g (eku NEERY A)
)+

(1 - ’Yc)/\mina

Using log(1 — z) ~ —z for small z, and a(t, + n + 1) < , we have:

=(ta+n+1

For the third constraint, we need:
G(1=7)°0 = 7)Mo
4900Lﬁ
o (S0 2N
L2
k

afta +n+1) <

For the fourth constraint, we need:

ex(1—7)?

Combining these constraints, the dominant factor in the sample complexity comes from the third
constraint, which gives us:

201 _ AN6(1 — ~ 1222
a< O <6k(1 2’7) (1 ’YC) )\mzn>
Li(ta +n+1)
The mixing time ¢,, is O(log(1/«)), which gives us:
201 _ AN6(1 — ~ 1222
L;(log(l/a) +n+1)

This implies:

2 6 212
_ ek(l B ’Y) (1 - 'VC) )‘mm
“‘O< 12 oa(1/0)
e2(1—7)°(1 - %)an)
L2
k

alog(l/a) =0 (
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Using the Lambert W function, we can solve for «:

6%(1 _ 7)6(1 — 'Yc)2>‘?mn
2 L
Lk log (5;26(1_7)6(1k ’Yc)z)‘?nin)

- (6%(1 - 7)6(L1§_ e)? A%mn)

a=06

where © hides logarithmic factors. The number of samples required for curriculum step & is:

My =J,-T

=O((ta+n+1)+m).o<bgg/e)>

log(1/a) +n + 1 log(1/ex) log(1/e)
=0 ( K (1/ ) (1 _Ii}/c)/\m'ma )

L}
<10g(1/6) log (6%(1*7)6(15%)”\?@1:”) + nlog(1/e)

K

+

2 L7

log(1/ex) log(1/€) L7 log (6%(1 LT %)2/\3’”_”)
Kéi(l - 7)6(1 - ’YC) )‘?nzn

_5 nlog(1/e) N log(1/ex)log(1/€) L3

B Y S o= T TN DY

min

The second term dominates, giving us:

= log?(1/ex,) log(1/€ VL2
=9 (Kei(l (T — ) )

min

The total number of samples across all curriculum steps is:

K 2 2
B - log™(1/ex) log(1/e) L
- ZO (Ke%(]_ - ’7)6(]— - ’Yc)3)‘]§nin>

log( 1/6 i log 1/e;€)L2
€2 6(1 —7c)3A3

=1 min

Assuming ¢, = & for all k (uniform error allocation), we get:

= (log(1/e) & log? (K /) L}
Mere =0 ( K Z (e/K)*(1—)5(1 —k%)”?’ )

~ [ log(1/€)log®(K/e)K 5
O<e2<1 DL = 7PN ZL)

min p_1q
S log®(1/e) K 2
= L
o (62(1 - ’7)6(1 - ’YC)?))\?rnn ; g

Adding the dependence on the bootstrapping parameter n, we have:

K 3 2
log®(1/ex) - Lign
Mo =0 (Z €2 =0 ((1 - 7)7(1k— Ve, >>

k=1 min
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This completes the proof for the first half of the Theorem. Now we move on to prove the second half
of the Theorem.

The sample complexity for the final task K is:

B log (1/6K) 9 C
MK‘O( a2 R e,

‘We can factor this term out of the total sum:

L2 log®(1/ep,) - €
MCRL = MK . (1 + Z log 1/€K> .

Define the curriculum efficiency factor:

L} -log’(1/ex) -
" L -log’ (1/€K>' €k

CEF_1+Z

This factor represents the ratio of total curriculum sample complexity to the sample complexity of
just the final task. We make two structure assumptions about our curriculum design, geometric error
allocation and Ly, progression, € = € - eK=Fkand L, = LK/ZK_’“, where e > 1. This reflect a
curriculum that gradually increases in difficulty while allowing larger errors in earlier stages. For a
well-designed curriculum where early tasks are simpler than later ones, [ > 1.

For the error ratio term:

2 2
kK _ 2Kk
- )

e (e - eK—F)2
and for the L, ratio term:

Ly _ Ly — 2K —k)

L3 (Ly - IK7F)?

For the logarithmic term:
log(1/er) = log(1/(ex - eX7F)) = log(1/ex) — (K — k) log(e).

Substituting these expressions into C E'F’:

K-1,_ _ — —
cpro1 g 3 T logl1/ex) = (K — ) log(e)}! =7
log”(1/exc)

Since e > 1 and K > k, (K — k)log(e) > 0. Thus we have

cEr—14 3 los/ex) = (K = B)logle))® |\ areiy

k=1 log®(1/ex)
K—1
<1+ (el)_Q(K—’f)_
k=1
The sum is a geometric series:

K—1 K1 ) _
Z(el)—Q(K—k) _ Z(el)Q(k—K) _ (61)2(1—K) 1— (61)2(1( 1) _ (el)2(1 K) _q
= i L~ (e)? = (@

CRL is more sample-efficient than direct learning when:

Mcrr < Mpirect
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Since Morr = My - CEF and for a comparable direct learning approach, Mp;rect = Mg - m
where m represents the relative difficulty factor of direct learning, our condition becomes:

CEF <m.
Thus for Mopr < Mpirect, Substituting expressions it becomes:

(el)Q(I—K) -1

Mcrr = Mg -CEF < Mg - (1+ ) < Mg -m = Mpirect-

1— (el)?
Thus 1K)
(el)*U=%) —1
M, Mpireet — —F——— —1.
cRL < Mpirect 1 —(el)? <m

This completes the proof.

B SAMPLE EFFICIENCY GAINS WITH CRL

Our theoretical analysis (see Sec@ establishes that curriculum reinforcement learning (CRL)
attains target performance while requiring fewer hard samples than non-curriculum RL methods. To
show this empirically, we count how many training samples from each difficulty level are seen during
post-training. All methods are trained for 1600 iterations with an effective batch size of 8, totaling
12,800 samples, which allows a direct comparison of their sample efficiency under the same budget.
For simplicity, we perform this analysis on Blocksworld, shown Table[5] Our empirical results show
that CRL methods are between 2.5 — 3x more sample efficient than non-CRL methods that train
exclusively on hard samples, while also achieving better performance, underscoring the importance
of curriculum design for post-training.

Table 5: Consistent with our theoretical guarantees, CRL methods (E2H-C, E2H-G) attain strong
performance while requiring substantially fewer hard samples than non-curriculum baselines. For
example, E2H-G uses 3580 hard samples versus 12800 for GRPO (HARD). Training exclusively on
OOD (GRPO-0OQOD) trained on 12800 OOD samples performs poorly (see Table[3).

Number of Training Samples

Method Trivial Easy Medium Hard OOD Total
GRPO (All) 3200 3200 3200 3200 0 12800
GRPO (HARD) 0 0 0 12800 0 12800
GRPO (OOD) 0 0 0 0 12800 12800
E2H-C 3200 3200 3200 3200 0 12800

E2H-G (0.5,0.5) 1628 2997 4595 3580 0 12800

C DATASET DETAILS

In this section we provide details of the datasets used for evaluation. We categorize the datasets into
two categories, datasets that contain human annotated difficulties and others that do not.

C.1 DATASETS WITH HUMAN ANNOTATED DIFFICULTIES

Blocksworld (Valmeekam et al.; 2023)) is a dataset used to evaluate the planning capabilities of LLMs.
Each task involves transitioning from an initial block configuration to a target configuration, which
requires LLMs to generate a sequence of actions, or plan to achieve the goal. Tasks become more
difficult as the required number of steps increases, since the model must reason over longer sequences
and maintain correct intermediate states. To study this, we group tasks into four in-distribution
difficulty levels: Trivial with 1 step, Easy with 2 steps, Medium with 4 steps, and Hard with 6 steps.
Additionally, we include an out-of-distribution (OOD) split with 8-step plans to test generalization
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Table 6: Difficulty splits for datasets with human-annotated difficulty levels. Each dataset is categorized based
on task-specific properties, specifically, plan length for Blocksworld, number of operands for Countdown, and
problem level for MATH.

Difficulty  Blocksworld Countdown MATH
(Plan Length) (Num. Operands) (Problem Level)

Trivial (T) 1 2 1

Easy (E) 2 3 2

Medium (M) 4 4 3

Hard (H) 6 5 4

00D 8 6 5

beyond the training distribution. Trivial tasks are especially simple because the model only needs
to predict one correct action out of four possible choices to complete the plan. This setup allows
the LLM to first grasp fundamental planning mechanics, which can then be leveraged to learn more
complex multi-step tasks.

Countdown (Gandbhi et al., [2024)) is a task where the model must reach a target value by combining
given numbers using basic arithmetic operations. While the original dataset uses four numbers per
instance, we extend it to create a range of difficulty levels based on the number of input numbers,
mainly, Trivial (2), Easy (3), Medium (4), Hard (5), and OOD (6). As the number of inputs increases,
the space of possible operation sequences grows rapidly, making it harder for the model to identify
the correct combination and order of operations. In contrast, the trivial setting is extremely simple,
requiring just one operation between two numbers to reach the target, allowing the model to first
learn basic arithmetic before scaling to more complex multi-step problems.

MATH (Hendrycks et al.,[2021) is a benchmark of 7,500 training and 5,000 test problems covering
high-school level mathematics, with each problem labeled from Level 1 (easiest) to Level 5 (hardest).
The dataset covers topics such as algebra, geometry, number theory, and probability, including step-
by-step solutions. We create a difficulty-based setup using the existing labels, specifically, Trivial
(Level 1), Easy (Level 2), Medium (Level 3), Hard (Level 4), and OOD (Level 5). As difficulty
increases, problems require more complex reasoning, multi-step solutions, and deeper mathematical
understanding. Trivial problems are typically short and rely on basic techniques, making them ideal
for teaching foundational reasoning. We use Levels 1 through 4 for training and treat Level 5 as
out-of-distribution to assess generalization to the most difficult problems.

We provide the summery of the difficulty splits for each dataset in Table[6]

C.2 DATASETS WITHOUT HUMAN ANNOTATED DIFFICULTIES

GSMBSK (Cobbe et al.,|2021)) is a dataset of high-quality, linguistically diverse grade school math
word problems designed to evaluate multi-step arithmetic reasoning. Each problem typically requires
between two and eight steps involving basic arithmetic operations such as addition, subtraction,
multiplication, and division. To assess performance across varying difficulty levels, we create a 4-way
split into Trivial, Easy, Medium, and Hard, based on model error rates, as described in Section. E] and
illustrated in Figure. [3]

AQuA (Ling et al., 2017b)) is a dataset of algebraic word problems with multiple-choice answers
and detailed rationales, designed to test arithmetic reasoning and symbolic manipulation. For our
experiments, we randomly sample 5,000 problems for training. Similar to GSM8K, we use model
error rates to define four difficulty levels, Trivial, Easy, Medium, and Hard (see Figure. @)

Since both GSM8K and AQuA lack explicit difficulty annotations, we construct difficulty splits using
model error rates and do not include an out-of-distribution (OOD) category for these datasets.
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Error Rate Distribution by Difficulty Bucket
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Figure 6: AQuA Difficulty distribution based on error rates, grouped into quartiles.

D MODEL LICENSE INFORMATION

For our experiments, we use LLaMA 3.2 3B Instruct, Qwen 2.5 1.5B Instruct, and Qwen 2.5 3B
Instruct. Qwen 2.5 1.5B Instruct is released under the Apache 2.0 License, Qwen 2.5 3B Instruct
under the Qwen Research License, and LLaMA 3.2 3B Instruct under the Meta Community License.

E IMPLEMENTATION DETAILS

In this section, we provide implementation details for E2ZH Reasoner. We begin by describing the
hardware setup, followed by training parameters, and finally the inference settings used to report the
final results.

E.1 HARDWARE DETAILS

For our experiments, we use up to three S0GB NVIDIA A100 GPUs, particularly for the 3B parameter
models. One GPU is dedicated to vLLM for fast inference, while the remaining two are used for
model training. On average our experiments require anywhere between 16-18 hours for training.

E.2 TRAINING DETAILS

We use GRPO as the policy optimization algorithm, combined with parameter-efficient fine-tuning
using LoRA. All models are trained for up to 1600 GRPO steps, with hyperparameters listed in
Table[/| For fair comparison, the same configuration is used in our SFT experiments. All training is
conducted using the TRL library from Hugging Face, averaged across 3 seeds. For the Self-Evolve
baseline (Chen et al.,|2025), we use the same hyper-parameters as reported by authors.

E.3 INFERENCE DETAILS

For inference, we use a temperature of 0.0 in all experiments to ensure deterministic outputs and
reproducibility. For pass@Fk evaluations, we enable sampling with a temperature of 0.7, top_p of 0.9,
and top_k of 50, where top_k controls the number of candidate tokens considered at each decoding
step.

F COMPARISONS WITH SFT

We compare vanilla supervised fine-tuning (SFT) with RL-based post-training methods (see Ta-
ble [8). The results show that SFT performance varies significantly across tasks. For instance, in
Blocksworld (Valmeekam et al.,[2023), where most problems involve fewer than four blocks, SFT
performs well—the LLM learns effectively due to the small gap between the training and test distribu-
tions. This aligns with prior work suggesting that SFT is most effective when the training data is high
quality and closely aligned with the downstream task (Muennighoff et al., [2025} |Chu et al., 2025). In
contrast, on tasks like Countdown, where the problem distribution is much broader, SFT performs
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Table 7: Training hyperparameters used for GRPO post-training and LoRA adaptation.

Component Parameter Value
learning_rate le-6
Ir_scheduler_type cosine
per_device_train_batch_size 2
gradient_accumulation_steps 4
gradient_checkpointing true

GRPO max_steps 1600
bf16 true
tf32 true
num_generations 8
beta 0.001
use_vllm true
vllm_gpu_memory_utilization 0.2
r 32
alpha 64

LoRA dropout 0.1
target_modules q_proj, v_proj
task_type CAUSAL_LM

Table 8: Comparison of RL-based post-training and supervised fine-tuning (SFT). SFT performance varies
noticeably across tasks, highlighting its inconsistency in generalizing across domains.

Blocksworld
Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD

Countdown

Models Methods

SFT 100.0 97.8 88.1 553 165 974 418142 46 0.0
Qwen 2.5/ 1.5B Instruct GRPO 98.0 100.0 84.5 26.3 53 96.1 649 28.8 18.1 9.2
E2H-G 98.0 100.0 95.3 329 7.3 952 84.1 48.1 28.1 14.2
E2H-C 100.0 100.0 155 0.0 0.0 96.7 64.0 259 158 6.4
SFT 100.0 100.0 94.0 62.5 27.8 99.9 63.9 30.8 13.3 0.0
Qwen 2.5 / 3B Tnstruct GRPO  100.0 100.0 88.1 38.8 14.6 99.6 89.3 73.4 41.7 94
E2H-G  100.0 100.0 96.4 53.3 23.2 98.5 90.8 71.0 43.5 194
E2H-C  100.0 100.0 94.1 52.0 22.5 100.0 90.4 69.7 35.7 12.6
SFT 100.0 97.8 96.4 72.3 37.8 100.0 66.6 27.2 12.1 0.0
LLaMA 3.2 / 3B Instruct GRPO  100.0 100.0 94.1 389 13.3 999 89.5 71.6 479 2.7
E2H-G  100.0 100.0 98.8 44.1 17.6 95.0 89.9 73.3 46.5 243
E2H-C 1000 0.0 0.0 0.0 0.0 100.0 553 0.0 0.0 0.0

notably worse than RL-based post-training. This gap is especially clear in the out-of-distribution
(OOD) setting, where SFT fails to solve any Countdown OOD examples, unlike in Blocksworld,
where its performance generalizes more successfully. We highlight these two tasks to illustrate
how SFT performance can vary across distributions, in contrast to the more consistent behavior of
RL-based post-training methods.

G ADDITIONAL ANALYSIS AND ABLATIONS

G.1 RESULTS ON MORE LLMS

Additional results on more LLMs are reported in this subsection.
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Table 9: Results on Qwen-2.5 3B Instruct.

Blocksworld Countdown MATH
Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD
Qwen 2.5 3B Instruct

CoT 1.0 67 71 10 00 240 159 44 05 0.0 68.0 558 48.8 33.4 20.0
GRPO (All) 100 100 88.1 38.3 14.6 99.6 89.3 73.4 41.7 9.4 90.1 785 71.9 57.4 36.8
GRPO (Hard) 50.0 42.2 869 72.4 483 1.6 495 38.7 27.7 12.6 90.6 78.4 70.5 58.0 36.0
GRPO (OOD) 0.0 133 95 00 00 04 251 212 138 85 913 781 70.0 58.7 36.8

CL 100 100 77.3 42.1 20.5 39.0 91.0 729 38.7 12.5 90.6 789 72.5 57.2 36.6
Self-Evolve 100 100 88.1 425 18.5 99.6 91.4 79.8 56.8 29.3 92.2 80.8 70.6 58.6 37.1
E2H-G 100 100 96.4 53.3 23.2 98.5 90.8 81.2 60.7 32.3 904 81.0 71.5 58.2 37.2
E2H-C 100 100 94.1 52.0 225 100 90.4 69.7 357 12.6 90.4 80.0 73.4 58.9 38.1

Table 10: Effect of scheduling strategies in LLM post-training. We compare balanced scheduling, traditional
curriculum learning (CL), and our proposed E2H Reasoner variants, namely, E2H-G and E2H-C. CoT is
reported as a reference.

Blocksworld Countdown MATH
Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD
Qwen 2.5 3B Instruct

CoT 1.0 67 71 1.0 0.0 240159 44 05 0.0 68.0 558 48.8 334 20.0
Balanced 100.0 100.0 88.1 38.8 14.6 99.6 86.9 57.8 23.6 7.8 90.1 785 719 57.4 36.8
CL 100.0 100.0 77.3 42.1 20.5 39.0 91.0 72.9 38.7 12.5 90.6 78.9 72.5 57.2 36.6

E2H-G (0.25, 0.75) 100.0 100.0 96.4 53.3 232 98.5 90.8 71.0 43.5 194 90.4 81.0 71.5 58.2 37.2
E2H-G (0.5, 0.5) 100.0 100.0 89.2 329 10.6 99.6 89.3 73.4 41.7 9.4 91.1 782 70.5 56.6 35.0
E2H-G (0.75, 0.25) 100.0 100.0 429 3.9 2.0 100.0 87.8 52.3 16.7 6.5 90.0 79.3 70.6 57.1 35.9

E2H-C 100.0 100.0 94.1 52.0 22.5 100.0 90.4 69.7 35.7 12.6 90.4 80.0 73.4 58.9 38.1
LLaMA 3.2 3B Instruct

CoT 240 00 12 1.0 0.0 371 46 03 00 0.0 659 446 352 24.1 136

Balanced 100.0 100.0 94.1 389 13.3 999 89.5 71.6 479 2.7 659 47.0 36.0 22.0 10.2

CL 1000 0.0 0.0 0.0 0.0 172 36.022.7 11.2 4.1 74.1 54.1 43.9 28.0 12.5

E2H-G (0.25, 0.75) 100.0 100.0 98.8 44.1 17.6 95.0 89.9 73.3 46.5 243 78.7 58.4 46.4 323 145
E2H-G (0.5, 0.5) 100.0 100.0 88.1 26.3 9.6 944 86.7 65.1 27.9 23 66.1 45.0 36.2 244 114
E2H-G (0.75,0.25) 100.0 97.8 75.0 21.1 40 989 89.4 48.6 0.7 0.0 63.8 482356 240 8.6
E2H-C 100.0 100.0 15.5 0.0 0.0 96.7 640259 158 64 84.6 69.6 63.0 47.6 28.6

G.2 RESULTS ACROSS GAUSSIAN PARAMETERS

In this section, we expand on the results presented in the main paper by reporting all three parameter
settings of Gaussian scheduling in Table Similarly, for Qwen 2.5 1.5B Instruct we include the
results for all Gaussian scheduling variants on GSM8K and AQuA in Table[T1]

G.3 CHOICE OF NUMBER OF DIFFICULTY SPLITS

The number of difficulty splits can be treated as a hyperparameter in E2H Reasoner, particularly
for datasets without human-annotated difficulty labels such as GSM8K (Cobbe et al., [2021)) and
AqUA (Ling et al., [2017a). We set this value to 4, consistent with the range of 3 to 5 used in the
curriculum learning literature (Bengio et al.,[2009). As shown in Table@ our method remains robust
across different choices of this parameter.

G.4 QUALITATIVE ANALYSIS OF SCHEDULING TECHNIQUES

We provide a qualitative analysis of scheduling techniques in Table highlighting their respective
strengths and weaknesses. The results show that different schedulers are suited to different tasks and
model scales. Inspired by the effectiveness of E2H Reasoner, we hope this motivates the community
to explore more sophisticated scheduling strategies for LLM post-training.
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Table 11: Expanded results for Qwen 2.5 1.5B Instruct showing all E2H-G (Gaussian scheduling) variants on
GSMSK and AQuA. We provide a comparison against Balanced and E2H-C (Cosine scheduling).

AQuA GSMSK
Trivial Easy Med Hard Avg Trivial Easy Med Hard Avg
Balanced 95.8 68.0 48.6 21.0 63.3 99.0 95.3 84.1 499 77.1
E2H-C 86.1 72.2 48.6 26.3 62.5 98.0 95.3 83.9 46.6 75.7

E2H-G (0.25,0.75) 93.0 70.8 40.2 23.6 61.4 98.5 96.3 83.6 51.277.6
E2H-G (0.5, 0.5) 90.2 81.9 43.0 342 66.1 97.6 94.7 89.0 51.8 78.7
E2H-G (0.75,0.25) 83.3 79.1 54.5 263 64.1 98.0 97.3 859 47.777.1

Table 12: Results on GSM8K (Cobbe et al., 2021) across different Gaussian parameter splits. The
main experiments use the 4-split setting; below we show that our method is robust to the number of
splits.

Method 3 Splits 4 Splits 5 Splits

E2H-C 79.1 757 76.1
E2H-G 786 78.7 785

H LLM USAGE

LLMs were used for text-refining purposes only.

I LIMITATIONS

Despite the strengths of E2H Reasoner, it has certain limitations. Our approach uses simple and
intuitive probabilistic schedulers, specifically based on Gaussian and cosine functions, which do not
adapt during training. While these choices are effective, our results suggest that incorporating adaptive
strategies, such as advantage-based scheduling, could offer further improvements. Comparisons
with adaptive curriculum methods that aim to maximize learnability reveal an important insight:
maximizing learnability does not always lead to stronger reasoning. This outcome depends on the
structure and difficulty of the problems within the dataset. Combining our method with adaptive
approaches presents a promising direction for future work.

J SOCIETAL IMPACTS

Our work introduced E2H Reasoner, a curriculum-based reinforcement learning (RL) approach
designed to enhance the reasoning capabilities of small-scale large language models (LLMs). This
advancement holds significant societal implications. Enhanced reasoning in LLMs can improve
decision-making processes in critical domains such as healthcare, education, and legal systems, where
nuanced understanding is paramount. Moreover, by empowering smaller models, E2H Reasoner
promotes broader accessibility to advanced Al capabilities. Although our tasks focus on reasoning,
future extensions involving real-world interaction could pose risks, including potential misuse of
language models.
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Table 13: Qualitative comparison of scheduling strategies, outlining their strengths and weaknesses in the
context of LLM post-training.

Scheduling Strengths Weaknesses
Bal d 1. Default in LLM post-training. 1. Assumes uniform difficulty across the dataset.
alance 2. Parameter-free and easy to use. 2. Often fails to improve reasoning on hard tasks.
Traditional 1. Simple and parameter-free. 1. Can cause overfitting to easy tasks.
2. Easy to implement. 2. May lead to forgetting earlier tasks.
1. Parameter-free and simple to apply.

1. May overfit to easy tasks when rewards for hard

E2H-C 2. Suitable for tasks with similar zero-shot
tasks are sparse.

performance across difficulty levels.

—_

. Effective across tasks and models.

E2H-G 2. Enables fine-grained control.

1. Requires tuning two hyperparameters.
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