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ABSTRACT

Many approaches for optimizing decision making systems rely on gradient based
methods requiring informative feedback from the environment. However, in the
case where such feedback is sparse or uninformative, such approaches may result
in poor performance. Derivative-free approaches such as Bayesian Optimization
mitigate the dependency on the quality of gradient feedback, but are known to scale
poorly in the high-dimension setting of complex decision making systems. This
problem is exacerbated if the system requires interactions between several agents
cooperating to accomplish a shared goal. To address the dimensionality challenge,
we propose a compact multi-layered architecture modeling the dynamics of actor
interactions through the concept of role. Additionally, we introduce Hessian-
aware Bayesian Optimization to efficiently optimize the multi-layered architecture
parameterized by a large number of parameters. Experimental results demonstrate
that our method (HA-GP-UCB) works effectively on several benchmarks under
resource constraints and malformed feedback settings.

1 INTRODUCTION

Decision Making Systems choose sequences of actions to accomplish a goal. Multi-Agent Decision
Making Systems choose actions for multiple agents working together towards a shared goal. Multi-
Agent Reinforcement Learning (MARL) has emerged as a competitive approach for optimizing
Decision Making Systems in the multi-agent setting.1 MARL optimizes a policy under the partially
observable Markov Decision Process (POMDP) framework, where decision making happens in an
environment determined by a set of possible states and actions, and the reward for an action is
conditioned upon the partially observable state of the environment. A policy forms a set of decision-
making rules capturing the most rewarding actions in a given state. MARL utilizes gradient-based
methods requiring a differentiable policy and informative gradients to make progress. This restriction
requires the usage of large gradient-friendly policy representations (e.g., neural networks) and
informative reward feedback from the environment (Pathak et al., 2017; Qian & Yu, 2021) which
may not always be present. In addition, gradient-based methods are susceptible to falling into local
maxima.

The confluence of computationally expensive policy representations (e.g., large neural networks),
uninformative reward, and susceptibility to local maxima motivate this work. In the context of
memory-constrained devices such as Internet of Things (IoT) devices (Merenda et al., 2020), utilizing
large neural networks is infeasible. Secondly, in environments with sparse reward feedback, training
these networks with RL presents significant challenges due to unhelpful policy gradients. Finally, the
possibility of globally optimizing a compact policy for memory-constrained systems is appealing due
to its strong performance guarantees.

We propose the usage of Bayesian Optimization (BO) for multi-agent policy search (MAPS)
that makes progress on overcoming these issues in Decision Making Systems. Since BO is
a gradient-free optimizer capable of searching globally, applying BO to MAPS both ensures
global searching of the policy, and overcomes poor gradient behavior in the reward function
(Qian & Yu, 2021). The chief challenge in BO for MAPS is the high dimensionality of com-
plex multi-agent interactions. However, our proposed setting of optimizing compact policies
suitable for memory-constrained devices enables the possibility of overcoming this limitation.

1We include an overview of approaches in Decision Making Systems in Section 3.
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Figure 1: Left, above, plot of f(x, y) = xy;
below, plot of f(x, y) = x + y. The cur-
vature of additively constructed functions
is zero; non-zero curvature indicates depen-
dency among input variables. Right, examin-
ing the Hessian learns the dependency struc-
ture which decomposes complex problems
into simpler problems solved by GP-UCB.

A significant degree of high-dimensional multi-agent
interactions exist in MAPS. For example, considering
an autonomous drone delivery system, several agents
(i.e., drones) must work together to maximize the
throughput of deliveries. In doing so, these agents may
separate themselves into different roles, for example,
long-distance or short-distance deliveries. The optimal
policy for each role may be significantly different due
to distances to recharging base stations (e.g., drones
must conserve battery). In forming the optimal policy,
the interaction between agents must be considered to
both optimally divide the task between the drones, as
well as coordinate actions between drones (e.g., colli-
sion avoidance). These interactions may change over
time. For example, a drone must avoid collision with
nearby drones, which changes as it moves through the
environment. With many agents, these interactions become more complex.

To tackle the high-dimensional complexity, we utilize specific multi-agent abstractions of role and
role interaction. In role-based multi-agent interactions, an agent’s policy depends on its current role
and sparse interactions with other agents. By simplifying the policy space with these abstractions, we
increase its tractability for global optimization by BO and inherit the strong empirical performance
demonstrated by these approaches. We realize this simplification of the policy space by expressing
the role abstraction and role interaction abstractions as immutable portions of the policy space, which
are not searched over during policy optimization. To achieve this, we use a higher-order model (HOM)
which generates a policy model. The HOM is divided into immutable instructions (i.e., algorithms)
corresponding to the abstractions of the role and role interaction and mutable parameters that are
used to generate (GEN) a policy model during evaluation.

To optimize the HOM, we specialize BO by exploiting task-specific structures. A promising avenue
of High-dimensional Bayesian Optimization (HDBO) is through additive decomposition. Additive
decomposition separates a high-dimensional optimization problem into several independent low-
dimensional sub-problems (Duvenaud et al., 2011; Kandasamy et al., 2015). These sub-problems
are independently solved thus reducing the complexity of high dimensional optimization. However,
a significant challenge in additive decomposition is learning the independence structure which is
unknown a-priori. Learning the additive decomposition is accomplished using stochastic sampling
such as Gibbs sampling (Kandasamy et al., 2015; Rolland et al., 2018; Han et al., 2020) which is
known to have poor performance in high dimensions (Johnson et al., 2013; Barbos et al., 2017).

In our work, we overcome this shortcoming by observing the GEN process of the HOM. In particular,
we can measure a surrogate Hessian during the GEN process which significantly simplifies the task of
learning the additive structure. We term this approach Hessian-Aware GP-UCB (HA-GP-UCB) and
visualize our approach in Fig. 1. Our proposed approach is also applicable to policy-search in the
single-agent setting, showing its general-purpose applicability in Decision Making Systems. In this
work, we make the following contributions:

• We propose a parameter-efficient HOM for MAPS which is both expressive and compact. Our
approach is made feasible by using specific abstractions of roles and role interactions.

• We propose HA-GP-UCB, a variant of BO that simplifies the learning of dependency structure
and thus provides strong regret guarantees under reasonable assumptions.

• We validate our approach on several multi-agent benchmarks and show our approach outperforms
related works for compact models fit for memory-constrained scenarios. Our HA-GP-UCB also
overcomes poor gradient behavior in the reward function in multiple settings showing its
effectiveness in Decision Making Systems both in the single-agent and multi-agent settings.

2 BACKGROUND

Bayesian Optimization: Bayesian optimization (BO) involves sequentially maximizing an unknown
objective function v : Θ → R. In each iteration t = 1, . . . , T , an input query θt is evaluated to yield
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a noisy observation yt ≜ v(θt)+ ϵ with i. i. d. Gaussian noise ϵ ∼ N (0, σ2). BO selects input queries
to approach the global maximizer θ∗ ≜ argmaxθ∈Θ v(θ) as rapidly as possible. This is achieved by
minimizing cumulative regret RT ≜

∑T
t=1 r(θt), where r(θt) ≜ v(θ∗)− v(θt).

The belief of v is modeled by a Gaussian process (GP), denoted GP (µ(θ), k(θ, θ′)), that is, every
finite subset of {v(θ)}θ∈Θ follows a multivariate Gaussian distribution (Rasmussen & Williams,
2006). A GP is fully specified by its prior mean µ(θ) and covariance k(θ, θ′) for all θ, θ′ ∈ Θ, which
are, respectively, assumed w.l.o.g. to be µ(θ) = 0 and k(θ, θ′) ≤ 1. Given a vector yT ≜ [yt]

⊤
t=1,...,T

of noisy observations from evaluating v at input queries θ1, . . . , θT ∈ Θ after T iterations, the GP
posterior belief of v at some input θ ∈ Θ is a Gaussian with the following posterior mean µk

T (θ) and
variance [σk

T ]
2(θ):

µk
T (θ) ≜ kk

T (θ)
⊤(Kk

T + σ2I)−1yT ,
[
σk
T

]2
(θ) ≜ k(θ, θ)− kk

T (θ)
⊤(Kk

T + σ2I)−1kk
T (θ) (1)

where Kk
T ≜ [k(θt, θt′)]t,t′=1,...,T and kk

T (θ) ≜ [k(θt, θ)]
⊤
t=1,...,T . In each iteration t of BO, an input

query θt ∈ Θ is selected to maximize the GP-UCB acquisition function, θt ≜ argmaxθ∈Θ µt−1(θ)+√
βtσt−1(θ) (Srinivas et al., 2010) where βt follows a well defined pattern.

3 RELATED WORK

Decision Making Systems: Decision Making Systems (Rizk et al., 2018; Roijers et al., 2013)
determine actions taken by an agent or agents in order to achieve a goal. Decision Making Systems
span broad fields of study such as Game Theory (Condon, 1992; Hu & Wellman, 2003) and Swarm
Intelligence (Barca & Sekercioglu, 2013; Karaboga & Akay, 2009). We focus on the POMDP setting
and optimizing a policy to accumulate maximum reward while interacting with a partially observable
environment (Shani et al., 2013). Many approaches exist which can be broadly categorized into direct
policy search and reinforcement learning methods. Direct policy search (Heidrich-Meisner & Igel,
2008; Lizotte et al., 2007; Martinez-Cantin, 2017; Papavasileiou et al., 2021; Wierstra et al., 2008)
searches the policy space in some efficient manner. Reinforcement learning (Arulkumaran et al.,
2017; Fujimoto et al., 2018; Haarnoja et al., 2018; Li et al., 2021; Lillicrap et al., 2015; Lowe et al.,
2017; Mnih et al., 2015; Peng et al., 2021; Schulman et al., 2017; Sutton et al., 1999; Wang et al.,
2021a;b; Watkins & Dayan, 1992) starts with a randomly initialized policy and reinforces rewarding
behavior patterns to improve the policy.
Bayesian Optimization for Decision Making Systems: BO has been utilized for direct policy
search in the low dimensional setting (Lizotte et al., 2007; Wilson et al., 2014; Marco et al., 2016;
Martinez-Cantin, 2017; von Rohr et al., 2018). However, these approaches have not scaled to the high
dimensional setting. In more recent works, BO has been utilized to aid in local search methods similar
to reinforcement learning (Akrour et al., 2017; Eriksson et al., 2019a; Wang et al., 2020a; Fröhlich
et al., 2021; Müller et al., 2021). However, these approaches require evaluation of an inordinate
number of policies typical of local search methods and do not provide regret guarantees. Recently,
combinations of local and global search methods have been proposed (McLeod et al., 2018; Shekhar
& Javidi, 2021). However, these approaches rely on informative and useful gradient information and
have not been shown to scale to the high dimensional setting.
MARL for multi-agent decision making: A well-known approach for cooperative MARL is a
combination of centralized training and decentralized execution (CTDE) (Oliehoek et al., 2008).
The multi-agent interactions of CTDE methods can be implicitly captured by learning approximate
models of other agents (Lowe et al., 2017; Foerster et al., 2018) or decomposing global rewards
(Sunehag et al., 2017; Rashid et al., 2018; Son et al., 2019). However, these methods do not focus on
how interactions are performed between agents. In MARL, the concept of role is often leveraged to
enhance the flexibility of behavioral representation while controlling the complexity of the design
of agents (Lhaksmana et al., 2018; Wang et al., 2020b; 2021b; Li et al., 2021). Our approach is
related to the study of (Le et al., 2017a) where the interactions are also captured by role assignment.
However, the approach operates on an imitation learning scenario, and the role assignment depends
on the heuristic from domain knowledge. Another related field is Comm-MARL (Zhu et al., 2022;
Shao et al., 2022; Liu et al., 2020; Foerster et al., 2016; Sukhbaatar et al., 2016; Peng et al., 2017; Das
et al., 2019; Singh et al., 2019), where agents are allowed to communicate during policy execution
to jointly decide on an action. In contrast, our approach utilizes both abstractions of role and role
interaction in a HOM for decision making system.
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Figure 2: Left: HOM architecture.
"Alg. 1/Alg. 2" are Algorithms 1 and 2
respectively. GEN uses θr and θg during
evaluation to yield a model which repre-
sents the policy. θr and θg are optimized
by BO. Right: Inferring aα given sα.

We consider the problem of learning the joint policy of a
set of n agents working cooperatively to solve a common
task.2 Each agent i is associated with a state si ∈ Si

with the global state represented as s ≜ [si]i=1,...,n. Each
agent i cooperatively chooses an action ai ∈ Ai with the
global action represented by a ≜ [ai]i=1,...,n. Each state,
action pair is associated with a reward function: r(s,a). In
order to achieve the common task, a policy parameterized
by θ: πθ ≜ S → A governs the action taken by the
agents, after observing state s ∈ S. The goal of RL is
to learn the optimal policy parameters that maximizes
the accumulation of rewards, v(θ), while acting in an
unknown environment and receiving feedback through the
resultant states and rewards.3 We treat v(θ) as a black box
function measuring the value of a policy and utilize BO to
optimize θ.

4.1 ARCHITECTURAL DESIGN

To achieve a compact and tractable policy space, we consider policies under the useful abstractions
of role and role interaction. These abstractions have consistently shown strong performance in
multi-agent tasks. Therefore we can simplify the policy space by limiting it to only policies using
these abstractions.

As role and role interaction are immutable abstractions within our policy space, we express them as
static algorithms which are not searched over during policy optimization. These algorithms take as
input parameters which are mutable and searched over during policy optimization. This combination
of immutable instructions, and mutable parameters reduces the size of the search space,4 yet is still
able to express policies which conform to the role and role interaction abstractions.

We term this approach a higher-order model (HOM) which generates (GEN) the model using in-
structions and parameters into a policy model during evaluation. This HOM is separated into role
assignment, and role interaction stages. We visualize an overview of this approach in Fig. 2, left.
These parameters are interpreted in context of the current state by the instructions (Alg. 1, Alg. 2) of
the HOM to form the policy model which dictates the resultant action.

4.2 ROLE ASSIGNMENT

Following the success of role based collaboration in multi-agent systems, we assume the interaction
and decision making of each agent is governed by its assigned role. Although role based collaboration
comes in many forms, we assume5 that an optimal policy can be decomposed as follows:

π(a1, . . . ,an | s1, . . . , sn) ≜ πr(a
α(1), . . . ,aα(n) | sα(1), . . . sα(n)) (2)

where α is a permutation function dependent on the state, s1, . . . , sn. The above assumption requires
a permutation of agents into roles. For example, in drone delivery, roles could be short-distance
deliveries, and long-distance deliveries. In filling these roles, the state of each of the agents are
considered. E.g., a drone with low battery may be limited to only performing short-distance deliveries.

To capture this behavior, we define a per role affinity function: Λθr,i(·) which is the affinity to
take on role i and is parameterized by θr,i. This function evaluates the affinity of agent ℓ taking
on role i using the state of agent: sℓ. The optimal permutation maximizes the total affinity of an
assignment:

∑n
i=1 Λ

θr,i(sα(i)) where α represents a permutation. This problem can be efficiently
solved using the Hungarian algorithm. We integrate the Hungarian algorithm in our HOM approach
during the GEN process. We formalize this in Algorithm 1 which forms the instructions in the role
assignment HOM.

2We provide a Table of notations in Appendix B.
3Further RL overview can be found in Arulkumaran et al. (2017).
4This approach to efficiency is similar in spirit to the work of Lee et al. (1986).
5This is a common assumption in multi-agent systems, see, e.g., Le et al. (2017b).
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Algorithm 1 RoleAssignment

Require: s1, . . . , sn

1: return argmaxα

∑n
i=1 Λ

θr,i(sα(i))

Algorithm 4 HA-GP-UCB

Require: v,H, k
1: for t← 1, . . . , T0 do
2: θt,h ∼ U(Θ)
3: for ℓ← 1, . . . , C1 do ht,ℓ ← H(θt,h)

4: Ẽd ← |
∑

h| > ch; G̃d ← ({Θ1, . . . ,ΘD}, Ẽd)

5: [Θ(i)]i=1,...,M ← Max-Cliques(G̃d); k ←
∑M

i=1 k
Θ(i)

6: for t← T0, . . . , T do
7: θt ← argmaxθ µ

k
t−1(θ) +

√
βtσ

k
t−1(θ)

8: Query θt to observe yt = v(θt) +N (0, ϵ2)
9: Update posterior, µ, σ, with θt, yt

Algorithm 2 RoleInteraction

Require: sα(1), . . . , sα(n)

1: for i← 1, . . . , n do
2: for ℓ← 1, . . . , n do ▷ Edge affinities.
3: if Λθg,v (sα(i), sα(ℓ)) > 0 then
4: Nα(i).append(α(ℓ))

5: return Nα(1), . . . , Nα(n)

Algorithm 3 GEN-Policy

Require: s1, . . . , sn

1: α← RoleAssignment(s1, . . . , sn)

2: N ← RoleInteraction(sα(1), . . . , sα(n))
3: a← MPNN(sα, N) ▷ See Eq. 3
4: return [aα−1(i)]i=1,...,n▷ Invert permutation.

Given Algorithm 1, during GEN process, the agents’ state, s1, . . . , sn is contextually interpreted to
yield a permutation model: α. Going forward, we consider the problem of determining the joint
policy πr(a

α(1), . . . ,aα(n) | sα(1), . . . sα(n)) which enables collaborative interactions.

4.3 ROLE INTERACTION

Capturing multiple roles working together is an important part of an effective multi-agent policy. For
example in drone delivery, drones must both divide the available task among themselves, as well as use
collision avoidance while executing deliveries. Modeling role interactions must accomplish two goals.
Firstly, agent interactions may change over time. For example collision avoidance strategies involve
the closest drones which change as the drone moves within the environment. Secondly, efficient
parameterization is needed as the number of interactions scales quadratically due to considering
interaction between all pairs of agents.

To overcome these challenges, we propose a HOM which generates (GEN) a graphical model. The
GEN process is conditioned on the agents’ state, thus capturing dynamic role interactions; in addition
the GEN process allows for a more compact policy space with far fewer parameters. The resultant
generated graphical model captures the state-dependent interaction between roles and yields the
resultant actions for each role. After GEN, the interaction between roles are captured by the resultant
conditional random field. This is presented in Fig. 2, right. The MRF (Markov Random Field)
represents arbitrary undirected connectivity between nodes aα(1), . . . ,aα(n), which is denoted by G.
This connectivity allows different roles to collaborate together to determine the joint action.6

We perform inference over the graphical model presented in Fig. 2 using Message Passing Neural
Networks (Gilmer et al., 2017) (MPNN). We present iterative message passing rules to map from sα

to aα:

m
α(i)
t+1 ≜

∑
α(ℓ)∈Nα(i)

Mθg,η
(
h
α(i)
t , h

α(ℓ)
t , i, ℓ

)
h
α(i)
t+1 ≜ Uθg,e

(
sα(i), h

α(i)
t ,m

α(i)
t+1

)
;aα ≜

[
hα(i)
τ

]
i=1,...,n

(3)

where M is the message function parameterized by θg,η , U is the action update function parameterized
by θg,e, Nα(i) denotes the neighbors of α(i). This procedure concludes after τ iterations of message
passing with the policy actions indicated by the hidden states,

[
h
α(i)
τ

]
i=1,...,n

.

To generate graphical models of the above form, our HOM uses edge affinity functions. This approach
overcomes the quadratic scaling in modeling all pairs of interaction. Edge affinity functions Λθg,v (·)
determine whether an edge exists between node aα(i), and aα(ℓ). The graphical model GEN process
is presented in Algorithm 2. Finally, Algorithm 3 drives the GEN process.

6We refer readers to Wang et al. (2013) for additional overview.
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4.4 ADDITIVE DECOMPOSITION

Although our HOM policy representation is compact, it is still of significant dimensionality which
makes optimization with BO difficult. HDBO is challenging due to the curse of dimensionality with
common kernels such as Matern or RBF.7 A common technique to overcome this is through assuming
additive structural decomposition on v: v(θ) ≜

∑M
i=1 v

(i)(θ(i)) where v(i) are independent functions,
and θ(i) ∈ Θ(i) (Duvenaud et al., 2011). Specifically Θ ≜ Θ1 × . . .×ΘD for some dimensionality
D, and Θ(i) ⊆ {Θ1, . . . ,ΘD} and is of low dimensionality. This structural assumption is combined
with the assumption that each v(i) is sampled from a GP. If v(i) ∼ GP

(
0, kΘ

(i)

(θ(i), θ(i)
′

)
)

then

v ∼ GP
(
0,
∑

i k
Θ(i)

(θ(i), θ(i)
′

)
)

(Rasmussen & Williams, 2006). This assumption decomposes a
high dimensional GP surrogate model of v into a set of many low dimensional GPs, which is easier
to jointly learn and optimize.

An additive decomposition can be represented by a dependency graph between the dimensions:
Gd ≜ (Vd, Ed) where Vd ≜ {Θ1, . . . ,ΘD} and Ed ≜ {(Θa,Θb) | a, b ∈ Θ(i) for some i}. We
highlight that this graph is between the dimensions of the policy parameters, Θ, and is unrelated to the
graphical model of role interactions presented in earlier sections. It is possible to accurately model
v by a kernel k ≜

∑
i k

Θ(i)

where each Θ(i) corresponds to a maximal clique of the dependency
graph (Rolland et al., 2018). Knowing the dependency graph greatly simplifies the complexity of
optimizing v.

However, learning the dependency graph in additive decomposition remains challenging as there are
O(D2) possible edges each of which may be present or absent yielding 2O(D2) possible dependency
structures. This difficult problem is often approached using inefficient stochastic sampling methods
such as Gibbs sampling.

4.5 HESSIAN-AWARE BAYESIAN OPTIMIZATION

We propose learning the dependency structure during the GEN process. Our approach is based on the
following observation which is illustrated in Fig. 1:

Proposition 1. Let Gd = (Vd, Ed) represent an additive dependency structure with respect to v(θ),
then the following holds true: ∀a, b ∂2v

∂θa∂θb ̸= 0 =⇒ (Θa,Θb) ∈ Ed which is a consequence of v
formed through addition of independent sub-functions v(i), at least one of which must contain θa, θb

as parameters for ∂2v
∂θa∂θb ̸= 0 which implies their connectivity within Ed.

Following this, we consider algorithms with noisy query access to the Hessian, Hv .

Assumption 1. Let Gd = (Vd, Ed) be sampled from an Erdős-Rényi model with probability pg < 1:
Gd ∼ G(D, pg). That is, each edge (Θa,Θb) is i.i.d. sampled from a binomial distribution with
probability, pg. With [Θ(i)]i=1,...,M representing the maximal cliques of Gd, we assume that v ∼
GP
(
0,
∑

i k
Θ(i)

(θ(i), θ(i)
′

)
)

for some kernel k taking an arbitrary number of arguments (e.g., RBF).

Noisy queries can be made to the Hessian of v, Hv. We define H(θ) ≜ [ ∂2v
∂θa∂θb + ϵ

(a,b)
h ]a,b=1,...,D

where ϵ
(a,b)
h ∼ N (0, σ2

n) i.i.d. Each query to H has corresponding regret of r(θ).

Under this set of assumptions, we present HA-GP-UCB in Algorithm 4. HA-GP-UCB follows the overall
structure of GP-UCB with two additions. We perform C1 queries to the Hessian if t ≤ T0. These
Hessian queries are then averaged and compared to a cutoff constant ch to determine the dependency
structure Ẽd. After extraction of maximal cliques depending on Ẽd we construct k =

∑
i k

Θ(i)

, the
sum of the aforementioned kernels and inference and acquisition proceeds same as GP-UCB.

To bound the cumulative regret, Rt ≜
∑T0

t=1 C1r(θt,h) +
∑T

t=T0
r(θt), we show that after C1T0

queries to the Hessian, with high probability we have Ẽd = Ed, where Ed is the unknown ground
truth dependency structure for v.

7A parallel area in HDBO is of computational efficiency of acquisition which is outside the scope of this work.
We refer readers to the works of Mutny & Krause (2018), Wilson et al. (2020), and Ament & Gomes (2022).
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Theorem 1. Suppose8 there exists σ2
h, ph s.t. ∀i, j Pθ∼U(Θ)

[
k∂i∂j(θ, θ) ≥ σ2

h

]
≥ ph and ∀i, j, θ, θ′

k∂i∂j(θ, θ′) ≥ 0. Then for any δ1, δ2 ∈ (0, 1) after t ≥ T0 steps of HA-GP-UCB we have:⋂
i,j P (Ẽi,j

d = Ei,j
d ) ≥ 1−δ1−δ2 when T0 = C1 > 8D2

δ21
log 2D2

δ1

σ2
n

σ2
h
+ D2

phδ2
, ch ≜ T0σn

√
2 log 2D2

δ1
.

Our Theorem 1 relies on repeatedly sampling the Hessian to determine whether an edge exists
between Θa, and Θb in the sampled additive decomposition. The key challenge is determining this
connectivity under a very noisy setting, and for extremely low values of σ2

h ≪ σ2
n where the Hessian

is zero with high probability. We are able to overcome this challenge using a Bienaymé’s identity, a
key tool in our analysis. We defer all proofs to the Appendix.

Utilizing the above theorem we are able to provide a regret bound for HA-GP-UCB. Providing this
regret bound requires several key tools. First, we are able to bound the number and size of cliques of
graphs sampled from the Erdős-Rényi model with high probability. Secondly, we are able to bound
the mutual information of an additive decomposition given the mutual information of its constituent
kernels using Weyl’s inequality. Lastly, we use similar analysis as Srinivas et al. (2010) to complete
the regret bound.
Theorem 2. Let k be the kernel as in Assumption 1, and Theorem 1. Let γk

T (d) : N → R be
a monotonically increasing upper bound function on the mutual information of kernel k taking d
arguments. The cumulative regret of HA-GP-UCB is bounded with high probability as follows:

RT = Õ
(
D4.5log2D+

√
TβTDO(logD)γk

T (O(logD))
)
. (4)

Whereas for typical kernels such as Matern and RBF, cumulative regret of GP-UCB scales exponen-
tially with D, our regret bounds scale with exponent O(logD). This improved regret bound shows
our approach is a theoretically grounded approach to HDBO.

In practice, observing the hessian Hv is not possible due to v being a black box function. However,
during the GEN process we can observe a surrogate Hessian, Hπ. This surrogate Hessian is closely
related to the Hv as v(θ) is determined through interaction of the policy with an unknown environment.
Because the value of a policy is a function of the policy; it follows by the chain rule9 Hπ is an
important sub-component of Hv. We utilize the surrogate Hessian in our work and demonstrate its
strong empirical performance in validation.

5 VALIDATION

We compare our work against recent algorithms in MARL on several multi-agent coordination tasks
and RL algorithms for policy search in novel settings. We also perform ablation and investigation of
our proposed HOM at learning roles and multi-agent interactions. We defer experimental details to
Appendix A.

All presented figures are average of 5 runs with shading representing ± Standard Error, the y-axis
represents cumulative reward, the x-axis displayed above represents interactions with the environment
in RL, x-axis displayed below represents iterations of BO. Commensurate with our focus on memory-
constrained devices, all policy models consist of < 500 parameters.

5.1 ABLATION

We investigate the impact of Role Assignment (RA) and Role Interaction (RI) as well as model
capacity on training progress. We conduct ablation experiments on Multiagent Ant with 6 agents,
PredPrey with 3 agents, and Heterogenous PredPrey with 3 agents. Multiagent Ant is a MuJoCo
locomotion task where each agent controls an individual appendage. PredPrey is a task where
predators must work together to catch faster, more agile prey. Het. PredPrey is similar, except the
predators have different capabilities of speed and acceleration. In ablation experiments, our default
configuration is Med - RA - RI which employs components of RA and RI parameterized by neural
networks with three layers and four neurons on each layer. We present our ablation in Fig. 3.

For a simpler coordination task such as Multiagent Ant, we observe limited improvement through
RA or RI. In contrast, RI shows strong improvement in PredPrey and Het. PredPrey. It is because,

8RBF kernel satisfies these assumptions when Θ = [0, 1]D .
9We revisit this argument in Appendix H.
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Figure 3: Ablation study. Training curves of our
HOM and its ablated variants on different multi-
agent environments.
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Figure 4: Left: Sparse reward drone delivery
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in PredPrey, predators must work together to catch the faster prey. Since the agents in PredPrey
are homogeneous, ablating RA makes the optimization simpler and more compact without losing
expressiveness. Thus, ablating RA leads to a performance increase. In Het. PredPrey, the predator
agents have heterogeneous capabilities in speed and acceleration. Thus, RA plays a critical role in
delivering strong performance. We also show that overly shrinking the model size (Sm - RA - RI) can
hurt performance as the policy model is no longer sufficiently expressive. This is evidenced in the
Multiagent Ant task. We observed that using neural networks of three layers with four neurons each
to be sufficiently balanced across a wide variety of tasks.

In Fig. 3, we present the detected Hessian structure by HA-GP-UCB in the respective tasks. The
detected Hessian structures generally show strong block-diagonal associativity in the HOM parameters,
i.e., [θr,i, θg,v, θg,η, θg,e]. This shows that our approach can detect the interdependence within the
sub-parameters, but relative independence between the sub-parameters. We observe more off-diagonal
connectivity in the complex coordination tasks of PredPrey and Het. PredPrey. The visualization of
Hessian structure on PredPrey shows that our approach can detect the importance of jointly optimizing
role assignment and interaction to deliver a strong policy in this complex coordination task. We
investigate the learning behavior of the HOM further in Appendix C.

5.2 COMPARISON WITH MARL

We compare our method with competing MARL algorithms on several multi-agent tasks where the
number of agents is increased. We validate both the HOM with HA-GP-UCB (HA-GP-UCB (MM))
and neural network policies trained in the CTDE paradigm (HA-GP-UCB (CTDE)). We observe
that on complex coordination tasks such as PredPrey and Het. PredPrey our approach delivers
more performant policies when coordination is required between a large number of agents. This
is presented10 in Fig. 5. Although SOG (Shao et al., 2022), a Comm-MARL approach shows
compelling performance with a small number of agents, with 15 agents, both HA-GP-UCB (CTDE)
and HA-GP-UCB (MM) outperform this strategy. We highlight that HA-GP-UCB (CTDE) outperforms
Comm-MARL approaches without communication during execution. We also note that HA-GP-
UCB (MM) outperforms HA-GP-UCB (CTDE) showing the value of our HOM approach in complex
coordination tasks. We defer further experimental results in this setting to Appendix C.

10We plot with respect to total environment interactions for RL, and total policy evaluations for BO. See
Appendix J, Appendix K, and Appendix L for alternate presentations of data more favorable to RL and MARL.
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Table 1: HA-GP-UCB typically outperforms RL with higher sparsity (e.g., Sparse-100, or Sparse-200).

Ant-v3 Hopper-v3 Swimmer-v3 Walker2d-v3
DDPG PPO SAC TD3 Intrinsic DDPG PPO SAC TD3 Intrinsic DDPG PPO SAC TD3 Intrinsic DDPG PPO SAC TD3 Intrinsic

Baseline −90.77 1105.69 2045.24 2606.17 2144.00 604.20 1760.65 2775.66 1895.76 1734.00 44.45 121.38 58.73 48.78 1950.00 2203.80 892.81 4297.03 1664.46 2210.00
Sparse 2 −32.88 1007.80 2563.97 1407.40 1964.00 877.93 1567.14 3380.60 1570.84 2074.00 35.59 99.50 46.75 47.23 1758.80 1470.62 1471.33 1673.46 2297.43 1952.00
Sparse 5 −2687.97 961.31 711.56 762.61 1916.00 814.59 1616.79 3239.20 2290.67 1972.00 26.66 68.69 43.84 40.12 1856.00 961.30 697.93 1697.25 2932.27 1924.00

Sparse 20 −2809.89 624.07 694.30 379.12 1838.00 783.95 1629.28 2535.17 1436.33 1537.20 19.12 54.63 37.78 37.03 2108.00 663.04 365.39 1010.63 276.56 1810.00
Sparse 50 −3067.37 −67.43 663.28 253.66 1091.20 816.25 1010.73 1238.03 551.43 642.00 23.73 51.52 38.78 30.01 812.00 572.12 428.29 349.47 298.28 834.75

Sparse 100 −3323.43 −4021.56 679.30 −115.43 450.40 988.36 324.51 260.52 342.48 406.80 9.64 21.09 27.98 30.10 376.60 523.89 205.93 200.16 147.22 480.60
Sparse 200 −3098.37 −8167.98 −107.14 −147.86 258.60 765.05 222.76 300.36 281.68 350.80 −9.97 21.69 33.35 30.48 342.80 182.84 193.43 187.16 148.06 353.20

HA-GP-UCB 1147.21 1009.3 175.73 1008.90

5.3 POLICY OPTIMIZATION UNDER MALFORMED REWARD

We compare against several competing RL and MARL algorithms under malformed reward scenarios.
We train neural network policies with HA-GP-UCB and competing algorithms. We consider a sparse
reward scenario where reward feedback is given every S environment interactions for varying S.
Table 1 shows that the performance of competing algorithms is severely degraded with sparse
reward and HA-GP-UCB outperforms competing approaches on most tasks with moderate or higher
sparsity. Although intrinsic motivation (Singh et al., 2004; Zheng et al., 2018) has shown evidence in
overcoming this limitation, we find that our approach outperforms competing approaches supported
by intrinsic motivations at higher sparsity. This improvement is important as sparse and malformed
reward structure scenarios can occur in real-world tasks (Aubret et al., 2019). We repeat this validation
in Appendix C with MARL algorithms in multi-agent settings and consider a delayed feedback setting
with similar results.

5.4 COMPARISON WITH HDBO ALGORITHMS

We compare with several related work in HDBO. This is presented in Fig. 4. We compare against
these algorithms at optimizing our HOM policy. For more complex tasks that require role based
interaction and coordination, our approach outperforms related work. TreeBO (Han et al., 2021) is
also an additive decomposition approach to HDBO, but uses Gibbs sampling to learn the dependency
structure. However, our approach of learning the structure through Hessian-Awareness outperforms
this approach. Additional experimental results are deferred to Appendix C.

5.5 DRONE DELIVERY TASK

We design a drone delivery task that is well aligned with our motivation of considering policy search
in memory-constrained devices on tasks with unhelpful or noisy gradient information. In this task,
drones must maximize the throughput of deliveries while avoiding collisions and conserving fuel.
This task is challenging as a positive reward through completing deliveries is rarely encountered (i.e.,
sparse rewards). However, agents often receive negative rewards due to collisions or running out of
fuel. Thus, gradient-based approaches can easily fall into local minima and fail to find policies that
complete deliveries.11 We compare HA-GP-UCB against competing approaches in Fig. 4. We observe
that MARL based approaches fail to find a meaningfully rewarding policy in this setting, whereas our
approach shows strong and compelling performance. Furthermore, HA-GP-UCB (MM) outperforms
HA-GP-UCB (CTDE) through leveraging roles and role interactions.

6 CONCLUSION

We have proposed a HOM policy along with an effective optimization algorithm, HA-GP-UCB.
Our HOM and HA-GP-UCB are designed to offer strong performance in high coordination multi-
agent tasks under sparse or malformed reward on memory-constrained devices. HA-GP-UCB is a
theoretically grounded approach to BO offering good regret bounds under reasonable assumptions.
Our validation shows HA-GP-UCB outperforms RL and MARL at optimizing neural network policies in
malformed reward scenarios. Our HOM optimized with HA-GP-UCB outperforms MARL approaches
in high coordination multi-agent scenarios by leveraging the concepts of role and role interaction.
Furthermore, we show through our drone delivery task, our approach outperforms MARL approaches in
multi-agent coordination tasks with sparse reward. We make significant progress on high coordination
multi-agent policy search by overcoming challenges posed by malformed reward and memory-
constrained settings.

11Further details on this task can be found in Appendix I.
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A EXPERIMENTAL DETAILS

We used Trieste (Berkeley et al., 2022), Tensorflow (Abadi et al., 2015), and GPFLow (Matthews
et al., 2017) to build our work and perform comparisons using MushroomRL (D’Eramo et al., 2021),
MultiagentMuJoCo (de Witt et al., 2020), OpenAI Gym (Brockman et al., 2016), and Multi-agent
Particle environment (Lowe et al., 2017). When comparing with related work, we used neural network
policies of equivalent size. All of our tested policies are < 500 parameters, however the XL models
are constructed using 3 layers of 400 neurons each.

To estimate the Hessian, we used the Hessian-Vector product approximation. We relaxed the discrete
portions of our HOM policy into differentiable continuous approximation for this phase using the
Sinkhorn-Knopp algorithm for the Role Assignment phase. For role interaction network connectivity,
we used a sigmoid to create differentiable “soft” edges between each role. We pragmatically kept
all detected edges in the Hessian while maintaining computational feasibility. We observed that our
approach could support up to 1500 edges in the dependency graph prior to experiencing computational
intractability. We used the Matern- 52 as the base kernel in all our models.

A.1 ABLATION AND INVESTIGATION

In the ablation, we perform experiments on MultiagentMuJoCo with environments Multiagent
Ant with 6 segments, Multiagent Swimmer with 6 segments, Predator Prey with 3 predators, and
Heterogeneous Predator Prey with 3 predators. In the Predator Prey environment, multiple predators
must work together to capture faster and more agile prey. In Heterogeneous Predator Prey, each
Predator has differing capabilities of speed and acceleration. This modification is challenging as
a policy must not only coordinate between the Predators, but roles based specialization must be
considered given the heterogeneous nature of each predator’s capabilities.

To generate Fig. 7, we examined policy for Multiagent Ant with 6 agents for the role based policy
specialization. The policy modulation plots were generated by examining the PredPrey and Het.
PredPrey environments respectively.

A.2 COMPARISON WITH MARL

For the MARL setting, we compare against MADDPG (Lowe et al., 2017), FACMAC (Peng et al.,
2021), COMIX (Peng et al., 2021), RODE (Wang et al., 2021b) and CDS (Li et al., 2021) using
QPLEX (Wang et al., 2021a) as a base algorithm. We also compare against Comm-MARL approaches
SOG (Shao et al., 2022), and G2ANet (Liu et al., 2020). RODE and QPLEX are limited to discrete
environments, thus we are unable to provide comparisons on continuous action space tasks such
as Multiagent Ant or Multiagent Swimmer. All MARL environments were trained for 2, 000, 000
timesteps. The neural network policies were 3-layers each with 15 neurons per layer, and were greater
than or equal to the size of the compared HOM policy. For Actor-Critic approaches, we did not reduce
the size or expressivity of the critic. All used hyperparameters and Algorithmic configurations were
as advised by the authors of the work.

In the MARL setting we use Multiagent Ant, Multiagent Swimmer, Predator-Prey, Heterogeneous
Predator-Prey. Multiagent Ant, and Multiagent Swimmer are MuJoCo locomotion tasks where each
agent controls a segment of an Ant or Swimmer. Predator-Prey (PredPrey N) environment is a
cooperative environment where N of agents work together to chase and capture prey agents. In
Heterogeneous Predator Prey, each Predator has differing capabilities of speed and acceleration.
This modification is challenging as a policy must not only coordinate between the Predators, but
roles based specialization must be considered given the heterogeneous nature of each predator’s
capabilities. We also validated related work on the drone delivery task under which a drone swarm of
N agents (Drone Delivery-N) must complete deliveries of varying distances while avoiding collisions
and conserving fuel. The code of which is available in supplementary materials and will be open
sourced.

We used batching (Picheny et al., 2022) in our comparisons with MARL to allow for a large number
of iterations of BO. We used a batch size of 15 in our comparison experiments. In this setting, all
MuJoCo environments use the default epoch (total number of interactions with the environment for
computing reward) length of 1000, for Predator-Prey environments, epoch length was 25, for Drone
Delivery environment, epoch length was 150.

15



Under review as a conference paper at ICLR 2024

A.3 RL AND MARL UNDER MALFORMED REWARD

For single agent RL we compared against SAC (Haarnoja et al., 2018), PPO (Schulman et al., 2017),
TD3 (Fujimoto et al., 2018), and DDPG (Lillicrap et al., 2015) as well as an algorithm using intrinsic
motivation (Zheng et al., 2018). In single agent setting, we trained related work for 200, 000 timesteps.
In the MARL setting, we trained for 2, 000, 000 timesteps. In both single-agent setting and multi-agent
setting all policy networks for both HA-GP-UCB and related work was 3 layers of 10 neurons each.
The tested environments were standard OpenAI Gym benchmarks of Ant, Hopper, Swimmer, and
Walker2D.

In the MARL setting we compared against COVDN (Peng et al., 2021), COMIX, FACMAC, and MAD-
DPG. Comparisons were not possible against other approaches as these do not support continuous
action environments and are restricted to discrete action spaces.

For all environments and algorithms, we used the recommended hyperparameter settings as defined
by the authors.

A.4 COMPARISON WITH HDBO ALGORITHMS

For this comparison, we compared with several related works in HDBO. We compared with
TurBO (Eriksson et al., 2019b), Alebo (Letham et al., 2020), TreeBO (Han et al., 2021),
LineBO (Kirschner et al., 2019), and a recent variant of BO for policy search, GIBO (Müller
et al., 2021).

For computational efficiency, the epoch length for MuJoCo environments was reduced to 500.

A.5 DRONE DELIVERY TASK

The experimental details follow that of comparisons with MARL.

A.6 COMPUTE

All experiments were performed on commodity CPU and GPUs. Each experimental setting took no
more than 2 days to complete on a single GPU.
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A.7 POLICY SIZES

We list the policy sizes of our models in Table 2 and 3.

Of note is in each environment, the compared against policy of RL or MARL is greater than or equal
to in size vs. the policy optimized by HA-GP-UCB.
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Table 4: Summary of key notations.

Notation Description

v The objective function being optimized by Bayesian optimization

Θ The domain for the objective function v

θt A point in the domain Θ that is picked at time t

µk
T The posterior mean (inferred after observations up to time T − 1) at time T using the kernel k

[σk
T ]2 The posterior variance at time T using the kernel k

r(θt) The difference between the maxima of the function v in domain Θ, v(θ∗), and v(θt)

RT The cumulative regret,
∑T

t=1 r(θt)

Θa Dimension a of the domain D

Gd A graph showing the dependencies between dimensions where edges exist between two dimensions if they are dependent

Vd In the graph indicated by Gd the set of dimensions corresponding to Θ

Ed In the graph indicated by Gd the set of edges corresponding to the dependencies between Θ

Θ(i) Collection of dimensions indicated by (i) corresponding to a maximal clique in the graph Gd

kΘ(i)
A Gaussian process kernel correspond to the maximal clique (i)

k The Gaussian process kernel for inference corresponding to the sum of kΘ(i)
: k ≜

∑
i kΘ(i)

v(i) Under the additive assumption, it is assumed that v =
∑

i v(i) where each v(i) is sampled from kΘ(i)

U(Θ) A uniform random distribution over the domain Θ

H(θt,h) A query to the Hessian at θt,h
G̃d The graph corresponding to the detected dependency structure by querying the Hessian

Max-Cliques(G̃d) A function computing the maximal cliques in the graph G̃d

s The set of states of the cooperative multi-agent system where s ≜ [si]i=1,...,n and i denotes the index of the agent

a The set of actions taken by each agent where a ≜ [ai]i=1,...,n and i denotes the index of the agent

sα(i) The state for agent a taking on the role α(i)

aα(i) The action taken by agent a taking on the role α(i)

Λ
θr,i An affinity function for taking on role i where r denotes it belonging to the part of the HOM for role assignment

Λθg,v An affinity function determining whether an edge exists during the interaction of roles in the HOM policy

Mθg,η The message passing function parameterized by θg,η for the role interaction message passing neural network

Uθg,e The action update function parameterized by θg,e for the role interaction message passing neural network

B TABLE OF NOTATIONS

Table 4 provides a summary of notations that are used frequently in paper.
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Figure 6: Ablation study. Training curves of HA-GP-UCB and its ablated variants on different multi-
agent environments.
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Figure 7: Left: Action distributions of different roles showing diversity in the Multiagent Ant
environment with 6 agents. Right above: Policy modulation with role interaction in PredPrey and
Het. PredPrey environment with 3 agents. Arrows represent change after message passing. Right
below: Mean connectivity and standard deviation in role interaction in Multiagent Ant with 6 agents,
PredPrey with 3 agents, and Het. PredPrey with 3 agents.

C ADDITIONAL EXPERIMENTS

C.1 ABLATION

We present an expanded version of Fig. 3 in Fig. 6 including the ablation for Multiagent Swimmer.
Multiagent Swimmer shows similar behavior as the simpler task Multiagent Ant, with stronger
block-diagonal Hessian structure.
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Figure 8: Comparison with MARL approaches with varying number of agents.

C.2 HIGHER-ORDER MODEL INVESTIGATION

We examined policy for Multiagent Ant with 6 agents for the role based policy specialization. The
policy modulation plots were generated by examining the PredPrey and Het. PredPrey environments
respectively.

In Fig. 7 we investigate the learned HOM policies. Our investigation shows that role is used to
specialize agent policies while maintaining a common theme. Role interaction modulates the policy
through graphical model inferences. Finally, role interactions are sparse, however noticeably higher
for complex coordination tasks such as PredPrey.

C.3 COMPARISON WITH MARL

We present an expanded version of Fig. 5 in Fig. 8 including the results for Multiagent-Ant and
Multiagent-Swimmer. We observe that in this relatively uncomplicated task not well-suited for our
approach with dense reward, our HOM approach shows comparable performance to MARL approaches
and far outperforms HA-GP-UCB (CTDE). This shows the overall value of our HOM approach.

C.4 RL AND MARL UNDER MALFORMED REWARD

We present additional experiments under malformed reward for both RL and MARL. We formally
define the Sparse reward scenario. Let v(θ) ≜

∑Γ̂
Γ=1 rΓ where the value of the policy is determined

through Γ̂ interactions with some unknown environment and each interaction is associated with
the reward, rΓ. Typically, RL algorithms observe the reward, rΓ after every interaction with the
environment. We consider a sparse reward scenario where reward feedback is given every S steps:
r̃SΓ ≜

∑Γ
Γ−S rΓ if Γ ≡ 0 mod S and 0 o.w. In addition to the sparse reward setting described earlier,
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we also consider the setting of delayed reward. The delayed reward scenario is defined: r̃DΓ ≜ rΓ−D

if Γ > D and 0 o.w. Thus in the delayed reward scenario, feedback on an action taken is delayed.
This scenario is important as it arises in long term planning tasks where the value of an action is
not immediately clear, but rather is ascertained after significant delays. We present the complete
table comparing related works in RL with HA-GP-UCB in Table 5. As can be seen, similar to the
Sparse reward scenarios, significant degradation can be observed across all tested RL algorithms
with HA-GP-UCB outperforming RL algorithms with moderate to severe amount of sparsity or delay.
This degradation cannot be overcome by increasing the size of the policy, as we verify with the “XL”
models which are orders of magnitude larger with 3 layers of 400 neurons.

We repeat these experimental scenarios in the MARL setting with similar results in Table 6 where
MARL approaches are compared against HA-GP-UCB in the CTDE setting. Thus our validation shows
that in both RL and MARL strong performance requires dense, informative feedback which may not
be present outside of simulator settings. In these settings, our approach of optimizing small compact
policies using HA-GP-UCB outperforms related work in both RL and MARL.
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Figure 9: Comparison with BO algorithms. HA-GP-UCB outperforms on complex multi-agent
coordination tasks.

C.5 COMPARISON WITH HDBO ALGORITHMS

We compare with several related work in High-dimensional BO including TurBO (Eriksson et al.,
2019b), AleBO (Letham et al., 2020), LineBO (Kirschner et al., 2019), TreeBO (Han et al., 2021),
and GIBO (Müller et al., 2021). This is presented in Fig. 9. We experienced out-of-memory issues
with AleBO after approximately 100 iterations, hence the AleBO plots are truncated. We compare
against these algorithms at optimizing our HOM policy for solving various multi-agent policy search
tasks. We validated on Multiagent Ant with 6 agents, PredPrey with 3 agents, Het. PredPrey with
3 agents, Drone Delivery with 3 agents, and also Het. PredPrey with 6 agents. We observe that
these competing works offer competitive performance for simpler tasks such as Multiagent Ant and
PredPrey with 3 agents. However for more complex tasks that require role based interaction and
coordination, our approach outperforms related work. This is evidenced in Het. PredPrey 3, Het.
PredPrey 6 as well as the Drone Delivery task with 3 agents.

Thus our validation shows that for simpler task, competing related works are able to optimize
for simple policies of low underlying dimensionality. However, for more complex tasks which
require sophisticated interaction using both Role and Role Interaction, related work is less capable of
optimizing for strong policies due to the complexity of the high-dimensional BO task. In contrast, our
work offers the capability of finding stronger policies for these complex tasks and scenarios.
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D ON THE APPLICABILITY OF OUR ASSUMPTIONS TO RBF AND MATERN
KERNEL

We show that our assumption is satisfied by the RBF Kernel when Θ = [0, 1]D, and is quasi-satisfied
by the Matern− 5

2 kernel. We also show that in the setting where Θ = [0, r]D for some bounded r,
our assumptions are quasi-satisfied as although these kernels may take on small negative values, these
values decay exponentially with respect to the distance. These Lemmas show that our assumptions
are reasonable.

Lemma 1. Let k (θ, θ′) ≜ exp(−d2

2 ) be the RBF kernel with d ≜ ||θ − θ′||, then

k∂i∂j(θ, θ′) = k (θ, θ′)
(
1− (θi − θ′

i
)2
)(

1− (θj − θ′
j
)2
)
.

Proof. As shown in (Rasmussen & Williams, 2006) Section 9.4, the derivative of a Gaussian Process
is also a Gaussian Process. Let GP (0, k (θ, θ′)) be the GP from which f is sampled. This implies:

∂f

∂θa
∼ GP

(
0,

∂2k (θ, θ′)

∂θa∂θ′a

)
.

Applying this rule once more for the Hessian, we have:

∂2f

∂θbθa
∼ GP

(
0,

∂4k (θ, θ′)

∂θb∂θ′b∂θa∂θ′a

)
.

Given the above identities, we compute the partial derivatives for the RBF kernel:

∂2k (θ, θ′)

∂θa∂θ′a
= exp

(
−||θ − θ′||2

2

)(
1− (θa − θ′

a
)2
)
.

Deriving once more we have:

∂4k (θ, θ′)

∂θb∂θ′b∂θa∂θ′a
= exp

(
−||θ − θ′||2

2

)(
1− (θa − θ′

a
)2
) (

1− (θb − θ′
b
)2
)
.

This completes the proof noting that k (θ, θ′) ≜ exp(−d2

2 ) with d ≜ ||θ − θ′||.

Corollary 1. Let k (θ, θ′) ≜ exp(−d2

2 ), and θ, θ′ ∈ [0, 1]D, then k∂i∂j(θ, θ′) ≥ 0.

Proof. The above is straightforward to see as exp (·) ≥ 0 and with θ, θ′ ∈ [0, 1]D we have(
1− (θa − θ′

a
)2
)
≥ 0

(
1− (θb − θ′

b
)2
)
≥ 0.

Corollary 2. Let k (θ, θ′) ≜ exp(−d2

2 ), and θ, θ′ ∈ [0, r]d, then k∂i∂j(θ, θ′) ≥ c exp(−d2) for some
constant c dependent on r.

Proof. The above is straightforward given the above Lemma. We note that although the RBF kernel
may take on negative values in the domain Θ = [0, r]d, this values experience strong tail decay
showing the quasi-satisfaction of our assumptions.

The above Lemma and Corollary shows that our assumptions are satisfied by the RBF Kernel when
Θ = [0, 1]D, and quasi satisfied when Θ = [0, r]D after choosing a suitable ph and σ2

h. We show
how these assumptions are quasi-satisfied by the Matern- 52 kernel.
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Lemma 2. Let k (θ, θ′) ≜ (1+
√
5d+ 5

3d
2) exp(−

√
5d) be the Matern- 52 kernel with d ≜ ||θ− θ′||,

then with di ≜ θi − θ′
i we have

k∂i∂j(θ, θ′) = exp(−
√
5d)

(
5
√
5

3
− 25

3d
d2i −

25

3d
d2j +

25
√
5

3d2
d2i d

2
j +

25

3d3
d3i d

3
j

)
.

Proof. Following the proof of Lemma 1, we state the partial derivatives of the Matern- 52 kernel:

∂2k (θ, θ′)

∂θa∂θ′a
= exp

(
−
√
5||θ − θ′||

)(5

3
+

5
√
5

3
||θ − θ′|| − 25

3
(θa − θ′

a
)2

)
.

Differentiating one more we have

∂4k (θ, θ′)

∂θb∂θ′b∂θa∂θ′a
= exp

(
−
√
5||θ − θ′||

)
(
5
√
5

3
− 25

3d
(θa − θ′

a
)2 − 25

3d
(θb−θ′

b
)2 +

25
√
5

3d2
(θa − θ′

a
)2(θb − θ′

b
)2

+
25

3d3
(θa − θ′

a
)3(θb − θ′

b
)3

)
.

This completes the proof noting that di ≜ θi − θ′
i and d ≜ ||θ − θ′||.

Corollary 3. Let k (θ, θ′) ≜ (1+
√
5d+ 5

3d
2) exp(−

√
5d) and θ, θ′ ∈ [0, 1]D. Then k∂i∂j(θ, θ′) ≥

exp(−
√
5d)
(

5
√
5

3 − 25
3d − 25

3d − 25
3d3

)
.

Proof. The above is an immediate consequence of Lemma 2 and noting that ||di|| ≤ 1.

Corollary 4. Let k (θ, θ′) ≜ (1 +
√
5d+ 5

3d
2) exp(−

√
5d) and θ, θ′ ∈ [0, r]d. Then k∂i∂j(θ, θ′) ≥

c exp(−d) for some c dependent on r.

Proof. The above is an immediate consequence of Lemma 2 and noting that ||di|| ≤ r.

Although the above corollary shows that the Matern- 52 kernel may take on negative values, we note
that these values experience strong tail decay due to the presence of the exp

(
−
√
5d
)

term. Thus,
the negative values are likely to be extremely small, thus quasi-satisfying our assumptions. In our
experiments, we observed no shortcoming in using the Matern- 52 kernel in HA-GP-UCB.
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E PROOF OF PROPOSITION 1

We restate Proposition 1 for clarity.
Proposition 1. Let Gd = (Vd, Ed) represent an additive dependency structure with respect to v(θ),
then the following holds true: ∀a, b ∂2v

∂θa∂θb ̸= 0 =⇒ (Θa,Θb) ∈ Ed which is a consequence of v
formed through addition of independent sub-functions v(i), at least one of which must contain θa, θb

as parameters for ∂2v
∂θa∂θb ̸= 0 which implies their connectivity within Ed.

Proof. The above follows from the linearity of addition, which naturally implies a lack of curvature.
In the multivariate case, this corresponds to zero or non-zero entries in the Hessian.

To be precise, we prove the contrapositive:

(Θa,Θb) /∈ Ed =⇒ ∂2v

∂θa∂θb
= 0.

Let a, b be arbitrary dimensions with (Θa,Θb) /∈ Ed. As a consequence of the definition of the
dependency graph, ∄Θ(i) s.t. {Θa,Θb} ⊆ Θ(i). That is, no subfunction v(i) takes both θa and θb as
arguments.

By the linearity of the partial derivative, we see that:

∂2

∂θa∂θb
v(θ) =

∂2

∂θa∂θb

M∑
i=1

v(i)(θ(i)) =

M∑
i=1

∂2

∂θa∂θb
v(i)(θ(i)) = 0

where the last equality follows from no subfunction v(i) taking both θa and θb as arguments.
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F PROOF OF THEOREM 1

Our proof of Theorem 1 relies in being able to determine whether an edge does or does not exist
in the dependency graph. To be able to do this, we examine the Hessian. As we have shown in
Proposition 1, examining the Hessian answers this question. The challenge of Theorem 1 is detecting
this dependency under noisy observations of the Hessian, as well as in domains where the variance of
the second partial derivative is often zero, i.e., k∂i∂j(θ, θ′) = 0 with high probability. To overcome
this challenge, we sample the Hessian multiple times to both find portions of the domain where
k∂i∂j(θ, θ′) ≥ σ2

h, and also reduce the effect of the noise on learning the dependency structure. To
proceed with the analysis, we first prove a helper lemma showing that if we can construct two Normal
variables of sufficiently different variances, then it’s possible to accurately determine which Normal
variable has low, and high variance by taking a singular sample from each. This helper lemma will be
used later to help determine edges in the dependency graph. As we shall soon show, If an edge exists,
we are able to construct a Normal variable with high variance. Correspondingly, if an edge does not
exist, we are able to construct a Normal variable with low variance.

Lemma 3. Let Xl ∼ N (0, σ2
l ) and Xh ∼ N (0, σ2

h) be two random univariate gaussian variables.

For any δ ∈ (0, 1), ∃ ch s.t. |Xl| ≤ ch ≤ |Xh| with probability 1 − δ when σ2
h

σ2
l
> 8

δ2 log
2
δ and

precisely when σhδ
2 > ch > σl

√
2 log 2

δ .

Proof. First we note that |Xl| and |Xh| are Half-Normal random variables, with cumulative dis-
tribution function of Fl(x) = erf x

σl

√
2

and Fh(x) = erf x
σh

√
2

respectively. Thus to show that

|Xl| ≤ σl

√
2 log 2

δ and |Xh| ≥ σhδ
2 with high probability, we utilize well known bounds on the

erf and erfc function. The proofs of the below can be found in several places, e.g., Chu (1955) and
Ermolova & Häggman (2004) respectively.

erf x ≤
√
1− exp−2x2 ; erfcx ≤ exp−x2.

Given the above, we show that p(ch ≤ |Xl|) ≤ δ
2 and p(ch ≥ |Xh|) ≤ δ

2 and utilizing the union
bound completes the proof.

ch > σl

√
2 log

2

δ
=⇒ c2h > 2σ2

l log
2

δ
=⇒ c2h

2σ2
l

> − log
δ

2
=⇒ − c2h

2σ2
l

< log
δ

2

=⇒ exp− c2h
2σ2

l

≤ δ

2
=⇒ erfc

ch√
2σl

<
δ

2
=⇒ 1− erf

ch√
2σl

≥ 1− δ

2
=⇒ Fl(ch) ≥ 1− δ

2

=⇒ p (ch ≤ |Xl|) <
δ

2
.

Following a similar line of reasoning we have:

ch <
σhδ

2
=⇒ c2h

σ2
h

<
δ2

4
=⇒ −c2h

σ2
h

> −δ2

4
=⇒ −c2h

σ2
h

> log 1− ϵ2

4
=⇒ exp− c2h

σ2
h

> 1− δ2

4

=⇒ 1− exp− c2h
σ2
h

<
δ2

4
=⇒

√
1− exp−

c2h
σ2
h

<
δ

2
=⇒ erf

ch

σh

√
2
<

δ

2
=⇒ Fh(ch) <

δ

2

=⇒ p(ch ≥ |Xh|) <
δ

2
.

Finally, to complete the proof, we show that the interval (σl

√
2 log 2

δ ,
σhδ
2 ) is not the empty set when

σ2
h

σ2
l
> 8

δ2 log
2
δ .
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σ2
h

σ2
l

>
8

δ2
log

2

δ
=⇒ σh

σl
>

2
√
2

δ

√
log

2

δ
=⇒ σhδ

2
> σl

√
2 log

2

δ
.

We are now ready to prove Theorem 1.
Theorem 1. Suppose12 there exists σ2

h, ph s.t. ∀i, j Pθ∼U(Θ)

[
k∂i∂j(θ, θ) ≥ σ2

h

]
≥ ph and ∀i, j, θ, θ′

k∂i∂j(θ, θ′) ≥ 0. Then for any δ1, δ2 ∈ (0, 1) after t ≥ T0 steps of HA-GP-UCB we have:⋂
i,j P (Ẽi,j

d = Ei,j
d ) ≥ 1−δ1−δ2 when T0 = C1 > 8D2

δ21
log 2D2

δ1

σ2
n

σ2
h
+ D2

phδ2
, ch ≜ T0σn

√
2 log 2D2

δ1
.

Proof. We prove the above for a single pair of variables, i.e., k∂i∂j and utilize the union bound to
complete the proof. The first challenge to overcome is to sufficiently sample enough points in the
domain such that we are able to find enough points θ ∈ Θ where k∂i∂j(θ, θ) ≥ σ2

h. To achieve this
we sample T0 different θ in the domain. After sampling T0 points if there exists an edge between Θa,
and Θb, then with probability 1− δ2

D2 we have sampled T0 − D2

phδ2
points where k∂i∂j(θ, θ) ≥ σ2

h.
To show the above we use bounds on the cumulative distribution of the Binomial theorem. A well
known bound is given T0 trials, with ph probability of success, the probability of having fewer than s
successes is upper bounded as follows:

ph
T0 − s

.

Given the above, we use δ2 and derive:

ph

T0 − (T0 − D2

phδ2
)
≤ δ2

D2
.

Given the above, with at least (T0 − D2

phδ2
) points where k∂i∂j(·, ·) ≥ σ2

h, as well as our assumption
k∂i∂j(θ, θ) ≥ 0, we apply Bienaymé’s identity which we restate for convenience:

Var

[
C1∑
ℓ=1

ht,ℓ

]
=

C1∑
ℓ=1

C1∑
ℓ′=1

Cov (ht,ℓ, ht,ℓ′) .

Noting each of the (T0 − D2

phδ2
) successes is sampled C1 = T0 times with Cov (ht,ℓ, ht,ℓ′) ≥ σ2

h

for each of the successes and Cov (ht,ℓ, ht,ℓ′) ≥ 0 for all samples by our assumption. Applying
Bienaymé’s identity and the sum of (correlated) Normal variables is also a normal variable, we have
Var

[∑C1

t=1

∑C1

ℓ=1 ht,ℓ

]
≥ (T0− D2

pδ2
)T 2

0 σ
2
h. Compare this quantity with the variance if no edge exists

between Θa, and Θb, where the variance results from i.i.d. noise: Var
[∑T0

t=1

∑T0

ℓ=1 ht,ℓ

]
= T 2

0 σ
2
n.

Comparing these two quantities, with an appropriately picked ch determines the edge between Θa and

Θb using Lemma 3. By Lemma 3, letting ch ≜ T0σn

√
2 log 2D2

δ1
ensures that p(hi,j < ch) <

δ1
D2 if

edge Ei,j
d exists, and p(hi,j > ch) <

δ1
D2 if edge Ei,j

d does not exist. Applying the union bound over
D2 pairs of variables completes the proof with

⋂
i,j P (Ẽi,j

d = Ei,j
d ) ≥ 1− δ1 − δ2.

12RBF kernel satisfies these assumptions when Θ = [0, 1]D .
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G PROOF OF THEOREM 2

Our proof of Theorem 2 is presented under the same setting and assumptions as the work of Srinivas
et al. (2010).

To prove Theorem 2, we rely on several helper lemmas. The high-level sketch of the proof is to
use the properties of Erdős-Rényi graph to bound both the size of the maximal clique as well as the
number of maximal cliques with high probability. Once these two quantities are bounded, we are able
to analyze the mutual information of the kernel constructed by summing the kernels corresponding to
the maximal cliques of the sampled Erdős-Rényi graph as indicated in Assumption 1. Finally, once
this mutual information is bounded, we use similar analysis as Srinivas et al. (2010) to complete the
regret bound.

We begin by bounding the size of the maximal cliques.
Lemma 4. Let Gd = (Vd, Ed) be sampled from a Erdős-Rényi model with probability pg: Gd ∼
G(D, pg), then ∀δ ∈ (0, 1) the largest clique of Gd is bounded above by

|Max-Clique(Gd)| ≤ 2 log 1
pg
|Vd|+ 2

√
log 1

pg

|Vd|
δ

+ 1

with probability at least 1− δ.

Proof. The above relies on well known upper bounds on the maximal clique size on a graph sampled
from an Erdős-Rényi model. As shown in (Bollobás & Erdös, 1976) and (Matula, 1976) the expected
number of Cliques of size k, E [Ck] is given by:

E [Ck] =

(
|Vd|
k

)
1

pg

−(k2)
≤ |Vd|k

1

pg

− k(k−1)
2

=
1

pg

k
2

(
2 log 1

pg

|Vd|−k+1

)
.

In the sequel, we omit the base of the log: 1
pg

for clarity. To bound the size of the maximal clique, we

find a suitable k such that E [Ck] ≤ δ
n and utilize the union bound over [Ci]i=k,...,n where we have

|[Ci]i=k,...,n| ≤ n. Finally, we utilize Markov’s inequality to complete the proof.

Let k = 2 log |Vd|+ 2

√
log

|Vd|
δ

+ 1.

We utilize the above bound on E [Ck].

=⇒ k

2

(
2 log 1

pg
|Vd| − k + 1

)
=(

log|Vd|+
√
log

n

δ

)(
2 log|Vd| − 2 log|Vd| − 2

√
log

n

δ
+ 1 + 1

)
≤ − log|Vd| − log

n

δ
+ 1 ≤ log

δ

n

=⇒ E [Ck] ≤
1

pg

log δ
n

=
δ

n
.

The proof is complete by noting that by Markov inequality, p(Ck ≥ 1) ≤ E [Ck] and taking the union
bound over at most n members of [Ci]i=k,...,n.
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Next, we bound the total number of maximal cliques:
Lemma 5. Let Gd = (Vd, Ed) be sampled from a Erdős-Rényi model with probability p: Gd ∼
G(D, pg), then ∀δ ∈ (0, 1) the number of total maximal cliques in Gd is bounded above by

1

δ

√
|Vd|

log 1
pg

|Vd|+5

with probability at least 1− δ.

Proof. We prove the above by bounding maxk Ck with high probability and noting that the number
of maximal cliques is bounded by

∑
k Ck ≤ nmaxk Ck with high probability. To bound maxCk,

we first consider maxk E [Ck].

max
k

E [Ck] = max
k

1

pg

k
2

(
2 log 1

pg

|Vd|−k+1

)
=

1

pg

maxk
k
2

(
2 log 1

pg

|Vd|−k+1

)
.

Taking the partial derivative of k
2

(
2 log 1

pg
|Vd| − k + 1

)
with respect to k we determine the maxi-

mum:

argmaxk
k

2

(
2 log 1

pg
|Vd| − k + 1

)
= log 1

pg
|Vd|+ 1.

Thus we are able to bound:

log 1
pg

|Vd|+ 1

2

(
2 log 1

pg
|Vd| − log 1

pg
|Vd| − 1 + 1

)
=

log 1
pg

|Vd|+ 1

2

(
log 1

pg
|Vd|

)
=

1

2
log21

pg

|Vd|+
1

2
log 1

pg
|Vd|

Which yields the bound:

E [Ck] ≤
1

pg

1
2 log

2
1
pg

|Vd|+ 1
2 log 1

pg

|Vd|
=

√
|Vd|

log 1
pg

|Vd|+1
.

To complete the proof, we utilize Markov’s inequality with p

(
Ck ≥ |Vd|

δ

√
|Vd|

log 1
pg

|Vd|+1
)

≤ δ
|Vd|

and utilize the union bound over n choices of k:

∑
k

Ck ≤
∑
k

|Vd|
δ

√
|Vd|

log 1
pg

|Vd|+1
=

1

δ

√
|Vd|

log 1
pg

|Vd|+5

with probability 1− δ.

Now that we have bounded both the number of cliques, as well as the sizes of the maximal cliques
with high probability, we now consider the mutual information of the kernel constructed by summing
the kernels corresponding to the maximal cliques of the dependency graph.
Lemma 6. Define I(yA; v) ≜ H(yA) − H(yA | v) as the mutual information between yA and v

with H(N (µ,Σ)) ≜ 1
2 log|2πeΣ| as the entropy function. Define γk

T ≥ maxA⊂Θ:|A|=T I(yA; v)
when v ∼ GP (0, k (θ, θ′)). Let [ki]i=1,...,M be arbitrary kernels defined on the domain Θ with upper
bounds on mutual information [γki

T ]i=1,...,M , then the following holds true:

γ
∑

i ki

T ≤ M2 max [γki

T ]i=1,...,M .
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To prove the above, we first state Weyl’s inequality for convenience:
Lemma 7. Let H,P ∈ Rn×n be two Hermitian matrices and consider the matrix M = H + P . Let
µi, νi, ρi, i = 1, . . . , n be the eigenvalues of M, H, and P respectively in decreasing order. Then, for
all i ≥ r + s− 1 we have

µi ≤ νr + ρs.

The above has an immediate Corollary as noted by Rolland et al. (2018):

Corollary 5. Let Ki ∈ Rn×n be Hermitian matrices for i = 1, . . . ,M with K ≜
∑M

i Ki. Let
[λKi

ℓ ]ℓ=1,...,n denote the eigenvalues of Ki in decreasing order. Then for all ℓ ∈ N0 such that
ℓM + 1 ≤ n we have

λK
ℓM+1 ≤

M∑
i=1

λKi

ℓ+1.

We are now ready to prove Lemma 6 using Weyl’s inequality and its corollary as a key tool.

Proof. Given the definition of I(yA; v) ≜ 1
2 log|I + σ−2Kk

A| (Srinivas et al., 2010) we bound
the eigenvalues of MI + σ−2

∑M
i Kki

A using the eigenvalues of [I + σ−2Kki

A ]i=1,...,M where
k ≜

∑M
i=1 ki. Using the above Corollary we see that:

λMI+σ−2K
ℓ ≤

M∑
i=1

λI+σ−2Ki

⌈ ℓ
M ⌉ .

Given the above, we see that M2 max[γki

T ]i=1,...,M ≥ 1
2 log|I + σ−2Kk

A| as
∑M

i Mγki

T ≥
1
2 log|MI+ σ−2

∑M
i Kki

A |.

Finally, we require an additional helper lemma to bound the supremum and infimum of a function
sampled from a GP. This helper lemma helps bound the regret during the first phase of HA-GP-UCB
where we randomly sample the Hessian over the domain.

Lemma 8. Let k (θ, θ′) be four times differentiable on the continuous domain Θ ≜ [0, r]D for some
bounded r (i.e., compact and convex) with f ∼ GP (0, k (θ, θ′)) then for all δ ∈ (0, 1) the following
holds true:

sup
θ∈[0,r]D

f ≤ cb
√
D log δ−1 = O

(√
D log δ−1

)
.

inf
θ∈[0,r]D

f ≥ −cb
√

D log δ−1 = Ω
(
−
√
D log δ−1

)
.

for some constant cb dependent on δ and r, with probability 1− δ.

Proof. We refer readers to Srinivas et al. (2010) Lemma 5.8 for the proof of the above.

We are now ready to prove Theorem 2.
Theorem 2. Let k be the kernel as in Assumption 1, and Theorem 1. Let γk

T (d) : N → R be
a monotonically increasing upper bound function on the mutual information of kernel k taking d
arguments. The cumulative regret of HA-GP-UCB is bounded with high probability as follows:

RT = Õ
(
D4.5log2D+

√
TβTDO(logD)γk

T (O(logD))
)
. (4)
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We restate the above theorem with more precision:
Theorem 2. Let k be the kernel as in Assumption 1, and Theorem 1 and for some constants a, b,

P

[
sup
θ∈Θ

∣∣∣∣ ∂v∂θi
∣∣∣∣ > L

]
≤ ae−(L/b)2 , i = 1, . . . , D.

Let γk
T (d) : N → R be a monotonically increasing upper bound function on the mutual information

of kernel k taking d arguments. Let k (θ, θ′) be four times differentiable on the continuous domain
Θ ≜ [0, r]d for some bounded r (i.e., compact and convex). For any δ1, δ2, δ3, δ4, δ5, δ6 ∈ (0, 1). Let,
t̃ ≜ t− T0C1 and let

βt = 2 log(t̃22π2/3δ26) + 2D log(t̃2Dbr
√

log(4Da/δ6))

The cumulative regret of HA-GP-UCB is bounded:

P

[
RT ≤ 2C2

1cb

√
D log δ−1

5 +
√
C2TβT γT + 2 ∀T ≥ 1

]
≥ 1− δ1 − δ2 − δ3 − δ4 − δ5 − δ6

when C1 = 8D2

δ21
log 2D2

δ1

σ2
n

σ2
h
+ D2

phδ2
+ 1, C2 = 8/ log(1 + σ−2), and

γT = 1
δ24
Dlog1/pg

D+5γk
T

(
2 log1/pg

D + 2
√

log1/pg
D/δ3 + 1

)
where cb is some constant depen-

dent on δ5.

Proof. The proof is a consequence of the helper lemmas and theorems we have proved. First we
consider Phase 1 of HA-GP-UCB where t ≤ T0. By Theorem 1, at most T0C1 = C2

1 queries will be
made during Phase 1, and Lemma 8 indicates the maximum regret for any query. Consulting the
respective Theorem and Lemma, we are able to bound the cumulative regret during Phase 1 by:

2C2
1cb

√
D log δ−1

5 = O(D4.5 log2 D).

Considering Phase 2, we utilize Lemma 4, Lemma 5, Lemma 6 to bound the mutual information of
the sampled kernel with high probability. The number of cliques is given by:

1

δ4

√
Dlog1/pg

D+5 = DO(logD).

The size of the largest clique is given by:

2 log1/pg
D + 2

√
log1/pg

D/δ3 + 1 = O(logD).

Following Lemma 6, we may bound the mutual information by:

O(DO(logD)γk
T (O(logD)).

The proof is complete by leveraging the connection between mutual information and cumulative regret
as shown by Srinivas et al. (2010) where Õ is the same as O with the log factors suppressed.
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H ON THE SURROGATE HESSIAN, Hπ

In Section 4.5 we remarked that although we cannot observe Hv , we can observe a surrogate hessian,
Hπ which is related to Hv by the chain rule. We justify our choice here with showing how Hπ

is an important sub-component of Hv (Skorski, 2019). Although the reasoning we give is in one
dimension, an analogous argument can be made in arbitrary dimensions using the chain rule for
vector-valued functions yielding the Hessian tensor (Magalhães, 2020). We have v : Θ → R is a
function of the policy π and can be expressed as a composition of functions:

v : Θ → R = v̂ (π (θ)) . (5)

In the above we use π (θ) as shorthand for π (sα,aα; θ) with v̂ representing some unknown function.
Using the definition of the Hessian we have:

Hv ≜

[
∂2v

∂θa∂θb

]
a,b=1,...,D

=

[
∂2

∂θa∂θb
v̂ (π (θ))

]
a,b=1,...,D

Where the above identity follows from the definition of v in Eq. 5. We can now apply chain rule to
express:

∂2

∂θa∂θb
v̂ (π (θ)) =

[
Hv̂(π(θ))

∂π

∂θa
(θ)

]
· ∂π

∂θb
(θ)︸ ︷︷ ︸

r(θ)

+
∂2π

∂θa∂θb
(θ)︸ ︷︷ ︸

Hπ(θ)

· ∇v̂(π(θ))︸ ︷︷ ︸
g(θ)

(6)

As we see in the above as a consequence of the chain rule, ∂2π
∂θa∂θb forms an important sub-component

∂2v
∂θa∂θb . Given the above, we can simplify the above in the following manner:

Hv = r +Hπ ◦ g

where r, g, and Hπ arise from the corresponding highlighted terms in Eq. 6 with r representing
some unknown remainder term and ◦ representing the Hadamard product. Given the above, it is
straightforward to see how Hπ serves as a surrogate hessian for Hv. Indeed if r ̸= −Hπ ◦ g and
g has no zero entries then Hπ ̸= 0 =⇒ Hv ̸= 0. In our use case, we are most concerned with
non-zero entries in the Hessian, Hv, and the surrogate Hessian, Hπ is well served for determining
Hv ̸= 0 due to the above.

Since π (θ) is shorthand for π (sα,aα; θ), to approximate Hπ we average Hπ(sα,aα;θ) over state
action pairs, (sα,aα) formed through interaction of the policy with the unknown task environment.

A possible avenue of overcoming this limitation is considering Hessian estimation through zero’th or-
der queries. Several works along this direction have recently appeared using Finite Differences (Cheng
et al., 2021), as well as Gaussian Processes (Müller et al., 2021). We consider removing this depen-
dency on the surrogate Hessian for future work.
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I DRONE DELIVERY TASK

Our drone delivery task was inspired by recent research work in studying unique problems in drone
delivery vehicle routing problems (Dorling et al., 2017).

Drones fly from delivery point to delivery point where completing a delivery gives a large amount
of reward, but running out of fuel and collisions give a small amount of negative reward. After
completing a delivery, the delivery point is randomly removed within the environment. A collision
gives a small amount of negative reward and momentarily stops the drone. Completing a delivery
refills the drone fuel and allows it to continue to make more deliveries. The amount of reward given
increases quadratically with the distance of the delivery to highly reward long distance deliveries
which require long term planning. To compound this requirement for long term planning, fuel
consumption also dramatically increases at high velocities to encourage long-term fuel efficiency
planning. In this complex scenario requiring long term planning, RL approaches can easily fall into
local minima of completing short distance, low reward deliveries and fail to sufficiently explore
(under sparse reward) policies which complete long distance deliveries with careful planning.

Implementation code of this task can be found in supplementary materials.
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Figure 10: Comparison with MARL approaches with varying number of agents.

0

20

40

60

80

100

Drone Delivery 6

0

20

40

60

80

100

Drone Delivery 9
0.0 0.5 1.0 1.5 2.0

1e6
0.0 0.5 1.0 1.5 2.0

1e6

CDS-QPLEX
G2ANET
COMIX
FACMAC
MADDPG
SOG
RODE
HA-GPUCB (MM)
HA-GPUCB (CTDE)

Figure 11: Comparison with MARL approaches on the drone delivery task.

J REPLOT WITH TIMESTEPS

We replot the relevant figures in Fig. 12 and Fig. 13 while maintaining total environment interactions
as the singular independent variable. We note that there is no significant change to our conclusions as
a consequence of this replotting. We also highlight that although total environment interactions is
considered the important independent variable in RL and MARL, in BO typically the total evaluated
policies is considered the more important independent variable as each evaluation is assumed to be
costly.
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Figure 12: Comparison with MARL approaches with varying number of agents.
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Figure 13: Comparison with MARL approaches on the drone delivery task.

K REPLOT WITH “BEST FOUND POLICY SO FAR” IN RL

We replot the relevant figures in Fig. 12 and Fig. 13 where both BO and MARL approaches show the
value of the “best found policy so far." We note that there is no significant change to our conclusions
as a consequence of this replotting.
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L TABLES WITH “BEST FOUND POLICY SO FAR” IN RL

We generate new tables investigating RL and MARL under sparse or malformed reward. In Table 7
and 8 we show the value of the best found policy during the training process for RL and MARL. Our
observations and conclusions remain the same where RL and MARL performance severely degrades
under sparse and malformed reward and is often outperformed by our HA-GP-UCB approach.
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