
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CURRICULUM REINFORCEMENT LEARNING FROM
EASY TO HARD TASKS IMPROVES LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

We aim to improve the reasoning capabilities of language models via reinforcement
learning (RL). Recent RL post-trained models like DeepSeek-R1 have demon-
strated reasoning abilities on mathematical and coding tasks. However, prior
studies suggest that using RL alone to improve reasoning on inherently difficult
tasks is less effective. Here, we draw inspiration from curriculum learning and pro-
pose to schedule tasks from easy to hard (E2H), allowing LLMs to build reasoning
skills gradually. Our method is termed E2H Reasoner. Empirically, we observe
that, although easy tasks are important initially, fading them out through appro-
priate scheduling is essential in preventing overfitting. Theoretically, we establish
convergence guarantees for E2H Reasoner within an approximate policy iteration
framework. We derive finite-sample complexity bounds and show that, when tasks
are appropriately decomposed and conditioned, learning through curriculum stages
requires fewer total samples than direct learning.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated reasoning capabilities in tasks such as multi-step
arithmetic, planning, and code generation. However, the notion of reasoning in LLMs remains vague,
with some works equating it to generating intermediate steps during problem solving (Wei et al.,
2022; Cobbe et al., 2021). This view, although intuitive, blurs the line between genuine reasoning
and surface-level pattern recognition (Stechly et al., 2024; Valmeekam et al., 2023). Therefore, we
adopt a view focusing on generalization, defining reasoning as the ability to extract principles from
simpler tasks and apply them to harder ones. Supporting this capability requires training methods
that go beyond imitation and help models learn underlying problem-solving strategies.

In this direction, the success of DeepSeek R1 (Guo et al., 2025) and OpenAI o1 (Jaech et al., 2024)
shows that reinforcement learning (RL) based post-training enhances reasoning. RL uses task-specific
rewards based on output correctness, unlike supervised fine-tuning (SFT), which trains models to
imitate fixed input-output examples (Zelikman et al., 2022). However, RL struggles on harder tasks
on which pre-trained models have low zero shot performance (Shao et al., 2024; Zeng et al., 2025)
and since rewards are granted only for correct answers, resulting in sparse learning signals.

To address the sparse reward problem, curriculum learning has been applied to reinforcement
learning (CRL) by structuring training from easier to harder tasks (Bengio et al., 2009). This
idea has recently been extended to LLM post-training (Team et al., 2025; Bercovich et al., 2025).
However, these initial efforts primarily rely on simplified strategies, such as training on easy tasks
before switching to hard ones after a fixed number of iterations. In contrast, we introduce E2H
Reasoner (E2H), a CRL approach with a probabilistic scheduler that gradually shifts focus from
easy to hard tasks, enabling even LLMs to develop core reasoning abilities and generalize to more
complex problems. We show that LLMs can learn tasks they initially failed in the zero-shot setting
(Fig. 1). Empirically, E2H achieves state-of-the-art performance across five reasoning tasks, i.e.
Blocksworld (Valmeekam et al., 2024) and Countdown (Gandhi et al., 2024), as well as three
arithmetic reasoning benchmarks (Hendrycks et al., 2021; Agarwal et al., 2021; Cobbe et al., 2021).
On the theoretical front, we provide a comprehensive analysis of CRL through the lens of Approximate
Policy Iteration, establishing convergence guarantees for the final performance gap and finite-sample
complexity bounds. Importantly, we prove that with a well-designed curriculum, CRL requires fewer
total samples than direct learning, aligning with and supporting our empirical observations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 2 4 8 16 32 64 128 256
k

0.0

0.3

0.6
0.7

pa
ss

@
k E2H (Qwen 1.5B)

Qwen 1.5B
E2H (LLaMA 3.2 3B)
LLaMA 3.2 3B

(a) Pass@k on Countdown

1 2 4 8 16 32 64 128 256
k

0.0

0.3

0.6

0.9

pa
ss

@
k

E2H (Qwen 1.5B)
Qwen 1.5B

E2H (LLaMA 3.2 3B)
LLaMA 3.2 3B

(b) Pass@k on Blocksworld

Q: Using the numbers [89, 48, 99, 28, 5, 39], create an equation

that equals 14

<think>First, we can add 5 and 99 to get 104, then subtract 48

from that result to get 56, then subtract 28 from that to get 28,

then subtract 39 from that to get -11, then subtract 5 from that to

get -16, then subtract 89 from that to get -105, which is not

equal to 14. Next, we can subtract 99 from 48 to get -51, then

add 89 to get 38, then subtract 5 from that to get 33, then

subtract 28 from that to get 5, then add 39 to get 44, which is

not equal to 14. We can also try subtracting 48 from 89 to get 41,

then subtracting 99 from that to get -58, then adding 5 to get

-53, then adding 28 to get -25, then adding 39 to get 14.</think>

<answer>89 - 48 - 99 + 28 + 5 + 39</answer>

<answer> I am not able to f ind an equation </answer>

E2H Reasoner (LLaMA 3.2 3B)

Base LLaMA 3.2 3B

(c) LLaMA-3.2 reasoning

Figure 1: (a, b) Reinforcement learning (RL) based post-training is believed to improve accuracy at low k values
in pass@k evaluation (Guo et al., 2025; Yue et al., 2025), we show that E2H Reasoner, a curriculum-based
RL (CRL) approach, enables LLMs to solve tasks they previously could not, outperforming base models even
at higher k. (c) LLaMA 3.2 3B reasoning trace for Countdown (Gandhi et al., 2024) after E2H Reasoner
post-training.

Unable to

Learn

Pretraining Distribution

RL

Task

Distribution

Trivial Tasks

Easy Tasks

Medium Tasks

Hard Tasks

Trivial Tasks

Easy Tasks

Medium Tasks

Hard Tasks

Pretraining Distribution

RL

Trivial Tasks

Easy Tasks

Medium Tasks

Hard Tasks

Pretraining Distribution

RL

Trivial Tasks

Easy Tasks

Medium Tasks

Hard Tasks

Pretraining Distribution

RL

Trivial Tasks

Easy Tasks

Medium Tasks

Hard Tasks

Pretraining DistributionPretraining Distribution

Hard Tasks

Figure 2: Task Decomposition of Easy 2 Hard Reasoner (E2H). E2H first decomposes the overall task into
levels of increasing difficulty, namely trivial, easy, and medium, to help the LLM acquire core skills. As training
progresses, E2H schedules harder tasks accordingly. See Section 3.2 for scheduling details.

2 BACKGROUND AND RELATED WORK

Reasoning in Large Language Models remains loosely defined, with interpretations varying by
tasks and contexts Yu et al. (2024). Prior work describes it as generating logical chains of thought Wei
et al. (2022); Wang et al. (2023), performing multi-step deductions (Saparov & He, 2023; Yao et al.,
2023; Ling et al., 2025), or simulating human-like problem solving (Parashar et al., 2025). These
views, lack clear boundaries between reasoning and pattern recognition. To address this gap, we
are inspired by prior work that frames reasoning as generalization or abstraction (Valmeekam et al.,
2024; 2023), building on the idea that reasoning involves learning core principles and applying them
broadly (Stechly et al., 2024; Huang et al., 2024).

Post-training of Large Language Models has emerged as a popular approach to improve rea-
soning (Snell et al., 2025). These methods are grouped into Supervised Fine-Tuning (SFT) and
Reinforcement Learning (RL) based techniques. In SFT, the model is trained to imitate outputs from
carefully curated human-like reasoning examples (Zelikman et al., 2022; Muennighoff et al., 2025).
However, studies have shown that SFT can lead models to overfit to surface-level patterns (Chu et al.,
2025), limiting generalization. In contrast, RL-based post-training uses task-specific rewards and
updates the model through policy optimization algorithms (Schulman et al., 2017; Rafailov et al.,
2023; Shao et al., 2024), instead of imitation. This approach has shown greater potential in improving
reasoning performance, as demonstrated by the success of models fine-tuned with RL (Guo et al.,
2025; Jaech et al., 2024). Still, for inherently difficult tasks that LLMs struggle to solve in zero-shot
settings, post-training with RL alone has been insufficient Shao et al. (2024); Zeng et al. (2025).

Curriculum Learning organizes tasks by increasing difficulty to promote smoother and more
effective training (Bengio et al., 2009; Graves et al., 2017). In the context of RL, it has been applied

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to help agents acquire complex behaviors by first mastering simpler tasks (Narvekar et al., 2020).
Recently efforts have been made to investigate how curriculum-based RL can enhance reasoning
and generalization in LLMs (Qiu et al., 2025; Bae et al., 2025; Zeng et al., 2025). Others improve
learning by removing examples that are too easy or too hard Bae et al. (2025), or by maintaining a
balanced mix of task difficulties Zeng et al. (2025). Similarly, Chen et al. (2025), and Foster et al.
(2025) adaptively sample problems with a 50% solve rate to maximize the GRPO advantage during
training. Other recent efforts implement manual curricula switching from easy to hard tasks after
a fixed number of training iterations (Xie et al., 2025; Team et al., 2025; Bercovich et al., 2025).
In contrast, our work schedules tasks probabilistically from easy to hard, improving reasoning and
generalization to out-of-distribution tasks.

3 METHOD

RL for LLM reasoning. We formulate the reasoning process of LLMs as a RL problem defined
over a discounted Markov Decision Process (MDP) M = (S,A, P, r, γ), where S is the state space,
A is the finite action space, P : S × A → ∆(S) is the transition kernel, r : S × A → [0, Rmax]
is the reward function, and γ ∈ (0, 1) is the discount factor. The state space S consists of all
valid token prefixes, where each state st = (x0, x1, . . . , xt) is a sequence of tokens from the
vocabulary Σ. The action space is the vocabulary itself, A = Σ. A policy πθ corresponds to the
pre-trained LLM, which defines a distribution over the next token conditioned on the current prefix:
πθ(xt+1|st) = pθ(xt+1|x0, . . . , xt). We adopt the tags used in (Guo et al., 2025), i.e., <think>
</think> and <answer> </answer>, to distinguish intermediate reasoning from final answers. The
reward function is sparse: r(s, a, s′) = 0 for all intermediate states, and r(s, a, s′) = r(y) only when
the final predicted answer y wrapped by <answer> </answer> is completed. The goal is to optimize
the policy to maximize the expected cumulative reward, encouraging the model to generate correct
and well-formatted answers through effective reasoning.

3.1 TASK DECOMPOSITION FOR RL POST-TRAINING

While SFT provides strong supervision signals, Chu et al. (2025) suggest that reasoning and general-
ization ability are more effectively enhanced through RL-based post-training. However, applying
RL techniques similar to DeepSeek-R1-Zero (Guo et al., 2025) to learn complicated reasoning tasks
remains challenging. In this work, we analyze these challenges in two key aspects, the distribution
gap and reward design.

Challenge 1: Distribution gap. Learning tasks that exceed the base LLM’s reasoning capabilities
introduce significant learning challenges. These challenges are often caused by a non-trivial distribu-
tion gap between the model pre-training source data distribution d0 and the target data distribution
dK . As shown in Fig. 2, because rewards are only given for correct outputs, large distribution shifts
can lead to low accuracy and sparse reward signals (Shao et al., 2024; Zeng et al., 2025). Moreover,
fitting the model to a single target distribution can lead to overfitting and memorization, undermining
the model’s generalization and reasoning ability.

Challenge 2: Reward design. Challenging reasoning tasks often require LLMs to combine multiple
skills to arrive at a solution. While designing a fine-grained, step-by-step reward function could
potentially guide the model effectively, such design is generally task-specific and labor-intensive. For
example, a computer science student is supposed to learn basic mathematics and linear algebra before
learning machine learning. Similarly, a typical Countdown (Gandhi et al., 2024) task involves skills
like basic arithmetic, estimating the distance to the goal, and backtracking. While it is possible to
include a supervision signal for each intermediate step, doing so is not sustainable and generalizable
across diverse tasks.

To overcome these RL learning challenges, we propose task decomposition by splitting training data
into subsets of increasing difficulty, based on either human annotations or model performance. This
aligns with curriculum learning, where we interpolate between the pre-training distribution d0 and
target task distribution dK via intermediate stages dkKk=1, reducing distribution shift and improving
training stability (see Fig. 2). From the reward design perspective, decomposing tasks by difficulty
breaks complex skill acquisition into simpler steps. For instance, the 6-number Countdown task
involves using six integers and four operators (+,−,×,÷) to reach a target number, requiring the
model to perform arithmetic, estimate distances to the goal, and backtrack effectively. In contrast,
a 2-number problem focuses primarily on arithmetic, allowing the model to build foundational

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

competence before scaling to harder variants. This avoids handcrafted reward shaping and improves
transferability.

For tasks like Blocksworld, MATH, and Countdown, we use human-aligned difficulty signals such as
plan length, labeled difficulty, or operand count (see Table 6). For others like AQuA and GSM8K,
where such annotations are unavailable, we automatically estimate difficulty based on model error
rates under CoT prompting and group examples accordingly (see Figs. 5 and 6).

In this work, we simplify a hard reasoning task into 3 progressively challenging tasks, namely, trivial,
easy, and medium, then we adapt our pre-trained LLM to these tasks in a sequential curriculum. We
adopt the reward design from Guo et al. (2025), where outputs with the correct format receive partial
rewards, and full rewards are given only when both format and answer are correct. In Section 3.3, we
provide a theoretical justification that, under fixed sampling and training resources, learning step by
step leads to better performance than training directly on the hard task.
3.2 TRAINING SCHEDULERS FOR LLM REASONING ABILITY

Cosine Sampler

Figure 3: Illustration of cosine
scheduling.

While task decomposition simplifies RL post-training, traditional
curriculum learning poses two main challenges, mainly task forget-
ting and overfitting, due to the rigid progression through tasks in a
fixed task order.

Challenges: Task forgetting and overfitting. The first challenge,
task forgetting, refers to the degradation in performance on earlier
(easier) tasks as the model adapts to later (harder) tasks. According
to the traditional model generalization literature (Arjovsky et al.,
2019; Gulrajani & Lopez-Paz, 2021), the task distribution shifts are
considered as explicit signals for the model generalization direction;
thus, retaining strong performance across all task distributions is essential for generalization. There-
fore, the task forgetting will undermine the model’s generalization capability, i.e., the reasoning
ability. Task overfitting, the second challenge, arises when the model overfits to trivial tasks and
prefers simplistic patterns or short answers that bypass meaningful reasoning. This phenomenon
is called reward hacking (Laidlaw et al., 2025), where the model exploits shortcuts on easy tasks
and fails to learn harder ones, resulting in poor reasoning performance. To address both challenges,
we explore different training sampling techniques, forming four different scheduling strategies as
follows.

Traditional scheduling. We first formulate the traditional sequential curriculum learning sampler
with T training steps as Strad(t, k) = 1 when τk ≤ t ≤ τk+1, otherwise, 0, where t denotes the
current training step; for K tasks k = 1, . . . ,K, τk denotes the threshold when the curriculum
learning proceeds to the k-th stage, while τ1 = 0 and τK+1 = T . The output of the sampler denotes
the probability of sampling data from the k-th task; therefore, at the t step, the sampling distribution
will be [Strad(t, 1), Strad(t, 2), . . . , Strad(t,K)].

Balanced scheduling. To avoid forgetting, the simplest way is to mix all data with different
difficulties together and sample randomly, which can be considered as a trivial case of curriculum
learning. Alternatively, this can be interpreted as the default behavior of any policy optimization
algorithm (Shao et al., 2024; Schulman et al., 2017), where training occurs without considering task
difficulty. This balanced sampler can be written as: Sbalanced(t, k) =

1
K , where each task difficulties

have the same probability to be selected at each training step. Although this is an efficient way
to avoid forgetting, this sampling introduces harder tasks too early, leading to sparser rewards and
suboptimal CRL.

Cosine scheduling (E2H-C). To alleviate both the reward sparsity and forgetting issues, we propose
a non-parametric scheduling strategy, namely, cosine sampling. This strategy can be written as:
Scosine(t, k) = αt · (K − k − 1) + (1− αt) · k, and αt = 0.5 · (1 + cos(πtT)), where the resulting
probabilities need to be normalized before sampling. Intuitively, this cosine sampler sets both the
initial and ending sampling probabilities simply according to their ordinal number and interpolates
the intermediate probabilities using a cosine function. As shown in Figure 3, the easiest task has
the highest probability of being sampled at the beginning, and has the lowest probability of being
sampled at the end.

Gaussian scheduling (E2H-G). Although cosine scheduling addresses reward sparsity and forgetting,
the parameter-free design limits flexibility in handling issues like trivial task overfitting and fine-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

<latexit sha1_base64="FnIeKPU1ESDuDIutmM9+sFi3p30=">AAAB+nicbVC7SgNBFL0bXzG+opY2g0GwCrsiMWXAxjKieUCyhNnJbDJkZnaZmRXDmk+w1d5ObP0ZW7/EyWYLTTxw4XDOvZzLCWLOtHHdL6ewtr6xuVXcLu3s7u0flA+P2jpKFKEtEvFIdQOsKWeStgwznHZjRbEIOO0Ek+u533mgSrNI3ptpTH2BR5KFjGBjpbvHgTsoV9yqmwGtEi8nFcjRHJS/+8OIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv00e3WGzqwyRGGk7EiDMvX3RYqF1lMR2E2BzVgve3PxXy8QS8kmrPspk3FiqCSL4DDhyERo3gMaMkWJ4VNLMFHM/o7IGCtMjG2rZEvxlitYJe2Lqler1m4vK416Xk8RTuAUzsGDK2jADTShBQRG8Awv8Oo8OW/Ou/OxWC04+c0x/IHz+QNL9JRG</latexit>x0
<latexit sha1_base64="ECr5MQ2ER/Ka8OI5bJeiyfLkEpQ=">AAAB+nicbVDLTgJBEOzFF+IL9ehlIjHxRHaNQY4kXjxilEcCGzI7DDBhdnYz02skK5/gVe/ejFd/xqtf4gB7ULCSTipV3alOBbEUBl33y8mtrW9sbuW3Czu7e/sHxcOjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfD3zWw9cGxGpe5zE3A/pUImBYBStdPfYw16x5JbdOcgq8TJSggz1XvG7249YEnKFTFJjOp4bo59SjYJJPi10E8NjysZ0yDuWKhpy46fzV6fkzCp9Moi0HYVkrv6+SGlozCQM7GZIcWSWvZn4rxeES8k4qPqpUHGCXLFF8CCRBCMy64H0heYM5cQSyrSwvxM2opoytG0VbCnecgWrpHlR9irlyu1lqVbN6snDCZzCOXhwBTW4gTo0gMEQnuEFXp0n5815dz4WqzknuzmGP3A+fwC3RJSK</latexit>xt

<latexit sha1_base64="Z16zGrsGG7FyQyWQ/Lq5qjpmdQk=">AAAB+nicbVC7SgNBFL0bXzG+opY2g0GwCrsiScqAjWXEvCBZwuxkNhkyM7vMzIphzSfYam8ntv6MrV/iJNlCEw9cOJxzL+dygpgzbVz3y8ltbG5t7+R3C3v7B4dHxeOTto4SRWiLRDxS3QBrypmkLcMMp91YUSwCTjvB5Gbudx6o0iySTTONqS/wSLKQEWysdP84aA6KJbfsLoDWiZeREmRoDIrf/WFEEkGlIRxr3fPc2PgpVoYRTmeFfqJpjMkEj2jPUokF1X66eHWGLqwyRGGk7EiDFurvixQLracisJsCm7Fe9ebiv14gVpJNWPNTJuPEUEmWwWHCkYnQvAc0ZIoSw6eWYKKY/R2RMVaYGNtWwZbirVawTtpXZa9Srtxdl+q1rJ48nME5XIIHVajDLTSgBQRG8Awv8Oo8OW/Ou/OxXM052c0p/IHz+QOExJRq</latexit>xT

(a) Gaussian sampler
<latexit sha1_base64="sV8/YoUcfs41gUp7uGRLYUAbTPA=">AAACDnicbZDLSsNAFIYnXmu9RcWVm8EiuAqJaHUjFN24rGAv0IQymZ60Q2eSMDMRSug7+Apude9O3PoKbn0Sp20W2vrDgY//nMM5/GHKmdKu+2UtLa+srq2XNsqbW9s7u/beflMlmaTQoAlPZDskCjiLoaGZ5tBOJRARcmiFw9tJv/UIUrEkftCjFAJB+jGLGCXaWF370A9Bk2vXufCxr1hfTLlrV1zHnQovgldABRWqd+1vv5fQTECsKSdKdTw31UFOpGaUw7jsZwpSQoekDx2DMRGggnz6/hifGKeHo0SaijWeur83ciKUGonQTAqiB2q+NzH/7YVi7rKOroKcxWmmIaazw1HGsU7wJBvcYxKo5iMDhEpmfsd0QCSh2iRYNqF48xEsQvPM8apO9f68Ursp4imhI3SMTpGHLlEN3aE6aiCKcvSMXtCr9WS9We/Wx2x0ySp2DtAfWZ8/THiarw==</latexit>

ω = 0.5 ε = 0.5(c)
<latexit sha1_base64="Q86KwJcZ0WPJYyg3DkBqoKP2Uyg=">AAACEHicbVC7TsMwFHXKq5RXgIGBxaJCYoqSirYsSBUsjEWiD6mJKsd1Wqu2E9kOUlX1J/gFVtjZECt/wMqX4LQZoOVIVzo+515d3xMmjCrtul9WYW19Y3OruF3a2d3bP7APj9oqTiUmLRyzWHZDpAijgrQ01Yx0E0kQDxnphOPbzO88EqloLB70JCEBR0NBI4qRNlLfPvFDotG161SqPvQVHfLsUa/27bLruHPAVeLlpAxyNPv2tz+IccqJ0JghpXqem+hgiqSmmJFZyU8VSRAeoyHpGSoQJyqYzg+YwXOjDGAUS1NCw7n6e2KKuFITHppOjvRILXuZ+K8X8qXNOroKplQkqSYCLxZHKYM6hlk6cEAlwZpNDEFYUvN3iEdIIqxNhiUTirccwSppVxyv5tTuL8uNmzyeIjgFZ+ACeKAOGuAONEELYDADz+AFvFpP1pv1bn0sWgtWPnMM/sD6/AFIhZss</latexit>

ω = 0.25 ε = 0.75(b) (d)
<latexit sha1_base64="JifdyGvPS2GeKb5E6V8fgwduLMY=">AAACEHicbVC7TsMwFHXKq5RXgIGBxaJCYoqSirYsSBUsjEWiD6mJKsd1Wqu2E9kOUlX1J/gFVtjZECt/wMqX4LQZoOVIVzo+515d3xMmjCrtul9WYW19Y3OruF3a2d3bP7APj9oqTiUmLRyzWHZDpAijgrQ01Yx0E0kQDxnphOPbzO88EqloLB70JCEBR0NBI4qRNlLfPvFDotG169SrPvQVHfLsUan27bLruHPAVeLlpAxyNPv2tz+IccqJ0JghpXqem+hgiqSmmJFZyU8VSRAeoyHpGSoQJyqYzg+YwXOjDGAUS1NCw7n6e2KKuFITHppOjvRILXuZ+K8X8qXNOroKplQkqSYCLxZHKYM6hlk6cEAlwZpNDEFYUvN3iEdIIqxNhiUTirccwSppVxyv5tTuL8uNmzyeIjgFZ+ACeKAOGuAONEELYDADz+AFvFpP1pv1bn0sWgtWPnMM/sD6/AFIxpss</latexit>

ω = 0.75 ε = 0.25

Figure 4: Gaussian Sampler. (a) This figure represents the Gaussian sampling process. (bcd) These
figures denote the sampling probabilities of different tasks changing along the training steps with
different Gaussian sampler hyperparameters.

grained control over different learning stages. Empirically, while adding the trivial task can boost the
model performance, it is also easy for the model to overfit to trivial tasks. To overcome this challenge,
we propose a Gaussian scheduling strategy inspired by the Gaussian mixture model (Reynolds et al.,
2009).

As shown in Figure 4 (a), in a one-dimensional space, we assume the data distributions of tasks
follow Gaussian distributions with the same variance σ. The means of the adjacent task’s Gaussian
distributions are assumed to have the same distance 1, i.e., µk = k−1. Then the sampling probability
is defined as the likelihood of a given position xt belonging to different task Gaussian distributions,
similar to the expectation–maximization algorithm (McLachlan & Krishnan, 2008). Therefore, the
Gaussian scheduling strategy can be expressed as:

SGaussian(t, k) = exp

(
− (xt − µk)

2

2σ2

)
, and xt =

(
t

T

)β

(K − 1) , (1)

where we ignore the normalization term, and the probabilities will be normalized for sampling. In
this sampling scheduler, we only have two hyperparameters, i.e., σ and β. While the variance σ
controls the sampling concentration, β > 0 controls the sampling position xt’s moving speed. When
σ is smaller, the training is more focused, more similar to traditional curriculum learning. When
β < 1, the sampling process will assign fewer training steps focusing on easier tasks and train
harder tasks longer, avoiding easy task overfitting. As shown in Figure 4 (bcd), we use three typical
hyperparameter settings for this Gaussian sampler, i.e., β = 0.25 σ = 0.75, β = 0.75 σ = 0.25, and
β = 0.5 σ = 0.5.

3.3 THEORETICAL ANALYSIS

In this section, we analyze our curriculum reinforcement learning framework for LLMs under the
lens of Approximate Policy Iteration (API). We follow the theoretical structure of Chen & Maguluri
(2025); Scherrer (2014), adapting it to our curriculum setting. Specifically, we show how sequentially
solving interpolated curriculum distributions enables convergence guarantees and improved sample
complexity bounds, under function approximation errors. Our analysis considers action-value
functions and explicitly tracks the impact of approximation and distribution shift across curriculum
stages. All proofs are presented in Appendix A.

3.3.1 THEORETICAL SETUP

Recall our MDP M = (S,A, P, r, γ). We denote the policy space as Π, where each policy π ∈ Π is
a mapping from states to distributions over actions, π : S → ∆(A). In our curriculum setting, we
introduce a sequence of MDPs {Mk}Kk=1 where each MDP shares the same state and action spaces
but may differ in reward functions and/or transition dynamics. Each MDP induces a state visitation
distribution dk under the optimal policy for that curriculum, with {dk}Kk=1 interpolating between an
easy source distribution d1 and the final hard task dK . Let πk be the learned policy at curriculum
step k, and let π∗

K be the optimal policy under the final target task. The goal is to learn a sequence of
policies {πk}Kk=1 such that the final policy πK performs well under the target distribution dK .

The action-value function of a policy π is defined as Qπ(s, a) :=
E [
∑∞

t=0 γ
tr(st, at)|s0 = s, a0 = a, at ∼ π(·|st), st+1 ∼ P (·|st, at)] . Let T π be the Bell-

man operator for policy π, defined as T πQ(s, a) := r(s, a) + γEs′∼P (·|s,a),a′∼π(·|s′) [Q(s′, a′)] .
We define the optimal Bellman operator T , T Q(s, a) := r(s, a) + γEs′∼P (·|s,a) [maxa′ Q(s′, a′)] .
The fixed point of the optimal Bellman operator is T Q∗ = Q∗.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The Approximate Policy Iteration (API) framework is a generalization of classical policy iteration
that accommodates function approximation and inexact updates. It serves as a foundational tool for
analyzing practical reinforcement learning algorithms including actor-critic and deep RL methods.
The API algorithm alternates between two stages. At iteration k, the algorithm performs two
algorithmic steps. (i) Policy Evaluation: Given policy πk, compute an approximate estimate Q̂k of
its action-value function Qπk , (ii) Policy Improvement: Update the policy to πk+1, which is greedy
or approximately greedy with respect to Q̂k. In the context of CRL, API offers a natural framework
to study how sequentially adapted policies, defined over interpolated curriculum distributions, evolve
toward the optimal policy and shape the final policy πK .

We adopt the following API assumptions from Chen & Maguluri (2025); Scherrer (2014), adapted to
the curriculum setting. Let Qk := Qπk be the action-value function for the policy πk at curriculum k.

Approximate Policy Evaluation. At each iteration k, a function approximator Q̂k is used to estimate
Qk. The estimated Q-function Q̂πk

k satisfies ∥Q̂πk

k −Qπk

k ∥∞ ≤ δk.

Approximate Greedy Policy Improvement. Let πk+1 be an ϵk-greedy policy with respect to Q̂k:
Es∼µk

[Qπk+1(s, πk+1(s))] ≥ Es∼µk

[
maxa Q̂k(s, a)

]
− ϵk, for a sampling distribution µk at step

k, i.e., ∥T Q̂πk

k −Q
πk+1

k ∥∞ ≤ ϵk.

Distribution Mismatch (Concentrability). Let µk be the sampling distribution for policy improve-
ment at step k, and dk the true task distribution. We assume the distribution mismatch between µk

and dk is bounded by Ck, i.e., sups∈S
dk(s)
µk(s)

≤ Ck.

Bounded Curriculum Drift. For the weighted norm, ∥Q∥dk
=
√
Es∼dk

[maxa Q(s, a)2]. The
deviation between successive optimal Q-functions satisfies ∥Q∗

K −Q∗
k∥dK

is bounded for all k.

3.3.2 CONVERGENCE GUARANTEE

Let Q∗
K be the optimal Q-function for the final task under distribution dK , and let QπK be the

Q-function of the policy learned at the final step. Define the performance loss of the final policy
compared to the optimal target policy as: EK := ∥Q∗

K −QπK∥dK
.

Theorem 3.1 (CRL Performance Guarantee). Let T be the number of API policy updates within each
task. β > 0 is a tunable parameter for stepsizes specified in Chen & Maguluri (2025). Under the
approximate greedy update and evaluation error assumptions above, the final performance gap EK
satisfies:

EK ≤
K∑

k=1

(
γT ηk +

2γ(1− γT)

(1− γ)2
δk +

2γ

β(1− γ)2

)
+

K−1∑
k=1

∥Q∗
K −Q∗

k∥dK
,

where ηk := ∥Q∗
k − Qπk

k ∥∞ is the per-task Bellman error, δk is the evaluation error, and ϵk is
absorbed in ηk.

The first term represents the convergence bias of the actor, and goes to zero geometrically fast as
T goes to infinity. The second term captures accumulated evaluation errors, which involves the
stochastic error due to sampling and the error due to function approximation The third term captures
the error introduced by the policy update rule, which can be made arbitrarily small by using large
enough β. Alternatively, we can use geometrically increasing stepsizes, in which case the third
term goes to zero at a geometric rate. The last term captures the deviation in optimal Q-functions
across curriculum stages, representing the cumulative gap between intermediate curriculum-optimal
values and the final optimal value, which we refer to as the curriculum approximation error. This
decomposition highlights the dual effect of CRL in improving sample efficiency (small δk, ϵk) and
ensuring smooth interpolation (small ∥Q∗

K −Q∗
k∥).

3.3.3 FINITE SAMPLE APPROXIMATION ERROR ANALYSES

In this section, we perform finite-sample analysis. Considering the critic, i.e., how to obtain an
estimate of Qπ , we can estimate the Q-function Qπ of a given target policy π using TD-learning. In
TD-learning, especially when the state-action space size is large, the use of function approximation
is natural. In linear function approximation, a set of basis vectors is selected to approximate the
target value function Qπ using linear combinations of the basis vectors. Let Φ ∈ R|S||A|×d be

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the matrix of basis vectors Φ = [ϕ1, · · · , ϕd]. Then, the goal is to find from the linear subspace
Q = {Q̂w = Φw | w ∈ Rd} the “best” approximation of the Q-function Qπ, where w ∈ Rd is the
weight vector.

Following Section 3 and 4 of Chen & Maguluri (2025), we derive the finite-sample theorem for
CRL. Theorem A.1 and its analyses are provided in Appendix A.1.1. The result of Theorem A.1
suggests that smoother curriculum trajectories, together with smaller approximation errors under
finite samples, can lead to improved final policy performance. These effects are closely tied to the
choice of stepsize and the number of updates per iteration.

Following Chen & Maguluri (2025), let KSA ∈ R|S||A|×|S||A| be a diagonal matrix and let KSA,min

be the minimal diagonal entry. Jk is the number of critic updates per policy iteration at curriculum k.
The bootstrapping parameter n is chosen such that γc := γn/

√
KSA,min < 1. Lk is the parameter

defined by 1+(γρmax,k)
n, Eapprox,k := supπ

∥∥Qπk
c,ρ − Φwπk

c,ρ

∥∥
∞ is the critic’s function approximation

error, ∥Q∗
K −Q∗

k∥∞ is the gap between the curriculum subtask and the final task, and λmin is the
mininum eigenvalue of the positive definite matrix ΦTKSAΦ. The term N2,1 =

∑K
k=1

2γEapprox,k

(1−γ)2 in
Theorem A.1 is the function approximation error and equals zero when using a complete basis. A
term of similar form is present in all existing work studying RL with function approximation (Munos,
2003; Agarwal et al., 2021). Based on Theorem A.1, we next derive the sample complexity result.
Theorem 3.2 (Sample Complexity). For a given accuracy level ϵ > 0, to achieve E[∥Q∗

K −
QπK∥∞] ≤ ϵ + N2,1 +

∑K−1
k=1 ∥Q∗

K − Q∗
k∥dK

, the total number of samples (i.e., the integer
T
∑K

k=1 Jk) required across all K curriculum stages is of the order:

O

(
K∑

k=1

log3(1/ϵk)

ϵ2k
· Õ
(

L2
kn

(1− γ)7(1− γc)3λ3
min

))
,

where ϵk is the target accuracy for curriculum k, and
∑K

k=1 ϵk ≤ ϵ.

Let MCRL =
∑K

k=1 Mk be the total number of samples needed by CRL with K curriculum steps to
achieve error ϵon the final task, and let MDirect = m∗MK be the number of samples needed by direct
learning, where m > 1 represents the relative difficulty factor of direct learning. Under geometric
error and Lk allocation ϵk = ϵK · eK−k and Lk = LK

lK−k for curriculums, we have:

MCRL < MDirect ⇐⇒ (e ∗ l)2(1−K) − 1

1− (e ∗ l)2
< m− 1. (2)

The geometric error and Lk allocation reflect the curriculum gradually increases in difficulty while
allowing larger errors in earlier stages. Since the function f(x) = x1−K−1

1−x2 monotonically decrease
for x > 1 when K is a integer larger than 1, the final condition can be reasonably satisfied, e.g., with
K = 3, e ∗ l = 1.4, and m = 1.8 in practice.

The first half of Theorem 3.2 analysis highlights the dual benefit of curriculum design in CRL.
First, by constructing intermediate distributions d1, . . . , dK−1 close to dK , the curriculum error term
∥Q∗

K −Q∗
k∥ can be made small. Second, easier curriculum tasks improve estimation accuracy and

yield more stable approximate greedy updates, enhancing sample efficiency and policy improvement.
For the second half of Theorem 3.2, the final condition in Eq. 2 is satisfied when curriculums are
appropriately learned, the allocation of accuracy targets ϵk is gradually optimized across curriculum
steps, and the designed curriculums with increasing difficulties effectively bridge the gap between
source and target distributions. This mathematical derivation shows CRL requires fewer total samples
than direct learning on the final task, aligning with experimental observations (see Appendix B).

4 EXPERIMENTS

We conduct experiments investigating the following research questions. RQ1: What role does task
decomposition play in RL-based post-training? RQ2: How does task scheduling impact the learning
process? RQ3: Can small-scale LLMs learn to reason on hard tasks?

4.1 EXPERIMENTAL SETUP

We evaluate our method on a diverse set of reasoning and planning tasks, covering both datasets with
and without human-annotated difficulty levels. For datasets with difficulty labels, such as Blocksworld

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Impact of task decomposition for LLM post-training. Trivial and easy examples help the model learn
core principles that enable success on harder tasks.

Blocksworld Countdown MATH

Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD

Hard 0.0 0.0 0.0 0.0 0.0 0.0 43.9 16.4 18.1 6.5 82.3 64.7 53.4 38.2 20.6
Med + Hard 2.0 0.0 0.0 0.0 0.0 12.9 47.8 33.1 19.2 8.8 87.1 68.9 58.1 42.5 21.0
Easy + Med + Hard 0.0 55.5 15.5 0.0 0.0 62.5 79.3 30.1 21.2 9.5 84.8 68.2 56.8 42.5 21.5
Trivial + Easy + Med + Hard 98.0 100 83.3 21.1 2.6 96.1 64.9 28.8 18.1 9.2 87.2 72.0 61.6 46.3 25.7

Table 2: Effect of scheduling strategies in LLM post-training. We compare balanced scheduling, traditional
curriculum learning (CL), and our proposed E2H Reasoner variants, namely, E2H-G and E2H-C. CoT is
reported as a reference.

Blocksworld Countdown MATH

Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD

CoT 4.0 0.0 0.0 0.0 0.0 16.0 5.6 1.7 0.1 0.1 40.1 27.9 22.7 17.6 8.2
Balanced 98.0 100 84.5 26.3 5.3 96.1 64.9 28.8 18.1 9.2 87.2 72 61.6 46.3 25.7
CL 46.0 100 45.2 5.8 0.7 57.7 85.8 57.2 31.5 12.6 86.2 71.5 62.4 46.7 25.6

E2H-G (0.25, 0.75) 98.0 100.0 95.3 32.9 7.3 98.9 87.3 51.4 18.9 7.3 85.5 72 64.1 47.9 26.5
E2H-G (0.5, 0.5) 100 100 34.5 10.5 0.7 97.9 87.2 70.4 41.0 19.2 85.3 71.7 62.5 48.7 27.6
E2H-G (0.75, 0.25) 98.0 93.3 17.9 2.0 0.0 95.7 56.0 28.8 17.1 10.2 86.0 72.4 62.0 46.7 26.3
E2H-C 100 100 15.5 0.0 0.0 96.7 64.0 25.9 15.8 6.4 84.6 69.6 63.0 47.6 28.6

(using plan length)(Valmeekam et al., 2023), Countdown (using number of operations)(Gandhi et al.,
2025), and MATH (using problem levels) (Hendrycks et al., 2021), we use the provided annotations
and define an out-of-distribution (OOD) split to assess generalization. For datasets without explicit
difficulty, namely GSM8K (Cobbe et al., 2021) and AQuA (Ling et al., 2017a), we estimate difficulty
using the zero shot error rate of the base model. Specifically, for each question in the training set,
we generate 20 responses and compute the error rate as 1 − Number of Correct Responses

20 and bucket the
samples into trivial, easy, medium, and hard, based on quartiles Fig. 5. More dataset details are in
Appendix C. We conduct experiments on Qwen 2.5/1.5B Instruct (Yang et al., 2024), LLaMa 3.2 3B
Instruct (Grattafiori et al., 2024). More models are included in Appendix G.1. We use Qwen 1.5B for
research questions RQ1 and RQ2.
4.2 BASELINES

First, we report the Chain of Thought (Wei et al., 2022) (CoT) performance for all models. All
post-training experiments use GRPO (Shao et al., 2024) as the reinforcement learning algorithm (see
Appendix E for implementation). GRPO, by default, employs balanced scheduling over all tasks,
which we use as our baseline and refer to as GRPO in Table 3. We also assess whether models
can learn directly from the most challenging examples by training only on the Hard and OOD
subsets. In addition, we evaluate traditional curriculum learning (CL) as used by Team et al. (2025);
Bercovich et al. (2025). We compare against Self-Evolve (Chen et al., 2025), an adaptive curriculum
baseline that samples problems with a 50% solve rate to maximize learnability. Finally, we provide a
comparison against SFT in Appendix F.
4.3 EXPERIMENTAL RESULTS

We conduct experiments addressing the research questions listed above. We examine how task
decomposition impacts LLM post-training using Qwen-1.5B-Instruct (RQ1) with a balanced scheduler
(Table 1). We find that including trivial and easy examples helps the model build core skills. This
enables effective transfer from simpler to harder tasks and better OOD performance, consistent with
our view of reasoning as learning core principles and applying them to harder tasks.

Next, we examine how scheduling impacts post-training (RQ2) in Table. 2. Balanced scheduling
serves as a strong baseline but lacks structure, leading to suboptimal learning. CL schedules tasks
in a fixed difficulty order, which can cause forgetting of earlier tasks or overfitting to easier ones.
In our experiments, easier tasks help initiate learning due to their dense rewards, but overexposure
hinders generalization to harder, sparse-reward tasks. We address this through our two schedulers, i.e.,
E2H-C and E2H-G (see Section 3.2). For tasks like MATH, where models perform reasonably well
across all difficulty levels (as seen with CoT in Table 2), the cosine scheduling in E2H-C is effective,
beginning with a focus on trivial and easy tasks and gradually shifting toward harder ones. However,
on tasks like Blocksworld, where rewards are sparse since harder examples are more challenging,
this leads to overfitting and degraded performance. E2H-G addresses this issue by using a Gaussian
schedule that quickly decays the sampling probability of trivial and easy tasks. As shown in Fig. 4, it

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Results of E2H Reasoner across three models on Blocksworld (Valmeekam et al., 2023), Count-
down (Gandhi et al., 2024) and MATH Hendrycks et al. (2021). Our method consistently improves performance
especially on HARD and OOD tasks, demonstrating effective reasoning, results on more models are in Ap-
pendix G.1. Best numbers are in bold and second-best are underlined.

Blocksworld Countdown MATH

Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD

Qwen 1.5B Instruct

CoT 4.0 0.0 0.0 0.0 0.0 16.0 5.6 1.7 0.1 0.1 40.1 27.9 22.7 17.6 8.2
GRPO (All) 98.0 100 83.3 21.1 2.6 96.1 64.9 28.8 18.1 9.2 87.2 72.0 61.6 46.3 25.7
GRPO (Hard) 0.0 0.0 0.0 0.0 0.0 0.0 43.9 16.4 18.1 6.5 82.3 64.7 53.4 38.2 20.6
GRPO (OOD) 0.0 0.0 0.0 0.0 0.0 3.1 23.1 18.1 11.3 5.3 37.0 21.1 15.0 8.5 3.7
CL 46.0 100 45.2 5.8 0.7 57.7 85.8 57.2 31.5 12.6 86.2 71.5 62.4 46.7 25.6
Self Evolve 100 100 70.2 13.8 2.1 96.6 65.3 34.2 17.8 9.5 84.0 70.6 62.6 48.6 26.1

E2H-G 98.0 100 95.3 32.9 7.3 97.9 87.2 70.4 41.0 19.2 85.3 71.7 62.5 48.7 27.6
E2H-C 100 100 15.5 0.0 0.0 96.7 64.0 25.9 15.8 6.4 84.6 69.6 63.0 47.6 28.6

LLaMa 3.2 3B Instruct

CoT 24.0 0.0 1.2 1.0 0.0 37.1 4.6 0.3 0.0 0.0 65.9 44.6 35.2 24.1 13.6
GRPO (All) 100 100 94.1 38.9 13.3 99.9 89.5 71.6 47.9 2.7 65.9 47.0 36.0 22.0 10.2
GRPO (Hard) 0.0 0.0 0.0 0.0 0.0 40.5 33.8 3.0 9.7 1.4 22.7 14.4 10.3 7.5 0.3
GRPO (OOD) 0.0 0.0 0.0 0.0 0.0 8.0 0.3 0.0 0.0 0.0 63.6 39.0 31.3 19.0 7.6
CL 100 0.0 0.0 0.0 0.0 17.2 36.0 22.7 11.2 4.1 74.1 54.1 43.9 28.0 12.5
Self-Evolve 100 100 91.1 35.8 16.6 96.7 66.6 37.9 27.5 18.5 79.1 61.4 48.9 33.1 14.1

E2H-G 100 100 98.8 44.1 17.6 95.0 89.9 73.3 46.5 24.3 78.7 58.4 46.4 32.3 14.5
E2H-C 100 0.0 0.0 0.0 0.0 100 55.3 0.0 0.0 0.0 74.8 60.6 48.3 34.3 15.8

Table 4: Performance of E2H Reasoner on
GSM8K and AQuA, where difficulty splits are de-
rived from error rates due to the absence of human
labels. Fig. 5 shows these splits, and Table 12 con-
firms robustness to the number of splits..

Qwen 1.5B Instruct

GSM8K AQuA

Trivial Easy Med Hard Avg Trivial Easy Med Hard Avg

CoT 90.2 87.3 76.5 38.1 67.7 70.8 51.3 20.8 2.6 40.9
GRPO 99.0 95.3 84.1 49.9 77.1 95.8 68.0 48.6 21.0 63.3
CL 98.0 97.2 85.8 52.2 78.6 88.8 72.2 36.1 18.4 58.6
Self-Evolve 98.1 95.3 87.0 50.3 77.8 94.4 75.0 40.3 31.6 64.2

E2H-G 97.6 94.7 89.0 51.8 78.7 90.2 81.9 43.0 34.2 66.1
E2H-C 98.0 95.3 83.9 46.6 75.7 86.1 72.2 48.6 26.3 62.5

Figure 5: GSM8K Difficulty distribution based on error
rates, grouped into quartiles.

0.0 0.2 0.4 0.6 0.8 1.0
Error Rate

0

100

200

300

400

500

600

Nu
m

be
r o

f Q
ue

st
io

ns

Error Rate Distribution by Difficulty Bucket
Trivial
Easy
Medium
Hard

provides enough exposure early on to support initial learning while rapidly shifting focus to harder
examples. This prevents overfitting and improves generalization in sparse-reward settings where
E2H-C struggles.

Next, we investigate whether models can learn to reason directly from difficult examples (RQ3). As
shown in Table 3, the answer is largely no. For instance, Qwen-2.5 1.5B when trained on Level
5 MATH directly, underperforms the CoT baseline on the model! This failure highlights the need
for CRL methods for LLM reasoning. To this end, we compare with a CRL method, Self-Evolve
(Table 3). Empirically, we find that its reasoning performance varies significantly across models and
tasks. Self-Evolve during training, samples problems at a 50% success rate to maximize learnability
and gradually reduces easier ones once this threshold is surpassed. However, being only halfway
proficient at solving a problem is often not enough. For example, learning calculus requires strong
command of school mathematics. In contrast, E2H Reasoner guides learning scheduling tasks from
easy to hard, improving generalization, as reflected in stronger OOD performance (RQ3). Note
that for E2H-G we report the best numbers out of our 3 parameter settings with extensive results in
Table 10. Finally, E2H Reasoner remains effective even without human difficulty labels by using
error rates as a proxy for difficulty (Table 4).

5 CONCLUSION

We introduce the E2H Reasoner (E2H), a CRL-based method for LLM post-training. E2H enables
models to learn tasks they initially failed at by scheduling tasks from easy to hard. E2H challenges the
assumption that small LLMs cannot reason and demonstrates strong empirical performance supported
by theoretical analysis, offering convergence guarantees and improved sample efficiency over direct
RL. In summary, E2H provides a scalable, theoretically grounded, and practical method for LLM
reasoning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim, JeongYeon Nam, and Donghyun
Kwak. Online difficulty filtering for reasoning oriented reinforcement learning. arXiv preprint
arXiv:2504.03380, 2025.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
ICML, pp. 41–48, 2009.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
Zach Moshe, Tomer Ronen, Najeeb Nabwani, et al. Llama-nemotron: Efficient reasoning models.
arXiv preprint arXiv:2505.00949, 2025.

Xiaoyin Chen, Jiarui Lu, Minsu Kim, Dinghuai Zhang, Jian Tang, Alexandre Piché, Nicolas Gontier,
Yoshua Bengio, and Ehsan Kamalloo. Self-evolving curriculum for llm reasoning. arXiv preprint
arXiv:2505.14970, 2025.

Zaiwei Chen and Siva Theja Maguluri. An approximate policy iteration viewpoint of actor–critic
algorithms. Automatica, 179:112395, 2025.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Thomas Foster, Anya Sims, Johannes Forkel, Mattie Fellows, and Jakob Foerster. Learning to reason
at the frontier of learnability. arXiv preprint arXiv:2502.12272, 2025.

Kanishk Gandhi, Denise H J Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah Goodman. Stream of search (sos): Learning to search in language. In CoLM, 2024.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In ICML, pp. 1311–1320, 2017.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In ICLR, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in LLMs
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In NeurIPS,
2021.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In ICLR, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Cassidy Laidlaw, Shivam Singhal, and Anca Dragan. Correlated proxies: A new definition and
improved mitigation for reward hacking. In ICLR, 2025.

Hongyi Ling, Shubham Parashar, Sambhav Khurana, Blake Olson, Anwesha Basu, Gaurangi Sinha,
Zhengzhong Tu, James Caverlee, and Shuiwang Ji. Complex LLM planning via automated
heuristics discovery. arXiv preprint arXiv:2502.19295, 2025.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word problems. In ACL, pp. 158–167, 2017a.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word problems. In ACL, pp. 158–167, 2017b.

Geoffrey J McLachlan and Thriyambakam Krishnan. The EM algorithm and extensions. John Wiley
& Sons, 2008.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Rémi Munos. Error bounds for approximate policy iteration. In ICML, pp. 560–567, 2003.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. Journal of
Machine Learning Research, 21(181):1–50, 2020.

Shubham Parashar, Blake Olson, Sambhav Khurana, Eric Li, Hongyi Ling, James Caverlee, and
Shuiwang Ji. Inference-time computations for LLM reasoning and planning: A benchmark and
insights. arXiv preprint arXiv:2502.12521, 2025.

Chenhao Qiu, Qianglong Chen, Jintang Li, Caiyu Wang, Runsen Hua, Minghui Li, Shengshan Hu,
and Yechao Zhang. WISDOM: Progressive curriculum synthesis makes LLMs better mathematical
reasoner, 2025. URL https://openreview.net/forum?id=hFFAg5Dmw9.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. NeurIPS,
36:53728–53741, 2023.

Douglas A Reynolds et al. Gaussian mixture models. Encyclopedia of biometrics, 741(659-663):3,
2009.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. In ICLR, 2023.

Bruno Scherrer. Approximate policy iteration schemes: A comparison. In ICML, pp. 1314–1322,
2014.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In ICLR, 2025.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness? an
analysis of cot in planning. In NeurIPS, 2024.

11

https://openreview.net/forum?id=hFFAg5Dmw9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
LLMs. arXiv preprint arXiv:2501.12599, 2025.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models-a critical investigation. NeurIPS, 36:75993–76005,
2023.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can lrms? a
preliminary evaluation of openai’s o1 on planbench. arXiv preprint arXiv:2409.13373, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In ICLR, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS, 35:
24824–24837, 2022.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing LLM reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. NeurIPS, 36:11809–
11822, 2023.

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou Wang. Natural language reasoning, a survey.
ACM Computing Surveys, 56(12):1–39, 2024.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. NeurIPS, 35:15476–15488, 2022.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

APPENDIX

A PROOFS

We now present the proofs for the main theoretical results stated above. Our analysis closely follows
the derivation style of Chen & Maguluri (2025); Scherrer (2014), extending it to the curriculum
setting.

A.1 PROOF OF THEOREM 3.1

Proof. We aim to derive a tight bound for the final performance error in task TK :

EK := ∥Q∗
K −QπK

K ∥dK
,

where Q∗
K is the optimal Q-function for the final task TK , and QπK

K is the Q-function under the
learned policy πK .

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

We begin by analyzing the policy performance error under API. For each task k, we define:

ηk := ∥Q∗
k −Qπk

k ∥∞.

By norm monotonicity, we have:

∥Q∗
K −QπK

K ∥dK
≤ ∥Q∗

K −QπK

K ∥∞.

We proceed by recalling the result from Theorem 2.1 of Chen & Maguluri (2025) for a fixed task k,
applied with a step size β:

∥Q∗
k −Qπk

k ∥∞ ≤ γT ∥Q∗
k −Q

π0
k

k ∥∞ +
2γ

1− γ

T−1∑
t=0

γT−1−tδk +
2γ

β(1− γ)2
,

where δk is the approximate value evaluation error at curriculum step k; γT ∥Q∗
k −Q

π0
k

k ∥∞ reflects
initialization at π0

k; and β > 0 is the API soft update step size parameter. The finite geometric series

T−1∑
t=0

γT−1−t

has closed-form expression

T−1∑
i=0

γi =
1− γT

1− γ
for γ ̸= 1 and

T−1∑
i=0

γi = 1, for γ = 1.

Thus we simplify with
T−1∑
i=0

γi =
1− γT

1− γ
.

Since we denote:
ηk := ∥Q∗

k −Qπk

k ∥∞;

then, the bound becomes:

ηk ≤ γT ηk +
2γ(1− γT)

(1− γ)2
δk +

2γ

β(1− γ)2
.

We isolate ηk:

ηk(1− γT) ≤ 2γ(1− γT)

(1− γ)2
δk +

2γ

β(1− γ)2
⇒ ηk ≤ 1

1− γT

(
2γ(1− γT)

(1− γ)2
δk +

2γ

β(1− γ)2

)
.

We want to bound:
∥Q∗

K −QπK

K ∥dK
;

using triangle inequality:

∥Q∗
K −QπK

K ∥dK
≤ ∥Q∗

K −QπK

K ∥∞ ≤ ηK +

K−1∑
k=1

∥Q∗
K −Q∗

k∥dK
.

Let us now plug in the bound for ηK :

∥Q∗
K −QπK

K ∥dK
≤ 1

1− γT

(
2γ(1− γT)

(1− γ)2
δk +

2γ

β(1− γ)2

)
+

K−1∑
k=1

∥Q∗
K −Q∗

k∥dK
.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The distribution mismatch is defined by Ck :=
∥∥∥dK

dk

∥∥∥
∞

. If dk is constructed by curriculum to
smoothly interpolate toward dK , and both dK and dk are supported on the same or growing state
space. In our analysis, we use:

∥Q∗
k −Qπk

k ∥dK
≤ Ck · ∥Q∗

k −Qπk

k ∥∞,

where ∥ · ∥dK
is the L2 norm under the distribution dK and ∥ · ∥∞ is the sup norm (worst-case).

In general, for any probability distribution µ, and any function f ,

∥f∥L2(µ) =

(∫
f(x)2dµ(x)

)1/2

≤ ∥f∥∞.

So, in fact, we have the reverse:

∥f∥dK
≤ ∥f∥∞ ⇒ Ck ≤ 1.

If we do want to write
∥f∥dK

≤ Ck · ∥f∥∞,

then the tightest possible value for Ck is exactly 1, and any value Ck < 1 may be possible depending
on the support of f under dK . This holds when later curriculum stages subsume earlier ones, a design
principle in CRL. Hence, using Ck ≤ 1 simplifies bounds without loosening them unnecessarily.

Because curriculum proceeds sequentially, and assuming that earlier tasks are easier and learned
more accurately, we can sum the per-step bounds for curriculum steps:

EK = ∥Q∗
K −QπK

K ∥dK
≤

K∑
k=1

[
1

1− γT

(
2γ(1− γT)

(1− γ)2
δk +

2γ

β(1− γ)2

)]
+

K−1∑
k=1

∥Q∗
K −Q∗

k∥dK
.

This completes the proof.

Optionally, assuming γT is small for large T , 1/(1− γT) ≤ 2 leads to:

EK ≲
K∑

k=1

(
4γ(1− γT)

(1− γ)2
δk +

4γ

β(1− γ)2

)
+

K−1∑
k=1

∥Q∗
K −Q∗

k∥dK
.

A.1.1 THEOREM A.1 AND PROOF

Theorem A.1 (Finite-Sample Guarantee). Consider the sequence of tasks {Tk}Kk=1, where the final
task TK has optimal action-value function Q∗

K . Suppose that πK is the final policy produced by
CRL and assumptions hold for all curriculum stages. Following Chen & Maguluri (2025), let
KSA ∈ R|S||A|×|S||A| be a diagonal matrix and let KSA,min be the minimal diagonal entry. Jk
is the number of critic updates per policy iteration at curriculum k. The bootstrapping parameter
n is chosen such that γc := γn/

√
KSA,min < 1. Then, when using constant stepsize α satisfying

α(tα + n+ 1) ≤ (1−γc)λmin

130L2 , we have for all Jk ≥ tα + n+ 1:

E [∥Q∗
K −QπK∥∞] ≤ γTK∥Q∗

K −Qπ0∥∞︸ ︷︷ ︸
N1

+

K∑
k=1

(
2γEapprox,k

(1− γ)2︸ ︷︷ ︸
N2,1

+
2γ2Ebias,k

(1− γ)4︸ ︷︷ ︸
N2,2

)

+

K∑
k=1

6(1− (1− γc)λminα)
1
2 [Jk−(tα+n+1)]

(1− γ)3(1− γc)1/2λ
1/2
min︸ ︷︷ ︸

N2,3

+

K∑
k=1

70Lk[α(tα + n+ 1)]1/2

λmin(1− γc)(1− γ)3︸ ︷︷ ︸
N2,4

+
2γβK

(1− γ)2︸ ︷︷ ︸
N3

+

K−1∑
k=1

∥Q∗
K −Q∗

k∥dK︸ ︷︷ ︸
Curriculum discrepancy

,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where c(·, ·) and ρ(·, ·) are generalized importance sampling factors, Lk is the parameter defined
by 1 + (γρmax,k)

n, Eapprox,k := supπ
∥∥Qπk

c,ρ − Φwπk
c,ρ

∥∥
∞ is the critic’s function approximation error,

Ebias,k := max0≤t≤T maxs∈S (1− λ(s)) ∥πk,t(·|s)− πk,b(·|s)∥1 is the importance sampling bias
at curriculum k, ∥Q∗

K −Q∗
k∥∞ is the gap between the curriculum subtask and the final task, and

λmin is the mininum eigenvalue of the positive definite matrix ΦTKSAΦ.

The terms N1 and N3 are the same as appeared in Thm. 3.1, and together capture the error in actor
update. Term N2,1 is the function approximation error and equals zero when using a complete
basis. A term of similar form is present in all existing work studying RL with function approxima-
tion (Munos, 2003; Agarwal et al., 2021). Term N2,2 is the bias introduced by generalized importance
sampling factors c(·, ·) and ρ(·, ·), and N2,2 = 0 when c(s, a) = ρ(s, a) = π(a|s)/πb(a|s). Term
N2,3 represents the convergence bias in the critic and goes to zero geometrically fast as the inner loop
iteration index Jk goes to infinity. The term N2,4 represents the variance in the critic and is propor-
tional to

√
αtα = O(

√
α log(1/α)), thus arbitrarily small given small enough stepsize α. Together,

{N2,i}i=1∼4 correspond to the second term in Thm. 3.1. Finally, the curriculum approximation
error is the same as the last term in in Theorem 3.1. This result suggests that smoother curriculum
trajectories and smaller approximation errors under finite samples, which is closely related with the
stepsize and number of updates per iteration, can lead to better final policy performance.

Proof. We proceed by mathematical induction across the curriculum steps. Let πk,T denote the final
policy after T iterations at curriculum step k. Base case: For the first curriculum step (k = 1), we
directly apply Theorem 4.1 from Chen & Maguluri (2025):

E[∥Q1 −Qπ1,T ∥∞] ≤ γT ∥Q1 −Qπ0
1 ∥∞ (3)

+
2γEapprox,1

(1− γ)2
+

2γ2Ebias,1

(1− γ)4
(4)

+
6(1− (1− γc)λminα)

1
2 [J1−(tα+n+1)]

(1− γ)3(1− γc)1/2λ
1/2
min

(5)

+
70L1[α(tα + n+ 1)]1/2

λmin(1− γc)(1− γ)3
+

2γβ

(1− γ)2
(6)

Inductive step: Assume that for curriculum step k, we have:
E[∥Qk −Qπk,T ∥∞] ≤ γTk∥Q1 −Qπ0

1 ∥∞

+

k∑
j=1

(
2γEapprox,j

(1− γ)2
+

2γ2Ebias,j

(1− γ)4

+
6(1− (1− γc)λminα)

1
2 [Jj−(tα+n+1)]

(1− γ)3(1− γc)1/2λ
1/2
min

+
70Lj [α(tα + n+ 1)]1/2

λmin(1− γc)(1− γ)3
+

2γβ

(1− γ)2

)

+

k−1∑
j=1

∥Qk −Qj∥dk

For curriculum step k + 1, we initialize with policy πk,T and apply Theorem 4.1 from Chen &
Maguluri (2025):

E[∥Qk+1 −Qπk+1,T ∥∞] ≤ γT ∥Qk+1 −Q
πk,T

k+1 ∥∞

+
2γEapprox,k+1

(1− γ)2
+

2γ2Ebias,k+1

(1− γ)4

+
6(1− (1− γc)λminα)

1
2 [Jk+1−(tα+n+1)]

(1− γ)3(1− γc)1/2λ
1/2
min

+
70Lk+1[α(tα + n+ 1)]1/2

λmin(1− γc)(1− γ)3
+

2γβ

(1− γ)2

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We need to relate ∥Q∗
k+1 −Q

πk,T

k+1 ∥∞ to our induction hypothesis. By triangle inequality:

∥Qk+1 −Q
πk,T

k+1 ∥∞ ≤ ∥Qk+1 −Qk∥∞ + ∥Qk −Q
πk,T

k ∥∞ + ∥Qπk,T

k −Q
πk,T

k+1 ∥∞

≤ ∥Qk+1 −Qk∥∞ + ∥Q∗
k −Q

πk,T

k ∥∞+
γ

1− γ
∥rk − rk+1∥∞

where the last inequality follows from the performance difference lemma with respect to rewards. For
curriculum learning, we design the reward functions to satisfy ∥rk − rk+1∥∞ ≤ δr for some small
δr. Thus:

∥Qk+1 −Q
πk,T

k+1 ∥∞ ≤ ∥Qk+1 −Qk∥∞ + ∥Qk −Q
πk,T

k ∥∞ +
γδr
1− γ

Substituting our induction hypothesis:

E[∥Qk+1 −Qπk+1,T ∥∞] ≤ γTE[∥Qk+1 −Qk∥∞ + ∥Qk −Q
πk,T

k ∥∞ +
γδr
1− γ

]

+
2γEapprox,k+1

(1− γ)2
+

2γ2Ebias,k+1

(1− γ)4

+
6(1− (1− γc)λminα)

1
2 [Jk+1−(tα+n+1)]

(1− γ)3(1− γc)1/2λ
1/2
min

+
70Lk+1[α(tα + n+ 1)]1/2

λmin(1− γc)(1− γ)3
+

2γ

β(1− γ)2

≤ γT ∥Qk+1 −Qk∥∞ + γTE[∥Q∗
k −Q

πk,T

k ∥∞] +
γT+1δr
1− γ

+
2γEapprox,k+1

(1− γ)2
+

2γ2Ebias,k+1

(1− γ)4

+
6(1− (1− γc)λminα)

1
2 [Jk+1−(tα+n+1)]

(1− γ)3(1− γc)1/2λ
1/2
min

+
70Lk+1[α(tα + n+ 1)]1/2

λmin(1− γc)(1− γ)3
+

2γβ

(1− γ)2

Applying the induction hypothesis:

E[∥Qk+1 −Qπk+1,T ∥∞] ≤ γT ∥Qk+1 −Qk∥∞ + γT · γTk∥Q1 −Qπ0
1 ∥∞

+ γT
k∑

j=1

(
2γEapprox,j

(1− γ)2
+

2γ2Ebias,j

(1− γ)4

+
6(1− (1− γc)λminα)

1
2 [Jj−(tα+n+1)]

(1− γ)3(1− γc)1/2λ
1/2
min

+
70Lj [α(tα + n+ 1)]1/2

λmin(1− γc)(1− γ)3
+

2γ

β(1− γ)2

)

+ γT
k−1∑
j=1

∥Qk −Qj∥dk
+

γT+1δr
1− γ

+
2γEapprox,k+1

(1− γ)2
+

2γ2Ebias,k+1

(1− γ)4

+
6(1− (1− γc)λminα)

1
2 [Jk+1−(tα+n+1)]

(1− γ)3(1− γc)1/2λ
1/2
min

+
70Lk+1[α(tα + n+ 1)]1/2

λmin(1− γc)(1− γ)3
+

2γβ

(1− γ)2

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Simplifying:

E[∥Qk+1 −Qπk+1,T ∥∞] ≤ γT (k+1)∥Q1 −Qπ0
1 ∥∞

+

k+1∑
j=1

(
2γEapprox,j

(1− γ)2
+

2γ2Ebias,j

(1− γ)4

+
6(1− (1− γc)λminα)

1
2 [Jj−(tα+n+1)]

(1− γ)3(1− γc)1/2λ
1/2
min

+
70Lj [α(tα + n+ 1)]1/2

λmin(1− γc)(1− γ)3
+

2γβ

(1− γ)2

)

+

k∑
j=1

∥Qk+1 −Qj∥dk+1

where we used the fact that

∥Q∗
k+1 −Q∗

k∥dk+1
+ γT

k−1∑
j=1

∥Q∗
k −Q∗

j∥dk
≤

k∑
j=1

∥Q∗
k+1 −Q∗

j∥dk+1
(7)

due to the triangle inequality and the curriculum design. By induction, for the final curriculum step
K, we have:

E[∥QK −QπK∥∞] ≤ γTK∥Q1 −Qπ0
1 ∥∞

+

K∑
k=1

(
2γEapprox,k

(1− γ)2
+

2γ2Ebias,k

(1− γ)4

+
6(1− (1− γc)λminα)

1
2 [Jk−(tα+n+1)]

(1− γ)3(1− γc)1/2λ
1/2
min

+
70Lk[α(tα + n+ 1)]1/2

λmin(1− γc)(1− γ)3
+

2γβ

(1− γ)2

)

+

K−1∑
k=1

∥QK −Qk∥dK

This completes the proof.

A.1.2 PROOF OF THEOREM 3.2

Proof. From the Finite-Sample Theorem for CRL, we aim to control all error terms to achieve the
desired accuracy. We allocate the total error budget ϵ across the K curriculum steps, with ϵk being
the error allocation for step k, such that

∑K
k=1 ϵk ≤ ϵ. For each curriculum k, we need to control the

following terms:

γTK∥Q∗
1 −Qπ0

1 ∥∞ ≤ ϵ

4
(8)

6(1− (1− γc)λminα)
1
2 [Jk−(tα+n+1)]

(1− γ)3(1− γc)1/2λ
1/2
min

≤ ϵk
4

(9)

70Lk[α(tα + n+ 1)]1/2

λmin(1− γc)(1− γ)3
≤ ϵk

4
(10)

2γβ

(1− γ)2
≤ ϵk

4
(11)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We can solve each of these constraints. For the first constraint, we need:

T ≥ 1

K
logγ

(
ϵ

4∥Q∗
1 −Qπ0

1 ∥∞

)
Since ∥Q∗

1 −Qπ0
1 ∥∞ ≤ 1

1−γ , we have:

T ≥ 1

K
log γ

(
ϵ(1− γ)

4

)
= O

(
log(1/ϵ)

K

)
For the second constraint, we need:

(1− (1− γc)λminα)
1
2 [Jk−(tα+n+1)] ≤ ϵk(1− γ)3(1− γc)

1/2λ
1/2
min

24
,

thus by taking log,

1

2
[Jk − (tα + n+ 1)] log(1− (1− γc)λminα) ≤ log

(
ϵk(1− γ)3(1− γc)

1/2λ
1/2
min

24

)
,

thus

Jk ≥ (tα + n+ 1) +

2 log

(
ϵk(1−γ)3(1−γc)

1/2λ
1/2
min

24

)
log(1− (1− γc)λminα)

.

Using log(1− x) ≈ −x for small x, and α(tα + n+ 1) ≤ (1−γc)λmin

130L2
k

, we have:

Jk ≥ (tα + n+ 1)−
2 log

(
24

ϵk(1−γ)3(1−γc)1/2λ
1/2
min

)
(1− γc)λminα

= (tα + n+ 1) +

2 log

(
ϵk(1−γ)3(1−γc)

1/2λ
1/2
min

24

)
(1− γc)λminα

For the third constraint, we need:

α(tα + n+ 1) ≤ ϵ2k(1− γ)6(1− γc)
2λ2

min

4900L2
k

= O

(
ϵ2k(1− γ)6(1− γc)

2λ2
min

L2
k

)
For the fourth constraint, we need:

β ≤ ϵk(1− γ)2

8γ

Combining these constraints, the dominant factor in the sample complexity comes from the third
constraint, which gives us:

α ≤ O

(
ϵ2k(1− γ)6(1− γc)

2λ2
min

L2
k(tα + n+ 1)

)
The mixing time tα is O(log(1/α)), which gives us:

α ≤ O

(
ϵ2k(1− γ)6(1− γc)

2λ2
min

L2
k(log(1/α) + n+ 1)

)
This implies:

α = O

(
ϵ2k(1− γ)6(1− γc)

2λ2
min

L2
k log(1/α)

)
α log(1/α) = O

(
ϵ2k(1− γ)6(1− γc)

2λ2
min

L2
k

)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Using the Lambert W function, we can solve for α:

α = Θ

 ϵ2k(1− γ)6(1− γc)
2λ2

min

L2
k log

(
L2

k

ϵ2k(1−γ)6(1−γc)2λ2
min

)


= Θ̃

(
ϵ2k(1− γ)6(1− γc)

2λ2
min

L2
k

)
where Θ̃ hides logarithmic factors. The number of samples required for curriculum step k is:

Mk = Jk · T

= O

(
(tα + n+ 1) +

log(1/ϵk)

(1− γc)λminα

)
·O
(
log(1/ϵ)

K

)
= O

(
log(1/α) + n+ 1

K
log(1/ϵ) +

log(1/ϵk) log(1/ϵ)

K(1− γc)λminα

)

= O

(
log(1/ϵ) log

(
L2

k

ϵ2k(1−γ)6(1−γc)2λ2
min

)
+ n log(1/ϵ)

K

+
log(1/ϵk) log(1/ϵ)L

2
k log

(
L2

k

ϵ2k(1−γ)6(1−γc)2λ2
min

)
Kϵ2k(1− γ)6(1− γc)3λ3

min

)

= Õ

(
n log(1/ϵ)

K
+

log(1/ϵk) log(1/ϵ)L
2
k

Kϵ2k(1− γ)6(1− γc)3λ3
min

)
The second term dominates, giving us:

Mk = Õ

(
log2(1/ϵk) log(1/ϵ)L

2
k

Kϵ2k(1− γ)6(1− γc)3λ3
min

)
(12)

The total number of samples across all curriculum steps is:

MCRL =

K∑
k=1

Mk

=

K∑
k=1

Õ

(
log2(1/ϵk) log(1/ϵ)L

2
k

Kϵ2k(1− γ)6(1− γc)3λ3
min

)

= Õ

(
log(1/ϵ)

K

K∑
k=1

log2(1/ϵk)L
2
k

ϵ2k(1− γ)6(1− γc)3λ3
min

)
Assuming ϵk = ϵ

K for all k (uniform error allocation), we get:

MCRL = Õ

(
log(1/ϵ)

K

K∑
k=1

log2(K/ϵ)L2
k

(ϵ/K)2(1− γ)6(1− γc)3λ3
min

)

= Õ

(
log(1/ϵ) log2(K/ϵ)K

ϵ2(1− γ)6(1− γc)3λ3
min

K∑
k=1

L2
k

)

= Õ

(
log3(1/ϵ)K

ϵ2(1− γ)6(1− γc)3λ3
min

K∑
k=1

L2
k

)
Adding the dependence on the bootstrapping parameter n, we have:

MCRL = O

(
K∑

k=1

log3(1/ϵk)

ϵ2k
· Õ
(

L2
kn

(1− γ)7(1− γc)3λ3
min

))
(13)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

This completes the proof for the first half of the Theorem. Now we move on to prove the second half
of the Theorem.

The sample complexity for the final task K is:

MK = O

(
log3(1/ϵK)

ϵ2K
· L2

K · C

(1− γ)7(1− γc)3λ3
min

)
.

We can factor this term out of the total sum:

MCRL = MK ·

(
1 +

K−1∑
k=1

L2
k · log3(1/ϵk) · ϵ2K

L2
K · log3(1/ϵK) · ϵ2k

)
.

Define the curriculum efficiency factor:

CEF = 1 +

K−1∑
k=1

L2
k · log3(1/ϵk) · ϵ2K

L2
K · log3(1/ϵK) · ϵ2k

.

This factor represents the ratio of total curriculum sample complexity to the sample complexity of
just the final task. We make two structure assumptions about our curriculum design, geometric error
allocation and Lk progression, ϵk = ϵK · eK−k and Lk = LK/lK−k, where e > 1. This reflect a
curriculum that gradually increases in difficulty while allowing larger errors in earlier stages. For a
well-designed curriculum where early tasks are simpler than later ones, l > 1.

For the error ratio term:
ϵ2K
ϵ2k

=
ϵ2K

(ϵK · eK−k)2
= e−2(K−k),

and for the Lk ratio term:
L2
k

L2
K

=
L2
k

(Lk · lK−k)2
= l−2(K−k).

For the logarithmic term:

log(1/ϵk) = log(1/(ϵK · eK−k)) = log(1/ϵK)− (K − k) log(e).

Substituting these expressions into CEF :

CEF = 1 +

K−1∑
k=1

l−2(K−k) · [log(1/ϵK)− (K − k) log(e)]3 · e−2(K−k)

log3(1/ϵK)
.

Since e > 1 and K ≥ k, (K − k) log(e) ≥ 0. Thus we have

CEF = 1 +

K−1∑
k=1

[log(1/ϵK)− (K − k) log(e)]3

log3(1/ϵK)
· (el)−2(K−k)

≤ 1 +

K−1∑
k=1

(el)−2(K−k).

The sum is a geometric series:

K−1∑
k=1

(el)−2(K−k) =

K−1∑
k=1

(el)2(k−K) = (el)2(1−K) 1− (el)2(K−1)

1− (el)2
=

(el)2(1−K) − 1

1− (el)2

CRL is more sample-efficient than direct learning when:

MCRL < MDirect

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Since MCRL = MK · CEF and for a comparable direct learning approach, MDirect = MK ·m
where m represents the relative difficulty factor of direct learning, our condition becomes:

CEF < m.

Thus for MCRL < MDirect, substituting expressions it becomes:

MCRL = MK · CEF ≤ MK · (1 + (el)2(1−K) − 1

1− (el)2
) < MK ·m = MDirect.

Thus

MCRL < MDirect ⇐⇒ (el)2(1−K) − 1

1− (el)2
< m− 1.

This completes the proof.

B SAMPLE EFFICIENCY GAINS WITH CRL

Our theoretical analysis (see Sec.3.3) establishes that curriculum reinforcement learning (CRL)
attains target performance while requiring fewer hard samples than non-curriculum RL methods. To
show this empirically, we count how many training samples from each difficulty level are seen during
post-training. All methods are trained for 1600 iterations with an effective batch size of 8, totaling
12,800 samples, which allows a direct comparison of their sample efficiency under the same budget.
For simplicity, we perform this analysis on Blocksworld, shown Table 5. Our empirical results show
that CRL methods are between 2.5 − 3× more sample efficient than non-CRL methods that train
exclusively on hard samples, while also achieving better performance, underscoring the importance
of curriculum design for post-training.

Table 5: Consistent with our theoretical guarantees, CRL methods (E2H-C, E2H-G) attain strong
performance while requiring substantially fewer hard samples than non-curriculum baselines. For
example, E2H-G uses 3580 hard samples versus 12800 for GRPO (HARD). Training exclusively on
OOD (GRPO-OOD) trained on 12800 OOD samples performs poorly (see Table 3).

Number of Training Samples

Method Trivial Easy Medium Hard OOD Total

GRPO (All) 3200 3200 3200 3200 0 12800
GRPO (HARD) 0 0 0 12800 0 12800
GRPO (OOD) 0 0 0 0 12800 12800
E2H-C 3200 3200 3200 3200 0 12800
E2H-G (0.5, 0.5) 1628 2997 4595 3580 0 12800

C DATASET DETAILS

In this section we provide details of the datasets used for evaluation. We categorize the datasets into
two categories, datasets that contain human annotated difficulties and others that do not.

C.1 DATASETS WITH HUMAN ANNOTATED DIFFICULTIES

Blocksworld (Valmeekam et al., 2023) is a dataset used to evaluate the planning capabilities of LLMs.
Each task involves transitioning from an initial block configuration to a target configuration, which
requires LLMs to generate a sequence of actions, or plan to achieve the goal. Tasks become more
difficult as the required number of steps increases, since the model must reason over longer sequences
and maintain correct intermediate states. To study this, we group tasks into four in-distribution
difficulty levels: Trivial with 1 step, Easy with 2 steps, Medium with 4 steps, and Hard with 6 steps.
Additionally, we include an out-of-distribution (OOD) split with 8-step plans to test generalization

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: Difficulty splits for datasets with human-annotated difficulty levels. Each dataset is categorized based
on task-specific properties, specifically, plan length for Blocksworld, number of operands for Countdown, and
problem level for MATH.

Difficulty Blocksworld Countdown MATH
(Plan Length) (Num. Operands) (Problem Level)

Trivial (T) 1 2 1
Easy (E) 2 3 2
Medium (M) 4 4 3
Hard (H) 6 5 4
OOD 8 6 5

beyond the training distribution. Trivial tasks are especially simple because the model only needs
to predict one correct action out of four possible choices to complete the plan. This setup allows
the LLM to first grasp fundamental planning mechanics, which can then be leveraged to learn more
complex multi-step tasks.

Countdown (Gandhi et al., 2024) is a task where the model must reach a target value by combining
given numbers using basic arithmetic operations. While the original dataset uses four numbers per
instance, we extend it to create a range of difficulty levels based on the number of input numbers,
mainly, Trivial (2), Easy (3), Medium (4), Hard (5), and OOD (6). As the number of inputs increases,
the space of possible operation sequences grows rapidly, making it harder for the model to identify
the correct combination and order of operations. In contrast, the trivial setting is extremely simple,
requiring just one operation between two numbers to reach the target, allowing the model to first
learn basic arithmetic before scaling to more complex multi-step problems.

MATH (Hendrycks et al., 2021) is a benchmark of 7,500 training and 5,000 test problems covering
high-school level mathematics, with each problem labeled from Level 1 (easiest) to Level 5 (hardest).
The dataset covers topics such as algebra, geometry, number theory, and probability, including step-
by-step solutions. We create a difficulty-based setup using the existing labels, specifically, Trivial
(Level 1), Easy (Level 2), Medium (Level 3), Hard (Level 4), and OOD (Level 5). As difficulty
increases, problems require more complex reasoning, multi-step solutions, and deeper mathematical
understanding. Trivial problems are typically short and rely on basic techniques, making them ideal
for teaching foundational reasoning. We use Levels 1 through 4 for training and treat Level 5 as
out-of-distribution to assess generalization to the most difficult problems.

We provide the summery of the difficulty splits for each dataset in Table 6.

C.2 DATASETS WITHOUT HUMAN ANNOTATED DIFFICULTIES

GSM8K (Cobbe et al., 2021) is a dataset of high-quality, linguistically diverse grade school math
word problems designed to evaluate multi-step arithmetic reasoning. Each problem typically requires
between two and eight steps involving basic arithmetic operations such as addition, subtraction,
multiplication, and division. To assess performance across varying difficulty levels, we create a 4-way
split into Trivial, Easy, Medium, and Hard, based on model error rates, as described in Section. 4 and
illustrated in Figure. 5

AQuA (Ling et al., 2017b) is a dataset of algebraic word problems with multiple-choice answers
and detailed rationales, designed to test arithmetic reasoning and symbolic manipulation. For our
experiments, we randomly sample 5,000 problems for training. Similar to GSM8K, we use model
error rates to define four difficulty levels, Trivial, Easy, Medium, and Hard (see Figure. 6).

Since both GSM8K and AQuA lack explicit difficulty annotations, we construct difficulty splits using
model error rates and do not include an out-of-distribution (OOD) category for these datasets.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Error Rate

0

100

200

300

400

500

Nu
m

be
r o

f Q
ue

st
io

ns

Error Rate Distribution by Difficulty Bucket
Trivial
Easy
Medium
Hard

Figure 6: AQuA Difficulty distribution based on error rates, grouped into quartiles.

D MODEL LICENSE INFORMATION

For our experiments, we use LLaMA 3.2 3B Instruct, Qwen 2.5 1.5B Instruct, and Qwen 2.5 3B
Instruct. Qwen 2.5 1.5B Instruct is released under the Apache 2.0 License, Qwen 2.5 3B Instruct
under the Qwen Research License, and LLaMA 3.2 3B Instruct under the Meta Community License.

E IMPLEMENTATION DETAILS

In this section, we provide implementation details for E2H Reasoner. We begin by describing the
hardware setup, followed by training parameters, and finally the inference settings used to report the
final results.

E.1 HARDWARE DETAILS

For our experiments, we use up to three 80GB NVIDIA A100 GPUs, particularly for the 3B parameter
models. One GPU is dedicated to vLLM for fast inference, while the remaining two are used for
model training. On average our experiments require anywhere between 16-18 hours for training.

E.2 TRAINING DETAILS

We use GRPO as the policy optimization algorithm, combined with parameter-efficient fine-tuning
using LoRA. All models are trained for up to 1600 GRPO steps, with hyperparameters listed in
Table 7. For fair comparison, the same configuration is used in our SFT experiments. All training is
conducted using the TRL library from Hugging Face, averaged across 3 seeds. For the Self-Evolve
baseline (Chen et al., 2025), we use the same hyper-parameters as reported by authors.

E.3 INFERENCE DETAILS

For inference, we use a temperature of 0.0 in all experiments to ensure deterministic outputs and
reproducibility. For pass@k evaluations, we enable sampling with a temperature of 0.7, top_p of 0.9,
and top_k of 50, where top_k controls the number of candidate tokens considered at each decoding
step.

F COMPARISONS WITH SFT

We compare vanilla supervised fine-tuning (SFT) with RL-based post-training methods (see Ta-
ble 8). The results show that SFT performance varies significantly across tasks. For instance, in
Blocksworld (Valmeekam et al., 2023), where most problems involve fewer than four blocks, SFT
performs well—the LLM learns effectively due to the small gap between the training and test distribu-
tions. This aligns with prior work suggesting that SFT is most effective when the training data is high
quality and closely aligned with the downstream task (Muennighoff et al., 2025; Chu et al., 2025). In
contrast, on tasks like Countdown, where the problem distribution is much broader, SFT performs

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 7: Training hyperparameters used for GRPO post-training and LoRA adaptation.

Component Parameter Value

GRPO

learning_rate 1e-6
lr_scheduler_type cosine
per_device_train_batch_size 2
gradient_accumulation_steps 4
gradient_checkpointing true
max_steps 1600
bf16 true
tf32 true
num_generations 8
beta 0.001
use_vllm true
vllm_gpu_memory_utilization 0.2

LoRA

r 32
alpha 64
dropout 0.1
target_modules q_proj, v_proj
task_type CAUSAL_LM

Table 8: Comparison of RL-based post-training and supervised fine-tuning (SFT). SFT performance varies
noticeably across tasks, highlighting its inconsistency in generalizing across domains.

Models Methods Blocksworld Countdown

Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD

Qwen 2.5 / 1.5B Instruct

SFT 100.0 97.8 88.1 55.3 16.5 97.4 41.8 14.2 4.6 0.0
GRPO 98.0 100.0 84.5 26.3 5.3 96.1 64.9 28.8 18.1 9.2

E2H-G 98.0 100.0 95.3 32.9 7.3 95.2 84.1 48.1 28.1 14.2
E2H-C 100.0 100.0 15.5 0.0 0.0 96.7 64.0 25.9 15.8 6.4

Qwen 2.5 / 3B Instruct

SFT 100.0 100.0 94.0 62.5 27.8 99.9 63.9 30.8 13.3 0.0
GRPO 100.0 100.0 88.1 38.8 14.6 99.6 89.3 73.4 41.7 9.4

E2H-G 100.0 100.0 96.4 53.3 23.2 98.5 90.8 71.0 43.5 19.4
E2H-C 100.0 100.0 94.1 52.0 22.5 100.0 90.4 69.7 35.7 12.6

LLaMA 3.2 / 3B Instruct

SFT 100.0 97.8 96.4 72.3 37.8 100.0 66.6 27.2 12.1 0.0
GRPO 100.0 100.0 94.1 38.9 13.3 99.9 89.5 71.6 47.9 2.7

E2H-G 100.0 100.0 98.8 44.1 17.6 95.0 89.9 73.3 46.5 24.3
E2H-C 100.0 0.0 0.0 0.0 0.0 100.0 55.3 0.0 0.0 0.0

notably worse than RL-based post-training. This gap is especially clear in the out-of-distribution
(OOD) setting, where SFT fails to solve any Countdown OOD examples, unlike in Blocksworld,
where its performance generalizes more successfully. We highlight these two tasks to illustrate
how SFT performance can vary across distributions, in contrast to the more consistent behavior of
RL-based post-training methods.

G ADDITIONAL ANALYSIS AND ABLATIONS

G.1 RESULTS ON MORE LLMS

Additional results on more LLMs are reported in this subsection.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 9: Results on Qwen-2.5 3B Instruct.

Blocksworld Countdown MATH

Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD

Qwen 2.5 3B Instruct

CoT 1.0 6.7 7.1 1.0 0.0 24.0 15.9 4.4 0.5 0.0 68.0 55.8 48.8 33.4 20.0
GRPO (All) 100 100 88.1 38.3 14.6 99.6 89.3 73.4 41.7 9.4 90.1 78.5 71.9 57.4 36.8
GRPO (Hard) 50.0 42.2 86.9 72.4 48.3 1.6 49.5 38.7 27.7 12.6 90.6 78.4 70.5 58.0 36.0
GRPO (OOD) 0.0 13.3 9.5 0.0 0.0 0.4 25.1 21.2 13.8 8.5 91.3 78.1 70.0 58.7 36.8
CL 100 100 77.3 42.1 20.5 39.0 91.0 72.9 38.7 12.5 90.6 78.9 72.5 57.2 36.6
Self-Evolve 100 100 88.1 42.5 18.5 99.6 91.4 79.8 56.8 29.3 92.2 80.8 70.6 58.6 37.1

E2H-G 100 100 96.4 53.3 23.2 98.5 90.8 81.2 60.7 32.3 90.4 81.0 71.5 58.2 37.2
E2H-C 100 100 94.1 52.0 22.5 100 90.4 69.7 35.7 12.6 90.4 80.0 73.4 58.9 38.1

Table 10: Effect of scheduling strategies in LLM post-training. We compare balanced scheduling, traditional
curriculum learning (CL), and our proposed E2H Reasoner variants, namely, E2H-G and E2H-C. CoT is
reported as a reference.

Blocksworld Countdown MATH

Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD Trivial Easy Med Hard OOD

Qwen 2.5 3B Instruct

CoT 1.0 6.7 7.1 1.0 0.0 24.0 15.9 4.4 0.5 0.0 68.0 55.8 48.8 33.4 20.0
Balanced 100.0 100.0 88.1 38.8 14.6 99.6 86.9 57.8 23.6 7.8 90.1 78.5 71.9 57.4 36.8
CL 100.0 100.0 77.3 42.1 20.5 39.0 91.0 72.9 38.7 12.5 90.6 78.9 72.5 57.2 36.6

E2H-G (0.25, 0.75) 100.0 100.0 96.4 53.3 23.2 98.5 90.8 71.0 43.5 19.4 90.4 81.0 71.5 58.2 37.2
E2H-G (0.5, 0.5) 100.0 100.0 89.2 32.9 10.6 99.6 89.3 73.4 41.7 9.4 91.1 78.2 70.5 56.6 35.0
E2H-G (0.75, 0.25) 100.0 100.0 42.9 3.9 2.0 100.0 87.8 52.3 16.7 6.5 90.0 79.3 70.6 57.1 35.9
E2H-C 100.0 100.0 94.1 52.0 22.5 100.0 90.4 69.7 35.7 12.6 90.4 80.0 73.4 58.9 38.1

LLaMA 3.2 3B Instruct

CoT 24.0 0.0 1.2 1.0 0.0 37.1 4.6 0.3 0.0 0.0 65.9 44.6 35.2 24.1 13.6
Balanced 100.0 100.0 94.1 38.9 13.3 99.9 89.5 71.6 47.9 2.7 65.9 47.0 36.0 22.0 10.2
CL 100.0 0.0 0.0 0.0 0.0 17.2 36.0 22.7 11.2 4.1 74.1 54.1 43.9 28.0 12.5

E2H-G (0.25, 0.75) 100.0 100.0 98.8 44.1 17.6 95.0 89.9 73.3 46.5 24.3 78.7 58.4 46.4 32.3 14.5
E2H-G (0.5, 0.5) 100.0 100.0 88.1 26.3 9.6 94.4 86.7 65.1 27.9 2.3 66.1 45.0 36.2 24.4 11.4
E2H-G (0.75, 0.25) 100.0 97.8 75.0 21.1 4.0 98.9 89.4 48.6 0.7 0.0 63.8 48.2 35.6 24.0 8.6
E2H-C 100.0 100.0 15.5 0.0 0.0 96.7 64.0 25.9 15.8 6.4 84.6 69.6 63.0 47.6 28.6

G.2 RESULTS ACROSS GAUSSIAN PARAMETERS

In this section, we expand on the results presented in the main paper by reporting all three parameter
settings of Gaussian scheduling in Table 10. Similarly, for Qwen 2.5 1.5B Instruct we include the
results for all Gaussian scheduling variants on GSM8K and AQuA in Table 11.

G.3 CHOICE OF NUMBER OF DIFFICULTY SPLITS

The number of difficulty splits can be treated as a hyperparameter in E2H Reasoner, particularly
for datasets without human-annotated difficulty labels such as GSM8K (Cobbe et al., 2021) and
AqUA (Ling et al., 2017a). We set this value to 4, consistent with the range of 3 to 5 used in the
curriculum learning literature (Bengio et al., 2009). As shown in Table 12, our method remains robust
across different choices of this parameter.

G.4 QUALITATIVE ANALYSIS OF SCHEDULING TECHNIQUES

We provide a qualitative analysis of scheduling techniques in Table 13, highlighting their respective
strengths and weaknesses. The results show that different schedulers are suited to different tasks and
model scales. Inspired by the effectiveness of E2H Reasoner, we hope this motivates the community
to explore more sophisticated scheduling strategies for LLM post-training.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 11: Expanded results for Qwen 2.5 1.5B Instruct showing all E2H-G (Gaussian scheduling) variants on
GSM8K and AQuA. We provide a comparison against Balanced and E2H-C (Cosine scheduling).

AQuA GSM8K
Trivial Easy Med Hard Avg Trivial Easy Med Hard Avg

Balanced 95.8 68.0 48.6 21.0 63.3 99.0 95.3 84.1 49.9 77.1

E2H-C 86.1 72.2 48.6 26.3 62.5 98.0 95.3 83.9 46.6 75.7
E2H-G (0.25, 0.75) 93.0 70.8 40.2 23.6 61.4 98.5 96.3 83.6 51.2 77.6
E2H-G (0.5, 0.5) 90.2 81.9 43.0 34.2 66.1 97.6 94.7 89.0 51.8 78.7
E2H-G (0.75, 0.25) 83.3 79.1 54.5 26.3 64.1 98.0 97.3 85.9 47.7 77.1

Table 12: Results on GSM8K (Cobbe et al., 2021) across different Gaussian parameter splits. The
main experiments use the 4-split setting; below we show that our method is robust to the number of
splits.

Method 3 Splits 4 Splits 5 Splits

E2H-C 79.1 75.7 76.1
E2H-G 78.6 78.7 78.5

H LLM USAGE

LLMs were used for text-refining purposes only.

I LIMITATIONS

Despite the strengths of E2H Reasoner, it has certain limitations. Our approach uses simple and
intuitive probabilistic schedulers, specifically based on Gaussian and cosine functions, which do not
adapt during training. While these choices are effective, our results suggest that incorporating adaptive
strategies, such as advantage-based scheduling, could offer further improvements. Comparisons
with adaptive curriculum methods that aim to maximize learnability reveal an important insight:
maximizing learnability does not always lead to stronger reasoning. This outcome depends on the
structure and difficulty of the problems within the dataset. Combining our method with adaptive
approaches presents a promising direction for future work.

J SOCIETAL IMPACTS

Our work introduced E2H Reasoner, a curriculum-based reinforcement learning (RL) approach
designed to enhance the reasoning capabilities of small-scale large language models (LLMs). This
advancement holds significant societal implications. Enhanced reasoning in LLMs can improve
decision-making processes in critical domains such as healthcare, education, and legal systems, where
nuanced understanding is paramount. Moreover, by empowering smaller models, E2H Reasoner
promotes broader accessibility to advanced AI capabilities. Although our tasks focus on reasoning,
future extensions involving real-world interaction could pose risks, including potential misuse of
language models.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 13: Qualitative comparison of scheduling strategies, outlining their strengths and weaknesses in the
context of LLM post-training.

Scheduling Strengths Weaknesses

Balanced 1. Default in LLM post-training.
2. Parameter-free and easy to use.

1. Assumes uniform difficulty across the dataset.
2. Often fails to improve reasoning on hard tasks.

Traditional 1. Simple and parameter-free.
2. Easy to implement.

1. Can cause overfitting to easy tasks.
2. May lead to forgetting earlier tasks.

E2H-C
1. Parameter-free and simple to apply.
2. Suitable for tasks with similar zero-shot

performance across difficulty levels.

1. May overfit to easy tasks when rewards for hard
tasks are sparse.

E2H-G 1. Effective across tasks and models.
2. Enables fine-grained control. 1. Requires tuning two hyperparameters.

27

	Introduction
	Background and Related Work
	Method
	Task decomposition for RL post-training
	Training schedulers for LLM reasoning ability
	Theoretical Analysis
	Theoretical Setup
	Convergence Guarantee
	Finite Sample Approximation Error Analyses

	Experiments
	Experimental Setup
	Baselines
	Experimental Results

	Conclusion
	Proofs
	Proof of Theorem 3.1
	Theorem A.1 and Proof
	Proof of Theorem 3.2

	Sample Efficiency Gains with CRL
	Dataset Details
	Datasets with Human Annotated Difficulties
	Datasets without Human Annotated Difficulties

	Model License Information
	Implementation Details
	Hardware Details
	Training Details
	Inference Details

	Comparisons with SFT
	Additional Analysis and Ablations
	Results on More LLMs
	Results Across Gaussian Parameters
	Choice of Number of Difficulty Splits
	Qualitative Analysis of Scheduling Techniques

	LLM Usage
	Limitations
	Societal Impacts

