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Abstract

Learning and decision-making in domains with naturally high noise-to-signal ratios – such as
Finance or Healthcare – is often challenging, while the stakes are very high. In this paper,
we study the problem of learning and acting under a general noisy generative process. In this
problem, the data distribution has a significant proportion of uninformative samples with
high noise in the label, while part of the data contains useful information represented by low
label noise. This dichotomy is present during both training and inference, which requires
the proper handling of uninformative data during both training and testing. We propose a
novel approach to learning under these conditions via a loss inspired by the selective learning
theory. By minimizing this loss, the model is guaranteed to make a near-optimal decision by
distinguishing informative data from uninformative data and making predictions. We build
upon the strength of our theoretical guarantees by describing an iterative algorithm, which
jointly optimizes both a predictor and a selector, and evaluates its empirical performance in
a variety of settings.

1 Introduction

Despite the success of machine learning (ML) in computer vision (Krizhevsky et al., 2009; He et al., 2016a;
Huang et al., 2017) and natural language processing (Vaswani et al., 2017; Devlin et al., 2018), the power of
ML is yet to make similarly-weighty impact in other areas such as Finance or Public Health. One major
challenge is the inherently high noise-to-signal ratio in certain domains. In financial statistical arbitrage, for
instance, the spread between two assets is usually modeled using Orstein-Uhlembeck processes (Øksendal,
2003; Avellaneda & Lee, 2010). Spreads behave almost randomly near zero and are naturally unpredictable.

∗: Equal contribution.
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They become predictable in certain rare pockets/scenarios: for example, when the spread exceeds a certain
threshold, it will move towards zero with a high probability, making arbitrage profits possible. In cancer
research, due to limited resources, only a small number of the most popular gene mutations are routinely
tested for differential diagnosis and prognosis. However, because of the long tail distribution of mutation
frequencies across genes, these popular gene mutations can only capture a small proportion of the relevant
list of driver mutations of a patient (Reddy et al., 2017). For a significant number of patients, the tested gene
mutations may not be in the relevant list of driver mutations and their relationship w.r.t. the outcome may
appear completely random. Identifying these patients automatically will justify additional gene mutation
testing.

These high noise-to-signal ratio datasets pose new challenges for learning. New methods are required to
deal with the large fraction of uninformative/high-noise data in both the training and testing stages. The
source of uninformative data can be either due to the random nature of the data-generating process or due to
the fact that the real causing factors are missing from the data. Direct application of standard supervised
learning methods to such datasets is both challenging and unwarranted. Deep neural networks are even more
affected by the presence of noise, due to their strong memorization power (Zhang et al., 2017): they are likely
to overfit the noise and make overly confident predictions where weak/no real structure exists.

In this paper, we propose a novel method for learning on datasets where a significant portion of content
has high noise. Instead of forcing the classifier to make predictions for every sample, we learn to first
decide whether a datapoint is informative or not. Our idea is inspired by the classic selective prediction
problem (Chow, 1957), in which one learns to select a subset of the data and only predict on that subset.
However, the goal of selective prediction is very different from ours. A selective prediction method pursues
a balance between coverage (i.e. proportion of the data selected) and conditional accuracy on the selected
data, and does not explicitly model the underlying generative process. In particular, the aforementioned
balance needs to be specified by a human expert, as opposed to being derived directly from the data. In our
problem, we assume that uninformative data is an integral part of the underlying generative process and
needs to be accounted for. By definition, no learning method, no matter how powerful, can successfully make
predictions on uninformative data. Our goal is therefore to identify these uninformative/high noise samples
and, consequently, to train a classifier that is less influenced by the noisy data.

Our method learns a selector, g, to approximate the optimal indicator function of informative data, g∗. We
assume that g∗ exists as a part of the data generation process, but it is never revealed to us, even during
training. Instead of direct supervision, we therefore must rely on mistakes made by the predictor in order to
train the selector. To achieve this goal, we propose a novel selector loss enforcing that (1) the selected data
best fits the predictor, and (2) in the portion of the data where we abstain from forecasting, the predictor’s
performance is similar to random chance. The resulting loss function is quite different from the loss in classic
selective prediction, which penalizes all unselected data equally.

We theoretically analyze our method under a general noisy data generation process, imposing an additional
structure on the standard data-dependent label noise model (Massart & Nédélec, 2006; Hanneke, 2009). We
distinguish informative versus uninformative data via a gap in the label noise ratio. A major contribution of
this paper is the derivation of theoretical guarantees for the selector loss using empirical risk minimization
(ERM). A minimax-optimal sample complexity bound for approximating the optimal selector is provided. We
show that optimizing the selector loss can recover nearly all the informative data in a PAC fashion (Valiant,
1984). This guarantee holds even in a challenging setting where the uninformative data has purely random
labels and dominates the training set. By leveraging the estimated selector, one can further pick out the
informative subset of the training samples. We prove that the classifier generated through risk minimization
conditional on the informative subset exhibits a superior upper bound on risk compared to a conventional
classifier trained using the complete training dataset.

The theoretical results generalize the method to a more realistic setting where the sample size is limited.
Furthermore, the initial predictor is not sufficiently close to the ground truth. Our method yields an iterative
algorithm, in which both the predictor and the selector are progressively optimized. The selector is improved
by optimizing our novel selector loss. Meanwhile, the predictor is strengthened by optimizing the empirical
risk: re-weighted based on the output from the selector, where uninformative samples identified by the
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selector are down-weighed. Experiments on both synthetic and real-world datasets demonstrate the merit of
our method compared to existing baselines.

2 Related work

Learning with untrusted data aims to recover the ground truth model from a partially corrupted dataset.
Different noise models have been studied, including random label noise (Bylander, 1994; Natarajan et al.,
2013), Massart Noise (Massart & Nédélec, 2006; Awasthi et al., 2015; Hanneke, 2009; Hanneke & Yang, 2015;
Yan & Zhang, 2017; Diakonikolas et al., 2019; 2020; Zhang & Li, 2021) and adversarial noise (Kearns & Li,
1993; Kearns et al., 1994; Kalai et al., 2008; Klivans et al., 2009; Awasthi et al., 2017). Our noise model is
similar to General Massart Noise (Massart & Nédélec, 2006; Hanneke, 2009; Diakonikolas et al., 2019), where
the label noise is data-dependent, and the label can be generated via a purely random coin flipping. The major
distinction in our noisy generative model is the existence of some uninformative data with high noise in label
compared to informative data with low noise in label. We characterize such uninformative/informative data
structure via a non-vanishing label noise ratio gap. While there exists a long history of literature studying
training classifiers with noisy label (Thulasidasan et al., 2019), we are the first to investigate learning a
model robust against label noise at inference stage. We study the case where uninformative samples are an
integral part of the generative process and thus will appear during inference stage as well, where they must
be discarded if detected. We view this as a realistic setup in industries like Finance and Healthcare.

Selective learning is an active research area (Chow, 1957; 1970; El-Yaniv et al., 2010; Kalai et al., 2012;
Nan & Saligrama, 2017; Ni et al., 2019; Acar et al., 2020; Gangrade et al., 2021a) that expands on the classic
selective prediction problem. It focuses on how to select a subset of data for different learning tasks, and has
also been further generalized to other problems, e.g., learning to defer human expert (Madras et al., 2018;
Mozannar & Sontag, 2020). We can approximately classify existing methods into 4 categories: Monte Carlo
sampling based methods (Gal & Ghahramani, 2016; Kendall & Gal, 2017; Pearce et al., 2020), margin based
methods (Fumera & Roli, 2002; Bartlett & Wegkamp, 2008; Grandvalet et al., 2008; Wegkamp et al., 2011;
Zhang et al., 2018), confidence based methods (Wiener & El-Yaniv, 2011; Geifman & El-Yaniv, 2017; Jiang
et al., 2018) and customized selective loss (Cortes et al., 2016; Geifman & El-Yaniv, 2019; Liu et al., 2019;
Gangrade et al., 2021c). Notably, several works propose customized losses, and incorporate them into neural
networks. In (Geifman & El-Yaniv, 2019), the network maintains an extra output neuron to indicate rejection
of datapoints. Liu et al. (2019) introduces the Gambler loss where a cost term is associated with each output
neuron and a doubling-rate-like loss function is used to balance rejections and predictions. Thulasidasan et al.
(2019) also applies an extra output neuron for identifying noise label to improve the robustness in learning.
Huang et al. (2020) adopts a progressive label smoothing method which prevents DNN from overfitting
and improves selective risk when applied to selective classification task. Cortes et al. (2016) performs data
selection with an extra model and introduces a selective loss that helps to maximize the coverage ratio, thus
trading off a small fraction of data for better precision. Sharing a similar spirit with (Kalai et al., 2012),
(Gangrade et al., 2021c) applies a one-sided prediction method to model a high confidence region for each
individual class, and maximizes coverage while maintaining a low risk level.

Existing works on selective prediction are all motivated by the trade off between accuracy and coverage - i.e.
one wants to make confident predictions to achieve higher precision while maintaining a reasonable recall. To
the best of our knowledge, our paper is the first to investigate the case where some (or even the majority)
of the data is uninformative, and thus must be discarded at test time. Unlike the selective prediction, our
framework considers a latent never-revealed ground truth indicator function about whether a data point
should be selected or not. Our method is guaranteed to identify those uninformative samples.

3 Problem formulation

In this section, we describe the framework for the inherently noisy data generation process that we study.

Definition 1 (Noisy Generative Process). Let α ∈ (0, 1) be a problem-dependent constant and ΩD ⊆ Rd be
the support of Dα below. We define Noisy Generative Process by the following notation x ∼ Dα where
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Dα ≡

{
x ∼ DU with prob. 1− α (Uninformative)
x ∼ DI with prob. α (Informative).

(1)

Given X ⊆ Rd, let the ground truth labeling function f∗ : X → {0, 1} be in hypothesis class F . Suppose
{ΩU ,ΩI} is a partition of ΩD. Let λ(x) ∈ (λ̄, 1

2 ] with λ̄ > 0, the latent informative/uninformative status
z ∈ {1, 0} has posterior distribution:

P[z = 1|x] ≡
{

1
2 − λ(x), if x ∈ ΩU

1
2 + λ(x), if x ∈ ΩI .

(2)

The observed data (x, y) is generated according to:

x ∼ Dα;
z ∼ P[z|x];{
y ∼ Bernoulli(0.5), if z = 0
y = f∗(x), if z = 1.

(3)

Since λ(x) > 0, x from ΩU has a lower probability to be observed with true label compared to ΩI , thus it can
be viewed as uninformative data in a relative sense. On the contrary, x from ΩI can be viewed as informative
data. Our Noisy Generative Process follows standard data-dependent label noise, e.g., Massart Noise (Massart
& Nédélec, 2006) and Benign Label Noise (Hanneke, 2009; Hanneke & Yang, 2015; Diakonikolas et al.,
2019) with label noise ratio 1

4 −
(2g∗(x)−1)λ(x)

2 . Indeed, one can always choose λ(x) ∈ [0, 1
2 ] and α ∈ [0, 1]

to replicate General Massart noise. Compared to classical label noise models, the assumption λ(x) > λ̄
introduces a label noise ratio gap, which distinguishes the informative and uninformative data. In Equation 3,
the Bernoulli(0.5) label noise serves as a proxy for “white noise” in label corruption. When λ(x) = 1

2 and
x ∈ ΩU , Bernoulli(0.5) random label noise can be viewed as the strongest known non-adversarial label noise,
of both theoretical and practical interest (Diakonikolas et al., 2019). Such Bernoulli(0.5) random label noise
could happen when hard-to-classify examples are shown to human annotators (Klebanov & Beigman, 2010),
or when fluctuations in financial markets closely resemble a random walk (Tsay, 2005).

A typical setting that is studied in this work is the case that both values of 1− α and λ(x) are non-vanishing,
i.e., there is a significant fraction of uninformative data (large 1 − α) and the label noise ratio gap is
distinguishable between informative and uninformative data (large λ̄).

The next definition describes a recoverable condition of the optimal function for the latent informa-
tive/uninformative status z.
Definition 2 (G-realizable). Given support ΩD and λ(x) ∈ (λ̄, 1

2 ], let the posterior distribution of z
be defined in Equation (2). We say ΩD is G-realizable if there exists g∗ ∈ G : X → {0, 1} satisfying
g∗(x) = 1{P[z = 1|x] > 1

2}.

Ideally, one would want to select all informative samples where signal dominates noise. This can be done via
recovering g∗(·), which we view as the ground truth selector we wish to recover. The G-realizable condition is
analogous to the realizability condition (Massart & Nédélec, 2006; Hanneke & Yang, 2015) in the classical
label noise problem. The major difference and challenge in recovering g∗(·) compared to learning a classifier,
is that there is no direct observation on the informative/non-informative status z. The major contribution of
this work is proposing a natural selector risk which recovers g∗(·) without observing the latent variable z.

Having introduced the data generation process, we now describe the learning task:
Assumption 1. Data Sn = {xi, yi}n

i=1 is i.i.d generated according to the Noisy Generative Process (Defini-
tion 1), with f∗ ∈ F and support ΩD satisfies G-realizable condition.

Given the above assumption, we are interested in the following learning task:
Problem 1 (Abstain from Uninformative Data). Under Assumption 1 with i.i.d observations from Dα, we
aim to learn a selector ĝ ∈ G that is close to g∗(x) and predictor f̂ with low selective risk.
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(a) Inform/Uninformative Data (b) Correct/Incorrect classification (c) Selective classification

Figure 1: Illustration of the learning strategy when x is distributed according to a Gaussian mixture. We
replace the 0-1 loss with hinge loss and train SVM models for f and g. (a) upper panel shows the original
dataset and bottom panel shows the region of informative (easy) and uninformative (hard) data. (b) shows
that the classifier has high accuracy in the informative region, but low accuracy in the uninformative region.
In (c), the selector trained with f̂ successfully recovers informative support thus resulting in low selective
risk, and we abstain from making a prediction elsewhere.

4 Our method
In this section, we present our approach to learning and abstaining in the presence of uninformative data
(Problem 1). The main challenge is that the latent informative/uninformative status of a datapoint is
unknown. Our main idea is to introduce a novel yet natural selector loss function that trains a selector based
on the performance of the best predictor (Section 4.1). In Section 5, we present our main theoretical result.
We show that, given any reasonably good classifier, by finding a selector minimizing the proposed selector
loss, we can solve Problem 1 with minimax-optimal sample complexity. Inspired by the theoretical results, in
Section 6, we propose a practical algorithm that iteratively optimizes the predictor and the selector.

4.1 Selector loss

In an idealized setting, when access to latent informative/uninformative variables {(xi, zi)}n
i=1 is available,

recovering g∗ shares a similar spirit with learning a classifier under label noise. It suffices to minimize the
following classical classification risk :

Non-Realizable Risk(g;Sn) ≡
n∑

i=1
1{g(xi) ̸= zi} (4)

However, in practice z is never revealed. To learn a selector without direct supervision, we have to leverage
the performance of a predictor f . We propose to replace z in the Equation 4 with a pseudo-informative label
1{f(x) = y}, which has randomness coming from z and noisy label y.
Definition 3 (Selector Loss). Let scalar β > 0 be some weight coefficient, given f ∈ F and its selector g ∈ G,
we define the following empirical version of weighted 0-1 type risk w.r.t g(·) as selector risk:

RSn
(g; f, β) ≡

n∑
i=1

{
β1{f(xi) ̸= yi}1{g(xi) > 0}+ 1{f(xi) = yi}1{g(xi) ≤ 0}

}
(5)

where Sn = {(xi, yi)}n
i=1 defined in Assumption 1.

The selector loss is also a natural metric to evaluate the quality of the selector. This loss penalizes when
(1) the predictor makes a correct prediction on a datapoint that the selector considers uninformative and
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abstains from, or (2) the predictor makes an incorrect prediction when the selector considers informative.
Intuitively, the loss will drive the selector to partition the domain into informative and uninformative regions.
Within the informative region, the predictor is supposed to fit the data well, and should be more accurate.
Meanwhile, within the uninformative region, the label is random and the predictor is prone to make mistakes.

Note that there are two types of errors penalized in the selector loss: an incorrect prediction on a selected
datapoint, (f(x) ̸= y)∧(g(x) > 0), and a correct prediction on an unselected datapoint, (f(x) = y)∧(g(x) ≤ 0).
Since the label noise is non-adversarial, y tends to have higher probability of coincidence with f∗(x),
introducing imbalance on the pseudo-informative label. We thus use β to weigh these two types of errors in
the loss. An analysis can be found in section A.1 on the choice of β. Our theoretical analysis suggests that,
for a wide range of β, the accuracy of the selector is guaranteed. In particular, the range of β depends on
the value of label noise ratio gap λ, empirically, many values work - see Appendix - and we choose β = 3
throughout. Our experiments show stability with regard to this choice.

Learning a selector with the novel loss. To learn a selector, one can follow standard procedures e.g.,
empirical risk minimization (ERM), to get a predictor f̂ with reasonable quality. The selector can be estimated
by minimizing the selector loss ĝ = arg ming∈G RSn

(g, f̂ , β), conditioned on the estimated predictor f̂ .

In Figure 1, we show an example of using the ERM strategy using SVM with 0-1 loss replaced by hinge loss.
In this case, the losses are all convex and the empirical minimizers f̂ and ĝ can be computed exactly.

In practice, however, empirical minimization is not always possible, as optimization for general complex
models (e.g., DNNs), resulting in non-convex losses, remains an open problem. We therefore propose a
practical algorithm in the spirit of our theoretical results: it jointly learns f and g by minimizing the selector
loss and a reweighed classification risk iteratively (see Section 6).

5 Theoretical results

In this section, we present our theoretical results. The main one can be summarized in the following (informal)
statement.

Main Result (Informal) For any reasonably good predictor f̂ , with sufficient data, the selector ĝ
estimated using ĝ = arg ming∈G RSn(g, f̂ , β) is sufficiently close to the targets g∗ with high probability, where
Sn = {(xi, yi)}n

i=1 defined in Assumption 1. Furthermore, training predictor f only using informative data
selected by ĝ improves selective risk.

Remark 1. The toolkit we use in the proof is a Bernstein-type inequality for fast generalization rate under
margin condition (Massart & Nédélec, 2006; Van Erven et al., 2015; Li & Liu, 2021). We also provide an
information theoretic lower bound construction in section A.2 to show our selector risk bound is minimax-
optimal. Our construction of the lower bound is motivated from (Ehrenfeucht et al., 1989; Blumer et al.,
1989) and Le Cam’s method (Yu, 1997). Due to space constraints, detailed proofs of our theorems are provided
in the Appendix. To avoid lengthy technical definitions, we only present a light version of our results in the
format of finite hypothesis class. The extension to VC-class using Local Rademacher Average tools (Bartlett
et al., 2005) is shown in section B.

Theorem 1 (Minimax-Opitmal Selector Risk Bound). Let Sn = {(xi, yi)}n
i=1 be i.i.d sample from Data

Generative Process described in Definition 1 under Assumption 1, with f∗(·) ∈ F and g∗(·) ∈ G, |F| < ∞
|G| <∞. Given λ̄, let β ∈

[ 3−2λ̄
1+2λ̄

+ λ̄,min( 3+2λ̄
1−2λ̄

− λ̄
1−4λ̄2 , 10)

]
. For any f̂(·) ∈ F , let ĝ = arg min

g∈G
RSn

(g; f̂ , β).

Then for any ε > 0, δ > 0 such that the following holds: For n ≥ max{ 32β2 log( |G|
δ )

λ̄ε
,

24β log( |F|
δ )

ε }, and for f̂
that satisfies one of the following condition:

• For any f̂(·) ∈ F such that Ex[f̂(x) ̸= f∗(x)] ≤ ε
8β with prob at least 1− δ,

• For any f̂(·) ∈ F such that Ex[f̂(x) ̸= f∗(x)|x ∈ ΩI ] ≤ ε
8βα with prob at least 1− δ,
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The following holds with probability at least 1− 2δ:

R(ĝ; f∗, β)−R(g∗; f∗, β) ≤ ε

Remark 2. The assumption that Ex[f̂(x) ̸= f∗(x)] ≤ ε could be achieved via an ERM on classification
loss

∑n
i=1 1{f(xi) ̸= yi} under some margin condtions (Bousquet, 2004; Massart & Nédélec, 2006; Bartlett

et al., 2005). In practice, one can also apply some methods beyond ERM to obtain f̂ (Namkoong & Duchi,
2017). In particular, in the case λ = 1

2 , the data in support ΩU is un-learnable as y are purely random.
While approximating f∗ on the full support is not possible in general, one can control the conditional risk
Ex[f̂(x) ̸= f∗(x)|x ∈ ΩI ] via a standard ERM schema (see proof in appendix Section A.7). We stress that
Theorem 1 holds for any classifier that is close to f∗, even the case where f̂ and ĝ are trained on the same
dataset.
Corollary 1 (Recovering g∗). Given conditions in Theorem 1, if we choose β = 3, we have:

Ex[1{ĝ(x) ̸= g∗(x)}] ≤ 4ε(1 + 2λ̄)
λ̄

(6)

Corollary 1 suggests that by minimizing the empirical version of the loss from Definitions 3, one can recover
g∗ in a PAC fashion. The theoretical guarantee holds even under a very challenging case where α > 0.5 and
λ̄ = 1

2 , .e.g, the majority of the data has purely random labels. The analysis of the selector loss (Theorem 1)
relies on the quality of the classifier f̂ . But since we know that ĝ is able to abstain from uninformative data,
we can retrain f̂ beyond standard ERM, with upweighted informative data, therefore improving the accuracy
of f̂ . Such circular logic naturally leads to a alternating risk minimization schema. We formulate such schema
in equations (8) and (9). Next theorem studies the risk bounds of classifiers by minimizing the empirical
risk conditional on the samples selected by ĝ. The risk bound improves the conditional risk compared to the
standard empirical risk minimization method up to some problem-dependent constant.
Theorem 2 (Joint Risk Bounds ). Let Sn{(xi, yi)}n

i=1 be i.i.d samples from the Data Generative Process
described in Definition 1 under Assumption 1, with f∗(·) ∈ F and g∗(·) ∈ G, |F| < ∞, |G| < ∞ and

λ(x) < 1
2 − h, h > 0. For any ϵ > 0 and 0 < δ < 1, if n ≥ 64 max

{
log( |G|

δ )
λ̄2ε

,
log( |F|

δ )
h2ε

}
, and:

ERM Classifier: f̂ = arg min
f∈F

1
n

n∑
i=1

1{f(xi) ̸= yi} (7)

ERM Selector: ĝ = arg min
g∈G

RSn(g; f̂ , 3) (8)

Subset-ERM Classifier: f̃ = arg min
f∈F

1
n

n∑
i=1

1{ĝ(xi) > 0}1{f(xi) ̸= yi} (9)

the following inequalities hold with probability at least 1− 3δ:

Ex[f̂(x) ̸= f∗(x)] ≤ ε (10)
Ex[1{ĝ(x) ̸= g∗(x)}] ≤ 4ε (11)

Ex[f̃(x) ̸= f∗(x)|g∗(x) = 1] ≤ h2ε

α
(12)

Theorem 2 implies the convergence of the alternating minimization procedure between equation (8) and (9)
by setting f̂ := f̃ , due to the fact that equation (12) satisfies the pre-requisite condition on f̂ in Theorem 1.
Another take away of Theorem 2 is an improved selective risk of classifier resulting from training only with
samples picked out by the selector. To see this, we note that Massart Noise condition is satisfied with margin
h
2 under the assumption that λ(x) < 1

2 −h. The risk bound under standard margin condition in equation (10)
follows from a standard result (see Section 5.2 in (Bousquet, 2004)). Indeed, equation (10) implies the
following risk bounds conditional on ΩI :

Ex[f̃(x) ̸= f∗(x)|g∗(x) = 1] ≤ ε

α
. (13)
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Which is improved by a problem-dependent constant factor, of order h2, compared to equation (12). While
risk bound in equation (10) is minimax optimal in general due to (Massart & Nédélec, 2006), the problem-
dependent structure introduced in Definition 1 allows tighter risk bounds on sub-regions. The refined selective
risk could be achieved by a weighted-ERM, with binary weights {0, 1} given by selectors.
Remark 3. The analysis presented in (Cortes et al., 2016) suggests that the generalization bound exhibits a
rate of O(1/

√
n). This risk bound covers scenarios where there is no presumption of a ground truth model,

nor any gap on the label noise ratio to distinguish informative and uninformative data. In comparison, the
risk bounds established in Theorem 2 indicate a faster, mini-max optimal rate of O(1/n) by capitalizing on the
structural characteristics of the underlying data generation process. This contrast in assumptions stems from
the motivation behind selective learning. While in the works of (Cortes et al., 2016; Geifman & El-Yaniv,
2019), the selective loss is devised with a focus on coverage ratio, i.e., optimizing for higher precision (selective
loss) by trading coverage ratio, our approach is tailored to distinguish data that is inherently unlearnable and
unpredictable. This discrepancy leads to an alternative theoretical outcome. The analysis in (Cortes et al.,
2016) primarily centers on selective risk, whereas our theoretical analysis places emphasis on the selector’s
capability to differentiate between informative and uninformative data without adjusting the rejection cost
imposed by a human.

Algorithm 1 Iterative Soft Abstain (ISA)
1: Input: Dataset Sn = {(x1, y1), ..., (xn, yn))}, weight parameter:β, random initial classifier f̂0 and selector
ĝ0, number of iterations T

2: for t← 1, · · · , T do
3: Optimize loss to update predictor f̂ t : 1

n

∑n
i=1 ĝ

t(xi){yi log(f̂ t(xi)) + (1− yi) log(1− f̂ t(xi))}
4: Approximate the ‘pseudo-informative label’ : zt

i = 1{1{f̂ t(xi) > 1
2} = yi}

5: Optimize loss to update selector gt :
∑n

i=1 {zt
i log(ĝt(xi)) + β(1− zt

i) log(1− ĝt(xi))}
6: end for
7: Output: f̂T , ĝT

6 A practical algorithm

Motivated by our theoretical analysis, we propose a practical algorithm that shares a spirit similar to the
selector loss. From a computational standpoint, we replace the binary loss by cross-entropy loss instead and
require that both f and g have continuous-valued output, ranging between 0 and 1 instead of binary output.
The label y also needs to be processed so that the values are in the {0, 1} range.

Following alternating steps given in equation (8) and (9), the practical algorithm trains both predictor and
selector in an iterative manner. To accelerate the training, instead of applying an alternating minimization
schema, we relax the requirement for minimization oracles by stochastic gradient updates. During the joint
optimization process, the predictor is counting on the selector to upweight informative data. By putting more
effort on the informative data, we wish to improve the performance of the predictor on informative data, as
in equation 12. Algorithm 1 shows the logic above. A pictorial example of Algorithm 1’s performance can be
found in Figure 7 in the Appendix.

7 Experiments

In this section, we test the efficacy of our practical algorithm (Algorithm 1) on both publicly-available
and semi-synthetic datasets. The code for reproducing the results could be found in https://github.
com/morganstanley/MSML/tree/main/paper/Learn_to_Abstain. The empirical study aims to answer the
following questions:

Q1 : How does Algorithm 1 compare to baselines on semi-synthetic datasets in recovering ground truth selector
g∗?
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The results are presented in Figure 2, 3 and 4, 5. We conducted semi-synthetic experiments to evaluate
the ability of each baseline in recovering the g∗ given different values for the noise ratio gap λ̄ and sample
size constraints. One can see our proposed method outperforms all listed baselines in this particular task.

Q2 : Does our algorithm outperform ERM on selected data points ?
One important motivation behind selective learning is to find a model that outperforms the ERM on
the informative part of the data. This is a challenging task as ERM is minimax optimal in general
setting(Massart & Nédélec, 2006; Bartlett & Mendelson, 2006). We show in Table 1 that our proposed
algorithm does exploit additional problem structure and achieves lower risk on selected datapoints.

Q3 : How does Algorithm 1 work on real world datasets compared to selective learning baselines?
On real world datasets, Algorithm 1 consistently shows competitive/superior performance against other
baselines in the low coverage regime, e.g., the proportion of data chosen by the selector being below 20%.
These empirical results suggest that that our method is good at picking out strongly informative data.
This observation supports theorem 2.

Baselines. We compare our method to recently proposed selective learning algorithms. (1) SelectiveNet
(Geifman & El-Yaniv, 2019), which integrates an extra neuron as a data selector in the output layer and
also introduces a loss term to control the coverage ratio; (2) DeepGambler (Liu et al., 2019), which also
maintains an extra neuron for abstention and uses a doubling-rate-like loss term (i.e., gambler loss) to train
the model. (3) Adaptive (Huang et al., 2020) uses the moving average confidence of classifier as the soft-label
for the training and an extra output neuron is used to indicate abstention; (4) Oneside (Gangrade et al.,
2021b) formulates selective classification problems as multiple one-sided prediction problems where each
data class’s coverage is maximized under error constrains. The implemented classifier is trained to optimize
a relaxed min-max loss. The selection then is performed according to the classifier’s confidence; (5) We
also create a heuristic baseline that selects data using the model prediction confidence, which we refer to
as Confidence. The intuition behind this heuristic baseline is that informative data should have higher
confidence compared to uninformative data.

Our Algorithm: ISA and ISA-V2. Several specific implementation details need to be mentioned. First
of all, we empirically get better performance if we average zt (in Algorithm 1) over past 10 epochs instead of
using zt from the most recent epoch. Second, we use a rolling window average of past 10 epochs of g for
sample weights instead of only using current epoch’s output. Furthermore, inspired by existing literature,
we empirically get better performance in real-world datasets if we allow both the classifier model and the
selector model to use the same backbone network to share data representations. We add an extra output
neuron to the classifier model to achieve this goal. Finally, we use focal loss Lin et al. (2017) in order to deal
with imbalance of informative versus uninformative data. The selector focal loss has the following format:

L(zi, ĝi) =
n∑

i=1
{− [1{zi}(1− ĝi) log ĝi + β1{1− zi}ĝi log (1− ĝi)]} (14)

where zi = 1{f̂i = yi} is the classifier f̂ ’s correctness on ith input. We use ĝi as the abbreviation for the ith
entry in ĝi(xi).

We will denote as ISA the modified version of Algorithm 1 that adopts the rolling average and focal loss,
and ISA-V2 as the version that adopts all 4 relaxations. Notice that both ISA and ISA-V2 can be easily
applied in multi-class scenarios in practice.

Experiment Details. We use a lightweight CNN for MNIST+Fashion. Its architecture is given in Table 5
in section D.1. We use ResNet18 (He et al., 2016b) for SVHN. For all of our synthetic experiments, we use
Adam optimizer with learning rate 1e-3 and weight decay rate 1e-4. We use batch size 256 and train 60
epochs for MNIST+Fashion and 120 epochs for SVHN. The learning rate is reduced by 0.5 at epochs 15,
35 and 55 for MNIST+Fashion and is reduced by 0.5 at epochs 40, 60 and 80 for SVHN. We repeat each
experiment 3 times using seeds 80, 81 and 82.
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Regarding hyper-parameters for each baseline, we mainly follow the setting given by the original paper.
Except for DeepGambler in MNIST+Fashion, which the original paper does not contemplate. We set the
pay-off o = 1.5 instead of 2.6, which gives better performance for DeepGambler. For Oneside, since we are
not maximizing the coverage (the optimal coverage is fixed in our problem), we fix the Lagrangian multiplier
µ to be 0.5 and use t as the score to compute average precision. We made our best effort to implement this
algorithm, given that the authors have not released the original code. We list all the hyper-parameters in
Table 6 in section D.1.

We conduct all our experiments using Pytorch 3.10 (Paszke et al., 2019). We execute our program on Red
Hat Enterprise Linux Server 7.9 (Maipo) and use NVIDIA V100 GPU with cuda version 12.1.

7.1 Experiments Using Semi-Synthetic Data for Q1

Dataset Construction: We explicitly control the support of informative/uninformative data. For
MNIST+Fashion-MNIST dataset, images from MNIST are defined to be uninformative, while images
from Fashion-MNIST are set to be informative. For SVHN(Netzer et al., 2011) dataset, class 5-9 are set to
be uninformative and class 0-4 are set to be informative. Datasets are constructed with different values of
informative data fraction α and label noise ratio gap λ̄ driving the noisy generative process. We inject label
noise accordingly to Definition 1 by setting λ(x) = λ̄. Note that when we vary α, we only constrain the
sample size in the training set, while in the testing set we always use the complete testing set for performance
evaluation.

We present two sets of experiments. In the first experiment, we set λ̄ = 0.5, which gives realizable informative
data and completely randomly shuffled uninformative data. We fix the number of uninformative data points
and increase the number of informative ones as a proxy for different value of α in the Definition 1. Specifically,
we run our experiments with ♯Informative Data

♯Uninformative Data = α
1+α ∈ {1.0, 0.75, 0.5, 0.25}. Furthermore, we conduct our

experiments in both a complete dataset setting and a sparse dataset setting to test each algorithm’s sample
efficiency. In a complete dataset setting, we use 100% of all informative data and uninformative data, whie in
a sparse dataset setting, we use only 25% of samples.

In the second set of experiments, we inject 10%, 20% and 30% proportion of uniform label noise into the
informative part and also inject 80%, 70% and 60% uniform label noise into the uninformative part.

Evaluation Metrics. Every baseline will generate a score besides their classification output to decide
if the input should be abstained. For SLNet, DeepGambler, Adaptive and ISA-V2, the score is given by
the extra neuron. For Confidence and Oneside, such score is its maximum probabilistic output. For ISA,
the score is given by the selector model. In the semi-synthetic experiment, we can calculate the average
precision (AP) using the selection score and ground-truth informative versus uninformative binary label to
test each baseline’s ability in recovering g∗. In our study, we especially focus on the case where α is small
and informative data is the minority part of the dataset. In this situation, there is severe class imbalance in
the latent informative/uninformative labeling. AP is preferred over other metrics, like F1 or AUC, in this
scenario (Saito & Rehmsmeier, 2015). In Table 2, Table 3 and Table 4, we use transformation − log (1− x)
to make the performance difference visually distinguishable.

Results and Discussion. There are 3 empirical observations we can get from Figure 2, 3, 4, where we
manifest the performance difference though the transformation −log(1−Average Precision) for differentiation
purpose. More detailed results can be found in appendix section D.2. Firstly, the proposed ISA method
outperforms all baselines under most of the scenarios according to the average precision criterion, which
supports the superiority of the proposed method in recovery g∗. Secondly, we observe that our method’s
performance is more stable and suffers less deterioration as the data size becomes more limited or the
label noise becomes stronger. Finally, in many cases, Confidence, which simply uses the confidence of a
model trained with vanilla cross entropy loss, is a competitive baseline. Our proposed method outperforms
Confidence in most scenarios.
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Figure 2: Average Precision (AP) ↑ v.s Different α. Numerical results in Table 7.

Figure 3: Average Precision (AP) ↑ v.s Different α - 25% Samples Size. Numerical results in Table 8.

Figure 4: Average Precision (AP) ↑ v.s. Different λ . Numerical results in Table 9.
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7.2 Experiments Using Semi-Synthetic Data for Q2

Evaluation Metrics: The construction of informative/uninformative data follows Section 7.1. In this section,
we want to measure the classification performance of the proposed method conditioning on selected data points,
by looking at the selective risk (SR) metric. Its formal definition is given by SRτ = 1

n

∑n
i I{arg max f̂(xi) ̸=

yi|1{ĝ(xi) > q}}, where the quantity q is used to control the coverage. The confidence method could be
viewed as a proxy for ERM method with following adjustments: 1) replacing cross-entropy as surrogate loss
for binary classification loss 2) replacing selector 1{ĝ(x) ≥ q} by using estimated margin based selection rule
1{|f̂ERM (x)− 1/2| ≥ q}. Coverage is defined as the proportion of selected data to the whole dataset. In this
experiment, we always calculate SR at the ground-truth coverage α = 0.5. It is the proportion of informative
data that we mixed into the testing set. Ideally, we hope that the selector can select all but only informative
data, which should give the lowest risk given the coverage level.

Table 1: SR ↓. ERM v.s ISA

Dataset Method
100% Sample 25% Sample

τI = 0.3
τU = 0.6

τI = 0.2
τU = 0.7

τI = 0.1
τU = 0.8

τI = 0.3
τU = 0.6

τI = 0.2
τU = 0.7

τI = 0.1
τU = 0.8

MNIST+Fashion
Confidence 0.387 ± 0.001 0.293 ± 0.005 0.188 ± 0.005 0.469 ± 0.002 0.362 ± 0.002 0.235 ± 0.002

ISA 0.376 ± 0.004 0.280 ± 0.004 0.186 ± 0.003 0.446 ± 0.002 0.338 ± 0.005 0.233 ± 0.004
ISA-V2 0.378 ± 0.008 0.281 ± 0.001 0.192 ± 0.001 0.487 ± 0.022 0.355 ± 0.008 0.254 ± 0.007

SVHN
Confidence 0.409 ± 0.006 0.324 ± 0.006 0.227 ± 0.007 0.526 ± 0.008 0.416 ± 0.012 0.295 ± 0.007

ISA 0.391 ± 0.003 0.310 ± 0.018 0.217 ± 0.003 0.554 ± 0.011 0.365 ± 0.016 0.256 ± 0.010
ISA-V2 0.455 ± 0.006 0.357 ± 0.010 0.243 ± 0.003 0.516 ± 0.007 0.430 ± 0.014 0.307 ± 0.027

Results and discussion. In Table 1, we present the SR for Confidence (ERM) and the proposed ISA.
Following the setting in section 7.1, we inject different levels of uniform label noise into uninformative data
and informative data separately, denoted by τI and τU , corresponding to label noise ratio for informative and
uninformative data respectively. Parameter λ̄ in Definition 1 can be calculated accordingly: λ̄ = 0.9−τI

1.8 = τU

1.8 .

There are two main empirical observations from Table 1. First, ISA consistently maintains smaller SR
than Confidence (ERM) across different scenarios. This result is consistent with Theorem 2, suggesting
that upweighting informative data leads to improved risk on informative data. Second, we observe that
both methods exhibit performance deterioration as the noise gap becomes smaller, which is suggested by
the sample complexity in our theorem. Our theorem suggests that the sample complexity increases as the
label noise ratio gap λ̄ decreases. When λ̄ vanishes, informative date becomes less distinguishable from the
uninformative data, and thus learning g becomes more challenging.

7.3 Experiments Using Real-world Data for Q3

Dataset. In this section, we report our empirical study on 3 publicly-available datasets: (1) Oxford realized
volatility (Volatility) dataset (Heber et al., 2009), (2) breast ultrasound images (BUS) (Al-Dhabyani et al.,
2020), and (3) lending club dataset (LC) (Lending Club, 2007). The experiments aim to demonstrate the
potential of the proposed algorithm in real-world application and its advantages in selecting useful information
out of noisy dataset. The data description and respective train-test splits are presented in Table 11 in
section D.1.

Experiment Details. We use the same network architectures, software and hardward as we do in section 7.1-
7.2. For Volatility and LC, we use the same Adam optimizer with learning rate (1e-3), weight decay rate
(1e-4) and batch size 256. For BUS, due to its limited sample size, we use smaller batch size (16) and reduce
learning rate (1e-4) accordingly. For all three datasets, we train each algorithm for 50 epochs and reduce the
learning rate by half at epochs 15 and 35. Each experiment is repeated 6 times with random seeds 77, 78, 79,
80, 81 and 82.

Specifically, for DeepGambler the default hyper-parameter o = 2.2 gives unreasonably poor performance
on LC and BUS. We find that setting o = 1.5 gives the best performance and hence we use this value
for DeepGambler in these two datasets. For other baselines as well as our method, we use consistent
hyper-parameters across all experiments. They are listed in Table 4 in section D.1.
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Evaluation Metric. Unlike synthetic experiments, in the real-world datasets, the ground-truth binary
labels that distinguish whether data is informative/uninformative are not available. Hence metrics like
precision/recall are not applicable. Instead, we report the selective risk of each algorithm given different
coverage levels. Specifically, we pick testing data points that have top% coverage selective confidence given
by each selector, and calculate the testing selective risk at different coverage levels accordingly.

Results and Discussion. From Table 2, we can see that the proposed method gains competitive performance
against other baselines at low coverage levels. This suggests that our method is especially good at picking
out strongly informative data. Such low risk regime can be captured by our selector loss, leading to lower
selective risk, which is consistent with the conclusion in Theorem 2.

Table 2: Real-World Experiments: Selective Risk v.s Coverage
Dataset Coverage Confidence SLNet DeepGambler Adaptive Oneside ISA ISA-V2

Volatility

0.001 0.000 ± 0.000 0.200 ± 0.000 0.267 ± 0.121 0.000 ± 0.000 0.050 ± 0.055 0.000 ± 0.000 0.000 ± 0.000
0.100 0.097 ± 0.008 0.122 ± 0.003 0.328 ± 0.015 0.168 ± 0.008 0.113 ± 0.006 0.091 ± 0.008 0.083 ± 0.004
0.200 0.133 ± 0.004 0.198 ± 0.002 0.326 ± 0.009 0.225 ± 0.012 0.159 ± 0.003 0.136 ± 0.002 0.127 ± 0.008
0.500 0.218 ± 0.004 0.316 ± 0.003 0.327 ± 0.005 0.290 ± 0.004 0.239 ± 0.003 0.227 ± 0.002 0.225 ± 0.004
0.900 0.309 ± 0.001 0.332 ± 0.003 0.327 ± 0.001 0.321 ± 0.001 0.314 ± 0.001 0.312 ± 0.002 0.310 ± 0.001
0.999 0.327 ± 0.003 0.333 ± 0.003 0.327 ± 0.001 0.329 ± 0.001 0.332 ± 0.002 0.328 ± 0.001 0.324 ± 0.002

BUS

0.001 0.026 ± 0.032 0.167 ± 0.408 0.000 ± 0.000 0.167 ± 0.408 0.052 ± 0.036 0.000 ± 0.000 0.000 ± 0.000
0.100 0.026 ± 0.032 0.396 ± 0.156 0.156 ± 0.147 0.083 ± 0.076 0.052 ± 0.036 0.020 ± 0.031 0.010 ± 0.026
0.200 0.026 ± 0.032 0.422 ± 0.134 0.151 ± 0.057 0.089 ± 0.094 0.052 ± 0.036 0.021 ± 0.026 0.005 ± 0.013
0.500 0.038 ± 0.029 0.432 ± 0.062 0.184 ± 0.046 0.135 ± 0.140 0.052 ± 0.036 0.058 ± 0.019 0.017 ± 0.016
0.900 0.085 ± 0.019 0.393 ± 0.039 0.133 ± 0.035 0.200 ± 0.109 0.093 ± 0.023 0.098 ± 0.018 0.095 ± 0.022
0.999 0.109 ± 0.016 0.382 ± 0.040 0.121 ± 0.032 0.114 ± 0.026 0.219 ± 0.107 0.109 ± 0.013 0.118 ± 0.024

LC

0.001 0.829 ± 0.052 0.410 ± 0.142 0.362 ± 0.058 0.357 ± 0.072 0.106 ± 0.036 0.061 ± 0.012 0.219 ± 0.068
0.100 0.204 ± 0.005 0.370 ± 0.102 0.419 ± 0.031 0.284 ± 0.023 0.207 ± 0.036 0.151 ± 0.007 0.151 ± 0.021
0.200 0.216 ± 0.008 0.393 ± 0.077 0.419 ± 0.023 0.265 ± 0.014 0.228 ± 0.038 0.214 ± 0.006 0.212 ± 0.019
0.500 0.312 ± 0.006 0.421 ± 0.030 0.414 ± 0.011 0.241 ± 0.007 0.305 ± 0.030 0.333 ± 0.005 0.362 ± 0.011
0.900 0.385 ± 0.004 0.399 ± 0.009 0.418 ± 0.004 0.229 ± 0.004 0.373 ± 0.021 0.389 ± 0.006 0.427 ± 0.009
0.999 0.398 ± 0.004 0.399 ± 0.010 0.421 ± 0.004 0.231 ± 0.003 0.386 ± 0.019 0.395 ± 0.007 0.427 ± 0.008

7.4 Ablation Study

In this section we present ablation studies about 1) the sensitivity of the algorithm’s performance to the
choice of hyper-parameters and 2) aforementioned practical implementations. We first present the results
on MNIST+Fashion given different hyper-parameter combinations. In section 7.1 we set β = 3.0, ∆T = 1
and pre-train epochs to be 10. In this section, we vary each of them one-by-one while fix the rest of them.
The results are presented in Figure 6 in Appendix. We can see that the proposed algorithm’s performance is
robust against the choice of hyper-parameters. We next present an ablation study on the aforementioned
practical implementations in Table 3. Recall that we have the following relaxations: (1) moving average
estimation of sample weight (MAW); (2) moving average of soft-label for informative data; (3) classifier and
selector sharing the same backbone and the use of focal loss instead of cross-entropy. We systematically
incorporate each module one at a time, evaluating their marginal contributions to the performance on SVHN
in the high label noise setting (τI = 0.3 and τU = 0.6). Results shown in Table 3. For Algorithm 1, the
best run can get AP = 0.87 but the vanilla algorithm is not stable and end up getting large variance in its
performance. In comparison, the relaxed version get much more stable performance. The ablation study
suggests that each relaxation strategy helps stabilizing the algorithm and make it robust against variance
from stochastic approximation.

Table 3: Ablation Study on Implementation Relaxation.
Method AP SR
Algorithm 1 0.778 ± 0.131 0.576 ± 0.034
+ MA-Weight 0.763 ± 0.094 0.573 ± 0.019
+ MA-Soft (ISA) 0.850 ± 0.020 0.554 ± 0.011
+ Focal Loss (ISA-V2) 0.906 ± 0.000 0.516 ± 0.007
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8 Conclusion and Future Work

In this work, we take the first step towards principled learning in domains where a lot of data is naturally
uninformative/highly noisy and should be discarded in both learning and inference stage. We propose a
general noisy generative process that formally describes such setting. Supported by theoretical guarantees,
a novel loss is designed for the training of the selector model. Based on this loss, we design a practical
algorithm that jointly learns the predictor and selector. Empirical analysis demonstrates the effectiveness of
our method. There are several directions for future work:

• In the current framework, the fundamental principle of proposed method is distinguishing the
uninformative data points and to discard them during the training process. While this approach may
enhance the statistical efficiency and risk associated with informative data, it may under-utilize the
potential of data from a representation learning perspective - for instance, while the uninformative
labels are useless by definition, the discarded samples themselves may still be helpful for representation
learning. This can be achieved through methods similar to those presented in studies like (Sohn
et al., 2020; Li et al., 2021).
using methods similar to (Sohn et al., 2020; Li et al., 2021).

• The Noisy Generative Process can be potentially generalized to solve different problems, such as
active learning (Cohn et al., 1994) and out of distribution generalization (Arjovsky et al., 2019).

• Bridging the gap between Algorithm 1 and Theorem 2 presents two main challenges. Firstly,
analyzing the disparity when minimizing cross-entropy as a surrogate for binary classification. We
are optimistic that the H-consistency bound framework introduced in (Awasthi et al., 2022) could be
utilized for this purpose. Secondly, examining the use of Stochastic Gradient Descent (SGD) instead
of the Empirical Risk Minimization (ERM) oracle in Theorem 2. In this regard, we believe that
tools for analyzing SGD in bi-level optimization problems (Chen et al., 2021) could be applied.

We look forward to these extensions.
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In this appendix section, we present the missing proofs as well as additional theory results.
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A.1 Preliminaries

We describe the risk for selector loss on (x, y) ∼ X × Y ⊂ Rd × {+1,−1}.

R(g; f, β) := Ex,y

[
β1{g(x) = 1}1{f(x) ̸= y}+ 1{g(x) ̸= 1}1{f(x) = y}

]
(15)

The choice of β should ensure that given Bayes optimal classifier f∗(·), g∗(·) is the minimizer for the selector
risk R(g; f∗, β). We have that given f∗, the risk gap between any selector g and g∗ is R(g; f∗, β)−R(g∗; f∗, β)
could be written as:

R(g; f∗, β)−R(g∗; f∗, β)

= Ex,y

[
β1{g(x) = 1}1{g∗(x) = 1}1{f∗(x) ̸= y}+ β1{g(x) = 1}1{g∗(x) ̸= 1}1{f∗(x) ̸= y}

+1{g(x) ̸= 1}1{g∗(x) = 1}1{f∗(x) = y}+ 1{g(x) ̸= 1}1{g∗(x) ̸= 1}1{f∗(x) = y}
]

−Ex,y

[
β1{g(x) = 1}1{g∗(x) = 1}1{f∗(x) ̸= y}+ β1{g(x) ̸= 1}1{g∗(x) = 1}1{f∗(x) ̸= y}

+1{g(x) ̸= 1}1{g∗(x) ̸= 1}1{f∗(x) = y}+ 1{g(x) = 1}1{g∗(x) ̸= 1}1{f∗(x) = y}
]

= Ex

[{
β

(
1
4 + λ(x)

2

)
− 3

4 + λ(x)
2

}
1{g(x) = 1}1{g∗(x) ̸= 1}

]
+Ex

[{
3
4 + λ(x)

2 − β
(

1
4 −

λ(x)
2

)}
1{g(x) ̸= 1}1{g∗(x) = 1}

]

(16)

Since λ(x) is data dependent, to ensure that R(g, f∗, β) ≥ R(g∗; f∗, β) for all g ∈ G, it suffices to pick
β

( 1
4 + λ(x)

2
)
− 3

4 + λ(x)
2 ≥ 0 and 3

4 + λ(x)
2 −β

( 1
4 −

λ(x)
2

)
≥ 0. So we need β ≥ sup

x

3−2λ(x)
1+2λ(x) and β ≤ inf

x

3+2λ(x)
1−2λ(x)

which implies that it suffices to pick β ∈
[ 3−2λ̄

1+2λ̄
, 3+2λ̄

1−2λ̄

]
.

Assuming λ(x) ≥ λ̄, we pick β within certain margin of the above interval: by picking
[ 3−2λ̄

1+2λ̄
+λ̄, 3+2λ̄

1−2λ̄
− λ̄

1−4λ̄2

]
we have

R(g; f∗, β)−R(g∗; f∗, β) ≥ λ̄

4(1 + 2λ̄)
Ex[1{g(x) ̸= g∗(x)}] (17)

Note that if λ̄ = 1
2 , the above interval for β is [2,∞].

A.2 Proof of Information Theoretic Lower Bound

In this section we quantify the hardness of recovering g∗, from an information theoretic perspective. We
define a generative process that conforms with the noisy generative process defined in 1, and show a sample
lower bound for finding a selector given samples generated from this process.

Let X : {τ ·e|e ∈ {e1, ..., ed}, |τ | ≤ 1} where ej represents the j-th cannonical basis. So X consists of τ -scaled
basis vectors. Let Y = {+1,−1}, samples are drawn from X × Y ⊂ Rd × {+1,−1}. Let w be vector of ones,
w = 1. For our lower bound construction we define f∗ as follows for x ∈ X .

f∗(x) = 21{w⊤x > 0} − 1.

Let G be the hypothesis class that contains all functions g : X → {0, 1}. So |G| = 2d and G contains g∗(x).
Let σ = (σ1, . . . , σd) ∈ {+1,−1}d be a d-dimensional Rademacher vector, α ∈ (0, 1). We define g∗

σ ∈ G as
follows

g∗
σ(x) =

d∑
j=1

1{x⊤ej ̸= 0}
{
1{∥x∥ ≥ 1− α} · (1− σj)/2 + 1{∥x∥ ≤ α} · (1 + σj)/2

}
.
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To clarify the definitions above, suppose for each j = 1, . . . , d, ej is the vector with the jth entry being
one and the other entries zero. Let Ωj : {x|x = τ · ej} be all the vectors in X with non-zero jth. Then
for x ∈ Ωj , we have that f∗(x) is 1 if τ is positive and −1 if τ is negative. Moreover, g∗(x) is 1−σj

2 if
∥τ∥ ≥ 1− α, it is 1+σj

2 if ∥τ∥ ≤ α, and it is 0 otherwise. In other words, if σj = −1, the informative part of
Ωj is {x|∥x∥ ≥ 1− α} otherwise the informative part of Ωj becomes {x|∥x∥ ≤ α}. Moreover, considering
Definition 1, the domain Dα is ∪d

j=1Ωj . Let Sσ,n = {(xi, yi)}n
i=1 be generated from following process which

we denote as Q:

σ ∼ Unif{+1,−1}d

g∗
σ(x) =

d∑
j=1

1{x⊤ej ̸= 0}
{
1{∥x∥ ≥ 1− α} · (1− σj)/2

+ 1{∥x∥ ≤ α} · (1 + σj)/2
}

Generate S = {(xi, yi)}n
i=1 according to:

j ∼

{
j = 1, with prob 1− ε

λ̄

j ∼ Unif{2, ..., d} with prob ε
λ̄
.

τ ∼ Unif [−1, 1]
x = τ · ej

y =
{
f∗(x), with prob 3

4 + (2g∗(x)−1)λ̄
2

−f∗(x) with prob 1
4 −

(2g∗(x)−1)λ̄
2

(18)

Process Q follows process 1. Let A be any (potentially randomized) algorithm that takes dataset Sσ,n as
input where Sσ,n is generated from the process described in Equation 18. Let ĝ be the hypothesis ouput of
algorithm A, i.e. ĝ(·) = A(Sσ,n). For a parameter β we define the risk on algorithm A as

R(A(Sσ,n), β) = R(ĝ(x), f∗, β) = Ex,y

[
β1{ĝ(x) = 1}1{f∗(x) ̸= y}+ 1{ĝ(x) ̸= 1}1{f∗(x) = y}

]
. (19)

Theorem 3. Let β and ε be any real numbers where β ∈
[ 3−2λ̄

1+2λ̄
+ λ̄, 3+2λ̄

1−2λ̄
− λ̄

1−4λ̄2

]
and 0 < ε ≤ λ̄. For any

algorithm A that takes n samples Sn from the noisy generative process as in Assumption 1 for some integer n
and outputs a selector R(Sn) we have the following: If the risk gap is bounded by ε

8(1+2λ̄) , i.e.

ESn
[R(A(Sn), f∗, β)−R(g∗, f∗, β)] ≤ ε

8(1 + 2λ̄)

then A requires log(|G|)
λ̄ε

many samples, i.e. n ≥ log(|G|)
λ̄ε

.

Proof. The lower bound construction is the process defined in Equation 18. Let ĝ = A(Sn) be the output of
A. From equation (17) the risk gap R(ĝ, f∗, β)−R(g∗, f∗, β) averaged over σ and Sσ,n can be written as
follows.

EσESσ,n
[R(ĝ, f∗, β)−R(g∗

σ, f
∗, β)]

≥ λ̄

4(1 + 2λ̄)
EσESσ,n

[
Ex[1{ĝ(x) ̸= g∗

σ(x)}]
∣∣∣∣σ]

≥ λ̄

4(1 + 2λ̄)
EσESσ,n

{ d∑
j=2

Px

[
x ∈ Ωj ]Px

[
ĝ(x) ̸= g∗

σ(x)
∣∣x ∈ Ωj

]∣∣∣∣σ}

≥ ε

4(1 + 2λ̄)d

d∑
j=2

Eσ

{
ESσ,n

[
Px

[
ĝ(x) ̸= g∗

σ(x)
∣∣x ∈ Ωj

]]∣∣∣∣σ}
(20)
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In the last inequality we use the fact that Px[x ∈ Ωj ] = ϵ/(λ̄(d− 1)) ≥ ϵ/(λ̄d) for j ≥ 2.

Let σ/j be a Rademacher vector conditional on coordinates {1, ..., j − 1, j + 1, ...d}. Let σ{−j} be a vector
equal to σ except at the jth entry. We drop the n subscript from Sσ,n for simplicity. Above equation becomes:

EσESσ [R(ĝ, f∗, β)−R(g∗
σ, f

∗, β)]

≥ ε

8(1 + 2λ̄)d

d∑
j=2

Eσ/j

{
ESσ

[
Px

[
ĝ(x) ̸= g∗

σ(x)
∣∣x ∈ Ωj

]]

+ ES
σ{−j}

[
Px

[
ĝ(x) ̸= g∗

σ(x)
∣∣x ∈ Ωj

]]∣∣∣∣σ/j

}
= 1

2d−1

∑
σ/j∈{+1,−1}d−1

ε

8(1 + 2λ̄)d

d∑
j=2

{
PSσ,x

[
ĝ(x) ̸= g∗

σ(x)
∣∣x ∈ Ωj

]
+ PS

σ{−j} ,x

[
ĝ(x) ̸= g∗

σ(x)
∣∣x ∈ Ωj

]}
(21)

We make our notation more specific. Let A(Sσ) = ĝσ and A(Sσ{−j}) = ĝσ−j . For simplicity, by g∗
σ−j we

mean g∗
σ{−j} .

Note that for all x ∈ Ωj , g∗
σ−j (x) ̸= g∗

σ(x) could happen only when α ≥ ∥x∥ or ∥x∥ ≥ 1− α. So equation 21
becomes

EσESσ [R(ĝ, f∗, β)−R(g∗
σ, f

∗, β)]

≥ 1
2d−1

∑
σ/j∈{+1,−1}d−1

ε

8(1 + 2λ̄)d

d∑
j=2

{
PSσ,x

[
ĝσ(x) ̸= g∗

σ(x)
∣∣x ∈ Ωj

]
+ PS

σ{−j} ,x

[
ĝσ−j (x) ̸= g∗

σ−j (x)
∣∣x ∈ Ωj

]}
= 1

2d−1

∑
σ/j∈{+1,−1}d−1

αε

8(1 + 2λ̄)d

d∑
j=2

{
PSσ,x

[
ĝσ(x) ̸= g∗

σ(x)
∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α

]
+ PS

σ{−j} ,x

[
ĝσ−j (x) ̸= g∗

σ−j (x)
∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α

]}
= 1

2d−1

∑
σ/j∈{+1,−1}d−1

αε

8(1 + 2λ̄)d

d∑
j=2

{
PSσ,x

[
ĝσ(x) ̸= g∗

σ(x)
∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α

]
+ PS

σ{−j} ,x

[
ĝσ−j (x) ̸= −g∗

σ(x)
∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α

]}

(22)
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Next we make Equation 22 independent of x.

EσESσ [R(ĝ, f∗, β)−R(g∗
σ, f

∗, β)]

≥ 1
2d−1

∑
σ/j∈{+1,−1}d−1

αε

8(1 + 2λ̄)d

d∑
j=2

{
PSσ,x

[
ĝσ(x) ̸= g∗

σ(x)
∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α

]
+ PS

σ{−j} ,x

[
ĝσ−j (x) ̸= −g∗

σ(x)
∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α

]}
= 1

2d−1

∑
σ/j∈{+1,−1}d−1

αε

8(1 + 2λ̄)d

d∑
j=2

{
ESσ,x

[
1{ĝσ(x) ̸= g∗

σ(x)}
∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α

]
+ ES

σ{−j} ,x

[
1{ĝσ−j (x) ̸= −g∗

σ(x)}
∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α

]}
= 1

2d−1

∑
σ/j∈{+1,−1}d−1

αε

8(1 + 2λ̄)d

d∑
j=2

{
ESσ,x

[
1{ĝσ ̸= g∗

σ}
∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α

]
+ ES

σ{−j} ,x

[
1{ĝσ−j ̸= −g∗

σ}
∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α

]}
=
∗

1
2d−1

∑
σ∈{+1,−1}d−1

αε

8(1 + 2λ̄)d

d∑
j=2

{
PSσ

[
ĝσ ̸= g∗

σ

]
+ PS

σ{−j}

[
ĝσ−j ̸= −g∗

σ

]}

= 1
2d−1

∑
σ∈{+1,−1}d−1

αε

8(1 + 2λ̄)d

d∑
j=2

{
1− PSσ

[
ĝσ ̸= −g∗

σ

]
+ PS

σ{−j}

[
ĝσ−j ̸= −g∗

σ

]}

≥ 1
2d−1

∑
σ/j∈{+1,−1}d−1

αε

8(1 + 2λ̄)d

d∑
j=2

{
1− ∥Q(n)

σ −Q(n)
σ{−j}∥T V

}

(23)

where Q(n)
σ and Q

(n)
σ{−j} are the product distribution of n samples for Sσ andSσ−j respectively. The last step

of inequality follows from the Le Cam’s method. In the Equation ∗ we use the fact that for all x s.t., ∥x∥ ≤ α
or ∥x∥ ≥ 1− α, 1{ĝσj (x) ̸= g∗

σj (x)} = 1{ĝσj ̸= g∗
σj} is free of x.

Let Qσ be the distribution of Sσ and Qσ{−j} be distribution of Sσ−j . The total variation distance can be
bounded using the Hellinger distance, which is denoted as H(·, ·). Below we bound the TV distance using
Hellinger distance.

∥Q(n)
σ −Q(n)

σ{−j}∥T V

≤H(Q(n)
σ , Q

(n)
σ{−j})

√
1−
H2(Q(n)

σ , Q
(n)
σ{−j})

4

≤
√
nH(Qσ, Qσ{−j})

√
1−
H2(Q(n)

σ , Q
(n)
σ{−j})

4
H2(Q

(n)
σ ,Q

(n)
σ{−j} )≤nH2(Qσ,Q

σ{−j} )

≤
√
nH(Qσ, Qσ{−j})

(24)
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Now we bound the Hellinger distance.

H2(Qσ, Qσ{−j})

=
∫

x,y

(√
Qσ(x, y)−

√
Qσ{−j}(x, y)

)2
dxdy

=
∫

x∈Ωj ,∥x∥≤α

∫
y=f∗(x)

(√
Qσ(x, y)−

√
Qσ{−j}(x, y)

)2
dxdy

+
∫

x∈Ωj ,∥x∥≥1−α

∫
y=f∗(x)

(√
Qσ(x, y)−

√
Qσ{−j}(x, y)

)2
dxdy

+
∫

x∈Ωj ,∥x∥≤α

∫
y ̸=f∗(x)

(√
Qσ(x, y)−

√
Qσ{−j}(x, y)

)2
dxdy

+
∫

x∈Ωj ,∥x∥≥1−α

∫
y ̸=f∗(x)

(√
Qσ(x, y)−

√
Qσ{−j}(x, y)

)2
dxdy

=αε

dλ̄

{(√
3
4 + λ̄

2 −

√
3
4 −

λ̄

2

)2
+

(√
1
4 + λ̄

2 −

√
1
4 −

λ̄

2

)2}
≤3αελ̄

d

(25)

Thus we can bound the total variation distance as:

∥Q(n)
σ −Q(n)

σ{−j}∥T V ≤

√
3nαελ̄
d

(26)

Note that from inequality 23, inequality 24 and inequality 26 we have

EσESσ [R(A(Sσ), β)−R(g∗, f∗, β)]
=EσESσ [R(ĝ, f∗, β)−R(g∗, f∗, β)]

≥ d− 1
d

αε

8(1 + 2λ̄)

(
1−

√
3nαελ̄
d

) (27)

Above implies

sup
σ∈{+1,−1}d

ESσ [R(A(Sσ), f∗, β)−R(g∗, f∗, β)] ≥ EσESσ [R(A(Sσ), β)−R(g∗, f∗, β)]

≥ d− 1
d

αε

8(1 + 2λ̄)

(
1−

√
3nαελ̄
d

)
.

Since |G| = 2d, any algorithm A needs at least n = Ω
(

log |G)|
λ̄εα

)
number of samples so that there is a hope to

achieve
sup

σ
ESσ [R(A(Sσ), β)]−R(g∗, f∗, β) ≤ αε

32(1 + 2λ̄)
.

Replacing αε with ε finishes the proof.

Remark 4. From the second inequality in Equation 20, it can be observed that the construction of information
theoretic lower bound for risk function R(g, β) can also be applied to the construction of an Ω(log(|G|/(λ̄ε)))
sample complexity lower bound for Ex[g(x) ̸= g∗(x)]. Thus our Corollary 1 also achieves minimax-optimal
rate for recovering g∗ for family of Noise Generative Process.
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A.3 Proof of Sample Complexity Upper Bound

Here we prove Theorem 1 in which we bound the risk gap R(g; f∗, β)−R(g∗; f∗, β). Recall that the empirical
version of the selector loss is

RSn(g; f, β) = 1
n

n∑
i=1

{
β1{g(xi) = 1}1{f(xi) ̸= yi}+ 1{g(xi) = 1}1{f(xi) = yi}

}
.

Our high level approach is as follows. We first analyze the gap between RSn(ĝ; f∗, β) and RSn(g∗; f∗, β) and
provide an upper bound for it. Then we use this upper bound to get an upper bound for the gap between
R(ĝ; f∗, β) and R(g∗; f∗, β) using concentration properties and Bernstein inequality.

CASE I: f̂(·) ∈ F and Ex[f̂(x) ̸= f∗(x)] ≤ ε
8β with probability at least 1 − δ. To upper bound

RSn(ĝ; f∗, β)−RSn(g∗; f∗, β), we use RSn(ĝ; f̂ , β) and RSn(g∗; f̂ , β) as a middle step. Since ĝ is the empirical
risk minimizer, we have

RSn
(ĝ; f̂ , β) ≤ RSn

(g∗; f̂ , β). (28)

Next we leverage on the fact that f̂ is consistent with f to establish an inequality in following fashion:

RSn
(ĝ; f∗, β) ≤ RSn

(g∗; f∗, β) + const · ε

Note we have that

RSn(ĝ; f̂ , β)

= 1
n

n∑
i=1

1

{
f̂(xi) ̸= f∗(xi)

}{
β1{ĝ(xi) = 1}1{f̂(xi) ̸= yi}+ 1{ĝ(xi) = 1}1{f̂(xi) = yi}

}

+ 1
n

n∑
i=1

1

{
f̂(xi) = f∗(xi)

}{
β1{ĝ(xi) = 1}1{f̂(xi) ̸= yi}+ 1{ĝ(xi) = 1}1{f̂(xi) = yi}

} (29)

Recall that

RSn(ĝ; f∗, β) = 1
n

n∑
i=1

[
β1{ĝ(xi) = 1}1{f∗(xi) ̸= yi}+ 1{ĝ(xi) = 1}1{f∗(xi) = yi}

]
.

So
RSn(ĝ; f̂ , β)
= RSn(ĝ; f∗, β)

− 1
n

n∑
i=1

1

{
f̂(xi) ̸= f∗(xi)

}{
β1{ĝ(xi) = 1}1{f∗(xi) ̸= yi}+ 1{ĝ(xi) = 1}1{f∗(xi) = yi}

}

+ 1
n

n∑
i=1

1

{
f̂(xi) ̸= f∗(xi)

}{
β1{ĝ(xi) = 1}1{f̂(xi) ̸= yi}+ 1{ĝ(xi) = 1}1{f̂(xi) = yi}

}

≥ RSn(ĝ; f∗, β)− β − 1
n

n∑
i=1

1

{
f̂(xi) ̸= f∗(xi)

}
(30)

Recall that in the theorem assumptions we have Ex[f̂(x) ̸= f∗(x)] ≤ ε
8β with probability at least 1− δ. By

Lemma 2, if n ≥ 24β2 log(|F|/δ)
ε we have with probability at least 1− δ, 1

n

∑n
i=1 1{f̂(xi) ̸= f∗(xi)} ≤ ε

4β , so
we have

RSn
(ĝ; f̂ , β) ≥ RSn

(ĝ; f∗, β)− ε/4 (31)

With a similar approach we get that

RSn(g∗; f̂ , β) ≤ RSn(g∗; f∗, β) + ε/4
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Thus using (28) the following inequality holds with probability at least 1− δ

RSn
(ĝ; f∗, β) ≤ RSn

(g∗; f∗, β) + ε/2. (32)

To get a bound for R(ĝ; f∗, β) − R(g∗; f∗, β), we first define ℓ(g; f,x, y) = β1{g(x) = 1}1{f(x) ̸= y} +
1{g(x) = 1}1{f(x) = y}. Note that at this point we think of β as fixed and so we have not included it in
the arguments of ℓ(·) for simplicity.

Observe that RSn
(g, f∗, β) = 1

n

∑n
i=1 ℓ(g; f∗,xi, y) and R(g, f∗, β) = Ex,y

[
ℓ(g; f∗,x, y)

]
for any g. First we

have the following simple inequality directly taken from (32).

R(ĝ, f∗, β)−R(g∗, f∗, β)
= Ex,yℓ(ĝ; f∗,x, y)− Ex,yℓ(g∗; f∗,x, y)

≤RSn
(g∗; f∗, β)−RSn

(ĝ; f∗, β)− (Ex,yℓ(g∗; f∗,x, y)− Ex,yℓ(ĝ; f∗,x, y)) + ε/2
(33)

By defining ∆ℓ(g∗, g,x, y) = ℓ(g∗; f∗,x, y)− ℓ(g; f∗,x, y) for any g, we can express the above inequality as
follows:

Ex,yℓ(ĝ; f∗,x, y)− Ex,yℓ(g∗; f∗,x, y)

≤ 1
n

n∑
i=1

∆ℓ(g∗, ĝ,xi, y)− Ex,y∆ℓ(g∗; ĝ,x, y) + ε/2
(34)

To bound 1
n

∑n
i=1 ∆ℓ(g∗, ĝ,xi, y)− Ex,y∆ℓ(g∗; ĝ,x, y) with high probability over all Sn, we need to find a

bound on 1
n

∑n
i=1 ∆ℓ(g∗, g,xi, y)−Ex,y∆ℓ(g∗; g,x, y) that is true for all g simultaneously with high probability.

We have :

PSn

[
∃g ∈ G,

{
1
n

n∑
i=1

∆ℓ(g∗, g; xi, yi)− Ex,y[∆ℓ(g∗, g; x, y)]

≥ n

β
log(|G|/δ) +

√
2V ar(∆(g∗, g; x, y)) log(|G|/δ)

n

}]
≤

∑
g∈G

PSn

[
1
n

n∑
i=1

∆ℓ(g∗, g; xi, yi)− Ex,y[∆ℓ(g∗, g; x, y)]

≥ n

β
log(|G|/δ) +

√
2V ar(∆(g∗, g; x, y)) log(|G|/δ)

n

]
(35)

Now to bound 1
n

∑n
i=1 ∆ℓ(g∗, g,xi, y)− Ex,y∆ℓ(g∗; g,x, y) we use Bernstein inequality. For that we need to

bound V arx,y[∆ℓ(g∗, g,x, y)]. First we expand ∆ℓ(g∗, g,x, y).

∆ℓ(g∗, g,x, y) =ℓ(g∗; f∗,x, y)− ℓ(g; f∗,x, y)
=β1{g∗(x) = 1}1{f∗(x) ̸= y}+ 1{g∗(x) = 1}1{f∗(x) = y}
−β1{g(x) = 1}1{f∗(x) ̸= y} − 1{g(x) = 1}1{f∗(x) = y}

So we have

∆2ℓ(g∗, g,x, y)

= β2
[
1{g∗(x) = 1}+ 1{g(x) = 1} − 21{g(x) = 1}1{g∗(x) = 1}

]
1{f∗(x) ̸= y}

+
[
1{g∗(x) = 1}+ 1{g(x) = 1} − 21{g(x) = 1}1{g∗(x) = 1}

]
1{f∗(x) = y}

=
(
β2

1{f∗(x) ̸= y}+ 1{f∗(x) = y}
)[

1{g(x) = 1}1{g∗(x) ̸= 1}+ 1{g(x) ̸= 1}1{g∗(x) = 1}
]

≤ β2
1{g∗(x) ̸= g(x)}

(36)

25



Hence we conclude that V arx,y[∆ℓ(g∗, g,x, y)] ≤ Ex,y∆2ℓ(g∗, g,x, y) ≤ β2Ex[1{g∗(x) ̸= g(x}]. On the
other hand, Equation 17 implies that R(g; f∗, β)−R(g∗; f∗, β) ≥ λ̄

1+2λ̄
Ex[1{g∗(x) ̸= g(x}]. Thus we can use

the following inequality to achieve fast rate of convergence using the Bernstein Inequality:

V arx,y[∆ℓ(g∗, g; x, y)] ≤ β2(1 + 2λ̄)
λ̄

{R(g; f∗, β))−R(g∗; f∗, β)}. (37)

We use following version of the Bernstein Inequality, with X1, ..., Xn i.i.d random variable uniformly bounded
by b:

P
(

1
n

n∑
i=1

Xi − E[X] < b

n
log(1/δ) +

√
2V ar(X) log(1/δ)

n

)
≥ 1− δ

Using union bounds, the Bernstein Inequality implies that with probability for all g ∈ G simultaneously:

PSn

[{
1
n

n∑
i=1

∆ℓ(g∗, g; xi, yi)− Ex,y[∆ℓ(g∗, g; x, y)]
}

≤β
n

log
(∣∣G∣∣/δ) +

√
2V ar(∆(g∗, g; x, y)) log

(∣∣G∣∣/δ)
n

]
≥ 1− δ

(38)

Thus by applying inequality 38 with ĝ we have:

PSn

[{
1
n

n∑
i=1

∆ℓ(g∗, ĝ; xi, yi)− Ex,y[∆ℓ(g∗, ĝ; x, y)]
}

≤β
n

log
(∣∣G∣∣/δ) +

√
2V ar(∆(g∗, ĝ; x, y)) log

(∣∣G∣∣/δ)
n

]
≥ 1− δ

By inequality 32, we have 1
n

∑n
i=1 ∆ℓ(g∗, ĝ; xi, yi) = RSn

(g∗; f∗, β) − RSn
(ĝ; f∗, β) ≥ −ε/2 holds with

probability 1− δ. Note R(ĝ; f∗, β))−R(g∗; f∗, β) = −Ex,y[∆ℓ(g∗, ĝ; x, y)]. So we have

PSn

[
{R(ĝ; f∗, β)−R(g∗; f∗, β)}

≤β
n

log
(∣∣G∣∣/δ) +

√
2β2(1 + 2λ̄){R(ĝ; f∗, β))−R(g∗; f∗, β)} log

(∣∣G∣∣/δ)
λ̄n

+ ε/2
]

≥1− 2δ

The choice of n ≥ 16β2 log( |G|
δ )

λ̄ε
ensures that with probability at least 1− 2δ, R(ĝ; f∗, β)−R(g∗; f∗, β) ≤ ε.

CASE II: f̂(·) ∈ F that satisfies Ex[f̂(x) ̸= f∗(x)|x ∈ ΩI ] ≤ ε
8βα with probability at least 1 − δ.

Note f̂ only approximates f∗(·) on the informative support ΩI : f̂(·) ∈ F that satisfies Ex[f̂(x) ̸= f∗(x)|x ∈
ΩI ] ≤ ε

8βα with probability at least 1− δ. For simplicity of analysis, we introduce a ‘pseudo’ version of f∗(·)
denoted as f̃∗. Let F̃ be following hypothesis class:{

f̃

∣∣∣∣f̃(x) =
{
f1(x), x ∈ ΩU

f2(x), x ∈ ΩI

, f1 ∈ F , f2 ∈ F
}

and we let f̃∗(·) be:

f̃∗(x) =
{
f̂(x), x ∈ ΩU

f∗(x), x ∈ ΩI
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Clearly, f̃∗ ∈ F̃ . Note such hypothesis class is only introduced in analysis and is potentially impractical. The
cardinality of hypothesis class |F̃ | ≤ |F|2. The construction of f̃∗ is to make R(g, f̃∗, β) − R(g∗, f̃∗, β) ≥
R(g, f∗, β)− R(g∗, f∗, β) for all g ∈ G. To see this, we use the fact that f∗ is the Bayes optimal classifier,
which implies that ∀x,Ey[1{g∗(x) ̸= 1}1{f̃∗(x) ̸= y}] ≥ Ey[1{g∗(x) ̸= 1}1{f∗(x) ̸= y}]. Subsequently, we
have ∀x,Ey[1{g∗(x) ̸= 1}1{f̃∗(x) = y}] ≤ Ey[1{g∗(x) ̸= 1}1{f∗(x) = y}]. So we have the following.

R(g(x), f̃∗, β)−R(g∗(x), f̃∗, β)
=Ex,y

[
β1{g(x) = 1}1{g∗(x) ̸= 1}1{f̃∗(x) ̸= y} − 1{g(x) = 1}1{g∗(x) ̸= 1}1{f̃∗(x) = y}

+1{g(x) ̸= 1}1{g∗(x) = 1}1{f̃∗(x) = y} − β1{g(x) ̸= 1}1{g∗(x) = 1}1{f̃∗(x) ̸= y}
]

=Ex,y

[
β1{g(x) = 1}1{g∗(x) ̸= 1}1{f̃∗(x) ̸= y} − 1{g(x) = 1}1{g∗(x) ̸= 1}1{f̃∗(x) = y}

+1{g(x) ̸= 1}1{g∗(x) = 1}1{f∗(x) = y} − β1{g(x) ̸= 1}1{g∗(x) = 1}1{f∗(x) ̸= y}
]

≥Ex,y

[
β1{g(x) = 1}1{g∗(x) ̸= 1}1{f∗(x) ̸= y} − 1{g(x) = 1}1{g∗(x) ̸= 1}1{f∗(x) = y}

+1{g(x) ̸= 1}1{g∗(x) = 1}1{f∗(x) = y} − β1{g(x) ̸= 1}1{g∗(x) = 1}1{f∗(x) ̸= y}
]

=Ex

[{
β

(
1
4 + λ(x)

2

)
− 3

4 + λ(x)
2

}
1{g(x) = 1}1{g∗(x) ̸= 1}

]
+Ex

[{
3
4 + λ(x)

2 − β
(

1
4 −

λ(x)
2

)}
1{g(x) ̸= 1}1{g∗(x) = 1}

]
=R(g; f∗, β)−R(g∗; f∗, β)

(39)

Meanwhile f̃∗(·) also satisfies the property that Ex[f̃∗(x) ̸= f̂(x)] ≤ ε
8β with probability at least 1− δ. Thus

by Lemma 2, if n ≥ 24β2 log( |F|
δ )

ε we have with probability at least 1− δ, 1
n

∑n
i=1 1{f̂(xi) ̸= f̃∗(xi)} ≤ ε

8β .

The rest of the proof is the same as the proof in CASE I by replacing f∗ with f̃∗, leveraging on the fact
that f̃∗ is to make R(g(x), f̃∗, β)−R(g∗(x), f̃∗, β) ≥ R(g(x), f∗, β)−R(g∗(x), f∗, β)

A.4 Proof for Corollary 6

It can be easily verified that β = 3 is in the interval β ∈
[ 3−2λ̄

1+2λ̄
+ λ̄,min( 3+2λ̄

1−2λ̄
− λ̄

1−4λ̄2 , 10)
]
. By the choice of

β, from (17) we have

R(ĝ, f∗, β)−R(g∗, f∗, β) ≥ λ̄

4(1 + 2λ̄)
Ex[1{ĝ(x) ̸= g∗(x)}],

together with the conclusion in Theorem 1 that

R(ĝ; f∗, β)−R(g∗; f∗, β) ≤ ε

we can conclude that Equation 6 holds.

A.5 Theorem 4 on improving selective risk

Theorem 4 (Improving Predictor Selective Risk ). Let Sn = {(xi, yi)}n
i=1 be i.i.d samples from the Data

Generative Process described in Definition 1 under Assumption 1, with f∗(·) ∈ F and g∗(·) ∈ G, |F| <∞, |G| <
∞. For any ĝ(·) ∈ G s.t., Ex[1{g∗(x) ̸= ĝ(x)}] ≤ ε, let f̃ = arg min

f∈F

1
n

∑n
i=1 1{ĝ(xi) > 0}1{f(xi) ̸= yi}.

Then for any ε > 0, δ > 0 such that the following holds: For n ≥ max{ 24 log( |G|
δ )

ε ,
12 log( |F|

δ )
ε }, we have

Ex[1{f̃(x) ̸= f∗(x)}|g∗(x) ̸= ĝ(x)] ≤ ε

α
(40)
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Proof. Recall that f̃ = arg min
f∈F

1
n

∑n
i=1 1{ĝ(xi) > 0}1{f(xi) ̸= yi} with ĝ(·) ∈ G s.t., Ex[1{g∗(x) ̸= ĝ(x)}] ≤

ε. From the minimization property we have

1
n

n∑
i=1

1{ĝ(xi) > 0}1{f̃(xi) ̸= yi} ≤
1
n

n∑
i=1

1{ĝ(xi) > 0}1{f∗(xi) ̸= yi} (41)

Note we have for any f :∣∣∣∣ 1
n

n∑
i=1

1{ĝ(xi) > 0}1{f(xi) ̸= yi} −
1
n

n∑
i=1

1{g∗(xi) > 0}1{f(xi) ̸= yi}
∣∣∣∣

≤ 1
n

n∑
i=1

∣∣∣∣1{ĝ(xi) > 0} − 1{g∗(xi) > 0}
∣∣∣∣1{f(xi) ̸= yi}

≤ 1
n

n∑
i=1

∣∣∣∣1{ĝ(xi) > 0} − 1{g∗(xi) > 0}
∣∣∣∣

= 1
n

n∑
i=1

1{ĝ(xi) ̸= g∗(xi)} (42)

For n ≥ 3 log( |G|
δ )

ε , by Lemma 2 we have 1
n

∑n
i=1 1{ĝ(xi) ̸= g∗(xi)} ≤ ϵ+ Ex[1{g∗(x) ̸= ĝ(x)}] ≤ 2ϵ

with probability at least 1− δ. Thus by inequality 42 and inequality 41 we have both

1
n

n∑
i=1

1{g∗(xi) > 0}1{f̃(xi) ̸= yi} − 2ε ≤ 1
n

n∑
i=1

1{ĝ(xi) > 0}1{f∗(xi) ̸= yi}

and
1
n

n∑
i=1

1{ĝ(xi) > 0}1{f̃(xi) ̸= yi} ≤
1
n

n∑
i=1

1{g∗(xi) > 0}1{f∗(xi) ̸= yi}+ 2ε.

with probability at least 1 − δ. Summing up the above inequalities and using inequality 41 we have with
probability at least 1− δ:

1
n

n∑
i=1

1{g∗(xi) > 0}1{f̃(xi) ̸= yi} ≤
1
n

n∑
i=1

1{g∗(xi) > 0}1{f∗(xi) ̸= yi}+ 4ε (43)

Next we bound for Ex,y[1{g∗(x) > 0}{1{f̃(x) ̸= y} − 1{f∗(x) ̸= y}}], we first define ∆(f∗, f,xi, yi) =
{1{f∗(xi) ̸= yi} − 1{f(xi) ̸= yi}} for any f ∈ F . Due to inequality (43), we have:

Ex[1{g∗(x) > 0}{1{f̃(x) ̸= y} − 1{f∗(x) ̸= y}}]

≤ 1
n

n∑
i=1

1{g∗(xi) > 0}∆(f∗, f̃ ,xi, yi)− Ex,y[1{g∗(x) > 0}∆(f∗, f̃ ,x, y)}] + 4ε (44)

To bound 1
n

∑n
i=1 1{g∗(xi) > 0}∆(f∗, f̃ ,xi, yi) − Ex,y[1{g∗(x) > 0}∆(f∗, f̃ ,x, y)}] with high probability

over all Sn, we use the Bernstein inequality to achieve the fast generalization rate (similar to the proof in
Theorem 1).

By the definition of ∆(f∗, f,x, y) we have

∆2(f∗, f,x, y) = 1{g∗(x) > 0}{1{f(x) ̸= y} − 1{f∗(x) ̸= y}}2 = 1{g∗(x) > 0}1{f(x) ̸= f∗(x)} (45)
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Let ω(x) ≡ P[f∗(x) ̸= y|x] = 3
4 + λ(x)(2g∗(x)−1)

2 . We obtain the following:

Ex,y[1{g∗(x) > 0}{1{f̃(x) ̸= y} − 1{f∗(x) ̸= y}}]
=Ex[1{g∗(x) > 0}Ey[{1{f̃(x) ̸= y} − 1{f∗(x) ̸= y}}|x]]
=Ex[1{g∗(x) > 0}{ω(x)1{f̃(x) ̸= f∗(x)}+ (1− ω(x))(1{f̃(x) = f∗(x)} − 1)}|x]]
=Ex[1{g∗(x) > 0}{(2ω(x)− 1)1{f̃(x) ̸= f∗(x)}}]

≥1
4Ex[1{g∗(x) > 0}{1{f̃(x) ̸= f∗(x)}]

(46)

Thus using equation 45 and inequality 46 we have

V arx,y[1{g∗(x) > 0}∆(f∗, f̃ ; x, y)] ≤ 4Ex,y[1{g∗(x) > 0}{1{f̃(x) ̸= y} − 1{f∗(x) ̸= y}}]. (47)

Using an approach similar to the proof of Theorem 1 one can show that n ≥ 16 log( |F|
δ )

ε suffices to guarantee
following inequality holds with probability at least 1− 2δ.

Ex[1{g∗(x) > 0}{1{f̃(x) ̸= f∗(x)}] ≤ ε (48)

which implies that

Ex[{1{f̃(x) ̸= f∗(x)}|1{g∗(x) > 0}] ≤ ε

α
(49)

A.6 Proof for Theorem 2

Define ω(x) ≡ P[f∗(x) ̸= y|x] = 3
4 + λ(x)(2g∗(x)−1)

2 . Since λ(x) ≤ 1
2 − h, one can show P[f∗(x) ̸= y|x]

satisfies Massart condition with margin h
2 . Since n ≥ 64 log( |F|

δ )
h2ε , the conclusion that Ex[f̂(x) ̸= f∗(x)] ≤ ε

α

follows from 5.2-section in (Bousquet, 2004). The risk bounds on ĝ and f̃ follows from Theorem 1 and
Theorem 4.

A.7 Proof for controlling conditional risk Ex[f̂(x) ̸= f∗(x)|x ∈ ΩI ]

Definition 4 (Growth Function(Vapnik & Chervonenkis, 2015)). Let G be the hypothesis class of function f
and Fx1,...,xn

= {
(
f(x1), ..., f(xn)

)
: f ∈ F} ⊆ {+1,−1}n. The growth function is defined to be the maximum

number of ways in which n points can be classified by the function class: BF (n) = supx1,...,xn
|Fx1,...,xn

|.
Lemma 1 (Sauer–Shelah Lemma(See (Blum et al., 2016; Mohri et al., 2018; Sauer, 1972))). Let dvc(G) be
the VC-dimension of hypothesis class G and let BG(n) be the growth function, for all n ∈ N,

BG(n) ≤
dvc∑
i=0

(
n
i

)
≤

(
en

dvc(G)

)dvc(G)

Theorem 5. For every ε > 0, δ > 0, under Assumption 1, given a set of samples Sn = {(x1, y1), ..., (xn, yn)}
drawn i.i.d. from the Noisy Generative Process and

f̂ = arg min
f∈F

n∑
i=1

1{f(xi) ̸= yi},

if n is chosen such that

n ≥
32

[
dV C(F) log( 1

ε ) + log( 1
δ )

]
ϵ2α2 ,

then with probability at least 1− 2δ we have:

Ex,y[f̂(x) ̸= y] ≤ 1
2(1− α) + 2ϵα.

Furthermore the following holds:
Px[f∗(x) ̸= f̂(x)|x ∈ ΩI ] ≤ 2ϵ
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Proof. We first bound the probability of the event that Ex,y[f̂(x) ̸= y] ≤ 1
2 (1− α) + 2ϵα.

By Lemma 3 we have

PSn
[sup
f∈F
| 1
n

n∑
i=1

1{f(xi) ̸= yi} − Ex,y[1{f(x) ̸= y}]| ≥ t] ≤ 4BF (2n)e− nt2
32 (50)

By setting t = αϵ and n ≥ 32(log(4BF (2n))+log( 1
δ ))

α2ϵ2 we have 4BF (2n)e− nt2
32 ≤ δ and so using inequality 50 we

have with probability of at least 1− δ:

| 1
n

n∑
i=1

1{f̂(xi) ̸= yi} − Ex,y[1{f̂(x) ̸= y}]| ≤ αϵ

The term BF (2n) could be bounded by Lemma 1 as BF (2n) ≤
(

2en
dV C(F)

)dV C(F)
. Next we apply the fact that

f̂ = arg minf∈F
1
n

∑n
i=1 1{f̂(xi) ̸= yi}. We have:

Ex,y[1{f̂(x) ̸= y}] ≤ αϵ+ 1
n

n∑
i=1

1{f̂(xi) ̸= yi} ≤ αϵ+ 1
n

n∑
i=1

1{f∗(xi) ̸= yi} (51)

By Lemma 5 we have 1
n

∑n
i=1 1{f∗(xi) ̸= yi} ≤ 1

2 (1− α) + ϵα with failure probability at most δ. Combining
this with inequality 51 we have with probability at least 1− 2δ:

Ex,y[1{f̂(x) ̸= y}] ≤ 1
2(1− α) + 2ϵα.

And this finishes the proof of the first claim. Next we prove the claim that:

Px∼DI
[f∗(x) ̸= f̂(x)] ≤ 2ϵ.

First note that Px∼DI
[f∗(x) ̸= f̂(x)] = Px∼Dα [1{f̂(x) ̸= f∗(x)}|x ∈ ΩI ]. Using Ex,y[1{f̂(x) ̸= y}] ≤

1
2 (1− α) + 2ϵα below we have:

Ex,y[1{f̂(x) ̸= y}]
=E(x,y)∼Dα

[1{f̂(x) ̸= y}]
=E(x,y)∼Dα

[1{f̂(x) ̸= y}|x ∈ ΩU ]︸ ︷︷ ︸
1
2

P(x,y)∼Dα
[x ∈ ΩU ]︸ ︷︷ ︸

1−α

+E(x,y)∼Dα
[1{f̂(x) ̸= y}|x ∈ ΩI ]︸ ︷︷ ︸

P(x,y)∼Dα [1{f̂(x)̸=f∗(x)}|x∈ΩI ]

P(x,y)∼Dα
[x ∈ ΩI ]︸ ︷︷ ︸

α

=1
2(1− α) + αPx∼Dα

[f̂(x) ̸= f∗(x)|x ∈ ΩI ]

≤1
2(1− α) + 2ϵα

=⇒Px∼Dα
[1{f̂(x) ̸= f∗(x)}|x ∈ ΩI ] ≤ 2ϵ

(52)

This finishes the proof of the second claim.

B Extention to VC-Class

In order to leverage the margin condition of distribution of z to obtain a minimax-optimal generalization
rate, we leverage on the Local Rademacher Average tool. Our analysis tool largely follows from (Bousquet
et al., 2003; Bartlett et al., 2005). Throughout this section, ≲ and ≳ represent as shorthand for the ≤ and ≥
that ignores universal constants.
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Definition 5 (L2-Covering Number). (Wellner et al., 2013) Let x1:n be set of points. A set of U ⊆ Rn is
an ε-cover w.r.t L2-norm of F on x1:n, if ∀f ∈ F , ∃u ∈ U , s.t.

√
1
n

∑n
i=1 |[u]i − f(xi)|2 ≤ ε, where [u]i is

the i-th coordinate of u. We define the covering number N2(ε,F ,x1:n) :

N2(ε,F ,x1:n) := min{|U |: U is an ε-cover of F on x1:n}

Let N2(ε,F , n) be the maximum cardinality of N2(ε,F ,x1:n) over all x1:n. Formally N2(ε,F , n) is defined
as:

N2(ε,F , n) := sup
x1:n∈X n

min{|U |: U is an ε-cover of F on x1:n}

Definition 6 (Local Rademacher Average (Bartlett et al., 2005; Bousquet et al., 2003)). Let σ1:n be
Rademacher sequence of length n, given samples {xi, yi}n

i=1 the Empirical Local Rademacher Complexity at
distributional and empirical radius r ≥ 0 for the class F are defined as

Rn(F , Pf2 ≤ r) ≡ Eσ1:n

[
sup

f∈F,Ex[f(x)2]≤r

1
n

n∑
i=1

σif(xi)
]

Rn(F , Pnf
2 ≤ r) ≡ Eσ1:n

[
sup

f∈F, 1
n

∑n

i=1
f(xi)2≤r

1
n

n∑
i=1

σif(xi)
]

and their distributional Average as: R(F , Pf2 ≤ r) ≡ ESn
[Rn(F , Pf2 ≤ r)] and R(F , Pnf

2 ≤ r) ≡
ESn

[Rn(F , Pnf
2 ≤ r)].

Definition 7 (Star Hull). (Bartlett et al., 2005; Bousquet et al., 2003) The star hull of set of functions F
is defined as

∗F ≡ {αf : f ∈ F , α ∈ [0, 1]}
Definition 8 (Sub-Root Function). (Bartlett et al., 2005; Massart & Nédélec, 2006; Bousquet et al., 2003)
A function ψ : R→ R is sub-root if

• ψ is non-decreasing

• ψ is non-negative

• ψ(r)/
√
r is non-increasingfor any r > 0

And we say r∗ is a fixed point of ψ if ψ(r∗) = r∗.
Theorem 6. [Risk Bound VC-Class] Let Sn = {(xi, yi)}n

i=1 be i.i.d samples from Data Generative Process
described in Definition 1 under Assumption 1, with f∗(·) ∈ F and g∗(·) ∈ G with VC-dimension dV C(F) <
∞ dV C(G) < ∞. Given λ̄, let β ∈

[ 3−2λ̄
1+2λ̄

+ λ̄,min( 3+2λ̄
1−2λ̄

− λ̄
1−4λ̄2 , 10)

]
. For any f̂(·) ∈ F , let ĝ =

arg min
g∈G

RSn
(g; f̂ , β). Then for any ε > 0, δ > 0 such that the following holds: For

n ≳ max

{
β4dV C(G) log( 1

ε ) + β4 log( 1
δ )

λ̄ε
,
βdV C(F) log( dV C(F)

ε ) + β log( 1
δ )

)
ε

}
.

and for f̂ that satisfies one of the following condition:

• For any f̂(·) ∈ F that satisfies Ex[f̂(x) ̸= f∗(x)] ≲ ε
β with probability at least 1− δ,

• For any f̂(·) ∈ F that satisfies Ex[f̂(x) ̸= f∗(x)|x ∈ ΩI ] ≲ ε
βα with probability at least 1− δ,

The following holds with probability at least 1− 3δ:
R(ĝ; f∗, β)−R(g∗; f∗, β) ≲ ε

Proof. The major difference from the proof for Theorem 1 is the fact that G and F are not finite hypothesis
classes. To achieve fast generalization rate, we leverage the Local Rademacher Complexity Tool from (Bartlett
et al., 2005).
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CASE I: f̂(·) ∈ F and Ex[f̂(x) ̸= f∗(x)] ≲ ε
β with probability at least 1− δ.

We achieve equation 30 which is restated below exactly the same as in Theorem 1.

RSn
(ĝ; f̂ , β) ≥ RSn

(ĝ; f∗, β)− β − 1
n

n∑
i=1

1

{
f̂(xi) ̸= f∗(xi)

}

Then to achieve inequality 31, we invoke Lemma 8 instead of Lemma 2 as F is a VC-class. In particular, since
n ≳

β(dV C(F) log( 1
ε )+log( 1

δ ))
ε , we have that 1

n

∑n
i=1 1{f(xi) ̸= f∗(xi)} ≤ Ex1{f(x) ̸= f∗(x)} + ε. Moreover,

from the case assumption we have Ex[f̂(x) ̸= f∗(x)] ≲ ε
β with probability at least 1− δ. So with probability

at least 1− δ
RSn

(ĝ; f̂ , β) ≥ RSn
(ĝ; f∗, β)− ε/4.

Similarly we get that with probability at least 1− δ

RSn(g∗; f̂ , β) ≤ RSn(g∗; f∗, β) + ε/4.

Thus following hold with probability at least 1− δ:

RSn
(ĝ; f∗, β) ≤ RSn

(g∗; f∗, β) + ε

2 . (53)

Next we turn to bound the risk gap using R(ĝ; f∗, β) − R(g∗; f∗, β) using the concentration property of
inequality 53. Similar to the proof in Theorem 1, for any f ∈ F , g ∈ G we define ℓ(g; f,x, y) = β1{g(x) =
1}1{f(x) ̸= y}+ 1{g(x) ̸= 1}1{f(x) = y}. Based on ℓ, we define following hypothesis class:

∆ ◦ ℓ ◦ G ≡
{

∆ℓ(g; g∗,x, y) = ℓ(g; f∗,x, y)− ℓ(g∗; f∗,x, y) : g ∈ G
}
. (54)

To invoke Lemma 6, we need to establish some hypothesis class H that satisfies condition V ar[h] ≤ BE[h].
Next we show ∆ ◦ ℓ ◦ G satisfies the condition that V ar[h] ≤ BE[h] and thus we can apply Lemma 6 with
H = ∆ ◦ ℓ ◦ G. To begin with, using the same approach as in Theorem 1 we can obtain Equation 36 which is
restated below.

∆2ℓ(g∗, g,x, y) ≤ β2
1{g∗(x) ̸= g(x)}

By Equation 36 we have that V arx,y[∆ℓ(g∗, g,x, y)] ≤ Ex,y∆2ℓ(g∗, g,x, y) ≤ β2Ex[1{g∗(x) ̸= g(x}].

On the other hand, Equation 16 implies that

R(g; f∗, β)−R(g∗; f∗, β) ≥ λ̄

1 + 2λ̄
Ex[1{g∗(x) ̸= g(x}].

Thus we have following holds:

V arx,y[∆ℓ(g; g∗,x, y)] ≤ β2(1 + 2λ̄)
λ̄

Ex,y{∆ℓ(g; g∗,x, y)} (55)

Above variance bound allows invoking Lemma 6 with H = ∆ ◦ ℓ ◦ G, T (h) = E[h2] and B = β2(1+2λ̄)
λ̄

. To
satisfy the rest of the assumptions of Lemma 6, we find a subroot function ψ(r) that

ψ(r) ≥ β2(1 + 2λ̄)
λ̄

ESn
[Rn{∆ℓ(g; g∗) ∈ H : E[h2] ≤ r}].

Where we shorten ∆ℓ(g; g∗,x, y) to ∆ℓ(g; g∗). To find ψ(r), we show some analysis on the Local Rademacher
Average ESn [Rn{∆ℓ(g; g∗) ∈ H : E[h2] ≤ r}] as follows.
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ESn
[Rn(∆ ◦ ℓ ◦ G, r)] =ESn,σ1:n [ sup

g∈G,Ex,y [∆2ℓ(g;g∗)]≤r

1
n

n∑
i=1

σi∆ℓ(g; g∗,xi, yi)]

≤ESn,σ1:n [ sup
g∈G,Ex[1(g ̸=g∗)]≤r

1
n

n∑
i=1

σi∆ℓ(g; g∗,xi, yi)]︸ ︷︷ ︸
1(g ̸=g∗)≤∆2ℓ(g;g∗)

≤βESn,σ1:n [ sup
g∈G,Ex[1(g ̸=g∗)]≤r

1
n

n∑
i=1

σi1{g(xi) ̸= g∗(xi)}]︸ ︷︷ ︸
|∆ℓ(g1;g∗)−∆ℓ(g2;g∗)|≤β|1(g1 ̸=g∗)−1(g2 ̸=g∗)|

Talagrand Contraction Inequality (Ledoux & Talagrand, 1991)

(56)

In the last inequality we use Talagrand Contraction Inequality (Ledoux & Talagrand, 1991) for which we
need to show that (1) ∆ℓ(g1; g∗) is a function of 1{g1 ̸= g∗} and (2) ∆ℓ(g1; g∗) is β Lipschitz in 1{g1 ≠ g∗}.
These conditions are satisfied as follows:

∆ℓ(g; g∗) = 1{g∗ ̸= g}∆ℓ(g; g∗)

and

|∆ℓ(g1; g∗)−∆ℓ(g2; g∗)| ≤ |ℓ(g1, f
∗)− ℓ(g2, f

∗)| ≤ β|1(g1 ̸= g2)| = β|1(g1 ̸= g∗)− 1(g2 ̸= g∗)|.

This finishes the proof of Inequality 56. Now define the class 1 ◦ G ≡ 1{g(x) ̸= g∗(x), g ∈ G}. The indicator
function 1{g(x) ̸= g∗(x)} is a Boolean function taking g as input, thus dV C(1 ◦ G) ≤ dV C(G). Thus we have

β2(1 + 2λ̄)
λ̄

ESn [Rn{∆ℓ(g; g∗) ∈ H : E[h2] ≤ r}]

≤β
3(1 + 2λ̄)

λ̄
ESn

[Rn{1{g(x) ̸= g∗(x)} ∈ 1 ◦ G : E[1{g(x) ̸= g∗(x)}] ≤ r}]
(57)

Above implies that we can pick ψ(r) to be

ψ(r) = β3(1 + 2λ̄)
λ̄

ESn
[Rn{∗1 ◦ G : E[1{g(x) ̸= g∗(x)}] ≤ r}] + 11β2 logn

n
(58)

By Equation 80 in Lemma 6, we have:

Ex,y[∆ℓ(ĝ; g∗,x, y)] ≤ 2
n

n∑
i=1

∆ℓ(ĝ; g∗; xi, yi) + 1500λ̄
β2 r∗ +

log(1/δ)(11β + 52
λ̄

)
n

(59)

Where r∗ is the fixed point of ψ(r). By inequality 53, we have 1
n

∑n
i=1 ∆ℓ(ĝ; g∗; xi, yi) = RSn(ĝ; f∗, β) −

RSn
(g∗; f∗, β) ≤ ε/2 holds with probability 1 − δ. By Lemma 7 we have r∗ ≲ β6

λ̄2
dV C(G) log n

n . Plugging in
Equation 59 we have that n ≳

β4(dV C(G) log( 1
ε )+log(1/δ))

λ̄ε
suffices to achieve Ex,y[∆ℓ(ĝ; g∗,x, y)] ≲ ε. Recall

that Ex,y[∆ℓ(ĝ; g∗,x, y)] = R(ĝ; f∗, β)−R(g∗; f∗, β) so this finishes the proof.

CASE II: f̂(·) ∈ F that satisfies Ex[f̂(x) ̸= f∗(x)|x ∈ ΩI ] ≤ ε
8αβ with probability at least 1− δ.

The proof is similar to the one in Theorem 1 except for that we need to bound the VC-dimension of pseudo
hypothesis class F . Since f̃ can be viewed as Boolean function given f1(x), f2(x) as input, with two hypothesis
f1, f2 ∈ F , by Lemma 3.2.3 in (Blumer et al., 1989) we know dV C(F̃) ≤ 2dV C(F) log(dV C(F)). The rest of
the proof follows from the one in Theorem 1.

Next we present our extension of information theoretic lower bound to VC-class. The lower bounds suggest
that the risk bound in Theorem 6 is tight up to some logarithmic factor.
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Theorem 7. Consider the noisy generative process defined in Definition 1 with ΩD being G-realizable. Then
for any ε ≤ λ̄, to achieve

ESn
[R(A(Sn), f∗, β)−R(g∗, f∗, β)] ≤ ε

8(1 + 2λ̄)

with β ∈
[ 3−2λ̄

1+2λ̄
+ λ̄, 3+2λ̄

1−2λ̄
− λ̄

1−4λ̄2

]
, any algorithm A will take at least dV C(G)

log(dV C(G))λ̄ε
many samples.

Proof. The proof follows from the proof of Theorem 3 except for the fact that we need to have an upper
bound on the VC-dimension of our hypothesis construction G. Since G consists of composition of interval
hypothesis and each individual interval has VC-dimension at most 3. By Lemma 3.2.3 in (Blumer et al.,
1989) we know dV C(G) ≤ 6d log(d) which implies a dV C(G)

log(dV C(G))λ̄ε
lower bound.

Theorem 8 (Improving Predictor Selective Risk for VC-Class). Let Sn{(xi, yi)}n
i=1 be i.i.d samples from

the Data Generative Process described in Definition 1 under Assumption 1, with f∗(·) ∈ F and g∗(·) ∈ G,
dV C(F) <∞, dV C(G) <∞. For any ĝ(·) ∈ G s.t., Ex[g∗(x) ̸= ĝ(x)] ≤ ε, let f̃ = arg min

f∈F

1
n

∑n
i=1 1{ĝ(xi) >

0}1{f(xi) ̸= yi}. Then for any ε > 0, δ > 0 such that the following holds: if

n ≳ max

{
dV C(F) log( dV C(F)

ε ) + log( 1
δ )

ε
,
dV C(G) log( dV C(G)

ε ) + log( 1
δ )

)
ε

}
,

we have

Ex[f̃(x) ̸= f∗(x)|g∗(x) ̸= 1] ≤ ε

α
(60)

Proof. We use a proof similar to the one in Theorem 4 up to Equation (42), restated below: For any f :∣∣∣∣ 1
n

n∑
i=1

1{ĝ(xi) > 0}1{f(xi) ̸= yi} −
1
n

n∑
i=1

1{g∗(xi) > 0}1{f(xi) ̸= yi}
∣∣∣∣

≤ 1
n

n∑
i=1

1{ĝ(xi) ̸= g∗(xi)} (61)

Since G is a VC-class, we will invoke Lemma 8 instead of Lemma 2. Since n ≳
dV C(G) log( dV C (G)

ε )+log( 1
δ )

ε , by
Lemma 8 we have 1

n

∑n
i=1 1{ĝ(xi) ̸= g∗(xi)} ≤ Ex[1{ĝ(x) ̸= g∗(x)}] + ϵ with probability at least 1− δ. Since

Ex[1{ĝ(x) ̸= g∗(x)}] ≤ ϵ, by inequality 61 we have the following with probability at least 1− δ.

1
n

n∑
i=1

1{g∗(xi) > 0}1{f̃(xi) ̸= yi} ≤
1
n

n∑
i=1

1{g∗(xi) > 0}1{f∗(xi) ̸= yi}+ 2ε (62)

Similar to the proof of Theorem 6, we next establish some hypothesis class H that satisfies condition
V ar[h] ≤ BE[h]. We define:

G ·∆ ◦ F ≡
{
1{g∗(xi) > 0}∆(f ; f∗,x, y) : f ∈ F

}
. (63)

To invoke Lemma 6, we need to establish some hypothesis class H that satisfies condition V ar[h] ≤ BE[h].
Next we show G ·∆ ◦ F satisfies this condition and thus we can apply Lemma 6 with H = G ·∆ ◦ F . Recall
Equation (47) in Theorem 4 shows that,

V arx,y[1{g∗(x) > 0}∆(f̃ , f∗; x, y)] ≤ 4Ex,y[1{g∗(x) > 0}{1{f̃(x) ̸= y} − 1{f∗(x) ̸= y}}].

where ∆(f1, f2,xi, yi) = {1{f1(xi) ̸= yi}−1{f2(xi) ̸= yi}}. SoH satisfies the condition that V ar[h] ≤ BE[h]
for B = 4. To invoke Lemma 6 we let H = G · ∆ ◦ F , T [h] = E[h2] and B = 4. Similar to the proof in
Theorem 6 we next find a subroot function ψ(r) that

ψ(r) ≥ 4ESn [Rn{1{g∗(xi) > 0}∆(f ; f∗) ∈ H : E[h2] ≤ r}].
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To find ψ(r), we show some analysis on the Local Rademacher Average.

ESn [Rn(G ·∆ ◦ F , r)] =ESn,σ1:n [ sup
f∈F,Ex,y [1{g∗(x)>0}∆2(f ;f∗)]≤r

1
n

n∑
i=1

σi1{g∗(xi) > 0}∆(f ; f∗;xi, yi)]

≤ESn,σ1:n [ sup
f∈F,Ex[1{g∗(x)>0}1(f ̸=f∗)]≤r

1
n

n∑
i=1

σi1{g∗(xi) > 0}∆(f ; f∗;xi, yi)]︸ ︷︷ ︸
1{g∗(x)>0}1(f ̸=f∗)=1{g∗(x)>0}∆2(f ;f∗)

≤ ESn,σ1:n [ sup
f∈F,Ex[1{g∗(x)>0}1(f ̸=f∗)]≤r

1
n

n∑
i=1

σi1{g∗(x) > 0}1{f(xi) ̸= f∗(xi)}]︸ ︷︷ ︸
|1{g∗(xi)>0}∆(f1;f∗)−1{g∗(xi)>0}∆(f2;f∗)|≤|1{g∗(xi)>0}1(f1 ̸=f∗)−1{g∗(xi)>0}1(f2 ̸=f∗)|

Talagrand Contraction Inequality (Ledoux & Talagrand, 1991)
(64)

In the last inequality, we use the fact that 1{g∗(xi) > 0}∆(f ; f∗) is a 1-Lipschitz function of 1{g∗(xi) >
0}1{f∗ ̸= f}. In particular, ∆(f ; f∗) = 1{f∗ ̸= f}∆(f ; f∗) and

|1{g∗(xi) > 0}∆(f1; g∗)− 1{g∗(xi) > 0}∆(f2; g∗)| (65)
≤1{g∗(xi) > 0}|∆(f1; g∗)−∆(f2; g∗)|
≤1{g∗(xi) > 0}|1(f1 ̸= y)− 1(f2 ̸= y)|
=1{g∗(xi) > 0}|1(f1 ̸= f2)|
=|1{g∗(xi) > 0}1(f1 ̸= f∗)− 1{g∗(xi) > 0}1(f2 ̸= f∗)| (66)

And so we can use Talagrand Contraction Inequality and this finishes the proof of inequality 64.

Now define the class G · 1 ◦ F ≡ 1{g∗(x) > 0}1{f(x) ̸= f∗(x), f ∈ F}. The indicator function 1{g∗(x) >
0}1{f(x) ̸= f∗(x) is a Boolean function taking f as input, thus dV C(G ·1 ◦F) ≤ dV C(F) (Vidyasagar, 2013).
Thus we have

ESn [Rn{1{g∗(x) > 0}∆(f ; f∗) ∈ H : E[h2] ≤ r}]
≤ESn [Rn{1{g∗(x) > 0}1{f(x) ̸= f∗(x)} ∈ 1 ◦ F : E[1{g∗(x) > 0}1{f(x) ̸= f∗(x)}] ≤ r}]

(67)

Above implies that we can pick ψ(r) to be

ψ(r) = 4ESn
[Rn{∗G · 1 ◦ F : E[1{g∗(x) > 0}1{f(x) ̸= f∗(x)}] ≤ r}] + 176 logn

n
(68)

By Equation (80), we have:

Ex,y[1{g∗(x) > 0}∆(f̃ ; f∗)] ≤ 2
n

n∑
i=1

1{g∗(xi) > 0}∆(f̃ ; f∗; xi, yi) + 1500r∗ + 176 log(1/δ)
n

(69)

By inequality (62), we have 1
n

∑n
i=1 ∆(f̃ ; f∗; xi, yi) ≤ 2ε holds with probability 1− δ. By Lemma 7 we have

r∗ ≲ dV C(F) log n
n . Plugging in Equation 80 we have that n ≳

(dV C(F) log( dV C (F)
ε )+log(1/δ))

ε suffices to achieve
Ex,y[1{g∗(x) > 0}∆(f̃ ; f∗,x, y)] ≲ ε. Similar to the proof in Theorem 4, we have:

Ex[{1{f̃(x) ̸= f∗(x)}|1{g∗(x) > 0}] ≤ ε

α
(70)
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C Technical Lemmas

Lemma 2. Let Sn = {(xi, yi)} be i.i.d sample from Data Generative Process described in Definition 1. For
every ε > 0, there exist a δ > 0 such that if n ≥ 3 log( |F|

δ )
ε , the following inequality holds simultaneously for all

f ∈ F with |F| <∞ with probability at least 1− δ

1
n

n∑
i=1

1{f(xi) ̸= f∗(xi)} < Ex[1{f(x) ̸= f∗(x)}] + ε (71)

Proof. By taking union bound one can ensure that

PSn

[
sup
f∈F

{∣∣ n∑
i=1

1{f(xi) ̸= f∗(xi)} − nEx[1{f(x) ̸= f∗(x)}]
∣∣} ≥ nε]

≤PSn

[
∀f ∈ F :

{∣∣ n∑
i=1

1{f(xi) ̸= f∗(xi)} − nEx[1{f(x) ̸= f∗(x)}]
∣∣ ≥ nε}]

≤
∑
f∈F

PSn

[∣∣ n∑
i=1

1{f(xi) ̸= f∗(xi)} − nEx[1{f(x) ̸= f∗(x)}]
∣∣ ≥ nε]

We next apply the following version of Chernoff inequality with a ≥ 1: Let X =
∑n

i=1 Xi where Xi ∈ {0, 1}.
Then

P[X ≥ (1 + a)E(X)] ≤ exp (− a2

2 + a
E(X)) ≤ exp (−a3E(X))

P[X ≤ (1− a)E(X)] ≤ exp (−a
2

2 E(X)) ≤ exp (−a3E(X))

So we have
P[|X − E(X)| ≥ aE(X)] ≤ exp (−a3E(X)) (72)

For any fixed f ∈ F , let Xi = 1{f(xi) ̸= f∗(xi)}, and let a = ε/Ex[1{f(x) ̸= f∗(x)}]. Then by inequality
72 we have

PSn

[∣∣ n∑
i=1

1{f(xi) ̸= f∗(xi)} − nEx1{f(x) ̸= f∗(x)}
∣∣ ≥ nε]

≤ exp (−nEx[1{f(x) ̸= f∗(x)}]a
3 ) = exp (−nε3 )

(73)

Using (72) and setting δ = |F| exp(−nϵ/3) finishes the proof.

Lemma 3. Suppose Sn = {(x1, y1), ..., (xn, yn)} are i.i.d sampled , and let L(f,x, y) ∈ {+1,−1} be a
function. Let LSn

(f) = 1
n

∑n
i=1 L(f,xi, yi) and L(f) = Ex,y[L(f,x, y)]. Given parameter t such that

nt2 ≥ 2b2

then we have:
PSn∼D[sup

f∈F
|LSn

(f)− L(f)| ≥ t] ≤ 4BF (2n)e− nt2
4b2

Proof : For two sample sets Sn and S′
n, if we have |LSn(f)− L(f)| ≥ t and |LS′

n
(f)− L(f)| ≤ t

2 then we get
that |LSn

− LS′
n
| ≥ t

2 . Let f̂ be f that attains sup
f∈F
|LSn

(f)− L(f)|, one can verify that :

1{|LSn(f̂)− L(f̂)| ≥ t} · 1{|LS′
n
(f̂)− L(f̂)| ≤ t

2}

≤ 1{sup
f∈F
|LSn

(f)− LS′
n
(f)| ≥ t

2}
(74)
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Taking expectation w.r.t Sn ∼ D and S′
n ∼ D we have

PSn∼D
[

sup
f∈F
|LSn(f)− L(f)| ≥ t

]
· PS′

n∼D
[
|LS′

n
(f̂)− L(f̂)| ≤ t

2 |Sn, f̂ ≜ sup
f∈F
|LSn(f)− L(f)|

]
≤ PSn,S′

n∼D
[

sup
f∈F
|LSn

(f)− LS′
n
(f)| ≥ t

2
] (75)

Next we lower bound P
[
|LSn(f)− L(f)| ≤ t

2
]

for any fixed f . Note that the choice of f̂ is free of S′
n since

S′
n and Sn are iid samples. Since L(f, x, y) ∈ [−1, 1] and so V ar(L(f, x, y)) ≤ b2/4, using nt2 ≥ 2b2 we have

that:
PSn∼D

[
|LSn

(f)− L(f)| ≥ t

2
]
≤ 4V ar(LSn

)
nt2

≤ 1
2

So we have PS′
n∼D

[
|LS′

n
(f̂) − L(f̂)| ≤ t

2 |Sn, f̂ ≜ sup
f∈F
|LSn

(f) − L(f)|
]
≥ 1

2 . Let FS2n
⊆ {+1,−1}2n be

projection of F on Sn

⋃
S′

n, combining this inequality with (75) we have

PSn∼D[sup
f∈F
|LSn

(f)− L(f)| ≥ t]

≤2PSn,S′
n∼D[sup

f∈F
|LSn

(f)− LS′
n
(f)| ≥ t

2 ]

=2PSn,S′
n∼D[ sup

f(x)∈FS2n

|LSn
(f)− LS′

n
(f)| ≥ t

2 ]

≤2PS2n

[
PSn=S2n−S′

n
[ sup
f(x)∈FS2n

|LSn(f)− LS′
n
(f)| ≥ t

2 |S2n]
]

≤2PS2n

[ ⋃
f(x)∈FS2n

PSn=S2n−S′
n
[|LSn(f)− LS′

n
(f)| ≥ t

2 |S2n]
]

≤2PS2n

[
2|FS2n |e

− nt2
4b2 |S2n]

]
≤2PS2n

[
sup
S2n

|FS2n
|e− nt2

4b2 |S2n]
]

≤2 sup
S2n

|FS2n
|PS2n

[
e− nt2

4b2 ]
]

≤2BF (2n)e− nt2
4b2

(76)

Lemma 4 (Hoeffding’s Inequality). Let Z1, ..., Zn be independent bounded random variables with Zi ∈ [a, b]
for all i, where −∞ < a < b <∞. Then for all t > 0:

P( 1
n
|

n∑
i=1

Zi − E[Zi]| ≥ t) ≤ 2e− 2nt2
(b−a)2 (77)

Lemma 5. Consider a set of samples S = {(x1, y1), ..., (xn, yn)} drawn i.i.d. from the Noisy Generative
Process and f∗ in the hypothesis class F satisfying f(x) ∈ {−1,+1}. If:

n ≥
3 log( 1

δ )
ϵ2α2

Then we have with probability at least 1− δ :

1
n

n∑
i=1

1{f∗(xi) ̸= yi} ≤
1
2(1− α) + αε (78)

Proof :
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The terms 1{f(xi) ̸= yi} ∈ {0, 1} for i ∈ [n] are a set of n independent random variables since (xi, yi) are
independent. So we can use Hoeffding’s inequality (Lemma 4). By setting b− a = 1, t = αϵ in Equation 77,
the choice of n ensures that −2nt2

(b−a)2 ≤ 6 log(δ). Thus

PSn∼Dα [| 1
n

n∑
i=1

1{f∗(xi) ̸= yi} − Ex,y[1{f∗(x) ̸= y}]| ≥ ϵα] ≤ δ.

where we have

E(x,y)∼Dα
[1{f∗(x) ̸= y}]

=E(x,y)∼Dα
[1{f∗(x) ̸= y}|x ∈ ΩU ]P[x ∈ ΩU ]︸ ︷︷ ︸

1
2P[x∈ΩU ]: Since y is labeled by coin flipping in ΩU

+E(x,y)∼Dα
[1{f∗(x) ̸= y}|x ∈ ΩI ]P[x ∈ ΩI ]︸ ︷︷ ︸

0: Since y is labeled by f∗ with 0 Bayes Risk in ΩI

=1
2(1− α)

(79)

This way we have:

PSn∼Dα
[| 1
n

n∑
i=1

1{f∗(xi) ̸= yi} −
1
2(1− α)| ≥ ϵα] ≤ δ.

which implies that Equation 78 holds with probability at least 1− δ.
Lemma 6 (Theorem 3.3 in (Bartlett et al., 2005)). Let F be a class of functions with range in [a, b]
and assume that there are some functional T : H → R+ and some constant B such that for every h ∈ H,
V ar(h) ≤ T (h) ≤ BE[h]. Let ψ be a subroot function and r∗ be the fixed point of ψ. Assume the ψ satisfies,
for any r ≥ r∗,

ψ(r) ≥ BESn
Rn{h ∈ H : T (h) ≤ r}

Then with c1 = 704 and c2 = 26, for any K > 1 and every t > 1 with probability at least 1− e−t,

∀h ∈ H, P [h] ≤ K

K − 1Pnh+ c1K

B
r∗ + t(11(b− a) + c2BK)

n
(80)

Also with probability at least 1− e−t,

∀h ∈ H, Pn[h] ≤ K + 1
K

Ph+ c1K

B
r∗ + t(11(b− a) + c2BK)

n
(81)

where Pf = Ex[h(x)] and Pn = 1
n

∑n
i=1 h(xi).

Lemma 7. Given hypothesis class F : X → [−b, b] with some universal constant b and its VC-dimension
dV C(F) <∞. Define following sub-root function with B ≥ 1:

ψ(r) = 100BESn
Rn{∗F , r}+ 11b2 logn

n
.

Let r∗ be fixed point of ψ(r) so that r∗ = ψ(r∗), suppose n ≥ dV C(F), we have

r∗ ≲
B2dV C(F) log( n

dV C(F) )
n

Proof. The proof largely follows from the proof in Corollary 3.7 in (Bartlett et al., 2005). We include it here
for completeness. Since f is uniformly bounded by b, for any r ≥ ψ(r), Corollary 2.2 in (Bartlett et al., 2005)
implies that with probability at least 1− 1

n , {f ∈ ∗F : Pf2 ≤ r} ⊆ {f ∈ ∗F : Pnf
2 ≤ 2r}. Let E be event

that {f ∈ ∗F : Pf2 ≤ r} ⊆ {f ∈ ∗F : Pnf
2 ≤ 2r} holds, above implies

ESn
Rn{∗F , Pf2 ≤ r}

≤P[E ]ESn
[Rn{∗F , Pf2 ≤ r}|E ] + P[Ec]ESn

[Rn{∗F , Pf2 ≤ r}|Ec]

≤ESn
[Rn{∗F , Pnf

2 ≤ 2r}] + b

n

(82)
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Since r∗ = ψ(r∗), r∗ satisfies

r∗ ≤ 100BESn
Rn{∗F , Pnf

2 ≤ 2r∗}+ b+ 11b2 logn
n

. (83)

Next we leverage Dudley’s chaining bound (Dudley, 2014) to upper bound ERn{∗F , Pnf
2 ≤ 2r∗} using

integral of covering number. We first bound the covering number of a star hull of F . It follows from (Bartlett
et al., 2005) Corollary 3.7 that

logN2(ε,F ,x1:n) ≤ log
{
N2

(
ε

2 ,F ,x1:n

)(
⌈2
ε
⌉+ 1

)}
And covering number logN2(ε,F , n) can be bounded using VC-dimension of F using Haussler’s bound on
the covering number (Haussler, 1995; Wellner et al., 2013):

logN2

(
ε

2 ,F , n
)
≤ c1dV C log

(
1
ε

)
where c1 is some universal constant. Now we are ready to apply the chaining bound, it follows from Theorem
B.7 (Bartlett et al., 2005) that

ESn
[Rn(∗F , Pnf

2 ≤ 2r∗)]

≤ c2√
n
ESn

∫ √
2r∗

0

√
logN2(ε, ∗F ,x1:n)dε

≤ c2√
n
ESn

∫ √
2r∗

0

√
logN2

(
ε

2 ,F ,x1:n

)(
⌈2
ε
⌉+ 1

)
dε

≤c3

√
dV C(F)r∗ log(1/r∗)

n

≤c3

√
d2

V C(F)
n2 + dV C(F)r∗ log(n/edV C(F))

n

(84)

Where c2 and c3 are some universal constants. Together with Equation 83 one can solve for r∗ ≲
B2dV C(F) log( n

dV C (F) )
n

Lemma 8. Let Sn = {(xi, yi)} be i.i.d sample from Data Generative Process described in Definition 1. For
every ε > 0, there exist a δ > 0 such that if n ≳

dV C(F) log( 1
ε )+log( 1

δ )
ε , following inequality holds simultaneously

for all f ∈ F with dV C(F) <∞, with probability at least 1− δ

1
n

n∑
i=1

1{f(xi) ̸= f∗(xi)} ≲ Ex1{f(x) ̸= f∗(x)}+ ε (85)

Proof. The proof invokes Lemma 6, in particular, the Equation 81. Let 1 ◦ F : 1{f(x) ̸= f∗(x), f ∈ F} be
the hypothesis class H in Lemma 6. Since f∗ is a deterministic boolean function, it does not increase the
number of points that can be shattered by F . We have dV C(1 ◦ F) ≤ dV C(F). In particular, we choose the
functional T (·) = E[·] and it is easy to verify that

V ar(1{f(x) ̸= f∗(x)}) ≤ Ex[1{f(x) ̸= f∗(x)}] = Ex[12{f(x) ̸= f∗(x)}].

Let ψ(r) = 100ERn{∗F ,Ef ≤ r}+ 11 log n
n . We have

ERn{F ,Ef2 ≤ r} ≤ ERn{∗F ,Ef2 ≤ r} ≤ 100ERn{∗F ,Ef2 ≤ r}+ 11 logn
n

= ψ(r)
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Since local Rademacher averages of the star-hull is sub-root function, we know for all r ≥ r∗, ψ(r) ≥ ψ(r∗) = r∗.
By Equation 81 in Lemma 6 we have

1
n

n∑
i=1

1{f(xi) ̸= f∗(xi)} ≤ 2Ex1{f(x) ̸= f∗(x)}+ 15r∗ + log(1/δ) + 5200
n

ε (86)

Next we bound r∗. A direct application of Lemma 7 show that

r∗ ≲
dV C(1 ◦ F) log( n

dV C(1◦F) )
n

≲
dV C(F) log( n

dV C(F) )
n

.

The rest of the proof follows from plugging r∗ in Equation 81 and removing absolute constants.

D More Experimental Results and Details

D.1 Experiment Setting and Implementation Details

Extension to multi-class. Our method extends to the multi-class setting naturally. In the case of K-class
classification, our selector loss remains the same while the predictor becomes f(x) = f(x)1:K : X → ∆K

where ∆K is the K-simplex. Meanwhile, we use multi-class cross entropy loss to train the classifier. The
pseudo-informative label becomes ẑi = 1{arg maxk∈[K] f(xi)k = yi}.

Hyper-parameters and Neural Network Architectures We list the hyper-parameters and neural
network architectures in Table 4,5 and 6.

Table 4: Hyper-parameters used in real-world experiments. Notation follows original paper.
Baseline Hyper-params
SLNet α = 0.5, λ = 32
DeepGambler o = 2 in Volatility and o = 1.5 in LC and BUS, Pretrain Epoch=10
Adaptive α = 0.9, Pretrain Epoch=10
Oneside µ = 0.5, Pretrain Epoch=10
ISA β = 30, ∆T = 2, Pretrain Epoch=10

Table 5: CNN Architecture.
Layer Name Filter Size Output Size

2d Convolution 3×3 32×28×28
ReLU - 1×28×28

2d MaxPool 2×2 32×14×14
2d Convolution 3×3 64×14×14

ReLU - 64×14×14
2d MaxPool 2×2 64×7×7

Linear - 600
Drop-out - -

Linear - 120
Linear - 10

D.2 More Synthetic Experiments Results.

We present the exact numbers corresponding to Figure 2-5:

We also present experiments results that only use 25% of the dataset below to show the sample efficiency of
our algorithm. We can see all conclusions still hold when we sharply reduce the sample size.
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Table 6: Hyper-parameters used in semi-synthetic experiments. Notation follows original paper.
Dataset Baseline Hyper-params

MNIST+Fashion

SLNet αslnet = 0.5, λslnet = 32
DeepGambler o = 1.5, Pretrain Epoch=5
Adaptive αadaptive = 0.9, Pretrain Epoch=5
Oneside µ = 0.5, Pretrain Epoch=5
ISA β = 3, ∆T = 10, Pretrain Epoch=5

SVHN

SLNet αslnet = 0.5, λslnet = 32
DeepGambler o = 2.6, Pretrain Epoch=10
Adaptive αadaptive = 0.9, Pretrain Epoch=10
Oneside µ = 0.5, Pretrain Epoch=10
ISA β = 10, ∆T = 1, Pretrain Epoch=10

Table 7: g∗ recovering: AP ↑ v.s α with 100% Sample Size
Dataset α Confidence SLNet DeepGambler Adaptive Oneside ISA ISA-V2

MNIST + Fashion

0.20 1.000 ± 0.000 0.982 ± 0.011 1.000 ± 0.000 0.807 ± 0.027 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
0.33 1.000 ± 0.000 0.998 ± 0.002 1.000 ± 0.000 0.825 ± 0.027 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
0.43 1.000 ± 0.000 0.943 ± 0.002 1.000 ± 0.000 0.855 ± 0.003 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
0.50 1.000 ± 0.000 0.998 ± 0.003 1.000 ± 0.000 0.829 ± 0.011 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

SVHN

0.20 0.984 ± 0.001 0.621 ± 0.256 0.831 ± 0.270 0.984 ± 0.001 0.957 ± 0.007 0.989 ± 0.001 0.982 ± 0.001
0.33 0.989 ± 0.001 0.868 ± 0.039 0.990 ± 0.001 0.990 ± 0.001 0.978 ± 0.002 0.992 ± 0.000 0.987 ± 0.001
0.43 0.990 ± 0.001 0.925 ± 0.002 0.990 ± 0.000 0.990 ± 0.000 0.982 ± 0.001 0.993 ± 0.001 0.990 ± 0.001
0.50 0.991 ± 0.000 0.914 ± 0.053 0.991 ± 0.000 0.989 ± 0.001 0.983 ± 0.002 0.993 ± 0.001 0.991 ± 0.001

Table 8: g∗ Recovering: AP ↑ v.s. α with 25% Sample Size
Dataset α Confidence SLNet DeepGambler Adaptive Oneside ISA ISA-V2

MNIST+Fashion

0.20 1.000 ± 0.000 0.412 ± 0.052 0.985 ± 0.019 0.413 ± 0.024 0.969 ± 0.002 1.000 ± 0.000 1.000 ± 0.000
0.33 1.000 ± 0.000 0.704 ± 0.208 0.990 ± 0.001 0.362 ± 0.011 0.977 ± 0.004 1.000 ± 0.000 1.000 ± 0.000
0.43 1.000 ± 0.000 0.881 ± 0.179 0.987 ± 0.010 0.333 ± 0.006 0.976 ± 0.007 1.000 ± 0.000 1.000 ± 0.000
0.50 1.000 ± 0.000 0.876 ± 0.186 0.991 ± 0.009 0.336 ± 0.006 0.980 ± 0.004 1.000 ± 0.000 1.000 ± 0.000

SVHN

0.20 0.952 ± 0.005 0.711 ± 0.121 0.540 ± 0.024 0.909 ± 0.013 0.607 ± 0.125 0.972 ± 0.003 0.856 ± 0.115
0.33 0.967 ± 0.001 0.914 ± 0.033 0.979 ± 0.002 0.950 ± 0.009 0.926 ± 0.019 0.981 ± 0.001 0.970 ± 0.003
0.43 0.973 ± 0.001 0.931 ± 0.021 0.983 ± 0.002 0.967 ± 0.003 0.962 ± 0.001 0.984 ± 0.001 0.977 ± 0.001
0.50 0.978 ± 0.002 0.947 ± 0.006 0.986 ± 0.000 0.966 ± 0.005 0.965 ± 0.004 0.985 ± 0.001 0.981 ± 0.001

Table 9: g∗ recovering: AP ↑ v.s λ with 100% Sample Size
Dataset λ̄ Confidence SLNet DeepGambler Adaptive Oneside ISA ISA-V2

MNIST + Fashion
0.1 0.915 ± 0.010 0.599 ± 0.168 0.985 ± 0.010 0.550 ± 0.033 0.862 ± 0.033 1.000 ± 0.000 0.999 ± 0.001
0.2 0.986 ± 0.001 0.712 ± 0.140 0.992 ± 0.013 0.566 ± 0.018 0.973 ± 0.004 1.000 ± 0.000 1.000 ± 0.000
0.3 1.000 ± 0.000 0.886 ± 0.148 1.000 ± 0.000 0.571 ± 0.008 0.998 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

SVHN
0.1 0.955 ± 0.004 0.641 ± 0.164 0.736 ± 0.045 0.952 ± 0.002 0.944 ± 0.001 0.931 ± 0.021 0.956 ± 0.003
0.2 0.978 ± 0.002 0.874 ± 0.029 0.974 ± 0.003 0.953 ± 0.001 0.972 ± 0.001 0.977 ± 0.003 0.978 ± 0.002
0.3 0.989 ± 0.002 0.949 ± 0.013 0.981 ± 0.002 0.970 ± 0.008 0.981 ± 0.002 0.986 ± 0.002 0.987 ± 0.000

Table 10: g∗ recovering: AP ↑ v.s λ with 25% Sample Size
Dataset λ̄ Confidence SLNet DeepGambler Adaptive Oneside ISA ISA-V2

MNIST+Fashion
0.1 0.866 ± 0.008 0.507 ± 0.011 0.799 ± 0.155 0.935 ± 0.027 0.584 ± 0.017 1.000 ± 0.000 0.968 ± 0.038
0.2 0.974 ± 0.005 0.625 ± 0.100 0.917 ± 0.015 0.795 ± 0.013 0.718 ± 0.031 1.000 ± 0.000 1.000 ± 0.000
0.3 0.999 ± 0.000 0.686 ± 0.105 0.972 ± 0.010 0.521 ± 0.055 0.870 ± 0.004 1.000 ± 0.000 1.000 ± 0.000

SVHN
0.1 0.883 ± 0.009 0.784 ± 0.086 0.567 ± 0.036 0.795 ± 0.015 0.820 ± 0.014 0.848 ± 0.084 0.892 ± 0.008
0.2 0.938 ± 0.013 0.916 ± 0.039 0.811 ± 0.108 0.857 ± 0.012 0.913 ± 0.011 0.944 ± 0.006 0.959 ± 0.006
0.3 0.965 ± 0.002 0.938 ± 0.015 0.938 ± 0.013 0.901 ± 0.029 0.952 ± 0.006 0.967 ± 0.000 0.969 ± 0.004

D.3 Real-World Dataset Description

Oxford realized volatility (Volatility) (Heber et al., 2009) data set contains 5-min realized volatility of 31
stock indices from 2000 to 2022 and 155107 records in total. We use past volatility and returns as features,
and the task here is to predict whether the next day volatility will be higher than current one, making it a
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Figure 5: Average Precision (AP) ↑ v.s Different λ - 25% Samples Size. Numerical results in Table 10.

binary classification task. We choose data from 2000 to 2020 as our training set and the rest for the testing
(2020 Jan. to 2021 Oct.). This data set is used as an example to show our algorithm’s possible application in
selectively forecasting financial time series.

Breast ultrasound images (BUS) (Al-Dhabyani et al., 2020). BUS contains 780 gray-scale breast ultrasound
images among women in ages between 25 and 75 years old. These images have average size 500× 500 pixels
and can be categorized into 3 classes (487 benign, 210 malign and 133 healthy). We randomly choose 80% of
data as training dataset and the rest 20% for testing. We are going to use this dataset as an example to show
a possible application of our algorithm in automatic diagnosis. The machine can generate diagnosis result
only on selected cases and deliver unsure cases to human expert for further investigation.

Lending club(Lending Club, 2007) is a peer-to-peer lending company that matches borrowers with investors
through an online platform. The lending club dataset (LC) contains loan data of its customers from 2007 to
2018. We compare different version of existing dataset of LC and remove all inconsistent and incomplete
records. There are different status of loans record in this dataset, we keep 3 types of these record that consist
the major part of the dataset (261442 charged off cases, 1035418 fully paid cases and 25757 late cases). We
use 20% of the dataset as the testing set. This example shows our algorithm can be use to grant loan given
on different risk preference.

Table 12 presents the original accuracy given by neural network on each of these 3 real-world data set. For
all dataset, the neural network without using selection mechanism cannot give reliable inference. In mortgage
granting, high risk like this can cause significant loss. In medical diagnosis which is healthy issue critical,
a diagnosis with miss-diagnose rate as high as 15% is not acceptable. However, if we apply our selective
algorithm, we can see that the risk on all dataset sharply reduced. In BUS dataset, we can even almost
perfectly guarantee the diagnosis result empirically for our most confident cases. These evidence are of
practical interest.

Table 11: Real-world Dataset Description
Dataset Category Input Feature Num. Class Train Test
Volatility Time Series 2 2 143784 9525
BUS Image 3×324×324 3 624 156
LC Tabular 1805 3 1058093 264524

D.4 Ablation Study Results

E Illustrative Example for Algorithm 1
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Table 12: DNN Original Risk on Each Dataset
Volatility BUS LC

Risk 0.340±0.002 0.152±0.008 0.392±0.001

Figure 6: Ablation Study. First column shows the result of different choices of β. Second column shows
different choices of ∆T . Third column shows different choices of pre-training epochs which gives different
initial model f̂ (0)

. Upper panel presents results of average precision and bottom panel presents results of selective risk.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Illustration of Algorithm 1 when λ̄ = 0.4 and α = 0.1. The middle blue horizontal line is the
ground truth classifier f∗. The vertical green line is the boundary separates ΩI and ΩU . The data generation
process follows Definition 1. We use SVM with degree-2 polynomial kernel for both f̂ and ĝ. a) shows the
ground truth classification labels. b) shows the region of DI and DU . c) shows the latent informative label z.
d) shows the realized samples from the noisy data generation process. e) shows the classification result given
by ERM. f) shows the classification result given by ISA.
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Figure 8: Accuracy on recovering g∗(x).
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