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Purpose: The purpose of this study was to provide a comparison of performance
and explainability of a multitask convolutional deep neuronal network to single-
task networks for activity detection in neovascular age-related macular degeneration
(nAMD).

Methods: From 70 patients (46 women and 24 men) who attended the University Eye
Hospital Tübingen, 3762 optical coherence tomography B-scans (right eye = 2011 and
left eye= 1751)were acquiredwithHeidelberg Spectralis, Heidelberg, Germany. B-scans
were graded by a retina specialist and an ophthalmology resident, and then used to
develop amultitask deep learningmodel to predict disease activity in neovascular age-
related macular degeneration along with the presence of sub- and intraretinal fluid.
We used performance metrics for comparison to single-task networks and visualized
the deep neural network (DNN)-based decision with t-distributed stochastic neighbor
embedding and clinically validated saliency mapping techniques.

Results: The multitask model surpassed single-task networks in accuracy for activity
detection (94.2% vs. 91.2%). The area under the curve of the receiver operating curve
was 0.984 for the multitask model versus 0.974 for the single-task model. Furthermore,
compared to single-task networks, visualizations via t-distributed stochastic neighbor
embedding and saliency maps highlighted that multitask networks’decisions for activ-
ity detection in neovascular age-related macular degeneration were highly consistent
with the presence of both sub- and intraretinal fluid.

Conclusions: Multitask learning increases the performance of neuronal networks for
predicting disease activity, while providing clinicians with an easily accessible decision
control, which resembles human reasoning.

Translational Relevance: By improving nAMD activity detection performance and
transparency of automated decisions, multitask DNNs can support the translation of
machine learning research into clinical decision support systems for nAMD activity
detection.

Introduction

Neovascular age-related macular degeneration
(nAMD) is a sight-threatening disease and a common
cause of vision loss worldwide.1–3 Among the basic
features of nAMD are subretinal fluid (SRF) and
intraretinal fluid (IRF), which serve as surrogate

markers of nAMD activity and can be monitored
using optical coherence tomography (OCT4,5; Fig. 1).

In nAMD, increased levels of vascular endothe-
lial growth factor (VEGF) lead to formation of new
vessels from the choroidal and/or retinal vasculature.
If leakage from these vessels exceeds local clearance
rates, fluid builds up, leading to IRF and SRF.4 IRF
is assumed to originate from vascular leakage from
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Figure 1. Exemplary retinal images (B-scans) with neovascular age-relatedmacular degeneration (nAMD). (A) No nAMD activity. (B) nAMD
activity due to subretinal fluid (SRF). (C) nAMD activity due to intraretinal fluid (IRF). (D) nAMD activity due to both SRF and IRF.

intraretinal neovascularization and/or retinal vascula-
ture or from diffusion through the outer retina due
to changes within the external limiting membrane.4 In
contrast, SRF formation likely results from malfunc-
tion of the retinal pigment epithelium with reduced
removal rates.4 Due to the partially different patho-
physiology, IRF and SRF can occur both simul-
taneously and independently from each other.4,6 In
addition, the characterization of the lesion based on
IRF and SRF could help to determine the visual
outcome.7

Treatment with intravitreal anti-VEGF agents
efficiently restores the balance between fluid formation
and retinal removal and is standard of care, when
IRF or SRF in nAMD is detected via OCT.5 Prompt
treatment initiation is necessary to prevent vision
loss.8–10 Additionally, this chronic disease demands
highly frequent therapy monitoring, which has put
considerable burden on patients, their families, and
ophthalmological care since its initial approval in
2006.11–14 Because the number of patients suffer-
ing from age-related macular degeneration (AMD)
is thought to rise from 196 million in 2020 to 288

million in 2040, the care needed will also rise.2 Hence,
automated solutions making the diagnostic processes
more efficient have considerable appeal. For example,
deep neural networks (DNNs) have been used for
automatic referral decisions15 and predicting disease
conversion to nAMD.16 Automated algorithms could
detect both SRF and IRF more reliably than retinal
specialists, especially in less conspicuous cases.17
Ideally, such automated tools serve to support retinal
specialists in their decision making. In collaboration,
a retina specialist assisted by an artificial intelligence
(AI) tool can outperform the model alone (e.g. for the
task of diabetic retinopathy grading).18 To this end,
computational tools need to explain their decisions
and communicate their uncertainty to the treating
ophthalmologist.19,20

Here, we develop a convolutional deep learning
model based on the concept of multitask learning.21,22
Multitask learning is a generalization of the widely
used single-task learning, where models are trained
for multiple input-output mappings simultaneously
(Fig. 2). For instance, multitask models can be used
to capture different characteristics of dry AMD, such

Figure 2. A deep neural network for simultaneous detection of subretinal and intraretinal fluid as well as the nAMD activity from OCT
B-scans. Given a B-scan, convolutional stack of the InceptionV3 architecture extracts 2048 featuremaps. These are average andmax pooled,
and fed into a fully connected (dense) layer with 1024 units for shared representation. Then, task-specific heads specialize into individual
tasks and single units with sigmoid function achieve binary classification based on 256 task-specific features.
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as drusen area, geographic atrophy, increased pigment,
and depigmentation, to combine these outputs into
final AMD diagnosis with respect to a nine-step sever-
ity scale.23 Multitask learning has also shown prognos-
tic value when applied to survival analysis via two
simultaneous prediction tasks: drusen and pigmenta-
tion grading.24 In a similar vein, our multitask model
detects SRF, IRF, and nAMD activities in parallel.
However, it generates distinct outputs for each of these
tasks and offers well-calibrated uncertainty estimates
for each of them, which is unique to our study. As the
fluid compartment plays a decisive role in the treat-
ment outcome25–27 with the simultaneous presence of
IRF and SRF being associated with the worst progno-
sis,9 we visualize the representation driving the DNN-
based decisions using t-distributed stochastic neigh-
bor embedding (t-SNE)28,29 and investigate themodel’s
decisions using clinically validated saliency mapping
techniques.30 Thus, togetherwithwell-calibrated uncer-
tainty reports, our work provides an interpretable tool
for the ophthalmologist to rapidly access the neural
network’s decision process on both population-based
and individual-patient levels as a prerequisite for clini-
cal application.

Methods

Data Collection

This study included 70 patients (46 women and
24 men) with nAMD at least in one eye, seen by an
ophthalmology resident (author A.G.) in the Macula
clinic at the University Eye Hospital Tübingen. Exclu-
sion criteria were any other cause of neovasculariza-
tion, any co-existing retinal pathology (e.g. epireti-
nal membrane, macular hole, and diabetic retinopa-
thy), glaucoma, and media opacity preventing suffi-
cient image quality. There were 3762 B-scans (2011
of the right eyes and 1751 of the left eyes) of 440 ×
512 pixels taken with the Heidelberg Spectralis OCT

(Heidelberg Engineering, Heidelberg, Germany) that
were included in the study. A retina specialist of the
same hospital (author I.W.) assessed disease activity
and presence of IRF and SRF on each individual B-
scan (see Fig. 1). Disease activity was also graded by
a resident (author A.G.). B-scans were assigned to a
training, validation, or test set (Table 1). All images
of one patient were assigned to one set to avoid infor-
mation leakage. The study was conducted in accor-
dance with the tenets of the Declaration of Helsinki
and approved by the local institutional ethics commit-
tee of the University of Tübingen, which waived the
requirement for patient consent due to the study’s retro-
spective characteristics.

Diagnostic Tasks, Network Architecture, and
Model Development

We developed a multitask DNN to detect the
presence of SRF and IRF as well as the nAMD activ-
ity fromOCTB-scans (see Fig. 2). As the backbone, we
used the InceptionV3 architecture31 via Keras,32 which
was pretrained on ImageNet33 for 1000-way classifi-
cation via a “softmax” function. We used the Incep-
tionV3 DNN’s convolutional stack as is but linked
max pooling and average pooling layers to the end of
convolutional stack and concatenated their outputs to
obtain 4096-dimensional feature vectors. These were
followed by a dense layer, which yielded a shared
representation with 1024 features. To this, we added
task-specific heads with 256 units, which specialized
into their respective tasks. Then, task-specific binary
decisions were achieved by single units equipped with
sigmoid functions. For training, our DNNs in both
single andmultitask scenarios, we resorted to the retina
specialist’s set of labels.

We trained our networks with equally weighted
cross-entropy losses for all tasks on the training images:
D = {xn, yn}, n = 1,…,N, where yn was a vector
of binary labels indicating nAMD activity and the
presence of IRF or SRF in an image xn. Parameter-

Table 1. OCT Data Distribution of Subretinal Fluid (SRF), Intraretinal Fluid (IRF) and Active nAMD in B-Scans in
Training, Validation, and Test Sets, Respectively. Absolute and Relative Numbers Are Shown

Training Validation Test
Subretinal

Fluid
Intraretinal

Fluid
Active
nAMD

Subretinal
Fluid

Intraretinal
Fluid

Active
nAMD

Subretinal
Fluid

Intraretinal
Fluid

Active
nAMD

Yes 639 286 848 69 58 101 161 153 269
(0.232) (0.104) (0.308) (0.170) (0.143) (0.248) (0.267) (0.253) (0.445)

No 2112 2465 1903 338 349 306 443 451 335
(0.768) (0.896) (0.692) (0.830) (0.857) (0.752) (0.733) (0.747) (0.555)
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ized by θ , a DNN f θ (·) was optimized with respect to
the total cross-entropy on the training data:

L (D, fθ (·)) = 1
N

N∑

n=1

l (yn, fθ (xn)), (1)

where

l(yn, fθ (xn)) =
T∑

t=1

yn,t log pn,t

+ (1 − yn,t ) log(1 − pn,t ), (2)

pn,t was a probability estimated via the sigmoid
function for a task indicated by t, and T was the
total number of tasks. For T = 1, multitask learn-
ing was reduced to single-task learning based on the
same architecture but with only one task head. We
also developed a two-task model to perform the SRF
and IRF detection tasks (T = 2), whereas eliminat-
ing the redundancy of the nAMD activity detection
task, which is, in principle, a function of the former
two. To address the class imbalance (see Table 1), we
used random oversampling (see the Quantification of
uncertainty viamixup andDeep Ensembles heading for
details). We trained the DNN using Stochastic Gradi-
ent Descent (SGD) with Nesterov’s Accelerated Gradi-
ents (NAG),34,35 minibatch size of 8, a momentum
coefficient of 0.9, an initial learning rate of 5 · 10−4,
a decay rate of 10−6, and a regularization constant of
10−5 for 120 or 150 epochs (see the Data augmentation
and preprocessing heading for longer training). During
the first five epochs, the convolutional stack was frozen
and only dense layers were trained. Then, all layers were
fine-tuned to all tasks. The best models were selected
based on total validation loss after each epoch and used
for inference on the test set.

Data Augmentation and Preprocessing
We used Mixup36 for data augmentation during

training. Mixup generates artificial examples through
the convex combinations of randomly sampled data
points. We adapted Mixup to our multitask learning
scenario as follows:

x̂ = λxi + (1 − λ) x j,

ŷ = λyi + (1 − λ) y j, λ ∈ [0, 1]. (3)

Mixing was controlled by λ ∼ Beta(α, α), where α

∈ (0, ∞). For α = 0, λ is either 0 or 1, and there
is no mixing. We used 0, 0.05, 0.1, and 0.2 for
α and trained networks for 120 epochs when not
mixing and 150 epochs when mixing. In addition, to
allow for a warm-up period when mixing,36 we set
α = 0 for the first five epochs. In addition, we applied

common data augmentation operations, such as
adjustment of brightness within ±10%, horizontal
and vertical flipping, up and down scaling within
±10%, translation of pixels horizontally and vertically
within ±30 positions, and random rotation within
±45 degrees. After all data augmentation opera-
tions, we used an appropriate preprocessing function
(keras.applications.inception_v3.preprocess_input.)
from the Keras API.32

Quantification of Uncertainty Via Mixup and Deep
Ensembles

DNNs often do not generate well-calibrated and
reliable uncertainty estimates for their decision.37–41
However, quantification of diagnostic uncertainty is
crucial for treatment decisions because proper manage-
ment can minimize diagnostic errors, delays, or excess
healthcare utilization.42 Mixup36 improves the calibra-
tion of DNN outputs by smoothing labels through
their convex combinations (Equation 3).43 In addition,
we used Deep Ensembles39 consisting of multiple
DNNs with different random initializations.39,44 This
can improve upon the single network performance
both in accuracy and calibration, even with small
numbers of DNNs.39,44–46 We used ensembles with
three DNNs, for which we enforced diversity by a
specialized oversampling strategy: for each DNN, we
oversampled training images with respect to one of
the task’s labels. This enabled DNNs to train on a
balanced dataset while also learning about other tasks,
even though the data were not balanced for these. We
then used the ensemble’s mean output for predictions
and quantified uncertainty in terms of entropy, given
the average predictive probabilities.

Low-Dimensional Embedding of Images

We used t-SNE28 to obtain further insights into the
decision-making process of our ensemble model. The
t-SNE is a nonlinear dimensionality reductionmethod,
that embeds high-dimensional data points into a low-
dimensional space. We concatenated features from
ensemble members’ predetermined read-out layers
and performed t-SNE based on them, embedding
each B-scan into the two-dimensional plane. We used
openTSNE47 with PCA initialization to better preserve
the global structure of the data and improve the repro-
ducibility.29 A perplexity of 200 for 1500 iterations with
an early exaggeration coefficient of 12 for the first 500
iterations was used according to best-practice strate-
gies.29 Similarities between data points were measured
by Euclidean distance in the feature space.
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Saliency Maps

Weused Layer-wise Relevance Propagation (LRP)48
to compute saliency maps highlighting the regions
in the OCT images which contributed to the DNN
decisions, as it provides most clinically relevant tasks.30
We created three saliency maps for each OCT slice:
subretinal, intraretinal, and disease activity in nAMD.
To improve the visualization of the salient regions,
saliency maps were postprocessed.30 Saliency maps
were only shown for predictions with an estimated
probability greater than 0.5, because, as previous
work has shown, that especially in absence of disease,
saliency maps can lead physicians to overdiagnosis.18

Results

We developed an ensemble of three multitask
DNNs to simultaneously detect SRF, IRF, and activ-
ity of nAMD on OCT B-scans (see Fig. 1). Each DNN
consisted of a shared convolutional core combined
with pooling operations and a fully connected (dense)
layer (see Fig. 2). The resulting shared representa-
tion served as the basis for the decisions of the three
task-specific heads. The idea behind this approach is
that the DNN can benefit from the shared representa-
tion induced by combining information from different
tasks. We compared the performance of the multitask
model with more specialized single-task models, where
we constructed three DNNs for each task, which did
not share any representation but were trained indepen-
dently. In addition, we also used a two-task model that
simultaneously detected only SRF and IRF, without
the nAMD activity detection head. All DNNs were
trained on the same dataset (see Table 1 andMethods),
which was graded according to the nAMDactivity by a
retina specialist (author I.W.) and an ophthalmologist
resident (author A.G.) with high intergrader agreement
on disease activity (Cohen’s kappa= 0.86). In a second
step, the retina specialist further examined the data for
the presence of IRF and SRF. The two retinal fluid
types occurred largely independently, whereas there

was natural overlap of both with the active AMD label
(Table 2). We selected the three-task model with the
best accuracy for the activity detection task on the
validation set and report accuracy values computed on
an independent test set (Table 3). The three-task model
was well calibrated on the test set (Adaptive expected
calibration error41 of 0.0147 for SRF, 0.0104 for IRF,
and 0.0263 for active nAMD). We found that the
performance of the 3-task model surpassed the single-
task model performance in disease activity detec-
tion, reaching an accuracy of 94.2% for the multitask
model versus 91.4% for the single task model (Table 3,
Fig. 3). This three-task model optimized for AMD
activity detection performed slightly worse than the
single-task models for SRF and IRF detection (SRF:
accuracy of 0.917 vs. 0.924 for multitask versus single-
task; IRF= 0.937 vs. 0.950). For the two-task scenario,
we selected the model with the highest average valida-
tion accuracy across the SRF and IRF detection
tasks. Interestingly, the two-task model performed
worse than the single-task and three-task models.
This highlights the importance of the explicit nAMD
activity detection head in the three-task model. We
then further studied the representations learned by
the models to gain insight into their decision making
process. To this end, we extracted the representations of
individual OCT scans from both single-task and multi-
task models and created two-dimensional embeddings
of these via t-SNE (Fig. 4). In these visualizations,
each point represents an individual OCT scan. Scans
which are similar to each other according to the learned
representation are mapped to nearby points. Of note,
distances and, in particular, the size of white space
between clusters in t-SNE plots should be carefully
interpreted.29,49

We labeled individual points according the evidence
for SRF or IRF and overall AMD activity. In the
single-task DNNs, well-separated clusters were found,
indicating only the learned task-label (see Fig. 4A). For
example, OCT scans with SRF present formed a single
cluster, clearly distinct from theOCT scanswithout this
label. In contrast, in the multitask network, subclusters
within the active nAMD data points were observed

Table 2. Agreement of Task-Specific Labels Across Training, Validation and Test Sets, Measured via Cohen’s Kappa
Statistic, Which Is Essentially a Number Between −1 and 1. Whereas 1 Indicates a Full Agreement, Lower Scores
Mean Less Agreement. Negative Scores Indicate Disagreement

Training Validation Test

Subretinal
Fluid

Intraretinal
Fluid

Active
nAMD

Subretinal
Fluid

Intraretinal
Fluid

Active
nAMD

Subretinal
Fluid

Intraretinal
Fluid

Active
nAMD

Subretinal fluid – −0.02 0.79 – 0.26 0.75 – −0.02 0.59
Intraretinalfluid −0.02 – 0.37 0.26 – 0.65 −0.02 – 0.57
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Table 3. Accuracy of Ensembles for Various Degrees of Mixing (Indicated by α). Gray Row Indicates the Ensemble
of Choice for Further Analysis Based on the Validation Performance for the Activity Detection Task. In the Two-Task
Scenario, The Average Validation Accuracy of SRF and IRF Detection Tasks was used for Model Selection

Training Validation Test
Subretinal

Fluid
Intraretinal

Fluid
Active
nAMD

Subretinal
Fluid

Intraretinal
Fluid

Active
nAMD

Subretinal
Fluid

Intraretinal
Fluid

Active
nAMD

Single task models
α = 0 1.000 1.000 1.000 0.988 0.971 0.958 0.924 0.950 0.914
α = 0.05 0.983 0.994 0.975 0.971 0.963 0.951 0.906 0.919 0.909
α = 0.1 0.978 0.994 0.948 0.948 0.919 0.929 0.868 0.891 0.856
α = 0.2 0.983 0.991 0.851 0.975 0.946 0.853 0.881 0.909 0.702

Two task models: SRF and IRF
α = 0 0.999 1.000 – 0.968 0.961 – 0.902 0.937 –
α = 0.05 1.000 0.999 – 0.983 0.966 – 0.927 0.919 –
α = 0.1 0.999 0.999 – 0.983 0.973 – 0.911 0.924 –
α = 0.2 0.999 1.000 – 0.983 0.963 – 0.917 0.932 –

Three task models: SRF, IRF, and nAMD activity
α = 0 1.000 0.995 0.998 0.973 0.973 0.961 0.914 0.935 0.940
α = 0.05 0.999 0.998 1.000 0.971 0.971 0.966 0.917 0.937 0.942
α = 0.1 1.000 0.997 0.998 0.983 0.968 0.966 0.916 0.957 0.939
α = 0.2 1.000 0.998 1.000 0.971 0.966 0.966 0.894 0.937 0.906

Figure 3. Performance curves of the selectedmodels on the test images. Area under the curve (AUC) values given for models also summa-
rize the overall performance into one number (higher is better). (A) Receiver Operating Characteristics (ROC) curves. (B) Precision-recall
curves.
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Figure 4. Visualization of data via t-SNEof ensemble-based representations. Only the test data are shown. (A) Lowdimensional embedding
of images based on the 1024-dimensional features from the pre-penultimate layers of single-task networks. Coloredwith respect to the task-
specific labels. (B) Same as in A but with respect to 1024 features from the shared representation layer of multitask networks. (C) Samemap
as in B but colored with respect to correct and wrong predictions. (D) Same map as in B but colored with respect to uncertainty minimum-
maximum normalized to [0, 1].
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Figure 5. Layer-wise visualization of test data via t-SNE. Starting just before the first inceptionmodule (A) and readingout feature represen-
tations yieldedbyevery othermodule (B-F) alongwith the last inceptionmodule (G), the shared representation layer (H) and thenAMDactiv-
ity detection head’s penultimate layer (I), we performed t-SNE with the aforementioned settings. Useful representations emerged toward
the end of convolutional stack and the task-specific representation allowed the best separation of nAMD active cases from those inactive.

(see Figs. 4A, 4B): OCT scans labeled with SRF
formed a well-separated cluster at the bottom right,
as did scans with IRF labels at the top right (see Fig.
4B). Interestingly, there was a small cluster in between
these two which contained scans labeled with both.
This suggests that multitask DNNs learned a repre-
sentation which could differentiate between the two
fluid types. The few incorrectly classified OCT scans
could be found within their clusters to be placed close
toward other clusters (see Fig. 4C) in areas where we

also found examples with high classifier uncertainty
(see Fig. 4D).

We next studied how the multitask representa-
tions emerged through processing in the network (Fig.
5). Whereas in the initial layers, data points repre-
senting active nAMD were still uniformly distributed
(see Figs. 5A-C), a clear separation of active nAMD
cases developed gradually in later layers of the DNN
(see Figs. 5D-G), leading to best separation in the
shared representation (see Fig. 5H). The decision head
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Figure 6. Exemplary saliencymaps for four optical coherence tomography (OCT) images. The first columndisplays theOCT B-scanwith the
corresponding labeling of a retinal specialist. Second to fourth columns show saliency maps and the network’s confidence for active nAMD
(yellow), subretinal fluid (SRF; cyan), and intraretinal fluid (IRF;magenta). Note, that saliencymaps are only shown in case of confidence>0.5.

for active AMD refined this representation only very
little (see Fig. 5I).We finally analyzed the saliencymaps
of the multitask DNNs and asked whether the saliency
maps for the subtasks of SRF and IRF detection
obtained from the multitask model allowed reason-
ing about evidence specific to these tasks. We gener-
ated saliency maps on four exemplary OCT scans
using LRP48 (see Fig. 6). For an OCT scan with
clearly active AMD and both SRF and IRF present
(see Fig. 6A), we found that the active AMD saliency
map focused on intraretinal fluids, which were also

clearly visible in the task-specific saliency map, and
faintly highlighted regions with SRF. The SRF saliency
map, however, clearly highlighted SRF. In two further
example scans with either IRF or SRF, respectively,
active AMD saliency maps clearly corresponded to the
individual task maps (see Figs. 6B, 6C). We also identi-
fied a rare failure case of the obtained saliency maps
(see Fig. 6D), where an OCT scan was falsely classi-
fied positive for SRF with a confidence of 0.614 due
to the misclassification of IRF to SRF. We hypoth-
esize that the DNN misclassified the superior border
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Figure 7. Exemplary saliency maps as in Figure 6 but results were obtained from single-task models.

of the IRF as photoreceptor layer detached from
the retinal pigment epithelium. The assumption that
the DNN primarily recognizes contrast-rich interfaces,
such as SRF and IRF, is further supported by the
false labeling of cystoid spaces within choroid in
Figures 6B and 6D, whereas in a smoother, lower-
contrast choroid saliency, maps do not highlight any
structures (see Fig. 6). Comparison with saliency maps
from the single-task DNNs (Fig. 7) to those generated
from the multitask models shows that those single-task
saliency maps appear slightly more defined, but gener-
ally highlight similar areas.

Discussion

In this study, we developed a multitask learning
model to simultaneously detect SRF and IRF, as well
as disease activity in OCT B-scans of patients with
nAMD. We showed that a three-task model, which
takes the presence of IRF and SRF into account
to detect disease activity in nAMD, surpassed a
single task model regarding accuracy in the activ-
ity detection task. Furthermore, our visualization of
the multitask model’s decision-making process via
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t-SNE showed that inactive and active nAMD B-
scans formed different clusters. Among active AMD
B-scans, three distinct clusters were observed, which
contained OCT B-scans with either SRF or IRF or
both fluid types. This separation could not be seen
in the single-task models. Saliency maps of exemplary
B-scans further corroborate that task-relevant infor-
mation can be extracted from the multitask networks.
Thus, multitask DNN could serve as a basis for an
explainable clinical decision support system for nAMD
activity, providing support for clinicians in detecting
active AMD, but would also allow clinicians to identify
evidence in the relevant sub-tasks of finding SRF
and IRF.

Ophthalmology has recently seen a development of
various AI systems, yet their use in clinical routine
remains rare with only few systems available on the
market.50,51 One big barrier is potential harm of the
patient-physician relationship going hand in hand with
the lack of trust in those systems.52 Here, we combined
multitask DNNs with different visualization methods
to give an insight into the DNNs’ reasoning and
increase transparency. First, we used t-SNE as the
visualization method for high-dimensional data28,29
(see Fig. 4) to present the decision-making process
of the model. This form of visualization provides an
intuitively interpretable rationale for howOCTB-scans
were graded by visualizing which other B-scans are
similar. The resulting visualization may also increase
an ophthalmologist’s confidence in the model because
it illustrates that model’s decision-making reasoning
resembles their own. We further analyzed the multi-
task model’s decision on saliency maps of individual
OCT scans. Saliency maps highlight critical regions
for the model’s decision and thus allow a quick visual
control of its reasoning. This may be important in
cases of advanced AMD, where fluid is due to degen-
eration rather than exudation to avoid overtreatment.
However, different methods of saliency map agree to
differing degrees with clinical annotations30,53,54 and
saliency maps can lead to overdiagnosis.18 Therefore,
we used the saliency map technique with the best clini-
cal relevance for AMDactivity30 and displayed saliency
maps in case of a confidence of the algorithm >0.5.
Compared to saliency maps of single task DNNs,
multitask saliencymaps seem to draw slightly less sharp
contours, however, we found good overlap between
regions used for active AMD detection and those for
SRF and IRF.

Limitations of our study are also worth consider-
ing for further research. For instance, a recent meta-
analysis has provided evidence of varying influences
of SRF and IRF on the visual outcome in nAMD

patients.55 Stable SRFmight not affect visual outcome,
whereas fluctuations in IRF during treatment seem to
negatively influence visual acuity.55 For this reason,
treatment decisions in nAMD solely on a yes or no
basis may not meet future treatment guidelines, which
might rather require a sophisticated decision depend-
ing on the present fluid type and its variation in volume
for or against an anti-VEGF injection. Other signs of
active nAMD, such as hard exudates, pigment epithe-
lial detachment, subretinal hyperreflective material, or
hyper-reflective foci,4,56 can be also added to multitask
decision pipelines.

Future studies will also need to assess how well
these multitask learning results transfer from this data
sample acquired at a tertiary center in Germany.
It would be desirable to perform similar analysis
with larger and more diverse data sets, to test also
the generalization to other populations, and different
recording qualities, as well as OCT devices (includ-
ing mobile devices). Further, performance could be
potentially increased by combining the multitask
network with a segmentation layer,15 which could
reduce false positive cases. Additionally, in clini-
cal routine, activity decision is made on a whole
volume not a single B-scan, which could technically be
implemented by combining the results from individ-
ual B-scans (e.g. by majority voting or uncertainty
propagation).

Although the approval of anti-VEGF has decreased
economic and overall treatment burden of nAMD
measured in disability-adjusted life,57,58 a large number
of patients still discontinue treatment.59 Patients
named the need for assistance, either in the form
of a travel companion or a family member, as
the main reason for discontinuation.14 Additionally,
recurrence of quiescent disease requiring prompt
treatment is common, making life-long monitoring
necessary.60 For these reasons, automated solutions
allowing monitoring close to home or even at home are
promising technologies.61,62 They provide easier access
and reduce the disease burden on the individual.63
Automated solutions for fluid detection have further
gained popularity during the coronavirus disease 2019
(COVID-19) pandemic, which showed the devastating
effects of delay or interruption of nAMD treatment on
visual function.9,60 Despite promising results in labora-
tory settings, real-world data revealed significantly
lower performance rates of home-based OCT with, in
particular, SRF being overlooked by the system.64 This
shows the necessity of further developments on the
machine learning side to guarantee reliable use, with
multitask learning as suggested in this study being a
viable option.
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