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Abstract

Noisy training data can significantly degrade001
the performance of classifiers using language002
models, particularly in applications such as003
readability assessment, content moderation,004
and language learning tools. This study inves-005
tigate the use of several de-noising techniques006
in sentence-level difficulty detection, using a007
training set derived from document-level diffi-008
culty annotation. In addition to monolingual009
de-noising, we address the cross-lingual trans-010
fer gap when a multilingual language model is011
trained on one language and tested on another.012
We have examined the influence of segment013
lengths and have studied a wide range of noise014
reduction techniques, such as Gaussian Mixture015
Models, Co-Teaching, Noise Transition Matri-016
ces, and Label Smoothing. Results reveal that,017
while BERT-like models are robust to noise, in-018
corporating noise detection can further enhance019
performance. For a smaller dataset, Gaussian020
Mixture Models can be especially helpful to021
reduce noise and improve prediction quality, es-022
pecially in the cross-lingual transfer. However,023
for a larger dataset the inherent regularisation024
of the PLMs provides a good baseline, which025
(fairly expensive) de-noising methods cannot026
improve further.027

1 Introduction028

Modern NLP methods such as Pre-Trained Lan-029

guage Models (PLMs) and Large Generative Lan-030

guage Models (LLMs) have markedly advanced the031

performance across a wide range of tasks. Never-032

theless, significant challenges persist in non-topical033

classification tasks, such as predictions of genre034

(Rönnqvist et al., 2022; Kuzman et al., 2023), de-035

mographic properties (Kang et al., 2019), or the036

difficulty of a text (North et al., 2022). Zhang et al.037

(2023) further highlight the limitations of large lan-038

guage models in handling subtle stylistic features039

in such tasks. In comparison to more standard040

topical classification tasks, which rely on explicit041

keywords, non-topical classification requires mod- 042

els to discern stylistic features rather than overt 043

domain-specific content (Dewdney et al., 2001). 044

Both PLMs and LLMs can be distracted by topical 045

keywords in such tasks (Roussinov and Sharoff, 046

2023). Also larger LLMs, such as GPT, do not out- 047

perform smaller PLMs, such as BERT, on text clas- 048

sification tasks (Edwards and Camacho-Collados, 049

2024), while the LLMs might be better at sentence- 050

level simplification tasks (Kew et al., 2023). 051

The scarcity of high-quality data across lan- 052

guages, coupled with prevalent annotation noise, 053

presents a significant challenge in sentence diffi- 054

culty classification. This study addresses noise orig- 055

inating from the variability of crowd-sourced anno- 056

tations and the transition from document-level to 057

sentence-level predictions. For instance, a sentence 058

extracted from Wikipedia–which we categorise as a 059

source of more complex texts–can often be simple, 060

whereas individual sentences from crowd-sourced 061

simple language resources may occasionally ex- 062

hibit complexity or become difficult to interpret 063

without broader context. This inconsistency further 064

challenges the effectiveness of non-topical classifi- 065

cation models. 066

Accurately predicting the complexity of a sin- 067

gle short sentence is challenging because individ- 068

ual sentences often lack the contextual richness 069

required for proper assessment. In order to solve 070

this problem, it is essential to investigate the im- 071

pact of aggregating multiple short sentences when 072

determining the complexity of a text segment. 073

To address these challenges, this study makes 074

the following contributions: 075

1. Investigate the impact of segment length on 076

handling noise in sentence-level difficulty pre- 077

diction. 078

2. Identify effective methods for filtering noisy 079

datasets to improve classification robustness. 080
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3. Evaluate the effect of noise in both monolin-081

gual and cross-lingual classification settings.082

4. Release a de-noised multilingual dataset,083

along with scripts and models, in the camera-084

ready version.085

2 Dataset086

The datasets used in this experiment were sourced087

from Vikidia and Wikipedia 1, covering multiple088

languages, see Table 1. The simple versions have089

been crawled from Vikidia2, a website that main-090

tains Wikipedia-style content aimed at “children091

and anyone seeking easy-to-read content”. We have092

removed the entries marked as stubs (with little093

content at the moment) and collected the corre-094

sponding main Wikipedia entries for the respective095

languages. Therefore, the documents in our dataset096

address exactly the same topics. This removes topic097

biases, which often negatively impact non-topical098

classification tasks. In the end, we have obtained099

a document-level resource for text-difficulty detec-100

tion. However, our aim is to develop more granular101

classifiers on the sentence level. The Inter-Quartile102

Range (IQR) column in Table 1 shows that the ma-103

jority of sentences in either collection are of about104

8 to 21 words, with longer sentences being about105

4-6 words shorter in Vikidia.106

3 Methodology107

All experiments listed below aim at a binary task of108

predicting whether a sentence (or a short segment)109

is complex, i.e., it is NOT suitable to be included110

in Vikidia. However, this makes it a noisy task,111

as some Wikipedia segments can be legitimately112

simple. This also makes the Area Under Curve113

(AUC) score as the main evaluation measure, as we114

are specifically interested in reducing the impact115

of False Negatives (complex segments which have116

not been identified).117

Our experiments have been conducted using mul-118

tilingual BERT-base (Devlin et al., 2019) with some119

experiments using multilingal SBERT (Reimers120

and Gurevych, 2019). We have also conducted pre-121

liminary experiments with mBERT-large and XLM-122

Roberta (Conneau et al., 2020), which demon-123

strated comparable patterns, so the focus of this124

1The datasets from Wikipedia and Vikidia are available
under the (CC BY-SA) license. Our use aligns with their in-
tended purpose of open knowledge sharing, with modifications
limited to filtering and preprocessing for research.

2https://www.vikidia.org/

paper is on the core models for clarity and consis- 125

tency. 126

Our baseline models were fine-tuned separately 127

on the English and French datasets using the Hug- 128

gingface Transformers library with the default 129

hyper-parameters over 10 epochs with early stop- 130

ping. The English dataset serves as a widely used 131

benchmark, while the French dataset, with over 132

2 million sentences, provides an opportunity to 133

investigate how larger training corpora influence 134

model robustness. The performance of the English 135

and French models was subsequently evaluated in 136

other languages to assess cross-lingual transferabil- 137

ity. The PLMs used (mBERT and XLM-Roberta) 138

have English as the biggest corpus for pre-training, 139

thus leading to better weight estimation for En- 140

glish. However, for our specific downstream task 141

the French dataset is much bigger, so we investi- 142

gated how larger training corpora influence noise 143

detection. Additionally, we test across a range 144

of languages from Vikidia, including Catalan and 145

Russian. Catalan has the smallest amount of pre- 146

training corpora, so we can expect lower quality 147

weights, while Russian is more remote from lan- 148

guages prevalent in Vikidia, so we expect greater 149

cross-lingual transfer gap (Hu et al., 2020). 150

Traditional approaches often rely on sentence- 151

based segmentation, where each sentence is treated 152

as an independent input. However, this can intro- 153

duce fragmentation and fail to capture contextual 154

dependencies. First, we compared two strategies to 155

investigate the effects of text segmentation: 156

1. Splitting texts into single sentences using 157

NLTK and SpaCy, as these libraries use dif- 158

ferent algorithms for sentence boundary de- 159

tection, potentially influencing performance. 160

Sentences from Wikipedia also present in 161

Vikidia were removed from the datasets. 162

2. Combining adjacent sentences to create 163

chunks of varying lengths (approximately 50, 164

70, 100, 150, 200 and 250 tokens), as the orig- 165

inal sentences are likely to be too short for 166

reliable predictions. 167

The objective was to assess how text segmenta- 168

tion affects the results of a text classification task 169

with the aim of determining the optimal segment 170

length performance in the original language and in 171

cross-lingual applications. 172

After determining the optimal segment length, 173

we experimented with noise reduction techniques 174
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Language #Texts Wikipedia Vikidia
#Words #Sentences IQR #Words #Sentences IQR

Catalan 125 434344 807 (7, 22) 77223 803 (7, 16)
English 1726 8843600 16431 (11, 25) 560226 17712 (9, 19)
Spanish 2738 8504129 21609 (8, 25) 685636 19034 (9, 22)
French 21515 49689858 1998934 (14, 31) 7293514 374537 (11, 24)
Italian 2456 7479678 23432 (8, 25) 604046 19325 (9, 21)
Russian 104 396786 692 (5, 15) 13877 551 (5, 14)

Table 1: Statistics of the dataset with information on the number of documents, words and sentences for each dataset,
as well as the Inter-Quartile Range of the sentence lengths as from Spacy’s tokenization and segmentation.

to remove potentially noisy segments from the175

training data, i.e., the segments with incorrect or176

not useful gold-standard annotations because of the177

process of dataset construction. After detecting the178

noisy data points, we retained only the datapoints179

identified as clean, and fine-tuned with the same180

hyperparameters as the baseline to maintain con-181

sistency. Both the validation and test datasets have182

been manually cleaned, ensuring reliable evalua-183

tion.184

To address label noise, we compare five estab-185

lished denoising methods:186

Gaussian Mixture Models (GMMs): GMMs187

can be used to cluster high-dimensional sentence188

representations into two Gaussian distributions, cor-189

responding to clean and noisy data, respectively190

(Bishop, 2006). We evaluated sentence representa-191

tions derived from SBERT (GMM-SB) and CLS192

embeddings from BERT (GMM-B).193

To optimise the GMM parameters—such as the194

number of components, covariance type, and con-195

vergence tolerance—we employed Optuna (Akiba196

et al., 2019) for hyperparameter tuning over 100197

trials. The optimization objective was to maximize198

the score, ensuring more effective differentiation199

between noisy and non-noisy data (see Table 2).200

Table 2: Optimal GMM Configurations

Parameter SBERT EN SBERT FR BERT EN BERT FR

Components 9 8 10 3
Covariance Spherical Full Tied Full
Tolerance 5.69× 10−5 1.04× 10−3 9.89× 10−5 5.00× 10−4

Max Iterations 234 278 172 50
Threshold 0.456 0.759 0.503 0.479

Small-loss Trick (ST): ST identifies noisy data201

points by leveraging the assumption that difficult-202

to-learn examples (i.e., those with high training203

losses) are more likely to contain noise (Arpit et al.,204

2017; Han et al., 2018). During each training itera- 205

tion, the model computes the loss for each sentence 206

and selects a subset with the smallest losses, assum- 207

ing these correspond to correctly labeled instances. 208

The model is then updated using only this sub- 209

set, thereby reducing the impact of mislabeled or 210

noisy data on training (Malach and Shalev-Shwartz, 211

2017; Yu et al., 2019). 212

A key hyperparameter in this method is the 213

loss threshold percentile, which determines how 214

many low-loss samples are retained for training. 215

We experimented with four different threshold val- 216

ues—10th, 25th, 50th, and 75th percentiles—to 217

evaluate their impact on filtering noisy data. Our re- 218

sults indicate that using a 75% threshold provided 219

the best balance, effectively excluding uncertain 220

data points while retaining a sufficient number of 221

reliable instances for model training. 222

Co-Teaching (CT): Similar to ST, this method 223

relies on small losses, but it involves simultaneous 224

training of two models, each initialised indepen- 225

dently (Han et al., 2018). During training, each 226

model selects the lowest-loss samples from batches 227

of the other model, under the assumption that these 228

are more likely to be correctly labeled. This cross- 229

filtering mechanism ensures that each model learns 230

from cleaner examples, reducing the influence of 231

noisy data. By defining, the key parameter in CT, 232

the forget rate, which determines the fraction of 233

high-loss samples to remove at each training step. 234

Dynamic Loss Thresholding (DLT) enables the 235

model to adapt gradually, preventing premature 236

discarding of difficult samples and reducing exces- 237

sive data loss in early training. Progressive filtering 238

outperforms static thresholding by maintaining a 239

more diverse and informative dataset, enhancing 240

robustness against noisy labels (Yang et al., 2023). 241

In our implementation, we use a linearly sched- 242
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uled forget rate ranging from 0.0 to 0.3 over train-243

ing epochs, following:244

rt = rmin + (rmax − rmin)
t

T
, (1)245

where rt is the forget rate at epoch t, rmin = 0.0 is246

the initial forget rate, rmax = 0.3 is the maximum247

forget rate, and T is the total number of epochs. At248

each training step, the forget rate determines the249

fraction of high-loss samples to discard within each250

mini-batch. In the early epochs, all samples are251

used (rt = 0), while in later epochs, up to 30% of252

the highest-loss samples per batch are progressively253

discarded (rt → 0.3)254

Additionally, to further refine noise removal, we255

implemented a post-training filtering mechanism256

based on maximum predicted probability. This257

mechanism evaluates each sample’s highest soft-258

max probability p assigned to a predicted class.259

Samples with p∗ < 0.6 are flagged as potentially260

noisy and removed. Our analysis showed that at261

0.50, no samples were filtered, whereas at 0.69,262

0.90% of samples were flagged, providing a bal-263

anced trade-off between noise removal and data264

retention.265

Noise Transition Matrix (NTM): NTMs model266

the probability of labeling errors, enhancing feed-267

back for misclassifications during training (Patrini268

et al., 2017). Each element Tij in this matrix indi-269

cates the likelihood that a true label i is mistakenly270

assigned the label j. We can estimate this ma-271

trix using prior knowledge about the dataset or by272

analysing predictions from a clean subset. Unlike273

CT and ST, which discard noisy samples based on274

loss, NTM does not remove data but instead adjusts275

model predictions to compensate for label noise.276

In our experiment, we used the noisy data iden-277

tified by GMM-B to derive the Noise Transition278

Matrix. Specifically, we derive Tij from the con-279

fusion matrix created from the noisy dataset, and280

then we normalise it to show the probabilities of281

mislabelling. To effectively utilise the NTM, we282

compute its inverse, known as the Inverse Noise283

Transition Matrix (Tinv).284

During the training process, instead of filtering285

out noisy samples as in CT or ST, we multiply the286

model’s raw predicted probabilities, denoted as P̂ ,287

by Tinv. This adjustment corrects the predictions to288

account for label noise, resulting in a more accurate289

estimation of the true labels.290

P̂adjusted = P̂ · Tinv (2)291

Next, we compute the loss function for the ad- 292

justed predictions P̂adjusted using the cross-entropy 293

loss. By integrating Tinv into the training loop, the 294

model can dynamically correct noisy predictions 295

during training. 296

Label Smoothing (LS): LS is a regularization 297

technique that reduces model overconfidence. In- 298

stead of assigning a probability of 1 to the correct 299

class and 0 to all others, LS redistributes a small 300

fraction of this probability across all classes, help- 301

ing the model handle mislabeled or ambiguous data 302

(Szegedy et al., 2016; Müller et al., 2019). LS has 303

been shown to improve model performance by help- 304

ing the model generalise and reducing overfitting, 305

especially when dealing with noisy or unbalanced 306

datasets (Khan and B., 2023; Adikari and Draper, 307

2023). The smoothed label ysmooth is computed as: 308

ysmooth = (1− ϵ)× y +
ϵ

k
(3) 309

where ϵ is the smoothing factor and k is the number 310

of classes. 311

The probability threshold τ was tested in the 312

range 0.50 ≤ τ ≤ 0.70, incremented by 0.05, 313

while the smoothing factor was varied between 314

0.0 ≤ ϵ ≤ 0.2, also incremented by 0.05. 315

The results indicate that higher smoothing fac- 316

tors (ϵ ≥ 0.15) excessively redistributed probabil- 317

ities, leading to degraded predictions due to in- 318

creased uncertainty in class assignments. Con- 319

versely, the absence of smoothing (ϵ = 0.0) re- 320

sulted in overconfident predictions, increasing the 321

risk of misclassification. A moderate smoothing 322

factor of ϵ = 0.1 provided the optimal balance, 323

enhancing generalisation while maintaining well- 324

calibrated predictions. Similarly, higher probabil- 325

ity thresholds (τ = 0.70) yielded superior perfor- 326

mance by effectively filtering uncertain predictions, 327

leading to improved model reliability. 328

4 Segmentation Strategy Evaluation 329

The choice of segmentation strategy plays a crit- 330

ical role in classification performance, probabil- 331

ity calibration, and computational efficiency. We 332

evaluate longer segments against single sentences. 333

As shown in Figure 1, our findings confirm that 334

fixed-length token segmentation consistently out- 335

performs sentence-based segmentation by preserv- 336

ing input consistency, reducing fragmentation, and 337

ensuring more stable representations across lan- 338

guages. Sentence-based or short-length segmen- 339
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Figure 1: Comparison of ROC-AUC and Brier Score
across segmentation strategies. Higher ROC-AUC and
lower Brier Score indicate better classification perfor-
mance and better probability calibration.

tation yields lower ROC-AUC in comparison to340

longer segments. Additionally, models trained on341

shorter segments exhibit poor probability calibra-342

tion, as indicated by higher Brier Scores and greater343

uncertainty, measured by Prediction Entropy. This344

suggests that shorter segments lead to overcon-345

fident yet incorrect probability estimates, reduc-346

ing classification reliability. Interestingly, the 250-347

token segmentation does not yield improvements348

over 200-token; instead, its ROC-AUC drops, sug-349

gesting that longer segments may introduce unnec-350

essary noise or redundant context that does not351

contribute to classification performance.352

Between mBERT-200 and XLMR-200, key353

trade-offs emerge. XLMR-200 achieves a higher354

ROC-AUC (+0.014) and Precision (+0.026), indi-355

cating stronger ranking ability and fewer false pos-356

itives. However, mBERT-200 compensates with357

a higher Recall (+0.033). mBERT-200 also offers358

superior efficiency, with faster training (498s vs359

1327s) and a slighlty faster inference (12.4 ms vs.360

13.8 ms per segment).361

5 Noise Detection and Reduction362

Building upon our previous experiment, where we363

determined that a 200-token segmentation provided364

the most effective results, we expanded our study365

to evaluate the impact of the noise reduction tech-366

niques on classification performance. Our objective367

was to assess how these techniques influence model368

robustness in the cross-lingual setting, using En-369

glish and French as the primary training datasets.370

The English dataset consists of 4,644 training seg-371

ments and 1,162 validation segments, while the372

French dataset comprises 65,803 training segments373

and 16,451 validation segments. To evaluate cross-374

lingual generalisation, we tested models trained on 375

English and French against each other, in addition 376

to multilingual evaluation across Catalan (346 seg- 377

ments), Spanish (8,076 segments), Italian (7,348 378

segments), and Russian (266 segments). 379

In addition to investigation of the de-noising 380

techniques, we performed Intersection Analysis by 381

examining noise labels flagged by multiple meth- 382

ods to determine the most consistently noisy data 383

points. 384

When trained on English (Table 3), the baseline 385

model achieved the AUC score of 0.991. Both 386

Gaussian Mixture Models (GMM-B and GMM- 387

SB) improved this performance to 0.996 and 0.997 388

respectively. Notably, their intersection performed 389

even better, as it achieved the highest AUC score of 390

0.998. This suggests that combining noise reduc- 391

tion methods can yield superior classification out- 392

comes. Performance has also improved in the cross- 393

lingual setting with again GMM-B and GMM-SB 394

outperforming the baseline model and improving 395

further at their intersection. Intersecting GMM- 396

B with Co-Teaching led to the best cross-lingual 397

performance averaging over the Vikidia languages 398

(0.971 AUC) with the transfer gap of merely 0.02. 399

However, when trained on a much bigger French 400

dataset (Table 4), the baseline performance re- 401

mained the best both for French itself (0.998) as 402

well as in the cross-lingual setting (0.979), outper- 403

forming the best English models. In itself it demon- 404

strates that English-centric training procedure does 405

not always help for multilingual models if better 406

data is available for another language. Catalan, Ital- 407

ian and Spanish are typologically related to French, 408

so we can expect better performance there. As 409

for the noise detection, our baseline training on a 410

significantly larger French dataset improved gen- 411

eralisation across languages even without the need 412

for de-noising. Here, GMM-B/SB emerged as the 413

best standalone methods (0.997) with their intersec- 414

tion getting the same performance as the baseline 415

but additional improvements. 416

Balancing effectiveness with computational ef- 417

ficiency is crucial. While French-trained models 418

generalised better, they also introduced higher com- 419

putational costs. Training the baseline model was 420

the most efficient (498 seconds for English, 2466 421

seconds for French), while denoising with GMM- 422

based methods, despite their strong performance, 423

were computationally demanding (3356 seconds 424

for English, 47,736 seconds for French), highlight- 425

ing scalability challenges. 426
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Intersection
Language Baseline GMM-B GMM-SB ST CT NTM LS CT/ST ST/GMM-SB GMM-B/SB CT/GMM-B
en 0.991 0.996 0.997 0.876 0.988 0.988 0.995 0.989 0.998 0.999 0.998
ca 0.927 0.930 0.945 0.990 0.896 0.902 0.926 0.908 0.942 0.942 0.955
es 0.947 0.962 0.966 0.881 0.950 0.949 0.963 0.924 0.956 0.972 0.974
fr 0.935 0.953 0.959 0.877 0.916 0.925 0.947 0.894 0.938 0.965 0.966
it 0.948 0.962 0.963 0.849 0.929 0.931 0.954 0.901 0.956 0.970 0.969
ru 1.000 0.999 0.998 0.847 0.984 0.990 0.991 0.966 0.998 0.996 0.993
Average 0.951 0.961 0.966 0.888 0.935 0.939 0.956 0.918 0.958 0.969 0.971
Train (s) 498 3356 3331 706 762 3588 360 2085 4012 5744 4097
# Noisy 432 1234 1430 1704 100 2060 433 265 228 368

Table 3: Comparative performance of noise reduction methods using ROC-AUC when trained on English.

Intersection
Language Baseline GMM-B GMM-SB ST CT NTM LS CT/ST ST/GMM-SB GMM-B/SB CT/GMM-B
fr 0.998 0.997 0.997 0.918 0.902 0.753 0.993 0.996 0.997 0.997 0.998
en 0.991 0.991 0.992 0.918 0.970 0.753 0.991 0.988 0.990 0.992 0.991
ca 0.952 0.954 0.950 0.918 0.902 0.645 0.937 0.932 0.943 0.945 0.949
es 0.979 0.976 0.978 0.921 0.888 0.855 0.982 0.974 0.972 0.973 0.978
it 0.978 0.975 0.975 0.907 0.959 0.781 0.978 0.971 0.970 0.973 0.978
ru 0.995 0.983 0.993 0.732 0.962 0.907 0.989 0.978 0.988 0.994 0.991
Average 0.979 0.975 0.977 0.879 0.936 0.788 0.975 0.968 0.972 0.975 0.977
Train (s) 2466 47736 48578 719 8512 46115 1131 9831 48446 93732 57123
# Noisy 23647 11030 19129 29615 1193 2060 22133 16717 4509 9212

Table 4: Comparative performance of noise reduction methods using ROC-AUC when trained on French.

Conversely, the Small-Loss Trick remained effi-427

cient (706 and 719 seconds). Co-Teaching, though428

effective in English (762 seconds), became more429

costly in French (8512 seconds), indicating that430

larger datasets require more iterations for achiev-431

ing agreement between the two models. NTM was432

the most expensive method, while it did not lead433

to improvements over GMMs. Label Smoothing,434

the least costly method (360 and 1131 seconds),435

performed adequately improving over the baseline436

almost on par with the much more expensive GMM-437

B/SB methods.438

To better understand the overlap between noise439

detection techniques, the intersection analysis of440

noisy segments across denoising techniques (Fig-441

ures 2a and 2b) reveals distinct trends between442

English- and French-trained models. These plots443

illustrate how different denoising methods agree or444

diverge in identifying noisy segments.445

In English, noise detection is dominated by ST446

(84.2%) and CT (55.5%), suggesting a more ag-447

gressive filtering approach, while higher-order in-448

tersections remain sparse, indicating that methods449

largely detect distinct subsets. In contrast, French-450

trained models exhibit a more balanced distribution,451

with ST (80.3%), CT (57.1%), and GMM-BERT452

(52.0%) showing greater agreement. The increased453

frequency of multi-method intersections suggests 454

that larger datasets allow for more consistent noise 455

identification, making hybrid approaches more ef- 456

fective. Notably, Label Smoothing plays a minimal 457

role in both cases, reinforcing its function as a reg- 458

ularisation tool rather than a primary noise filter. 459

Figure 3 provides a comparative visualization 460

of model strengths and weaknesses across Accu- 461

racy, Precision, Recall, F1-score, ROC AUC, and 462

Brier Score. A clear Precision-Recall trade-off 463

emerges: GMM-based models favor high precision 464

at the expense of recall, while LS and ST main- 465

tain a more balanced profile. Additionally, ROC 466

AUC and Brier Score discrepancies indicate differ- 467

ences in probability calibration, with some models 468

ranking instances well (measured with ROC AUC) 469

but producing less reliable probability estimates 470

(measured with the Brier Score). 471

While LS and CT offer stable performance, mod- 472

els like CT, ST and GMM-B improve precision at 473

the expense of recall, making them more suitable 474

for high-confidence classification tasks. The radar 475

chart further illustrates these trade-offs, with circu- 476

lar patterns indicating balanced performance and 477

irregular shapes reflecting metric-specific biases. 478
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(a) Noisy data intersections for English. (b) Noisy data intersections for French.

Figure 2: Comparison of noisy data intersections across denoising techniques for English and French. Bars indicate
detected noisy segments, and connections show agreement among techniques. Greater overlap suggests higher
agreement across techniques.

Figure 3: Radar Chart: Model Strengths and Weak-
nesses across Key Metrics

6 Error Analysis479

Considering the intersection of CT and GMM-B480

as the best-performing de-noising model, we con-481

ducted a manual error analysis to further assess its482

effectiveness. A total of 368 noisy segments were483

identified at the intersection, as summarized in Ta-484

ble 5, with 151 coming from simpler Vikidia and485

217 from more complex Wikipedia.486

To evaluate the noise classification performance,487

we randomly selected a sample of 50 instances,488

consisting of 20 sentences from Vikidia and 30489

from Wikipedia. Within this subset, 26 sentences490

were classified as noisy, while 24 were considered491

not noisy, as detailed in Table 5.492

To better understand the nature of noise in the493

dataset, we categorised the noisy segments into494

different issue types (see Table 6). It is important495

to note that the same sentence may fall under more496

than one category, as multiple types of noise can497

coexist within a single sentence.498

Our manual error analysis highlights seven key499

noise factors that affect text processing in both Sim-500

Category Count
Total Noisy Sentences 368
Simple Vikidia (Noisy) 151
Complex Wikipedia (Noisy) 217
Sample Size 50
Simple Vikidia (Sample) 20
Complex Wikipedia (Sample) 30
Noisy in Sample 26
Not Noisy in Sample 24

Table 5: Summary of Noisy Segment Analysis

ple Vikidia and Complex Wikipedia. The identified 501

noise types and their distribution are detailed in 502

Table 6. The most frequent issue was misclassifi- 503

cation as simple, followed by irregular encoding 504

problems, which likely affected sentence structure 505

and classification accuracy. 506

Issue Category Count
Misclassified as Simple 21
Misclassified as Complex 1
Irregular Encoding 18
Incomplete 1
Mostly a list of Named Entities 7
Mostly Referencing 6
Listing Numbers (mostly years) 7

Table 6: Categorization of Noisy Segments Based on
Identified Issues

The heatmap in Figure 4 illustrates the correla- 507

tion between these noise categories and classifica- 508

tion errors. We observe the following key trends: 509

• Certain noise categories exhibit strong posi- 510

tive correlations with misclassification. For 511

example, encoding issues and excessive 512

named entities appear to contribute more fre- 513

quently to sentences being misclassified as 514

complex. 515

• Sentences containing excessive referencing 516

and multiple years mentioned show a notice- 517

7



Figure 4: Heatmap showing the correlation between dif-
ferent noise categories and classification outcomes. Pos-
itive correlations (red) indicate a stronger association,
while negative correlations (blue) suggest an inverse
relationship.

able association with misclassification as sim-518

ple.519

• The strongest correlation with correctly classi-520

fied sentences appears in cases with minimal521

formatting issues or named entities, indicat-522

ing that clean, structured text is less prone to523

misclassification.524

7 Related Studies525

Noise in training data poses a significant chal-526

lenge in NLP, especially in non-topical classifica-527

tion tasks such as genre prediction (Rönnqvist et al.,528

2022; Roussinov and Sharoff, 2023), demographic529

property detection (Kang et al., 2019), and text dif-530

ficulty classification (North et al., 2022). These531

tasks rely on language style rather than explicit top-532

ical keywords, making them sensitive to noise and533

annotation errors.534

Noise reduction techniques like majority agree-535

ment between the classifiers have been effective.536

Studies by Di Bari et al. (2014) and Khallaf and537

Sharoff (2021) show that leveraging consensus be-538

tween the predictions of different models can sig-539

nificantly reduce noise, resulting in more reliable540

classifiers. Additionally, Zhu et al. (2022) provide541

a baseline by evaluating BERT models’ robustness542

to label noise, without a clear outcome on which543

de-noising methods are more useful. Our study544

goes further, by selecting a non-topical classifica-545

tion task and real-life settings by shifting prediction546

from document- to sentence-level predictions.547

Bayesian learning has also been applied to han- 548

dle noise, as discussed by Papamarkou et al. (2024) 549

and Miok et al. (2020), focusing on managing un- 550

certainty and noise in large-scale AI tasks. This ap- 551

proach is particularly relevant for semi-supervised 552

text annotation, where it enhances noise reduction 553

efficacy. Given the amount of unlabeled data in 554

our domain, we will apply the experiments to the 555

Bayesian framework. 556

Calibration of model predictions is crucial for 557

handling noise, particularly using softmax outputs. 558

Proper calibration ensures lower probabilities cor- 559

respond to a higher likelihood of errors, aiding in 560

producing well-calibrated classifiers. Methods for 561

uncertainty estimates in BERT-like models can im- 562

prove robustness to noise at the inference stage 563

(Kuleshov et al., 2018; Vazhentsev et al., 2023), 564

which we need to investigate further, while this 565

study only assesses the degree of calibration via 566

the Brier score. 567

Cross-lingual transfer learning, where models 568

like BERT are trained on one language and applied 569

to another, is particularly challenging in noisy envi- 570

ronments due to linguistic differences and resource 571

variability (Conneau et al., 2020; Zhao et al., 2021). 572

8 Conclusions 573

This paper investigates the impact of various noise 574

reduction techniques on cross-lingual sentence 575

difficulty classification, providing insights into 576

their effectiveness across different languages and 577

datasets. Our findings demonstrate that these meth- 578

ods can enhance model performance, with their 579

effectiveness varying based on specific data charac- 580

teristics and cross-lingual transfer settings. Classi- 581

fication of complex language for longer segments 582

is consistently better than for single sentences. For 583

a smaller dataset, Gaussian Mixture Models can be 584

helpful to reduce noise, while for a bigger dataset 585

the inherent regularisation of the PLMs provides a 586

good baseline, which more expensive de-noising 587

methods cannot improve further. 588

These findings have practical implications for 589

enhancing the reliability of cross-lingual applica- 590

tions in areas such as language education, language 591

simplification, and language learning tools. 592

9 Limitations 593

This study aims at a specific non-topical classifica- 594

tion task, for which there have been no prior exper- 595

iments on de-noising. However, the specific setup 596

8



of moving from document- to sentence-level anno-597

tation relies on freely available Vikidia-Wikipedia598

pairs, which also offer a limited number of lan-599

guages for testing. Future work will explore the600

applicability of these de-noising techniques to other601

multilingual datasets and classification tasks, par-602

ticularly in low-resource settings. Additionally,603

investigating alternative sources of sentence-level604

annotations or adapting methods for diverse text605

genres (e.g., social media, news, or educational606

content) could further assess the robustness of our607

approach.608

10 Ethical Impact609

The potential societal benefits of our findings are610

substantial, particularly in improving the quality611

of communication by detecting complex sentences612

across languages. This study will also contribute613

to production of cleaner de-noised datasets.614

In conducting the study we have been careful615

with the environmental impact of NLP research.616

Large Language Models are more computationally617

expensive, while they have been shown to be not618

better than PLMs in several text classification tasks.619

For each of the methods we provided the compu-620

tational costs of running the models (on NVIDIA621

L40S GPUs), with a total training time of ≈ 9622

hours for English and ≈ 101 hours for French. We623

are not aware of potential risks in deploying the624

study discussed in the paper.625
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Reichart, Anna Korhonen, and Hinrich Schütze. 2021. 797
A closer look at few-shot crosslingual transfer: The 798
choice of shots matters. In Proceedings of the 59th 799
Annual Meeting of the Association for Computational 800
Linguistics and the 11th International Joint Confer- 801
ence on Natural Language Processing (Volume 1: 802
Long Papers), pages 5751–5767, Online. 803

Dawei Zhu, Michael A. Hedderich, Fangzhou Zhai, 804
David Adelani, and Dietrich Klakow. 2022. Is BERT 805
robust to label noise? a study on learning with noisy 806
labels in text classification. In Proceedings of the 807
Third Workshop on Insights from Negative Results in 808
NLP, pages 62–67, Dublin, Ireland. 809

10

https://doi.org/10.7717/peerj-cs.1102
https://doi.org/10.7717/peerj-cs.1102
https://doi.org/10.7717/peerj-cs.1102
https://aclanthology.org/2020.law-1.1
https://aclanthology.org/2020.law-1.1
https://aclanthology.org/2020.law-1.1
https://doi.org/10.18653/v1/2022.bea-1.24
https://doi.org/10.18653/v1/2022.bea-1.24
https://doi.org/10.18653/v1/2022.bea-1.24
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2022.findings-acl.85
https://doi.org/10.18653/v1/2023.acl-long.652
https://doi.org/10.18653/v1/2023.acl-long.652
https://doi.org/10.18653/v1/2023.acl-long.652
https://doi.org/10.18653/v1/2023.acl-long.652
https://doi.org/10.18653/v1/2023.acl-long.652
https://doi.org/10.1109/TKDE.2022.3151375
https://doi.org/10.1109/TKDE.2022.3151375
https://doi.org/10.1109/TKDE.2022.3151375
https://doi.org/10.18653/v1/2021.acl-long.447
https://doi.org/10.18653/v1/2021.acl-long.447
https://doi.org/10.18653/v1/2021.acl-long.447
https://doi.org/10.18653/v1/2022.insights-1.8
https://doi.org/10.18653/v1/2022.insights-1.8
https://doi.org/10.18653/v1/2022.insights-1.8
https://doi.org/10.18653/v1/2022.insights-1.8
https://doi.org/10.18653/v1/2022.insights-1.8

	Introduction
	Dataset
	Methodology
	Segmentation Strategy Evaluation
	Noise Detection and Reduction
	Error Analysis
	Related Studies
	Conclusions
	Limitations
	Ethical Impact

