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Abstract

Noisy training data can significantly degrade
the performance of classifiers using language
models, particularly in applications such as
readability assessment, content moderation,
and language learning tools. This study inves-
tigate the use of several de-noising techniques
in sentence-level difficulty detection, using a
training set derived from document-level diffi-
culty annotation. In addition to monolingual
de-noising, we address the cross-lingual trans-
fer gap when a multilingual language model is
trained on one language and tested on another.
We have examined the influence of segment
lengths and have studied a wide range of noise
reduction techniques, such as Gaussian Mixture
Models, Co-Teaching, Noise Transition Matri-
ces, and Label Smoothing. Results reveal that,
while BERT-like models are robust to noise, in-
corporating noise detection can further enhance
performance. For a smaller dataset, Gaussian
Mixture Models can be especially helpful to
reduce noise and improve prediction quality, es-
pecially in the cross-lingual transfer. However,
for a larger dataset the inherent regularisation
of the PLMs provides a good baseline, which
(fairly expensive) de-noising methods cannot
improve further.

1 Introduction

Modern NLP methods such as Pre-Trained Lan-
guage Models (PLMs) and Large Generative Lan-
guage Models (LLMs) have markedly advanced the
performance across a wide range of tasks. Never-
theless, significant challenges persist in non-topical
classification tasks, such as predictions of genre
(Ronngvist et al., 2022; Kuzman et al., 2023), de-
mographic properties (Kang et al., 2019), or the
difficulty of a text (North et al., 2022). Zhang et al.
(2023) further highlight the limitations of large lan-
guage models in handling subtle stylistic features
in such tasks. In comparison to more standard
topical classification tasks, which rely on explicit

keywords, non-topical classification requires mod-
els to discern stylistic features rather than overt
domain-specific content (Dewdney et al., 2001).
Both PLMs and LLM:s can be distracted by topical
keywords in such tasks (Roussinov and Sharoff,
2023). Also larger LLMs, such as GPT, do not out-
perform smaller PLMs, such as BERT, on text clas-
sification tasks (Edwards and Camacho-Collados,
2024), while the LLMs might be better at sentence-
level simplification tasks (Kew et al., 2023).

The scarcity of high-quality data across lan-
guages, coupled with prevalent annotation noise,
presents a significant challenge in sentence diffi-
culty classification. This study addresses noise orig-
inating from the variability of crowd-sourced anno-
tations and the transition from document-level to
sentence-level predictions. For instance, a sentence
extracted from Wikipedia—which we categorise as a
source of more complex texts—can often be simple,
whereas individual sentences from crowd-sourced
simple language resources may occasionally ex-
hibit complexity or become difficult to interpret
without broader context. This inconsistency further
challenges the effectiveness of non-topical classifi-
cation models.

Accurately predicting the complexity of a sin-
gle short sentence is challenging because individ-
ual sentences often lack the contextual richness
required for proper assessment. In order to solve
this problem, it is essential to investigate the im-
pact of aggregating multiple short sentences when
determining the complexity of a text segment.

To address these challenges, this study makes
the following contributions:

1. Investigate the impact of segment length on
handling noise in sentence-level difficulty pre-
diction.

2. Identify effective methods for filtering noisy
datasets to improve classification robustness.



3. Evaluate the effect of noise in both monolin-
gual and cross-lingual classification settings.

4. Release a de-noised multilingual dataset,
along with scripts and models, in the camera-
ready version.

2 Dataset

The datasets used in this experiment were sourced
from Vikidia and Wikipedia ', covering multiple
languages, see Table 1. The simple versions have
been crawled from VikidiaZ, a website that main-
tains Wikipedia-style content aimed at “children
and anyone seeking easy-to-read content”. We have
removed the entries marked as stubs (with little
content at the moment) and collected the corre-
sponding main Wikipedia entries for the respective
languages. Therefore, the documents in our dataset
address exactly the same topics. This removes topic
biases, which often negatively impact non-topical
classification tasks. In the end, we have obtained
a document-level resource for text-difficulty detec-
tion. However, our aim is to develop more granular
classifiers on the sentence level. The Inter-Quartile
Range (IQR) column in Table 1 shows that the ma-
jority of sentences in either collection are of about
8 to 21 words, with longer sentences being about
4-6 words shorter in Vikidia.

3 Methodology

All experiments listed below aim at a binary task of
predicting whether a sentence (or a short segment)
is complex, i.e., it is NOT suitable to be included
in Vikidia. However, this makes it a noisy task,
as some Wikipedia segments can be legitimately
simple. This also makes the Area Under Curve
(AUC) score as the main evaluation measure, as we
are specifically interested in reducing the impact
of False Negatives (complex segments which have
not been identified).

Our experiments have been conducted using mul-
tilingual BERT-base (Devlin et al., 2019) with some
experiments using multilingal SBERT (Reimers
and Gurevych, 2019). We have also conducted pre-
liminary experiments with mBERT-large and XLLM-
Roberta (Conneau et al., 2020), which demon-
strated comparable patterns, so the focus of this

'The datasets from Wikipedia and Vikidia are available
under the (CC BY-SA) license. Our use aligns with their in-
tended purpose of open knowledge sharing, with modifications

limited to filtering and preprocessing for research.
Zhttps://www.vikidia.org/

paper is on the core models for clarity and consis-
tency.

Our baseline models were fine-tuned separately
on the English and French datasets using the Hug-
gingface Transformers library with the default
hyper-parameters over 10 epochs with early stop-
ping. The English dataset serves as a widely used
benchmark, while the French dataset, with over
2 million sentences, provides an opportunity to
investigate how larger training corpora influence
model robustness. The performance of the English
and French models was subsequently evaluated in
other languages to assess cross-lingual transferabil-
ity. The PLMs used (mBERT and XLLM-Roberta)
have English as the biggest corpus for pre-training,
thus leading to better weight estimation for En-
glish. However, for our specific downstream task
the French dataset is much bigger, so we investi-
gated how larger training corpora influence noise
detection. Additionally, we test across a range
of languages from Vikidia, including Catalan and
Russian. Catalan has the smallest amount of pre-
training corpora, so we can expect lower quality
weights, while Russian is more remote from lan-
guages prevalent in Vikidia, so we expect greater
cross-lingual transfer gap (Hu et al., 2020).

Traditional approaches often rely on sentence-
based segmentation, where each sentence is treated
as an independent input. However, this can intro-
duce fragmentation and fail to capture contextual
dependencies. First, we compared two strategies to
investigate the effects of text segmentation:

1. Splitting texts into single sentences using
NLTK and SpaCly, as these libraries use dif-
ferent algorithms for sentence boundary de-
tection, potentially influencing performance.
Sentences from Wikipedia also present in
Vikidia were removed from the datasets.

2. Combining adjacent sentences to create
chunks of varying lengths (approximately 50,
70, 100, 150, 200 and 250 tokens), as the orig-
inal sentences are likely to be too short for
reliable predictions.

The objective was to assess how text segmenta-
tion affects the results of a text classification task
with the aim of determining the optimal segment
length performance in the original language and in
cross-lingual applications.

After determining the optimal segment length,
we experimented with noise reduction techniques


https://www.vikidia.org/

Language | #Texts Wikipedia Vikidia
#Words #Sentences IQR #Words #Sentences IQR

Catalan 125 | 434344 807 (7,22) 77223 803 (7, 16)
English 1726 | 8843600 16431 (11,25)| 560226 17712 (9, 19)
Spanish 2738 | 8504129 21609 (8,25) | 685636 19034 (9, 22)
French 21515 | 49689858 1998934 (14, 31) 7293514 374537 (11, 24)
Italian 2456 | 7479678 23432 (8,25) | 604046 19325 (9, 21)
Russian 104| 396786 692 (5,15) 13877 551 (5, 14)

Table 1: Statistics of the dataset with information on the number of documents, words and sentences for each dataset,
as well as the Inter-Quartile Range of the sentence lengths as from Spacy’s tokenization and segmentation.

to remove potentially noisy segments from the
training data, i.e., the segments with incorrect or
not useful gold-standard annotations because of the
process of dataset construction. After detecting the
noisy data points, we retained only the datapoints
identified as clean, and fine-tuned with the same
hyperparameters as the baseline to maintain con-
sistency. Both the validation and test datasets have
been manually cleaned, ensuring reliable evalua-
tion.

To address label noise, we compare five estab-
lished denoising methods:

Gaussian Mixture Models (GMMs): GMMs
can be used to cluster high-dimensional sentence
representations into two Gaussian distributions, cor-
responding to clean and noisy data, respectively
(Bishop, 2006). We evaluated sentence representa-
tions derived from SBERT (GMM-SB) and CLS
embeddings from BERT (GMM-B).

To optimise the GMM parameters—such as the
number of components, covariance type, and con-
vergence tolerance—we employed Optuna (Akiba
et al., 2019) for hyperparameter tuning over 100
trials. The optimization objective was to maximize
the score, ensuring more effective differentiation
between noisy and non-noisy data (see Table 2).

Table 2: Optimal GMM Configurations

Parameter SBERT EN SBERTFR BERTEN  BERT FR
Components 9 8 10 3
Covariance Spherical Full Tied Full
Tolerance 5.69 x 107° 1.04 x 107® 9.89 x 107° 5.00 x 10™*
Max Iterations 234 278 172 50
Threshold 0.456 0.759 0.503 0.479

Small-loss Trick (ST): ST identifies noisy data
points by leveraging the assumption that difficult-
to-learn examples (i.e., those with high training
losses) are more likely to contain noise (Arpit et al.,

2017; Han et al., 2018). During each training itera-
tion, the model computes the loss for each sentence
and selects a subset with the smallest losses, assum-
ing these correspond to correctly labeled instances.
The model is then updated using only this sub-
set, thereby reducing the impact of mislabeled or
noisy data on training (Malach and Shalev-Shwartz,
2017; Yu et al., 2019).

A key hyperparameter in this method is the
loss threshold percentile, which determines how
many low-loss samples are retained for training.
We experimented with four different threshold val-
ues—10th, 25th, 50th, and 75th percentiles—to
evaluate their impact on filtering noisy data. Our re-
sults indicate that using a 75% threshold provided
the best balance, effectively excluding uncertain
data points while retaining a sufficient number of
reliable instances for model training.

Co-Teaching (CT): Similar to ST, this method
relies on small losses, but it involves simultaneous
training of two models, each initialised indepen-
dently (Han et al., 2018). During training, each
model selects the lowest-loss samples from batches
of the other model, under the assumption that these
are more likely to be correctly labeled. This cross-
filtering mechanism ensures that each model learns
from cleaner examples, reducing the influence of
noisy data. By defining, the key parameter in CT,
the forget rate, which determines the fraction of
high-loss samples to remove at each training step.
Dynamic Loss Thresholding (DLT) enables the
model to adapt gradually, preventing premature
discarding of difficult samples and reducing exces-
sive data loss in early training. Progressive filtering
outperforms static thresholding by maintaining a
more diverse and informative dataset, enhancing
robustness against noisy labels (Yang et al., 2023).

In our implementation, we use a linearly sched-



uled forget rate ranging from 0.0 to 0.3 over train-
ing epochs, following:

t
T
where r; is the forget rate at epoch £, 7., = 0.0 is
the initial forget rate, 7,4 = 0.3 is the maximum
forget rate, and 7" is the total number of epochs. At
each training step, the forget rate determines the
fraction of high-loss samples to discard within each
mini-batch. In the early epochs, all samples are
used (r¢ = 0), while in later epochs, up to 30% of
the highest-loss samples per batch are progressively
discarded (r; — 0.3)

Additionally, to further refine noise removal, we
implemented a post-training filtering mechanism
based on maximum predicted probability. This
mechanism evaluates each sample’s highest soft-
max probability p assigned to a predicted class.
Samples with p* < 0.6 are flagged as potentially
noisy and removed. Our analysis showed that at
0.50, no samples were filtered, whereas at 0.69,
0.90% of samples were flagged, providing a bal-
anced trade-off between noise removal and data
retention.

ey

Tt = Tmin + (rmax - Tmin)

Noise Transition Matrix (NTM): NTMs model
the probability of labeling errors, enhancing feed-
back for misclassifications during training (Patrini
et al., 2017). Each element 7;; in this matrix indi-
cates the likelihood that a true label 7 is mistakenly
assigned the label j. We can estimate this ma-
trix using prior knowledge about the dataset or by
analysing predictions from a clean subset. Unlike
CT and ST, which discard noisy samples based on
loss, NTM does not remove data but instead adjusts
model predictions to compensate for label noise.
In our experiment, we used the noisy data iden-
tified by GMM-B to derive the Noise Transition
Matrix. Specifically, we derive T;; from the con-
fusion matrix created from the noisy dataset, and
then we normalise it to show the probabilities of
mislabelling. To effectively utilise the NTM, we
compute its inverse, known as the Inverse Noise
Transition Matrix (Liny).

During the training process, instead of filtering
out noisy samples as in CT or ST, we multiply the
model’s raw predicted probabilities, denoted as P,
by Tiny. This adjustment corrects the predictions to
account for label noise, resulting in a more accurate
estimation of the true labels.

~ A~

Padjusted =P T (2)

Next, we compute the loss function for the ad-
justed predictions Padjusted using the cross-entropy
loss. By integrating 7j,, into the training loop, the
model can dynamically correct noisy predictions
during training.

Label Smoothing (LS): LS is a regularization
technique that reduces model overconfidence. In-
stead of assigning a probability of 1 to the correct
class and O to all others, LS redistributes a small
fraction of this probability across all classes, help-
ing the model handle mislabeled or ambiguous data
(Szegedy et al., 2016; Miiller et al., 2019). LS has
been shown to improve model performance by help-
ing the model generalise and reducing overfitting,
especially when dealing with noisy or unbalanced
datasets (Khan and B., 2023; Adikari and Draper,
2023). The smoothed label Ysmootn 1S computed as:

€
Ysmooth = (1 - E) Xy —+ % 3)

where ¢ is the smoothing factor and k is the number
of classes.

The probability threshold 7 was tested in the
range 0.50 < 7 < 0.70, incremented by 0.05,
while the smoothing factor was varied between
0.0 < € £0.2, also incremented by 0.05.

The results indicate that higher smoothing fac-
tors (e > 0.15) excessively redistributed probabil-
ities, leading to degraded predictions due to in-
creased uncertainty in class assignments. Con-
versely, the absence of smoothing (¢ = 0.0) re-
sulted in overconfident predictions, increasing the
risk of misclassification. A moderate smoothing
factor of € = 0.1 provided the optimal balance,
enhancing generalisation while maintaining well-
calibrated predictions. Similarly, higher probabil-
ity thresholds (7 = 0.70) yielded superior perfor-
mance by effectively filtering uncertain predictions,
leading to improved model reliability.

4 Segmentation Strategy Evaluation

The choice of segmentation strategy plays a crit-
ical role in classification performance, probabil-
ity calibration, and computational efficiency. We
evaluate longer segments against single sentences.
As shown in Figure 1, our findings confirm that
fixed-length token segmentation consistently out-
performs sentence-based segmentation by preserv-
ing input consistency, reducing fragmentation, and
ensuring more stable representations across lan-
guages. Sentence-based or short-length segmen-
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Figure 1: Comparison of ROC-AUC and Brier Score
across segmentation strategies. Higher ROC-AUC and
lower Brier Score indicate better classification perfor-
mance and better probability calibration.

tation yields lower ROC-AUC in comparison to
longer segments. Additionally, models trained on
shorter segments exhibit poor probability calibra-
tion, as indicated by higher Brier Scores and greater
uncertainty, measured by Prediction Entropy. This
suggests that shorter segments lead to overcon-
fident yet incorrect probability estimates, reduc-
ing classification reliability. Interestingly, the 250-
token segmentation does not yield improvements
over 200-token; instead, its ROC-AUC drops, sug-
gesting that longer segments may introduce unnec-
essary noise or redundant context that does not
contribute to classification performance.

Between mBERT-200 and XLMR-200, key
trade-offs emerge. XLMR-200 achieves a higher
ROC-AUC (+0.014) and Precision (+0.026), indi-
cating stronger ranking ability and fewer false pos-
itives. However, mBERT-200 compensates with
a higher Recall (+0.033). mBERT-200 also offers
superior efficiency, with faster training (498s vs
1327s) and a slighlty faster inference (12.4 ms vs.
13.8 ms per segment).

5 Noise Detection and Reduction

Building upon our previous experiment, where we
determined that a 200-token segmentation provided
the most effective results, we expanded our study
to evaluate the impact of the noise reduction tech-
niques on classification performance. Our objective
was to assess how these techniques influence model
robustness in the cross-lingual setting, using En-
glish and French as the primary training datasets.
The English dataset consists of 4,644 training seg-
ments and 1,162 validation segments, while the
French dataset comprises 65,803 training segments
and 16,451 validation segments. To evaluate cross-

lingual generalisation, we tested models trained on
English and French against each other, in addition
to multilingual evaluation across Catalan (346 seg-
ments), Spanish (8,076 segments), Italian (7,348
segments), and Russian (266 segments).

In addition to investigation of the de-noising
techniques, we performed Intersection Analysis by
examining noise labels flagged by multiple meth-
ods to determine the most consistently noisy data
points.

When trained on English (Table 3), the baseline
model achieved the AUC score of 0.991. Both
Gaussian Mixture Models (GMM-B and GMM-
SB) improved this performance to 0.996 and 0.997
respectively. Notably, their intersection performed
even better, as it achieved the highest AUC score of
0.998. This suggests that combining noise reduc-
tion methods can yield superior classification out-
comes. Performance has also improved in the cross-
lingual setting with again GMM-B and GMM-SB
outperforming the baseline model and improving
further at their intersection. Intersecting GMM-
B with Co-Teaching led to the best cross-lingual
performance averaging over the Vikidia languages
(0.971 AUC) with the transfer gap of merely 0.02.

However, when trained on a much bigger French
dataset (Table 4), the baseline performance re-
mained the best both for French itself (0.998) as
well as in the cross-lingual setting (0.979), outper-
forming the best English models. In itself it demon-
strates that English-centric training procedure does
not always help for multilingual models if better
data is available for another language. Catalan, Ital-
ian and Spanish are typologically related to French,
so we can expect better performance there. As
for the noise detection, our baseline training on a
significantly larger French dataset improved gen-
eralisation across languages even without the need
for de-noising. Here, GMM-B/SB emerged as the
best standalone methods (0.997) with their intersec-
tion getting the same performance as the baseline
but additional improvements.

Balancing effectiveness with computational ef-
ficiency is crucial. While French-trained models
generalised better, they also introduced higher com-
putational costs. Training the baseline model was
the most efficient (498 seconds for English, 2466
seconds for French), while denoising with GMM-
based methods, despite their strong performance,
were computationally demanding (3356 seconds
for English, 47,736 seconds for French), highlight-
ing scalability challenges.



Intersection
Language|Baseline GMM-B GMM-SB ST CT NTM  LS|CT/ST ST/GMM-SB GMM-B/SB CT/GMM-B
en 0.991  0.996 0.997 0.876 0.988 0.988 0.995| 0.989 0.998 0.999 0.998
ca 0.927  0.930 0.945 0.990 0.896 0.902 0.926| 0.908 0.942 0.942 0.955
es 0947  0.962 0.966 0.881 0.950 0.949 0.963| 0.924 0.956 0.972 0.974
fr 0935  0.953 0.959 0.877 0.916 0.925 0.947| 0.894 0.938 0.965 0.966
it 0.948  0.962 0.963 0.849 0.929 0.931 0.954| 0.901 0.956 0.970 0.969
ru 1.000  0.999 0.998 0.847 0.984 0.990 0.991| 0.966 0.998 0.996 0.993
Average 0.951 0.961 0.966 0.888 0.935 0.939 0.956| 0.918 0.958 0.969 0.971
Train (s) 498 3356 3331 706 762 3588 360| 2085 4012 5744 4097
# Noisy 432 1234 1430 1704 100 2060 433 265 228 368

Table 3: Comparative performance of noise reduction methods using ROC-AUC when trained on English.

Intersection
Language|Baseline GMM-B GMM-SB ST CT NTM LS|CT/ST ST/GMM-SB GMM-B/SB CT/GMM-B
fr 0998 0.997 0.997 0.918 0.902 0.753 0.993| 0.996 0.997 0.997 0.998
en 0991  0.991 0.992 0.918 0.970 0.753 0.991| 0.988 0.990 0.992 0.991
ca 0952 0.954 0.950 0.918 0.902 0.645 0.937| 0.932 0.943 0.945 0.949
es 0979 0976 0.978 0.921 0.888 0.855 0.982| 0.974 0.972 0.973 0.978
it 0978  0.975 0.975 0.907 0.959 0.781 0.978| 0.971 0.970 0.973 0.978
ru 0.995  0.983 0.993 0.732 0.962 0.907 0.989| 0.978 0.988 0.994 0.991
Average 0979 0975 0.977 0.879 0.936 0.788 0.975| 0.968 0.972 0.975 0.977
Train (s) 2466 47736 48578 719 8512 46115 1131] 9831 48446 93732 57123
# Noisy 23647 11030 19129 29615 1193 2060| 22133 16717 4509 9212

Table 4: Comparative performance of noise reduction methods using ROC-AUC when trained on French.

Conversely, the Small-Loss Trick remained effi-
cient (706 and 719 seconds). Co-Teaching, though
effective in English (762 seconds), became more
costly in French (8512 seconds), indicating that
larger datasets require more iterations for achiev-
ing agreement between the two models. NTM was
the most expensive method, while it did not lead
to improvements over GMMs. Label Smoothing,
the least costly method (360 and 1131 seconds),
performed adequately improving over the baseline
almost on par with the much more expensive GMM-
B/SB methods.

To better understand the overlap between noise
detection techniques, the intersection analysis of
noisy segments across denoising techniques (Fig-
ures 2a and 2b) reveals distinct trends between
English- and French-trained models. These plots
illustrate how different denoising methods agree or
diverge in identifying noisy segments.

In English, noise detection is dominated by ST
(84.2%) and CT (55.5%), suggesting a more ag-
gressive filtering approach, while higher-order in-
tersections remain sparse, indicating that methods
largely detect distinct subsets. In contrast, French-
trained models exhibit a more balanced distribution,
with ST (80.3%), CT (57.1%), and GMM-BERT
(52.0%) showing greater agreement. The increased

frequency of multi-method intersections suggests
that larger datasets allow for more consistent noise
identification, making hybrid approaches more ef-
fective. Notably, Label Smoothing plays a minimal
role in both cases, reinforcing its function as a reg-
ularisation tool rather than a primary noise filter.

Figure 3 provides a comparative visualization
of model strengths and weaknesses across Accu-
racy, Precision, Recall, F1-score, ROC AUC, and
Brier Score. A clear Precision-Recall trade-off
emerges: GMM-based models favor high precision
at the expense of recall, while LS and ST main-
tain a more balanced profile. Additionally, ROC
AUC and Brier Score discrepancies indicate differ-
ences in probability calibration, with some models
ranking instances well (measured with ROC AUC)
but producing less reliable probability estimates
(measured with the Brier Score).

While LS and CT offer stable performance, mod-
els like CT, ST and GMM-B improve precision at
the expense of recall, making them more suitable
for high-confidence classification tasks. The radar
chart further illustrates these trade-offs, with circu-
lar patterns indicating balanced performance and
irregular shapes reflecting metric-specific biases.
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Figure 2: Comparison of noisy data intersections across denoising techniques for English and French. Bars indicate
detected noisy segments, and connections show agreement among techniques. Greater overlap suggests higher

agreement across techniques.
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Figure 3: Radar Chart: Model Strengths and Weak-
nesses across Key Metrics

6 Error Analysis

Considering the intersection of CT and GMM-B
as the best-performing de-noising model, we con-
ducted a manual error analysis to further assess its
effectiveness. A total of 368 noisy segments were
identified at the intersection, as summarized in Ta-
ble 5, with 151 coming from simpler Vikidia and
217 from more complex Wikipedia.

To evaluate the noise classification performance,
we randomly selected a sample of 50 instances,
consisting of 20 sentences from Vikidia and 30
from Wikipedia. Within this subset, 26 sentences
were classified as noisy, while 24 were considered
not noisy, as detailed in Table 5.

To better understand the nature of noise in the
dataset, we categorised the noisy segments into
different issue types (see Table 6). It is important
to note that the same sentence may fall under more
than one category, as multiple types of noise can
coexist within a single sentence.

Our manual error analysis highlights seven key
noise factors that affect text processing in both Sim-

Category Count
Total Noisy Sentences 368
Simple Vikidia (Noisy) 151
Complex Wikipedia (Noisy) 217
Sample Size 50
Simple Vikidia (Sample) 20
Complex Wikipedia (Sample) 30
Noisy in Sample 26
Not Noisy in Sample 24

Table 5: Summary of Noisy Segment Analysis

ple Vikidia and Complex Wikipedia. The identified
noise types and their distribution are detailed in
Table 6. The most frequent issue was misclassifi-
cation as simple, followed by irregular encoding
problems, which likely affected sentence structure
and classification accuracy.

Issue Category Count
Misclassified as Simple 21

Misclassified as Complex 1
Irregular Encoding 18
Incomplete 1
Mostly a list of Named Entities 7
Mostly Referencing 6

7

Listing Numbers (mostly years)

Table 6: Categorization of Noisy Segments Based on
Identified Issues

The heatmap in Figure 4 illustrates the correla-
tion between these noise categories and classifica-
tion errors. We observe the following key trends:

* Certain noise categories exhibit strong posi-
tive correlations with misclassification. For
example, encoding issues and excessive
named entities appear to contribute more fre-
quently to sentences being misclassified as
complex.

» Sentences containing excessive referencing
and multiple years mentioned show a notice-
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Figure 4: Heatmap showing the correlation between dif-
ferent noise categories and classification outcomes. Pos-
itive correlations (red) indicate a stronger association,
while negative correlations (blue) suggest an inverse
relationship.

able association with misclassification as sim-
ple.

* The strongest correlation with correctly classi-
fied sentences appears in cases with minimal
formatting issues or named entities, indicat-
ing that clean, structured text is less prone to
misclassification.

7 Related Studies

Noise in training data poses a significant chal-
lenge in NLP, especially in non-topical classifica-
tion tasks such as genre prediction (Ronnqvist et al.,
2022; Roussinov and Sharoff, 2023), demographic
property detection (Kang et al., 2019), and text dif-
ficulty classification (North et al., 2022). These
tasks rely on language style rather than explicit top-
ical keywords, making them sensitive to noise and
annotation errors.

Noise reduction techniques like majority agree-
ment between the classifiers have been effective.
Studies by Di Bari et al. (2014) and Khallaf and
Sharoff (2021) show that leveraging consensus be-
tween the predictions of different models can sig-
nificantly reduce noise, resulting in more reliable
classifiers. Additionally, Zhu et al. (2022) provide
a baseline by evaluating BERT models’ robustness
to label noise, without a clear outcome on which
de-noising methods are more useful. Our study
goes further, by selecting a non-topical classifica-
tion task and real-life settings by shifting prediction
from document- to sentence-level predictions.

Bayesian learning has also been applied to han-
dle noise, as discussed by Papamarkou et al. (2024)
and Miok et al. (2020), focusing on managing un-
certainty and noise in large-scale Al tasks. This ap-
proach is particularly relevant for semi-supervised
text annotation, where it enhances noise reduction
efficacy. Given the amount of unlabeled data in
our domain, we will apply the experiments to the
Bayesian framework.

Calibration of model predictions is crucial for
handling noise, particularly using softmax outputs.
Proper calibration ensures lower probabilities cor-
respond to a higher likelihood of errors, aiding in
producing well-calibrated classifiers. Methods for
uncertainty estimates in BERT-like models can im-
prove robustness to noise at the inference stage
(Kuleshov et al., 2018; Vazhentsev et al., 2023),
which we need to investigate further, while this
study only assesses the degree of calibration via
the Brier score.

Cross-lingual transfer learning, where models
like BERT are trained on one language and applied
to another, is particularly challenging in noisy envi-
ronments due to linguistic differences and resource
variability (Conneau et al., 2020; Zhao et al., 2021).

8 Conclusions

This paper investigates the impact of various noise
reduction techniques on cross-lingual sentence
difficulty classification, providing insights into
their effectiveness across different languages and
datasets. Our findings demonstrate that these meth-
ods can enhance model performance, with their
effectiveness varying based on specific data charac-
teristics and cross-lingual transfer settings. Classi-
fication of complex language for longer segments
is consistently better than for single sentences. For
a smaller dataset, Gaussian Mixture Models can be
helpful to reduce noise, while for a bigger dataset
the inherent regularisation of the PLMs provides a
good baseline, which more expensive de-noising
methods cannot improve further.

These findings have practical implications for
enhancing the reliability of cross-lingual applica-
tions in areas such as language education, language
simplification, and language learning tools.

9 Limitations

This study aims at a specific non-topical classifica-
tion task, for which there have been no prior exper-
iments on de-noising. However, the specific setup



of moving from document- to sentence-level anno-
tation relies on freely available Vikidia-Wikipedia
pairs, which also offer a limited number of lan-
guages for testing. Future work will explore the
applicability of these de-noising techniques to other
multilingual datasets and classification tasks, par-
ticularly in low-resource settings. Additionally,
investigating alternative sources of sentence-level
annotations or adapting methods for diverse text
genres (e.g., social media, news, or educational
content) could further assess the robustness of our
approach.

10 Ethical Impact

The potential societal benefits of our findings are
substantial, particularly in improving the quality
of communication by detecting complex sentences
across languages. This study will also contribute
to production of cleaner de-noised datasets.

In conducting the study we have been careful
with the environmental impact of NLP research.
Large Language Models are more computationally
expensive, while they have been shown to be not
better than PLMs in several text classification tasks.
For each of the methods we provided the compu-
tational costs of running the models (on NVIDIA
L40S GPUs), with a total training time of ~ 9
hours for English and ~ 101 hours for French. We
are not aware of potential risks in deploying the
study discussed in the paper.
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