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ABSTRACT

Due to the high memory and computational costs associated with large language
models (LLMs), model compression techniques such as quantization, which re-
duces inference costs, and parameter-efficient fine-tuning (PEFT) methods like
Low-Rank Adaptation (LoRA), which reduce training costs, have gained signif-
icant popularity. This trend has spurred active research into quantization-aware
PEFT techniques, aimed at maintaining model accuracy while minimizing mem-
ory overhead during both inference and training. Previous quantization-aware
PEFT methods typically follow a two-step approach: first, applying post-training
quantization (PTQ) to model weights, followed by PEFT on the quantized model.
However, recovering from the quantization error introduced by PTQ through fine-
tuning has proven challenging. Additionally, most PTQ-based PEFT methods
result in a mixture of low-precision quantized weights and high-precision adapter
weights, limiting the efficiency of full quantization during inference. While a pre-
vious method attempted to address these issues, it still suffers from limited adapt-
ability due to the constrained LoRA parameter structure required to produce fully-
quantized models. To overcome these challenges, we propose L4Q, a method that
integrates Quantization-Aware Training (QAT) with LoRA to effectively reduce
quantization error. By employing a memory-optimized layer design, L4Q signifi-
cantly reduces QAT’s memory overhead while producing fully-quantized weights,
enabling effective adaptation to downstream tasks. Our experiments demonstrate
that this combined approach to quantization and fine-tuning achieves superior ac-
curacy compared to decoupled fine-tuning schemes, particularly in sub-4-bit quan-
tization, positioning L4Q as an efficient QAT solution. Using the LLaMA model
families and instructional datasets, we showcase L4Q’s capabilities in language
tasks and few-shot learning.

1 INTRODUCTION

Given their impressive scalability, Large Language Models (LLMs) such as GPT, OPT, PaLM, and
LLaMA (Brown et al., 2020; Zhang et al., 2022; Chowdhery et al., 2024; Touvron et al., 2023a;b)
are popular in natural language processing. However, their substantial memory and computational
demands pose challenges for practical deployment, making model compression (Han et al., 2015)
crucial for LLM deployment. Quantization is a prominent method that reduces model size by low-
ering the bit precision of model parameters (Hubara et al., 2017), so LLM quantization has been
actively studied (Liu et al., 2024; Xiao et al., 2023; Frantar et al., 2023; Dettmers & Zettlemoyer,
2023). These quantization methods are generally divided into two categories: post-training quan-
tization (PTQ) and quantization-aware training (QAT). QAT effectively reduces quantization error
by integrating quantization into the training process, where both model weights and quantization
parameters, are trained together (Esser et al., 2020; Bhalgat et al., 2020). However, applying QAT
to LLM quantization is challenging due to the significant memory overhead it incurs during train-
ing. As a result, PTQ, which applies quantization without retraining the pre-trained model weights
and with minimal calibration of the quantization parameters, is widely adopted for LLM quantiza-
tion (Xiao et al., 2023; Lin et al., 2024; Heo et al., 2024).

Concurrently, to enhance the problem-solving abilities of LLMs for specific applications, fine-tuning
pre-trained LLMs on downstream tasks is crucial as it improves accuracy on target tasks and related
tasks (Wei et al., 2022; Scialom et al., 2022). However, fine-tuning is a resource-intensive pro-
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cess due to the large number of model weight parameters involved. Parameter-efficient fine-tuning
(PEFT) addresses this issue (Hu et al., 2022; Li & Liang, 2021; Liu et al., 2022a; Wang et al.,
2023) by training a small subset of parameters while freezing the majority of pre-trained weights.
One of the most prominent techniques within PEFT is Low-Rank Adaptation (LoRA) (Hu et al.,
2022), which inserts trainable rank decomposition matrices into each layer to represent updates to
the frozen weights.

Figure 1: A diagram of model fine-tuning and quanti-
zation represented with an example of LLaMA-1 7B
model. L4Q produces fast and accurate quantized
model.

The integration of quantization and PEFT
holds significant potential for developing
highly efficient and accurate LLMs for
downstream tasks. Recent research has
introduced quantization-aware PEFT ap-
proaches to achieve high-quality quantized
models (Dettmers et al., 2024b; Kim et al.,
2024; Xu et al., 2023; Li et al., 2024).
Previous works involve a two-stage opti-
mization strategy: first, a PTQ technique,
such as GPTQ (Frantar et al., 2023), is
applied to pre-trained LLMs for compres-
sion. Then, these quantized LLMs un-
dergo PEFT, such as LoRA, where quan-
tized weights are kept fixed and only the
LoRA parameters are fine-tuned. While
fine-tuning can mitigate the effects of
quantization errors, separating quantiza-
tion and fine-tuning into distinct state hin-
ders the models from achieving the best accuracy. Furthermore, as high-precision LoRA parame-
ters are adopted alongside the quantized weight matrix, these methods eventually produce mixed-
precision models, which limits the efficiency of full quantization during inference. Recently, QA-
LoRA (Xu et al., 2023) addresses this issue by strictly constraining the LoRA parameter structure
to integrate with quantization parameters, but this constraint can limit the fine-tuning capability.

In this paper, we propose a novel quantization-aware fine-tuning technique, named L4Q (Low-rank
adaptive Learning quantization for LLMs). L4Q addresses the limitations of PTQ-based PEFT
methods by introducing QAT alongside LoRA. While QAT and LoRA have advantages in reduc-
ing quantization error and enabling memory-efficient training, respectively, their straightforward
integration diminishes the benefits of each approach. Therefore, L4Q carefully integrates these two
approaches to properly leverage their advantages. First, L4Q applies the quantization process after
fully combining the model weights and LoRA parameters in the linear layer. This approach produces
a fully-quantized model that enables memory-efficient and fast inference without limiting the train-
ing capabilities of either QAT or LoRA. Moreover, to preserve the memory-efficient nature of LoRA
during training, we design the backpropagation path of L4Q to eliminate the need to store weight
gradients required for QAT. Finally, the full integration of QAT and LoRA in the proposed L4Q
allows for the joint optimization of both the quantization and LoRA parameters, thereby improving
of quantized LLMs. As a result, L4Q significantly improves the accuracy of quantized models while
maintaining low memory costs during both inference and training, and achieves inference speed
comparable to state-of-the-art approaches, making it a more effective solution compared to previous
works, as illustrated in Figure 1.

2 BACKGROUNDS

2.1 PEFT WITH LORA

LoRA inserts the rank-decomposition matrices composed of a pair of parameter matrices A ∈ Rr×i

and B ∈ Ro×r. Here, i and o represent the size of input and output dimensions of the original
weight matrix, respectively. r ≪ i, o is the rank of the LoRA matrices, and α is a constant that
adjusts the influence of the LoRA matrices. During the fine-tuning process, the pre-trained weight
matrix W0 ∈ Ro×i is frozen, preserving the pre-trained features. For a given input activation
X ∈ Ri×s×b (s: sequence length, b: batch size), the output Y ∈ Ro×s×b of a layer utilizing LoRA
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is computed as follows:
Y = (W0 + αBA)X = W0X + αBAX (1)

The fine-tuning of the LoRA parameters is guided by the gradient of a loss function L, which is
calculated with respect to each parameter matrix. The gradients are derived as follows:

∂L

∂A
= α

∂L

∂X̃
X⊤,

∂L

∂B
= α

∂L

∂Y
X̃⊤ (2)

Here, X̃ := AX represents the intermediate input activation of B, which is the transformation of X
by A. These gradients guide the adjustment of the LoRA parameters to minimize the loss and more
accurately approximate the necessary updates to the original model weights.

2.2 QUANTIZATION

Uniform quantization is a widely used quantization scheme due to its simplicity and broad compati-
bility with various computing kernels and hardware units (Liu et al., 2022b). Therefore, considering
the adaptability on the broad quantization scheme, including both weight-only and activation quanti-
zation scenarios, we refer to the term ‘quantization’ specifically as uniform quantization throughout
this paper. A common practice is to organize a quantization group consisting of a certain number of
consecutive weight elements that share the same quantization scale s and bias b, which control the
quantization step size and zero point, respectively.

The weights W within the quantization group are quantized according to the following equation:

w̃ = R(clamp(
W − b

s
,Qn, Qp)), Wq = w̃ × s+ b (3)

Here, w̃ denotes the quantized integer value obtained through a sequence of division, clamping, and
rounding. Clamping is applied within the range Qn = −2n−1 to Qp = 2n−1 − 1, where n is
the bit-width, followed by the rounding function R. Wq represents the dequantized version of the
quantized weight, which is adjusted using s and b from w̃ to approximate the original weight.

During QAT, the straight-through estimator (STE) approximates the derivative of the rounding func-
tion with an identity function (Bengio et al., 2013; Choi et al., 2018; Esser et al., 2020), enabling
gradients to propagate through non-differentiable rounding operations and allowing effective weight
parameter training. Building on conventional QAT, LSQ (Esser et al., 2020) and LSQ+ (Bhal-
gat et al., 2020) extend this process by training quantization parameters s and b, alongside model
weights. This tuning scheme provides finer control over quantization, improving model accuracy.
The quantization parameters tuning during backpropagation proceeds as follows, where w denotes
the value W−b

s :

∂L

∂s
=

∂Wq

∂s

∂L

∂Wq
s.t.

∂Wq

∂s
= −w + w̃, if Qn ≤ w ≤ Qp (4)

∂L

∂b
=

∂Wq

∂b

∂L

∂Wq
s.t.

∂Wq

∂b
= 1, if w < Qn or w > Qp (5)

More details on QAT with LSQ and LSQ+ are provided in Appendix A.1.

2.3 LLM QUANTIZATION

Quantization compress LLMs by lowering the bit precision of model parameters (Hubara et al.,
2017). However, a key challenge with quantization is the introduction of errors that reduce model
accuracy, leading to extensive research aimed at mitigating these losses through calibration or train-
ing. A notable examples of PTQ for LLM compression are GPTQ(Frantar et al., 2023) and Om-
niQuant (Shao et al., 2023). In contrast, QAT integrates quantization into the training process,
adaptively training model parameters to account for quantization errors during training, ensuring
that the quantized model retains much of its accuracy and functionality through training.

3
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Figure 2: A categorization of training scheme and inference strategy of QA-LoRA, QLoRA, QAT-
LoRA, and L4Q. Compared to QA-LoRA, L4Q utilizes higher optimization ability with non-
constrained LoRA parameters and quantization parameters. Additionally, compared to QLoRA and
QAT-LoRA, L4Q exploit fully-quantized weights rather than the mixed-precision weights during
inference and perform a solid co-optimization of parameters.

Despite its advantages, QAT faces challenges, primarily due to its high training overhead, which
limits its use in resource-intensive models like LLMs. The memory overhead of QAT stems from
storing weight gradients and their optimizer states, each requiring multiple times the memory of the
weights. For example, applying QAT to a 7B model that fine-tunes all weight parameters requires at
least 14GB for the model weights, 14GB for the gradients, 28GB for optimizer states, and additional
dozens of GB for activations. This often exceeds the memory capacity of a single GPU, which
typically offers a maximum of 80GB of memory. Therefore, previous works have primarily focused
on the application of PTQ for LLM compression, while research on QAT remains in its early stages,
especially in terms of improving training efficiency.

2.4 QUANTIZATION-AWARE PEFT

To improve the accuracy of quantized LLMs, recent research has introduced quantization-aware
PEFT approaches (Dettmers et al., 2024b; Kim et al., 2024; Xu et al., 2023; Li et al., 2024). Among
these, QLoRA (Dettmers et al., 2024b), QA-LoRA (Xu et al., 2023), and LoftQ (Li et al., 2024)
stand out as notable methods. As illustrated in Figure 2, QLoRA begins by applying PTQ to a
pre-trained model. After this initial quantization, LoRA fine-tuning is performed, with the quan-
tized weight parameters kept frozen. The LoRA parameters are fine-tuned using higher precision
formats such as bfloat16 or float16, allowing the method to correct quantization errors during the
fine-tuning. However, QLoRA introduces computational inefficiencies during inference due to the
additional forward path on LoRA parameters. This inefficiency arises because the high-precision
LoRA parameters and low-precision quantized weights cannot be merged into low-precision values.
We further examine the impact of this unmerged LoRA path on inference efficiency by comparing
the speed of fully-quantized models with mixed-precision models in Section 4.

QA-LoRA (Xu et al., 2023) addresses the issue of high-precision LoRA parameters by modifying
the structure of the LoRA matrix, allowing these parameters to be integrated with the quantized
weights after training (Figure 2). The input dimension of the LoRA matrix A is set to the number of
weight quantization groups. This adjustment ensures that each element of BA corresponds directly
with individual quantization groups, enabling the LoRA parameters to be seamlessly integrated into
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the quantization bias as b′ = b− αBA at the end of training. However, this solution presents a new
challenge: the constrained LoRA structure in this setup limits the model’s ability to achieve optimal
accuracy during the PEFT stage.

A broader issue with previous quantization-aware PEFT approaches is that quantization and fine-
tuning are performed sequentially rather than simultaneously. Starting the fine-tuning process from a
pre-quantized model with inherent quantization errors is less optimal than starting from a pre-trained
model. While LoftQ attempts to address these quantization errors by approximating them using
LoRA with iterative singular-value decomposition (SVD), the limitations on subsequent adaptation
persist, making it challenging to fully recover and optimize model performance during fine-tuning.
These challenges highlight the need for continued research to improve quantization-aware PEFT
techniques, aiming to enhance both the quantization and PEFT processes for better accuracy and
efficiency in LLMs.

3 METHODS

3.1 STRAIGHTFORWARD INTEGRATION OF QAT AND LORA

QAT-LoRA One of the key principles in our proposed L4Q scheme is the integration of the QAT
and LoRA to facilitate the simultaneous calibration for quantization and fine-tuning on downstream
tasks. To achieve this, we begin with a straightforward integration of QAT and LoRA, referred to as
QAT-LoRA, which serves as our baseline approach for combining QAT and PEFT. In QAT-LoRA,
pre-trained weights are frozen, while LoRA parameters are added to the linear layers (Figure 2).
Additionally, quantization scales and bias parameters are introduced, similar to advanced QAT tech-
niques like LSQ, which are crucial for calibrating the quantization function. Freezing the weights
reduces the need for optimizer states, while a small number of LoRA and quantization parameters
are introduced to approximate updates to the weight matrix and to update the quantization func-
tion, respectively. This results in more efficient memory usage compared to standard QAT. Detailed
analysis results of the memory efficiency of QAT-LoRA is further discussed in Section 4.

Limitations of QAT-LoRA However, several issues arise with this straightforward integration of
QAT and LoRA, where quantized weights and LoRA parameters remain distinct. First, although
freezing the pre-trained weights eliminates the need for optimizer states, weight gradients ∂L

∂Wq
must

still be stored to update the quantization parameters, as shown in Equations 4- 5. As a result, QAT-
LoRA still incurs memory overhead from weight gradients, undermining the memory efficiency
benefits of LoRA fine-tuning. Secondly, QAT-LoRA produces a mixed-precision model with both
quantized weights and high-precision LoRA parameters. This mixed-precision approach negates the
advantages of LLM quantization, similar to previous methods such as QLoRA and LoftQ discussed
in Section 2.4. Lastly, the gradient updates for quantization and LoRA parameters are decoupled,
limiting the potential for comprehensive optimization across the model. As outlined in Equations
4- 5, updates to the quantization parameters rely on the quantized weight matrix Wq , while updates
to the LoRA parameters depend on weights A and B. This limits the effectiveness of model train-
ing, as it prevents holistic adjustments where changes in LoRA parameters could directly influence
quantization adjustments and vice versa.

To address these challenges, we introduce L4Q, an enhanced integration of QAT and LoRA. L4Q
features an advanced layer design that seamlessly integrates QAT and LoRA. By applying quantiza-
tion after merging the weights and LoRA parameters, along with a custom backpropagation path that
reduces the memory overhead from the complex quantization and LoRA processes, L4Q effectively
overcomes the primary challenges encountered with QAT-LoRA.

3.2 L4Q: LOW-RANK ADAPTIVE LEARNING QUANTIZATION

Fully-Quantized Linear Layer As high-precision LoRA weights introduces inference overhead,
it is crucial to design a fully-quantized linear layer. In this context, L4Q first combines the original
weights W0 and the LoRA parameters BA into a unified parameter matrix:

Wcomb = W0 + αBA (6)
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Then, quantization is applied to the fully combined weight Wcomb as follows:

Wq = R(clamp(
Wcomb − b

s
,Qn, Qp))× s+ b (7)

In this way, during inference, L4Q only uses quantized weights, simplifying the forward path of the
linear layer as follows:

Y = WqX (8)

While QA-LoRA also achieves fully-quantized linear layers by introducing constraints on the LoRA
parameter structure, the proposed L4Q imposes no such restrictions. This flexibility allows L4Q to
fully leverage the benefits of LoRA-based fine-tuning, all while achieving fully-quantized linear
layers.

Memory Efficient QAT As discussed in the previous section, QAT requires weight gradients for
training the quantization parameters s and b. Since weight gradients are a major source of memory
overhead during training, we compute these gradients locally in the backpropagation path of the
linear layer, utilizing the input and output of the layer. The weight gradients are calculated as
follows:

∂L

∂Wq
=

∂L

∂Y
X⊤ (9)

We use these weight gradients to calculate gradients of s and b with Equation 4 and 5. Once the
gradient computation for the linear layer is complete, the weight gradients are immediately flushed
to conserve memory.

Efficient LoRA Training To compute the gradients of the LoRA parameters in the L4Q linear
layer, we must trace back from Equation 8 to 6. Due to the full integration of quantization and
LoRA parameters (Equation 6 and 7), the gradients of the LoRA parameters also rely on the weight
gradients. This then be described as follows:

∂L

∂A
=

∂L

∂Wq

∂Wq

∂A
,

∂L

∂B
=

∂L

∂Wq

∂Wq

∂B
(10)

Since we reuse the weight gradient ∂L
∂Wq

that have already been computed for QAT, we only need

to compute ∂Wq

∂A and ∂Wq

∂B to obtain the gradients of LoRA parameters. Both terms are derived by
applying the chain rule to Equation 7 and Equation 6. Since Equation 7 contains a rounding function,
we apply STE and clamping with conditional gradient propagation to ∂Wq

∂A and ∂Wq

∂B . Moreover, in
Equation 6, the LoRA parameters A and B are simply multiplied, so its gradients are expressed
directly as αB⊤ and αA⊤, respectively. This leads to the following expressions for ∂Wq

∂A and ∂Wq

∂B :

∂Wq

∂A
=

{
αB⊤, if Qn ≤ w ≤ Qp

0, otherwise
,

∂Wq

∂B
=

{
αA⊤, if Qn ≤ w ≤ Qp

0, otherwise
(11)

Therefore, the proposed L4Q efficiently processes LoRA training by simply reusing the weight
gradients computed for QAT parameter training. For more detailed explanations of the gradient
calculation in L4Q, please refer to Appendix A.2, and the memory efficiency of L4Q will be further
examined in Section 4.

Joint Optimization of Quantization and LoRA parameters Since ∂L
∂Wq

is involved in the gradi-
ent calculation for the LoRA parameters (Equation 10), the proposed L4Q ensures that the impact
of quantization is directly reflected in the updates to the LoRA parameters. This enables the joint
optimization of LoRA parameters and the quantization process, enhancing the accuracy of the fully-
quantized LLMs.

In summary, the proposed L4Q produces a fully-quantized model for memory-efficient and fast LLM
inference by fully integrating the model weights and LoRA parameters prior to the quantization
process. Additionally, the training process of L4Q is memory-efficient due to careful handling of
gradient computation for quantization. Finally, L4Q can improve the accuracy of quantized LLMs
through the joint optimization of the quantization and LoRA parameters.
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Figure 3: The MMLU 5-shot benchmark results for LLaMA-2 7B models with 100-step training,
along with the sum of quantization and clipping errors, are presented for the initialization methods:
LSQ+, symmetric, asymmetric, and L4Q. Errors are reported at both the initial point (Initial) and
after training (Post-train).

3.3 QUANTIZATION PARAMETER INITIALIZATION

In L4Q, we address the outlier-sensitive nature of LLMs by improving the quantization parameter
initialization at the start of fine-tuning. While the initialization scheme in LSQ+ (LSQ+init) has
been shown to be effective by using multiples of standard deviation of weights as the quantiza-
tion range and setting the quantization scale accordingly, this approach was originally designed for
CNNs, not transformer-based LLMs. Studies on LLM quantization have shown that outliers in acti-
vation and their corresponding salient weights significantly impact model performance (Xiao et al.,
2023; Dettmers et al., 2024a; Lin et al., 2024). In LLM, the standard deviation of the small number
of weight groups is often much smaller than the absolute maximum value, causing large weights to
be more prone to clipping, resulting in significant clipping errors. To address this, we introduce a
quantization initialization scheme, L4Qinit, which minimizes clipping errors by adopting a conser-
vative quantization scale that captures both minimum and maximum outliers during training. The
detailed equation is as follows:

s = Max(|Min(W )

Qn
|, |Max(W )

Qp
|), b = 0 (12)

Note that conventional symmetric initialization involves division of the absolute maximum value of
the numbers, and asymmetric initialization involves division of the minimum to maximum range
of the number for the quantization scale initialization. Detailed explanation on LSQ+, symmetric,
asymmetric, and L4Q quantization initialization is presented in Appendix B.

We evaluate the models trained with L4Q using various initialization methods, comparing the accu-
racy, the sum of quantization error |W−Wq|, and the sum of clipping error of the overflowed outliers
at both the initialization point and the end of training. As shown in Figure 3, L4Qinit achieves the
highest accuracy, while LSQ+init struggles to recover from quantization errors. Although the overall
quantization error remains similar across methods, clipping errors are notably higher in LSQ+init

and symmetric initialization. Additionally, while asymmetric initialization avoids outliers at the
start, it fails to handle emerging outliers during fine-tuning as the weight distribution shifts. Its tight
initialization, focused on the minimum to maximum range, becomes insufficient as weights change,
leading to higher clipping error. In contrast, L4Qinit considers the broader weight distribution in
LLMs, reducing both quantization and clipping errors effectively.

3.4 OVERALL L4Q ALGORITHM

The overall L4Q algorithm is outlined in Algorithm 1. In the initial phase, L4Q undergoes a warm-
up stage with LoRA fine-tuning only. Since the quantization function includes a clamping mech-
anism, applying it to LoRA at the beginning of training can suppress gradient updates for outlier
values, which negatively affects LLM accuracy. Hence, L4Q warms up the LoRA parameters be-
fore applying quantization. The LoRA warm-up consists of Twp iterations, where Twp << T ,
with T representing the total number of training steps. An analysis of the effect of LoRA warm-up
can be found in Appendix C. After the warm-up phase, L4Q combines the pre-trained weights and

7
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Algorithm 1 L4Q Algorithm

Require: Pre-trained weight W0, Fine-tuned weight Wcomb, Quantized weight Wq

Require: LoRA parameter A,B, LoRA configuration r, α
Require: Quantization parameter s, b, Quantization bit-width n
Require: Training step T , LoRA warm-up step Twp, State Iinit

Initialize A ∼ N(0, σ2), B ← 0, α← 1
2r , Iinit ← False

for t = 1 to T do
if t ≤ Twp then ▷ LoRA warm-up stage

Forward W0X + αBAX and Update (A,B)
else ▷ L4Q fine-tuning stage

if not Iinit then
Set Wcomb ←W0 + αBA
Initialize s, b← L4Qinit ▷ L4Qinit described in the equation 12
Set Iinit ←True

end if
Forward WqX and Update (A,B, s, b) ▷ Wq described in the equation 8

end if
end for

LoRA parameters (Equation 6), and then initializes the quantization parameters s and b, which de-
termine the quantization range, using these combined weights. While previous QAT schemes use
the standard deviation of weights to set the initial quantization range, and prior LLM quantization
approaches rely on the min/max of the weights, L4Q employs a relaxed min/max-based initialization
as discussed in Section 3.3. Then, the proposed L4Q conducts both QAT and LoRA, with gradient
computation as described in Section 3.2, to achieve high-accuracy fully-quantized models.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Target Foundation Models OpenLLaMA1, LLaMA-1 (Touvron et al., 2023a), and LLaMA-
2 (Touvron et al., 2023b) model families are used for the evaluation. Specifically, we assess the
OpenLLaMA model with 3B parameters, LLaMA-1 models with 7B, 13B, and 33B parameters, and
LLaMA-2 models with 7B and 13B parameters. When applying quantization, the quantization group
size is set to 128 for the LLaMA-1 and LLaMA-2 models, and 64 for the OpenLLaMA models.

Baselines We compare the proposed L4Q with previous PTQ and QA-PEFT methods. The base-
line PTQ methods include GPTQ and OmniQuant, while the baseline QA-PEFT methods include
QLoRA, QA-LoRA, and LoftQ. Although the original QLoRA and LoftQ employ non-uniform
quantization, we apply uniform quantization in our experiments for consistency across methods.
These uniformly quantized versions are referred to as QLoRA* and LoftQ*.

Evaluation Setups We establish the L4Q framework based on the Lit-GPT2 and huggingface trans-
formers3, both of which are open-source LLM frameworks. The rank of LoRA parameter r is set to
4 by default, as our experiments showed that r = 4 is sufficient to maintain performance. Further
details on the effect of rank size can be found in Appendix D. Meanwhile, as QA-LoRA reduces
the input dimension of the LoRA parameters to integrate them with the quantization bias parameter,
we double the rank r to 8 for a fair comparison in terms of the number of LoRA parameters. For
the fine-tuning process, we use the Stanford-Alpaca (Taori et al., 2023) dataset that consists of 52k
instruction-following samples generated from the instruction-tuned GPT 3.5 model (Brown et al.,
2020). This dataset is split into a training set with 50k samples and a validation set with 2k samples.
In line with standard LLM training conventions, we used bfloat16 for numerically stable fine-tuning.
The batch size for fine-tuning is 128. All experiments were conducted on an NVIDIA A100 80GB
GPU. Detailed hyperparameter settings for fine-tuning are provided in Appendix E.

1https://github.com/openlm-research/open llama
2https://github.com/Lightning-AI/lit-gpt.git
3https://github.com/huggingface/transformers.git
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OpenLLaMA LLaMA-1
Methods 3B 7B 13B 33B

LoRA 15.1 25.1 43.8 71.9

QLoRA 5.2 7.9 19.6 31.9
LoftQ 5.2 7.9 19.6 31.9
QA-LoRA 7.8 14.8 27.8 67.2

QAT 44.2 79.5 OOM OOM
QAT-LoRA 22.6 41.9 70.6 OOM
L4Q 15.3 25.4 44.3 73.2

Table 1: Memory cost (GB) for fine-tuning
LLMs on NVIDIA A100 GPU. (OOM: Out of
Memory)

Figure 4: The average inference speedup of
quantized models compared to pre-trained mod-
els.

Evaluation Metrics We evaluate the accuracy of LLMs on Commonsense QA (CSQA) (Gao
et al., 2021) and MMLU (Hendrycks et al., 2021) benchmarks. The CSQA benchmark includes
tasks from Hellaswag (Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC-challenge and ARC-
easy (Clark et al., 2018), Winogrande (Sakaguchi et al., 2020), BoolQ (Clark et al., 2019), and
Openbook QA (Talmor et al., 2019). The MMLU benchmark spans four subject categories: Hu-
manities, STEM, Social Sciences, and others made up of 57 subcategories of language tasks.

4.2 EVALUATION RESULTS

Memory Cost for Fine-Tuning We measure the peak memory usage during fine-tuning of 4-bit
LLMs using both the baseline methods and L4Q, as reported in Table 1. Since PTQ-based PEFT
methods apply PTQ before fine-tuning, the size of linear layers in the model is reduced by a factor
of 1/4, resulting in lower memory usage compared to naı̈ve LoRA, which fine-tunes full-precision
models. While both QAT and QAT-LoRA result in 2–3 times higher memory costs compared to
LoRA, the memory usage of L4Q is similar to that of LoRA. Although L4Q cannot reduce memory
costs as much as PTQ-based PEFT methods due to the use of 16-bit full-precision models during
fine-tuning, this result highlights that L4Q is well-designed to leverage the memory-efficient nature
of LoRA in training. Further analysis on the training efficiency of L4Q and baseline methods can be
found in Appendix F.

Inference Speedup We measure the inference speed of 16-bit pre-trained models and quantized
models using LLaMA-1 models. The quantized models include fully-quantized 4-bit models (L4Q
and QA-LoRA), which contain only quantized parameters, and mixed-precision 4&16-bit models
(LoftQ*, QLoRA*, and QAT-LoRA), which use additional 16-bit LoRA parameters. The inference
speed was measured with input batch sizes ranging from 1 to 64. The average speedup of quantized
models compared to full-precision 16-bit models is reported in Figure 4. The 4-bit models achieve
a speedup of 1.8× to 2.3× over the 16-bit models. More importantly, these 4-bit models achieve
a 1.4× to 1.6× speedup compared to mixed-precision 4&16-bit models, which are also quantized
versions of LLMs. This demonstrates that the full integration of QAT and LoRA in L4Q plays
a crucial role in achieving the best inference speed. More analysis on speedup can be found in
Appendix G.

Accuracy Results We compare the accuracy of baselines and L4Q. Specifically, we evaluate zero-
shot accuracy on the CSQA benchmark, and evaluate both zero-shot and few-shot (5-shot) accuracy
on the MMLU benchmark. Table 2 presents a comprehensive comparison between baselines and
the proposed L4Q after 4-bit LLM quantization. Since previous QA-PEFT methods involve a fine-
tuning stage after PTQ, they generally achieve higher accuracy compared to PTQ methods. L4Q
further improves accuracy of 4-bit models by adopting QAT strategy, and it achieves accuracy com-
parable to 16-bit models. Moreover, L4Q consistently outperforms QAT-LoRA, which adopts QAT
but keeps quantization and LoRA parameters decoupled. This highlights the advantage of L4Q in
achieving superior accuracy through the joint optimization of quantization and LoRA parameters.
We also evaluate accuracy with 3-bit LLM quantization. As presented in Table 3. L4Q achieves the
best accuracy in this case as well. Notably, the impact of applying QAT on accuracy is more pro-
nounced in 3-bit quantization, as previous approaches experience significant accuracy degradation
with 3-bit quantization.
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Table 2: Accuracy (%) evaluation results with 4-bit quantization. The bit precision of weight param-
eters is indicated under the method name. The notation ‘4+16’ refers to the requirement of 16-bit
LoRA parameters alongside 4-bit weights for inference.

Pre-
trained LoRA GPTQ OmniQ. LoftQ* QLoRA* QA-

LoRA
QAT-
LoRA L4Q

Model Benchmark 16 16 4 4 4+16 4+16 4 4+16 4

OpenLLaMA 3B CSQA 54.8 55.9 50.7 54.1 54.2 54.4 54.5 54.6 55.0
LLaMA-1 7B CSQA 61.7 63.4 59.4 58.1 62.6 61.3 61.3 62.4 62.7

MMLU0-shot 32.5 36.3 28.3 30.9 33.0 32.8 34.5 33.8 34.9
MMLU5-shot 35.1 36.7 32.7 33.3 35.1 33.6 35.6 34.8 35.7

LLaMA-1 13B CSQA 63.8 65.2 63.5 60.4 64.2 63.8 62.5 64.4 64.5
MMLU0-shot 43.6 44.3 40.1 42.6 42.4 42.1 42.4 42.0 43.2
MMLU5-shot 46.3 47.0 45.7 45.7 45.4 45.9 45.8 45.5 46.0

LLaMA-1 33B CSQA 67.4 68.3 65.7 62.9 67.4 66.2 65.3 67.3 67.5
MMLU0-shot 53.0 54.4 51.4 52.0 51.8 51.0 48.9 52.3 53.3
MMLU5-shot 56.4 57.6 55.7 55.8 56.4 55.6 55.0 56.7 56.7

LLaMA-2 7B CSQA 61.9 63.3 60.7 59.5 61.7 61.3 61.0 61.9 63.6
MMLU0-shot 41.6 43.9 37.1 41.0 38.5 38.6 38.9 37.9 40.9
MMLU5-shot 45.4 46.0 42.9 45.4 43.7 44.6 44.4 43.8 45.5

LLaMA-2 13B CSQA 65.0 66.5 64.4 59.9 64.9 64.0 64.5 64.7 65.8
MMLU0-shot 52.1 52.5 50.0 51.8 51.7 50.7 50.4 50.7 51.9
MMLU5-shot 54.8 55.7 54.7 54.7 54.5 54.2 54.1 53.8 55.2

Table 3: Accuracy (%) evaluation results with 3-bit quantization. The bit precision of weight param-
eters is indicated under the method name. The notation ‘3+16’ refers to the requirement of 16-bit
LoRA parameters alongside 3-bit weights for inference.

Pre-
trained LoRA GPTQ OmniQ LoftQ* QLoRA* QA-

LoRA
QAT-
LoRA L4Q

Model Benchmark 16 16 3 3 3+16 3+16 3 3+16 3

OpenLLaMA 3B CSQA 54.8 55.9 52.2 50.0 38.1 51.0 51.5 53.2 54.0
LLaMA-1 7B CSQA 61.7 63.4 53.4 56.5 49.8 59.1 58.7 60.7 61.2

MMLU0-shot 32.5 36.3 23.7 29.0 23.4 27.7 28.0 30.6 30.6
MMLU5-shot 35.1 36.7 27.3 31.6 23.1 31.5 29.1 31.5 31.8

LLaMA-1 13B CSQA 63.8 65.2 61.0 58.9 54.0 61.3 61.1 63.2 63.4
MMLU0-shot 43.6 44.3 33.1 34.8 25.0 36.1 37.5 38.8 40.7
MMLU5-shot 46.3 47.0 38.2 41.6 25.3 40.4 38.2 40.9 41.8

LLaMA-2 7B CSQA 61.9 63.3 57.6 57.9 34.7 57.6 56.3 57.4 61.3
MMLU0-shot 41.6 43.9 31.3 34.3 22.9 32.5 31.0 31.5 34.9
MMLU5-shot 45.4 46.0 37.5 37.7 24.2 37.6 37.5 36.8 38.0

LLaMA-2 13B CSQA 65.0 66.5 61.7 59.9 39.3 62.5 61.7 64.3 65.1
MMLU0-shot 52.1 52.5 46.3 46.3 23.5 46.8 46.4 45.9 47.1
MMLU5-shot 54.8 55.7 50.4 50.2 26.0 50.6 49.9 48.9 50.0

5 CONCLUSION

In this work, we introduce L4Q, a parameter-efficient quantization-aware fine-tuning method for
large language models. L4Q enables element-wise adaptation of model weights for downstream
tasks while simultaneously optimizing quantization parameters. This concurrent optimization en-
sures that the adaptation parameters effectively account for quantization errors. We demonstrate
the efficiency of L4Q, which significantly reduces training resource requirements compared to tra-
ditional QAT. Moreover, since the L4Q layer is designed to produce fully quantized low-bit model
weights, it maintains inference efficiency, unlike QLoRA, LoftQ, or QAT-LoRA, which result in
mixed-precision models. The effectiveness of L4Q as a QAT framework is further supported by
experimental results across various task evaluations. L4Q consistently achieves superior quality
maintenance on language tasks, demonstrating its enhanced adaptability compared to QAT-LoRA
and PTQ-based PEFT methods.
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we acknowledge that there are potential societal consequences associated with this work. However,
we do not delve into the potential harms or biases inherent in these models.

REPRODUCIBILITY STATEMENT

This paper introduces a novel algorithm for quantization layer design and the training process. To
ensure reproducibility, the source code is provided as an anonymous, downloadable link in the sup-
plementary materials, along with detailed explanations of the environmental setup and execution
process. The theoretical results are thoroughly explained with clear assumptions, and complete
proofs are included in the appendix. Additionally, detailed descriptions of the data processing steps
for all datasets used in the experiments are available in the supplementary materials. These resources
are intended to fully enable the reproduction of our results.
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A DETAILS ON QUANTIZATION SCALE LEARNING PROCEDURE

A.1 QUANTIZATION SCALE UPDATE ON QAT

From the conditions and notations in Equation 3, Equations 4 and 5 are derived as follows. First,
the derivative of s is presented as follows.

∂Wq

∂s
=

∂

∂s
(w̃ × s+ b) = s

∂

∂s
(w̃) + w̃ = s

∂

∂s
(R · clamp(w)) + w̃ (13)

By applying the STE, the rounding function R is considered as an identity function. Therefore, the
rounding function, combined with a clamp function R̃ := R · clamp, and its derivative is induced
as follows. Note that w = W−b

s .

R̃(w) =


Qn, if w < Qn

w, if Qn ≤ w ≤ Qp

Qp, if w > Qp

∂

∂w
R̃(w) =

{
1, if Qn ≤ w ≤ Qp

0, otherwise
(14)

By applying the chain rule, the derivation of term R · clamp(w) = R̃((W − b)/s) is expressed as
below.

∂

∂s
(R̃(w)) =

∂R̃

∂w

∂w

∂s
=

∂R̃

∂w

∂

∂s
(
W − b

s
) =

∂R̃

∂w
(−W − b

s2
) (15)

Therefore, Equation 13 can be represented with a value w and quantized value w̃ as follows.

∂Wq

∂s
= s

∂R̃

∂w
(−W − b

s2
) + w̃ =

∂R̃

∂w
(−W − b

s
) + w̃ =


Qn, if w < Qn

−w + w̃, if Qn ≤ w ≤ Qp

Qp, if w > Qp

(16)

Secondly, with a similar context above, the derivative of b is presented as follows.

∂Wq

∂b
=

∂

∂b
(w̃ × s+ b) = s

∂

∂b
(R̃(w)) + 1 = s

∂R̃

∂w
(
∂

∂b
(
W − b

s
)) + 1 (17)

=
∂R̃

∂w
(−1) + 1 =

{
0, if Qn ≤ w ≤ Qp

1, otherwise
(18)

We also note that the gradient of Wq is presented as follows.

∂L

∂Wq
=

∂L

∂Y
X⊤ (19)

As a result, the updates on the quantization scale and bias are calculated as multiplication of Equa-
tion 19 with Equation 13 and with Equation 17, respectively. This update helps calibrate the quanti-
zation function, effectively reducing quantization errors.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 QUANTIZATION SCALE AND LORA PARAMETER UPDATE ON L4Q

In L4Q, as described in Equation 8, the quantized weight Wq is obtained as follows. First, the pre-
trained model weight W0 and LoRA parameters are integrated to Wcomb = W0 + αBA. Next, the
integrated weight is quantized by the quantization parameters s, b.

Here, the LoRA parameters A and B are independent of the quantization parameters, scale s and
bias b. Therefore, the derivatives of s, b follow the same process as in Equation A.1, but with the
term w, w̃ defined as follows. Note that Wq = w̃ × s+ b.

w =
W0 + αBA− b

s
, w̃ = R̃(w) s.t. R̃ = R · clamp (20)

Seen from the L4Q layer that integrates the LoRA parameters and quantization parameters together,
A,B are now considered as variables of Wq . Therefore, from the conditions in Equation 8, the
derivative of A,B is presented as follows.

∂L

∂A
=

∂Wq

∂A

∂L

∂Wq
,

∂L

∂B
=

∂L

∂Wq

∂Wq

∂B
(21)

The derivatives ∂w
∂A and ∂w

∂B are then can be computed by applying the chain rule with w, as follows:

∂Wq

∂A
=

∂w

∂A

∂Wq

∂w
,

∂Wq

∂B
=

∂Wq

∂w

∂w

∂B
(22)

From Equation 20, the terms ∂w
∂A , ∂w

∂A , and ∂W
∂w can be expressed as follows:

∂w

∂A
=

αB⊤

s
,

∂w

∂B
=

αA⊤

s
,

∂W

∂w
=

∂

∂w
(R̃(w)s+ b) = s

∂R̃

∂w
(23)

Therefore, by substitution of Equation 23 and applying STE on ∂R̃
∂w from Equation 14 on Equation

22, the equation is simplified by the crossed-out products between the terms. As a result, the partial
derivatives presented in Equation 10 can be derived as follows.

∂Wq

∂A
=

∂w

∂A

∂Wq

∂w
= (

αB⊤

s
)(
s∂R̃

∂w
) =

{
αB⊤, if Qn ≤ w ≤ Qp

0, otherwise
(24)

∂Wq

∂B
=

∂W

∂w

∂w

∂B
= (s

∂R̃

∂w
)(
αA⊤

s
) =

{
αA⊤, if Qn ≤ w ≤ Qp

0, otherwise
(25)

Finally, substitution of Equation 24 and 25 to Equation 21 derives the Equation 26 and 27.

∂L

∂A
=

{
αB⊤( ∂L∂Y X⊤), if Qn ≤ w ≤ Qp

0, otherwise
(26)

∂L

∂B
=

{
α( ∂L∂Y X⊤)A⊤, if Qn ≤ w ≤ Qp

0, otherwise
(27)

This form closely resembles the original backpropagation structure of the LoRA parameters A,B
as shown in Equation 2, where the updates are expressed as ∂L

∂A = α ∂L
∂X̃

X⊤ = α(B⊤ ∂L
∂Y )X⊤,

and ∂L
∂B = α ∂L

∂Y X̃⊤ = α ∂L
∂Y (AX)⊤, respectively. However, in L4Q, this process includes an

added gating condition on the quantized weights, which accounts for the integration of quantization
into the LoRA parameters. As a result, we conclude that the backward process of the L4Q layer,
which integrates both quantization parameter learning and LoRA parameter adaptation, is designed
to account for the impact of quantization on the LoRA parameter updates.
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B QUANTIZATION INITIALIZATION

We evaluate various quantization initialization schemes within L4Q, including method introduced
in Section 3.3, LSQ+ (Bhalgat et al., 2020), and conventional symmetric and asymmetric quanti-
zation parameter initialization. The methods are depicted as L4Qinit, LSQ+init, Symm, Asymm,
respectively. In specific, each methods can be represented as the equations below, with quantiza-
tion scale s and bias b and group-wise aligned model weight W with quantization bit-width n and
Qn = −2n−1, Qp = 2n−1 − 1.

LSQ+init : s =
Max(|µ− 3σ(W )|, |µ+ 3σ(W )|)

2n−1
(28)

b = 0 (29)

Symm : s =
Max(Abs(W ))

2n−1
(30)

b = 0 (31)

Asymm : s =
Max(W )−Min(W )

Qp −Qn
(32)

b = Max(W )− s×Qp = Min(W )− s×Qn (33)

L4Qinit : s = Max(|Min(W )

Qn
|, |Max(W )

Qp
|) (34)

b = 0 (35)

We report the detailed model accuracy evaluation results of L4Q fine-tuning across different initial-
ization methods, along with the quantization error and clipping error for each method, measured
both at the initialization point and the end of the training, in Table 4. The LLaMA-2 7B model was
trained for a total of 12,800 iterations with batch size 128, using the same hyperparameters as those
in the main evaluation.

Table 4: MMLU 5-shot benchmark and the sum of quantization errors for various quantization
parameter initialization methods within L4Q on the LLaMA-2 7B model. Quantization errors are
represented in order of 106 and clipping errors are represented in order of 103.

MMLU 5-shot Initial Post-train
Model Method #Bits Human. STEM Social. Others Average Equant Eclip Equant Eclip

LLaMA-2 7B LSQ+ 4 26.7 26.8 26.2 22.9 25.7 11.8 278.0 11.8 360.6
Symm 4 40.8 35.9 48.2 50.1 43.5 11.1 260.0 11.0 282.1
Asymm 4 41.0 37.1 49.7 50.2 44.2 10.5 0.0 10.5 64.7
L4Q 4 42.9 37.7 50.5 51.9 45.3 11.4 0.0 11.6 36.1
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C EFFECT OF LORA WARM-UP ON L4Q TRAINING

We investigated the effect of LoRA warm-up on L4Q training and found that a small number of
LoRA warm-up steps is often beneficial for quickly restoring model accuracy. Using LLaMA-1 and
LLaMA-2 7B models, we trained the models for a total of 12,800 iterations with 128 batches. The
remaining training conditions, such as the quantization target layers and the rank of LoRA param-
eters, were kept consistent with the main experimental setup. The Commonsense QA evaluation
results are presented in Table 5.

Table 5: Commonsense QA benchmark result with the variations of LoRA warm-up on LLaMA-1
and LLaMA-2 7B models. The numbers represent the accuracy(%) of each task.

Model #Bits Warmup Hella. PIQA ARC-c ARC-e Winog. BoolQ OBQA Avg.
LLaMA-1 7B 4 0 58.0 78.9 45.1 76.6 70.1 76.5 37.0 63.2

10 58.0 78.5 44.9 76.4 69.7 76.5 36.4 62.9
20 57.9 78.8 45.2 76.4 70.1 76.1 36.2 62.9
40 57.5 78.6 45.6 76.0 69.8 75.8 35.4 62.7
80 57.2 78.6 45.1 75.3 69.6 75.1 34.8 62.2

3 0 55.8 77.2 41.9 73.6 68.1 76.1 32.8 60.8
10 55.7 77.2 42.0 74.0 68.2 75.9 33.0 60.8
20 55.0 77.5 41.5 74.0 68.0 74.9 32.2 60.4
40 54.3 77.3 41.1 73.3 66.5 73.7 31.8 59.7
80 52.6 76.8 39.5 71.7 65.4 71.0 31.8 58.4

LLaMA-2 7B 4 0 57.5 78.1 46.9 75.8 69.8 76.0 35.0 62.7
10 57.1 78.2 46.0 76.0 69.5 75.8 35.8 62.6
20 57.2 78.5 46.1 76.5 69.9 77.7 34.2 62.8
40 57.1 78.2 45.7 76.5 69.5 77.3 34.8 62.7
80 56.5 78.4 46.2 76.4 70.7 74.5 34.0 62.4

3 0 55.6 77.9 42.1 74.3 69.5 72.0 34.0 60.8
10 55.7 78.6 44.0 74.2 68.4 72.5 34.8 61.2
20 55.5 77.8 43.0 74.6 69.0 71.7 34.2 60.8
40 55.4 77.8 43.4 73.6 68.9 71.7 35.0 60.8
80 53.9 76.8 42.1 73.7 67.3 71.8 34.4 60.0

Models with fewer than 20 LoRA warm-up steps performed best, as initializing LoRA parameters
with minimal disturbance from quantization errors facilitated better convergence. Extending the
LoRA warm-up beyond the quantization-aware fine-tuning phase, however, resulted in performance
degradation, likely due to an insufficient number of training steps to fully compensate for quanti-
zation errors. Considering the variability in impact across different models and configurations, we
generally applied 10 LoRA warm-up steps in our experiments.
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D ABLATIVE STUDY ON LORA RANK

We investigated the effect of LoRA rank size on L4Q training and found that a rank size of around
4 is sufficient for effective training. Using the LLaMA-1 7B model, we conducted training over
12,800 iterations with 128 batches. The remaining training conditions are consistent with the main
experiments. The evaluation results for Commonsense QA and MMLU are presented in Table 6 and
Table 7, respectively.

Table 6: Commonsense QA benchmark result on LLaMA-1 7B model. The numbers represent
accuracy (%) for each task.

Model Rank HellaSwag PIQA ARC-c ARC-e Winogrande BoolQ OBQA Average
LLaMA-1 7B 1 56.9 79.1 43.7 76.0 69.9 76.6 35.4 62.5

2 58.6 78.6 45.4 76.8 69.9 74.1 36.4 62.8
4 57.8 79.1 45.3 76.0 69.5 76.1 34.8 62.7
8 58.5 79.1 45.8 76.5 70.2 75.8 37.0 62.7
16 58.3 78.8 44.5 75.8 69.8 78.3 35.2 63.0
32 58.6 79.0 45.2 76.3 70.2 76.7 37.6 63.4
64 58.4 79.0 45.5 76.5 70.0 78.7 37.8 63.2
128 58.6 79.1 45.9 76.7 70.6 75.8 36.4 63.3

Table 7: MMLU benchmark result on LLaMA-1 7B model. The numbers represent accuracy (%)
for each category.

0-shot 5-shot
Model Rank Hums. STEM Social Others Avg. Hums. STEM Social Others Avg.
LLaMA-1 7B 1 31.8 29.2 32.9 37.0 32.7 32.3 30.7 35.2 39.9 34.4

2 30.7 28.3 32.7 37.5 32.2 33.0 29.3 34.3 37.2 33.5
4 32.4 32.1 36.7 39.4 34.9 32.9 31.4 38.7 39.5 35.4
8 33.5 31.9 37.7 39.4 35.5 34.2 30.7 38.4 39.8 35.7
16 30.0 31.6 35.1 38.1 33.5 32.2 31.2 35.3 38.1 34.8
32 32.1 30.8 33.2 36.5 33.1 32.5 31.7 37.2 39.5 35.0
64 33.4 31.2 36.1 38.8 34.8 33.6 31.1 35.9 39.5 35.0
128 31.8 29.7 34.5 37.6 33.3 33.3 31.1 35.7 38.3 34.5

Increasing the rank beyond 32 or 4 does not lead to further performance improvements, which aligns
with the observations in the original LoRA paper (Hu et al., 2022). Therefore, we generally applied
a rank size of 4, considering that higher rank sizes introduce memory and computational overhead
during training.
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E EXPERIMENTAL SETTINGS

The baselines and L4Q are trained with AdamW optimizer Loshchilov & Hutter (2019) with a
weight decay of 0.01. For the learning rate scheduler, a cosine decay scheduler with a linear warm-
up through 10% of the total training steps. Learning rates are presented in Table 8.

Table 8: Learning rate conditions used to fine-tuning on each models for L4Q and baselines:
QLoRA*, QA-LoRA, and QAT-LoRA.

Methods
Model QLoRA* QA-LoRA QAT-LoRA L4Q

OpenLLaMA 3B 1× 10−5 2× 10−5 5× 10−5 5× 10−5

LLaMA-1 7B 1× 10−5 2× 10−5 5× 10−5 5× 10−5

LLaMA-1 13B 1× 10−5 5× 10−5 4× 10−5 4× 10−5

LLaMA-1 33B 1× 10−5 5× 10−5 2× 10−4 2× 10−4

LLaMA-2 7B 2× 10−5 - 2× 10−4 2× 10−4

LLaMA-2 13B 2× 10−5 - 2× 10−4 2× 10−4

Batch size is set to 128. 50K iterations for the baselines that utilize PTQ applied schemes, such as
QLoRA* and QA-LoRA, and 25K iterations for QAT involving schemes, such as QAT, QAT-LoRA,
and L4Q are utilized to match the training latency. The training sequence length of training is set
to above the maximum sequence length of the dataset, which is 2048, except for a 33B model with
L4Q that is set to 128.

F TRAINING TIME

We report the total training time of L4Q and the quantization-aware PEFT baselines, QLoRA* and
QA-LoRA, in Table 9. L4Q demonstrates similar time performance to the baselines, highlighting its
scalability and time efficiency for larger model sizes, comparable to that of the baseline methods.

Table 9: Training time (in hours) spent on fine-tuning on OpenLLaMA and LLaMA-1 models with
a A100 GPU.

OpenLLaMA LLaMA-1
Methods 3B 7B 13B 33B
QLoRA* 4.5 9.9 18.0 38.4
QA-LoRA 5.0 11.2 19.8 36.2
L4Q 4.4 10.1 16.9 39.6
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G THROUGHPUT AND SPEEDUP OF FULLY-QUANTIZED MODELS AND
MIXED-PRECISION MODELS

We investigate the throughput and speedup of fully-quantized models and mixed-precision models,
demonstrating that, although the number of LoRA parameters is negligible, it causes a noticeable
drop in throughput when its forward path is not merged with that of the base linear layer. Using the
LLaMA-1 7B, 13B, and 33B models, we conducted experiments to measure throughput (tokens per
second) and compare speedup. In both fully-quantized and mixed-precision models, uniform quan-
tization is applied to the linear layers, except for the head layer (lm head), using the EXLLaMA2
kernel4, which is designed for 4-bit weight-only quantized inference. For fp16 computations in
LoRA within mixed-precision models or the baseline, default GEMM kernels are used. We mea-
sured the elapsed time for inferencing 512 tokens over 2000 data points with batch sizes ranging
from 1 to 64, calculating throughput by dividing the number of tokens, which is set to be 512, by
the elapsed time. The results are presented in Table 10.

Table 10: Throughput (tokens/sec) and Speedup for LLaMA models. L4Q represents fully-
quantized models, and QLoRA* represents mixed-precision models. ’OOM’ indicates out-of-
memory cases.

Batch size
Model Method 1 2 4 8 16 32 64 Speedup
LLaMA-1 7B L4Q 38.04 75.12 148.63 216.51 255.64 276.43 318.43 1.81

QLoRA* 24.80 47.88 96.51 184.06 234.79 247.79 299.94 1.33
None 17.04 33.81 67.27 124.13 199.19 241.31 OOM 1.00

LLaMA-1 13B L4Q 30.68 59.53 115.78 144.44 160.95 191.20 OOM 1.92
QLoRA* 19.71 38.90 77.83 128.67 150.72 156.16 OOM 1.41
None 13.67 26.97 53.23 85.47 124.17 OOM OOM 1.00

LLaMA-1 30B L4Q 20.43 40.05 64.00 73.29 79.77 OOM OOM 2.25
QLoRA* 13.22 25.48 50.81 66.89 75.11 OOM OOM 1.44
None 9.13 17.68 OOM OOM OOM OOM OOM 1.00

Fully-quantized models demonstrate a speedup of over 1.8x, while mixed-precision models achieve
a maximum speedup of 1.4x, despite using the same quantization scheme and execution kernel,
compared to the fp16 baselines. As a result, fully-quantized models achieve a 30% to 50% greater
speedup compared to mixed-precision models. This demonstrates that L4Q, which produces fully-
quantized models, offers higher inference efficiency and better hardware utilization than conven-
tional quantization-aware PEFT methods, such as QLoRA and LoftQ, which retain unmerged for-
ward paths for LoRA.

H DETAILED RESULT ON MAIN EVALUATIONS

We present the Commonsense QA and MMLU benchmark results with averaged accuracy score
on Section 4. We present the detailed results of each benchmarks composed of several categories
of tasks in Table 11 and Table 12 below. Through evaluation, we demonstrate that L4Q generally
achieves higher accuracy in low-bit quantized models compared to both PTQ methods and PTQ-
based fine-tuning methods. Notably, L4Q surpasses the pre-trained models on the Commonsense
QA benchmarks and on the MMLU benchmarks with LLaMA-1 7B and 33B models. In contrast,
PTQ-based fine-tuning methods, including those that incorporate high-precision LoRA weights,
show lower performance compared to both L4Q and the pre-trained models. These results emphasize
the challenges of recovering from quantization errors with PTQ alone and highlight the effectiveness
of L4Q’s joint quantization and fine-tuning scheme.

4https://github.com/turboderp/exllamav2.git

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 11: Commonsense QA benchmark result. The numbers represent accuracy (%) of each task.

Model Method #Bits Hella. PIQA ARC-c ARC-e Winogr. BoolQ OBQA Avg.
OpenLLaMA 3B None 16 48.8 75.0 33.9 69.2 61.6 66.9 28.2 54.8

LoRA 16 49.8 75.6 37.0 70.2 63.1 68.0 27.2 55.9
GPTQ 4 47.9 75.1 31.0 58.8 60.5 57.9 23.6 50.7
OmniQ 4 48.2 73.8 33.1 69.5 60.1 67.5 26.6 54.1
LoftQ* 4+16 48.0 74.5 34.0 68.6 60.9 67.2 26.0 54.2
QLoRA* 4+16 48.4 74.3 33.0 69.4 61.5 67.1 26.8 54.4
QA-LoRA 4 48.8 74.9 33.8 69.2 61.9 66.7 26.2 54.5
QAT-LoRA 4+16 48.8 74.5 35.0 70.1 61.9 65.2 27.0 54.6
L4Q 4 49.1 74.9 35.2 69.8 61.1 67.7 27.4 55.0
GPTQ 3 46.3 72.6 31.8 64.7 58.1 66.5 25.6 52.2
OmniQ 3 46.5 74.4 30.5 56.6 59.0 59.8 23.0 50.0
LoftQ* 3+16 27.9 57.3 19.5 37.3 51.0 61.9 12.0 38.1
QLoRA* 3+16 45.6 72.6 29.3 61.6 59.7 64.2 24.4 51.0
QA-LoRA 3 46.3 72.6 28.9 66.0 59.5 63.4 23.8 51.5
QAT-LoRA 3+16 46.7 74.1 33.2 67.2 60.5 64.1 26.4 53.2
L4Q 3 47.2 75.0 32.3 68.3 60.9 67.2 27.0 54.0

LLaMA 7B None 16 57.0 78.7 41.9 75.3 69.9 75.1 34.4 61.7
LoRA 16 58.3 78.8 45.7 76.1 70.6 78.7 35.4 63.4
GPTQ 4 53.9 77.7 40.3 73.5 67.9 72.9 30.0 59.4
OmniQ 4 55.7 77.7 38.8 67.5 65.3 72.5 29.2 58.1
LoftQ* 4+16 57.8 79.2 43.1 76.9 69.8 75.8 35.4 62.6
QLoRA* 4+16 56.7 78.9 41.8 75.2 70.0 74.6 32.2 61.3
QA-LoRA 4 57.2 78.9 41.2 74.9 70.6 73.6 32.6 61.3
QAT-LoRA 4+16 57.7 78.9 44.7 75.3 68.9 75.8 35.6 62.4
L4Q 4 57.8 79.1 45.3 76.0 69.5 76.1 34.8 62.7
GPTQ 3 46.6 71.9 32.4 65.4 65.0 68.0 24.6 53.4
OmniQ 3 54.0 77.1 35.6 64.9 64.7 71.2 28.0 56.5
LoftQ* 3+16 43.4 68.9 33.0 65.5 56.5 58.5 23.0 49.8
QLoRA* 3+16 53.9 76.2 39.3 71.5 68.9 72.8 31.0 59.1
QA-LoRA 3 55.4 76.3 39.8 72.5 69.5 67.1 30.6 58.7
QAT-LoRA 3+16 56.1 77.4 41.6 72.8 68.0 76.0 33.0 60.7
L4Q 3 55.9 77.6 42.1 74.1 68.9 76.8 33.4 61.2

LLaMA 13B None 16 59.9 79.2 46.5 77.4 72.8 78.0 33.2 63.8
LoRA 16 60.8 79.7 50.3 78.6 72.3 80.2 34.8 65.2
GPTQ 4 58.9 79.3 46.5 77.0 72.7 76.5 33.8 63.5
OmniQ 4 58.6 79.7 43.8 73.5 70.5 68.7 28.4 60.4
LoftQ* 4+16 60.6 79.0 48.3 77.7 72.9 76.0 35.0 64.2
QLoRA* 4+16 59.6 79.2 46.5 77.1 72.5 78.1 33.4 63.8
QA-LoRA 4 60.1 79.0 46.8 77.0 71.4 67.1 36.2 62.5
QAT-LoRA 4+16 60.9 79.2 48.2 78.6 71.5 77.0 35.6 64.4
L4Q 4 60.9 79.8 48.2 78.5 71.7 76.7 35.4 64.5
GPTQ 3 57.3 77.3 42.6 73.0 71.0 74.6 31.4 61.0
OmniQ 3 56.8 77.2 39.9 72.7 68.5 67.0 29.8 58.9
LoftQ* 3+16 47.8 72.1 37.6 70.8 58.3 65.5 25.8 54.0
QLoRA* 3+16 56.6 77.8 43.9 75.1 70.8 73.5 31.6 61.3
QA-LoRA 3 57.7 78.0 44.7 75.3 71.2 68.6 32.4 61.1
QAT-LoRA 3+16 59.1 78.1 46.3 77.0 70.8 74.7 36.2 63.2
L4Q 3 58.9 78.4 45.8 77.4 70.2 77.7 35.2 63.4

LLaMA 33B None 16 63.3 81.0 52.8 80.4 75.9 82.6 36.0 67.4
LoRA 16 64.1 81.3 53.7 81.6 75.5 84.0 37.6 68.3
GPTQ 4 61.8 80.5 49.1 78.9 73.6 82.2 33.6 65.7
OmniQ 4 62.3 80.0 48.5 75.8 73.9 69.1 31.0 62.9
LoftQ* 4+16 63.3 80.3 51.8 81.4 75.3 82.9 37.0 67.4
QLoRA* 4+16 62.3 80.2 50.2 79.5 74.9 81.0 35.4 66.2
QA-LoRA 4 62.8 80.3 50.1 79.5 75.1 73.2 36.4 65.3
QAT-LoRA 4+16 62.3 81.3 53.0 81.6 74.9 82.7 35.4 67.3
L4Q 4 63.9 81.0 53.0 81.3 75.0 82.8 35.8 67.5
LoftQ* 3+16 46.1 74.9 38.9 73.9 58.3 63.5 28.2 54.8
QLoRA* 3+16 59.6 78.7 46.0 76.8 72.5 81.6 34.6 64.3
QA-LoRA 3 61.1 79.6 47.8 78.0 73.8 79.3 33.0 64.6
QAT-LoRA 3+16 63.3 81.0 52.8 81.3 75.5 82.8 35.4 67.4
L4Q 3 63.0 81.0 52.6 81.4 75.5 82.8 35.4 67.4

LLaMA 2 7B None 16 57.1 78.1 43.4 76.3 69.1 77.7 31.4 61.9
LoRA 16 57.9 78.9 48.0 77.4 70.3 75.8 34.8 63.3
GPTQ 4 56.0 77.5 42.2 75.0 68.2 76.4 29.8 60.7
OmniQ 4 56.0 77.7 41.3 69.9 67.8 73.5 30.2 59.5
LoftQ* 4+16 57.0 78.0 43.3 76.3 69.2 76.8 31.4 61.7
QLoRA* 4+16 56.6 77.8 43.3 75.2 69.1 75.3 31.8 61.3
QA-LoRA 4 56.4 79.3 73.3 39.2 71.8 75.5 31.4 61.0
QAT-LoRA 4+16 56.6 77.7 43.7 75.6 69.5 77.7 32.6 61.9
L4Q 4 57.2 78.8 47.1 76.9 70.2 80.4 34.8 63.6
GPTQ 3 53.1 76.2 35.8 70.3 67.7 72.4 27.6 57.6
OmniQ 3 54.6 76.4 37.5 67.6 66.1 71.9 31.0 57.9
LoftQ* 3+16 27.1 55.7 19.0 31.1 48.8 48.1 12.8 34.7
QLoRA* 3+16 52.4 75.9 37.6 69.9 65.6 74.1 27.4 57.6
QA-LoRA 3 56.5 77.8 42.3 74.7 68.0 30.8 43.8 56.3
QAT-LoRA 3+16 52.0 75.2 39.3 71.1 65.1 69.9 29.3 57.4
L4Q 3 55.5 77.3 42.8 73.8 68.8 77.2 34.0 61.3

LLaMA 2 13B None 16 60.1 79.1 48.5 79.4 72.2 80.6 35.2 65.0
LoRA 16 61.2 79.4 53.0 79.8 73.2 81.4 37.4 66.5
GPTQ 4 59.5 78.3 47.3 78.7 72.1 80.9 34.2 64.4
OmniQ 4 59.0 78.1 43.7 71.3 68.7 66.6 32.0 59.9
LoftQ* 4+16 60.0 79.3 48.1 79.7 71.9 80.7 34.8 64.9
QLoRA* 4+16 59.6 78.4 46.6 77.9 72.2 79.2 33.8 64.0
QA-LoRA 4 59.4 78.5 79.1 46.9 72.3 80.7 34.4 64.5
QAT-LoRA 4+16 59.5 78.8 48.4 79.2 71.5 80.9 34.4 64.7
L4Q 4 60.9 80.1 51.2 79.7 71.0 82.2 35.8 65.8
GPTQ 3 57.3 77.2 43.5 76.1 69.9 74.0 34.0 61.7
OmniQ 3 57.8 78.2 42.0 72.3 68.0 69.9 31.2 59.9
LoftQ* 3+16 28.7 60.6 19.5 45.3 50.7 55.1 15.2 39.3
QLoRA* 3+16 57.8 77.9 44.3 76.7 70.0 78.1 32.6 62.5
QA-LoRA 3 57.3 77.2 76.0 43.4 70.1 73.7 34.0 61.7
QAT-LoRA 3+16 55.8 77.1 67.6 76.0 67.6 75.1 30.8 64.3
L4Q 3 59.3 78.7 51.2 78.5 70.6 79.9 37.4 65.1
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Table 12: MMLU benchmark result. The numbers represent accuracy(%) of each task.

0-shot 5-shot
Model Method #Bits Human. STEM Social Others Avg. Human. STEM Social Others Avg.
LLaMA 7B None 16 32.9 26.9 32.1 37.3 32.5 33.9 30.6 38.2 38.2 35.1

LoRA 16 36.1 31.5 36.9 40.6 36.3 34.4 30.3 39.9 43.1 36.7
GPTQ 4 28.4 27.1 27.0 30.4 28.3 31.5 30.4 33.7 35.7 32.7
OmniQ 4 31.1 26.7 29.8 35.5 30.9 31.1 29.8 35.5 37.5 33.3
LoftQ* 4+16 32.3 30.0 32.7 37.3 33.0 33.6 30.7 37.2 39.0 35.1
QLoRA* 4+16 33.1 27.1 33.1 37.5 32.8 32.3 29.0 35.4 38.0 33.6
QA-LoRA 4+16 33.5 29.5 34.6 37.4 33.8 32.2 32.4 35.6 39.9 34.8
QAT-LoRA 4 33.5 29.5 37.5 37.9 34.5 34.1 31.2 38.5 39.0 35.6
L4Q 4 32.4 32.1 36.7 39.4 34.9 34.2 30.7 38.4 39.8 35.7
GPTQ 3 25.0 22.5 22.0 24.5 23.7 25.9 25.7 28.2 29.7 27.3
OmniQ 3 27.8 29.7 26.8 32.2 29.0 31.6 32.1 33.7 29.7 31.6
LoftQ* 3+16 24.3 21.7 22.4 24.5 23.4 23.4 23.2 21.9 23.5 23.1
QLoRA* 3+16 27.8 27.1 26.6 29.1 27.7 30.5 28.6 32.1 34.9 31.5
QA-LoRA 3+16 28.2 29.7 32.0 33.7 30.6 29.8 29.2 32.2 34.6 31.5
QAT-LoRA 3 28.9 27.1 25.8 29.6 28.0 29.1 26.6 29.7 31.1 29.1
L4Q 3 29.5 27.8 32.1 33.3 30.6 29.3 31.0 33.5 30.4 31.8

LLaMA 13B None 16 41.0 36.5 49.3 48.6 43.6 43.8 35.3 52.7 54.2 46.3
LoRA 16 42.4 34.0 49.4 51.9 44.3 45.0 36.4 54.1 53.1 47.0
GPTQ 4 33.5 34.5 44.9 44.9 40.1 43.1 35.9 52.8 51.9 45.7
OmniQ 4 39.8 35.1 48.6 48.1 42.6 43.1 35.7 52.5 52.3 45.7
LoftQ* 4+16 39.0 34.8 47.8 48.5 42.4 43.4 34.3 52.3 52.1 45.4
QLoRA* 4+16 39.0 35.7 47.5 47.2 42.1 43.8 35.3 52.0 52.8 45.9
QA-LoRA 4+16 39.8 33.9 46.9 48.3 42.0 43.2 35.0 51.8 52.8 45.5
QAT-LoRA 4 35.3 35.2 47.7 47.9 42.4 43.0 34.6 53.0 53.6 45.8
L4Q 4 40.5 35.3 49.5 48.5 43.2 43.4 36.1 52.3 53.2 46.0
GPTQ 3 32.1 27.2 36.3 36.8 33.1 36.0 29.8 42.2 45.6 38.2
OmniQ 3 32.6 28.2 37.1 41.8 34.8 39.1 33.1 47.5 47.6 41.6
LoftQ* 3+16 25.1 24.7 24.0 26.1 25.0 24.9 27.4 24.1 25.0 25.3
QLoRA* 3+16 33.3 31.3 38.5 42.3 36.1 36.8 32.4 46.6 47.0 40.4
QA-LoRA 3+16 37.6 31.6 41.9 44.3 38.8 38.0 34.1 44.5 47.9 40.9
QAT-LoRA 3 35.9 28.4 42.4 43.5 37.5 34.8 31.5 43.0 44.8 38.2
L4Q 3 38.5 33.2 44.7 47.2 40.7 39.3 34.0 46.6 48.4 41.8

LLaMA 33B None 16 51.0 40.1 62.2 59.4 53.0 54.4 44.7 65.4 61.6 56.4
LoRA 16 49.2 41.3 61.4 58.7 54.4 55.2 46.1 66.4 63.3 57.6
GPTQ 4 49.4 39.6 59.1 58.1 51.4 52.5 45.1 64.2 62.2 55.7
OmniQ 4 48.5 40.3 61.3 59.1 52.0 53.4 44.8 64.7 61.1 55.8
LoftQ* 4+16 49.2 40.2 60.8 58.0 51.8 54.6 44.5 65.2 61.5 56.4
QLoRA* 4+16 48.5 39.0 59.7 57.8 51.0 54.5 44.2 63.4 60.5 55.6
QA-LoRA 4+16 50.2 39.8 60.9 58.9 52.3 55.0 45.5 65.1 61.8 56.7
QAT-LoRA 4 45.2 39.7 56.6 55.5 48.9 52.7 43.5 63.4 61.0 55.0
L4Q 4 50.8 42.1 61.5 59.4 53.3 53.5 46.6 66.1 61.8 56.7
LoftQ* 3+16 24.7 24.0 23.2 26.4 24.6 24.3 23.2 22.9 25.6 24.0
QLoRA* 3+16 41.8 34.6 55.2 52.3 45.6 46.4 40.9 57.9 56.7 50.1
QA-LoRA 3+16 47.7 38.9 58.0 56.6 50.1 46.8 41.2 58.2 57.5 50.6
QAT-LoRA 3 41.5 37.2 54.4 53.1 46.1 45.4 39.9 55.6 55.0 48.7
L4Q 3 46.4 38.7 57.6 56.2 49.4 46.4 41.6 58.2 58.8 50.8

LLaMA 2 7B None 16 39.3 34.0 47.9 46.0 41.6 42.8 37.0 50.6 52.2 45.4
LoRA 16 41.0 34.6 50.8 50.2 43.9 43.4 37.0 51.8 52.4 46.0
GPTQ 4 36.0 30.1 41.3 41.1 37.1 40.9 33.9 48.9 48.6 42.9
OmniQ 4 37.7 34.6 47.2 45.7 41.0 42.4 37.7 51.1 51.6 45.4
LoftQ* 4+16 36.7 31.3 42.9 43.6 38.5 41.5 34.6 49.5 49.8 43.7
QLoRA* 4+16 37.3 31.5 43.3 42.7 38.6 42.1 35.9 50.2 51.1 44.6
QA-LoRA 4+16 36.5 32.4 40.6 42.6 37.9 41.8 35.2 48.6 50.2 43.8
QAT-LoRA 4 37.3 32.3 43.5 43.0 38.9 42.0 35.7 49.6 50.8 44.4
L4Q 4 38.7 33.8 45.6 46.4 40.9 42.9 37.7 50.5 51.9 45.5
GPTQ 3 28.9 28.5 35.3 33.7 31.3 36.0 31.7 39.3 43.5 37.5
OmniQ 3 33.1 30.4 39.1 35.5 34.3 34.1 32.4 41.6 44.4 37.7
LoftQ* 3+16 24.1 21.3 21.8 23.8 22.9 23.7 26.1 22.4 24.9 24.2
QLoRA* 3+16 30.2 29.1 36.0 35.5 32.5 35.4 32.5 40.5 42.7 37.6
QA-LoRA 3+16 31.1 27.2 33.9 33.8 31.5 34.2 31.2 39.9 42.7 36.8
QAT-LoRA 3 28.9 27.8 34.7 33.7 31.0 36.0 31.6 39.5 43.4 37.5
L4Q 3 31.0 32.7 38.6 39.2 34.9 34.3 32.3 42.2 44.9 38.0

LLaMA 2 13B None 16 47.8 42.3 60.5 59.4 52.1 52.0 43.8 63.0 61.2 54.8
LoRA 16 48.8 42.4 60.9 59.2 52.5 54.4 44.3 63.4 60.8 55.7
GPTQ 4 46.5 40.2 57.7 56.8 50.0 52.3 43.1 62.7 61.5 54.7
OmniQ 4 47.8 41.9 60.1 58.9 51.8 53.0 43.0 62.5 60.5 54.7
LoftQ* 4+16 47.2 42.0 60.4 58.9 51.7 52.6 43.2 62.8 60.1 54.5
QLoRA* 4+16 46.9 40.9 58.8 57.6 50.7 51.3 43.1 62.5 60.8 54.2
QA-LoRA 4+16 47.5 41.0 58.8 56.8 50.7 50.3 42.9 62.3 60.7 53.8
QAT-LoRA 4 46.5 40.8 58.3 57.4 50.4 51.6 42.5 62.3 60.7 54.1
L4Q 4 48.4 41.8 60.4 58.4 51.9 53.6 44.3 62.7 60.5 55.2
GPTQ 3 43.5 37.3 53.6 51.8 46.3 46.3 42.7 57.3 56.2 50.4
OmniQ 3 42.3 38.9 54.5 51.3 46.3 43.4 43.0 58.8 56.5 50.2
LoftQ* 3+16 24.2 21.7 23.8 23.7 23.5 24.6 28.5 24.0 27.4 26.0
QLoRA* 3+16 43.9 38.3 53.9 52.2 46.8 48.5 41.1 57.7 55.9 50.6
QA-LoRA 3+16 42.5 37.3 53.0 52.1 45.9 44.8 40.5 56.3 55.7 48.9
QAT-LoRA 3 43.4 37.4 53.7 52.1 46.4 47.5 41.5 56.3 55.3 49.9
L4Q 3 43.7 39.0 54.4 52.2 47.1 46.6 39.8 58.4 56.7 50.0
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