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Emulating Oncologists’ Gaze for Predicting Treatment
Response through Multimodal Imaging

Abstract

We used three datasets to imitate oncologists’ decisions about the prognostic response
by looking at lung tumors in different imaging modalities, i.e., PET and CT. We extract
comprehensive visual features, radiomics, from the tumors’ region and then reduce their size
with a density-based isometric mapping while preserving their main visual characteristics.
We apply the Parzen-Rosenblatt (PR) constrain to modify isometric mapping. For the
comparison, we use two metrics, binary classification and Cox proportional hazard models,
to avoid biases in the comparison. We achieved prediction accuracy comparable to newly
and commonly established methods. We successfully predict patient outcomes in response
to therapy and imitate the oncologist’s attention over multimodal images.

1. Introduction

Radiologic imaging features, radiomics. are used to train machine learning algorithms and
predict responses to specific treatments for cancer patients. The abundance of radiomics,
high-dimensional (HD), impedes the models to accurately predict the outcome. Projecting
HD data in lower dimension (LD) space using methods like isometric embedding Tenenbaum
et al. (2000) is always interesting since the data becomes sparse by the soar of dimension
while preserving the overall characteristics of the HD data Jolliffe (2011); Torgerson (1965);
Moon et al. (2019); Xu et al. (2022); Yang et al. (2022). We propose density-based constrain
to control isometric embedding resulting in prediction response to therapy by looking at
multimodal imaging. We use three non-small cell lung cancer (NSCLC) datasets, NSCLC
Radiogenomics Bakr et al. (2017); Gevaert et al. (2012); Clark et al. (2013), NSCLC-
Radiomics (LUNGO1) Aerts et al. (2017, 2014), and NSCLC-Radiomics (LUNGO03) Aerts
et al. (2017, 2014), which are focus on computed tomography (CT) and positron emission
tomography (PET) to build therapy response prediction and compare it with actual results,
as oncologists’ gaze estimation. Figures 1,2,3,4 presents the overall strategy of the proposes
system, examples of multimodal radiologic imaging, how visual data is reduced to LD
space without any collinearity, and the final treatment response prediction of models with
the given LD data, respectively. Whereas an oncologist and a radiologist look at visual
features and may encounter missing or overwhelming information, data reduction methods
are expected to highlight important features, which causes a considerable impact on patient
outcome predictions.

Isometric mapping, unlike classical multidimensional scaling (MDS) Torgerson (1965),
utilizes geodesic distance to calculate distances between points on a curved manifold, which
is advantageous for distant points. However, standard isometric mapping relies on the k-
nearest neighbor approach to find the shortest path Tenenbaum et al. (2000), which may not
guarantee close neighbor proximity. When a large k is selected, points that are sufficiently
far from each other on the manifold may lead to an approximation of geodesic distances
with Euclidean distances, similar to the issue encountered in MDS.
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Figure 1: Our density-based isometric mapping deflates an HD manifold onto an LD rep-
resentation while preserving their similarities. PR-Isomap preserves similarity in
LD embedding and showed more promising results in predicting patients’ survival.

To relax this and enforce the geodesic points to stay on the manifold we add a Parzen
— Rosenblatt (PR) Parzen (1962); Rosenblatt (1956) constrain to modify local neighbors’
graph to highlight the uniformity of the data distribution on the HD manifold for isometric
mapping, density-based isometric mapping, which preserves both distances and uniformity
criteria while nonlinearly reducing the dimensionality. Given the application of the shortest
path, we modify Dijkstra’s algorithm, as shown in Appendix B, with the computational
complexity of the algorithm, Appendix D. Finally, we predict response to therapy using
binary classification and Cox proportional hazard (CPH) models reaching comparable ac-
curacies, which is confirmed by Kaplan Meier survival curves, Figure 4.

2. Related Work

In the field of cancer prediction response, few works have used radiological feature reduction
methods to predict treatment response Limkin et al. (2017); Yousefi et al. (2021); Hosny
et al. (2019); Chetan and Gleeson (2021); He et al. (2020). However, only a few works have
applied isometric mapping to preserve the visual information from radiologic images Limkin
et al. (2017); Peng et al. (2018). Peng et al. (2018) Peng et al. (2018) used this method to
distinguish true progression from radionecrosis after radiation therapy for metastatic brain
cancer in magnetic resonance imaging (MRI). Besides isometric embedding, different data
reduction approaches have been used for NSCLC prognosis, such as principal component
analysis PCA Horng et al. (2022), t-distribution stochastically embedding (t-SNE) Van der
Maaten and Hinton (2008); Ben-Hamo et al. (2020); Chen et al. (2023), and Potential of
Heat-diffusion for Affinity-based Trajectory Embedding (PHATE) Moon et al. (2019);



ONCOLOGISTS’ GAZE IMITATION

Wiecek et al. (2023). To the best of our knowledge, this is the first study to use density-
based isometric mapping to predict treatment response on multimodal imaging.

3. Methods

In the following sections, we introduce the isometric mapping method and discuss the
innovative techniques used to extract maximum LD information for predicting survival and
classification tasks (Figure 1).

3.1. Density isometric mapping

Our data points can be shown as a combination of multiple vectorized data points,
X = [x1,X2,...,Xp] € Rdxn, where {xi € Rd}?zl. We assume that there is a finite data
point drawn from our X. We can build a geometric graph G = (V; E) that has our data
points as vertices and connects vertices that are close to each other. We construct a k-nearest
neighbor graph for the x; connected to x; correspondingly and for x; to x;, show them by
(x;) and v(xj), v(xi), v(x;) € M. ~(.) represents a vector point on the manifold. The
length of the path is defined by summing the edge weights along the path on the manifold.
The shortest path (SP) distance Dsp (v (x;), 7 (x;)) between two vertices v (x;), v (x;)
and defines based on the length of the SP connecting them. g (-) is a positive continuous
function for X in the given path v(-) connecting x; and x;, which is parameterized by
g-length of the path as

Dy (t) = / a(v (@) | (1) dt, (1)
Y

where 7/(+) defines a small element on the manifold, also known as the line integral along
the path ~(-) with respect to g(-). Dy~ denotes as distance on the manifold through the
shortest path.

Geodesic distance of v (x;) and v (x;), (v (x;), 7(x;)) € M defines along the manifold
surface, M, and is denoted by smaller steps Euclidean distances Dgy. (x;,%;) and can be
approximate by Dy ., (x;,%;) .

By building a neighborhood graph where each point is connected exclusively to its k
nearest neighbors, Isomap first calculates an estimate of the geodesic distances between
every pair of data points located on the manifold M; the edge weights are equivalent to
the corresponding pairwise distances. The Euclidean distance serves as an estimate for
the geodesic distance for adjacent pairs of data points. This assumption allows finding an
approximation of Dy, (x;,%;) applying many small Euclidean distances, e.g.,

Dy (xi,%5) = [lv (%) =7 (%) ll2 V7 (x5) € Nk (v (%)), (2)

where Ny (7 (x;)) denotes the collection of the point 7 (x;) € M for k closest neighbors
on the manifold surface, M. The geodesic distance is calculated for non-neighboring points
as the shortest path length along the neighborhood graph, which can be discovered using
Dijkstra’s algorithm Dijkstra (2022). The generated geodesic distance matrix is then sub-
jected to MDS Torgerson (1965) to identify a group of LD points that most closely match
such distances, more details are in Appendix A. Creating a k-nearest neighbor graph for



data points can introduce inconsistency between geodesic and Euclidean distances, espe-
cially when the third Cayton assumption Cayton (2005); Babaeian (2017) is not strongly
satisfied. This assumption implies a uniform distribution of points in the high-dimensional
manifold. However, with a large k in the k-nearest neighbor graph, discrepancies can arise
in approximating geodesic and Euclidean distances, leading to differences between intrinsic
and extrinsic distances on the manifold.

Here, we tackle this problem using the PR window constrain Parzen (1962); Rosenblatt
(1956) on the k-nearest neighbor for a weak-uniformly distributed manifold which enforces
the accuracy of distance approximation in the isometric mapping algorithm (Algorithm 1
and Fig. ??). In this respect,

Definition 1 (PR density window) Parzen-Rosenblatt (PR) window is defined as:

1 i 1 X; — X
ph(X)—k;hg‘I’< A )7 3)

where k is the number of neighbors centered in the vector, z, py(x) denotes the probability
density of x, while h is the diameter of the window that helps to satisfy the approximation
of geodesic and Euclidean distances, and ® represents the window function. This could be a
rectangular function or a uniform distribution, similar to a window of size h. This function is
also called the density estimation function. In addition, PR-Isomap alters the graph weights
of a portion of each point’s k-nearest neighbors with respect to the pairwise distances on the
surface of the manifold, M, that meet the requirements for the PR window. The set of a
PR-limited points v (x;) ,7v (x;) € M are considered for projection as neighboring elements.
Suppose that the point v (x;), where v (x;) € Ngp (7(x5)) is the closest matching point
that can be used for measuring the distance Dy, (x;,%;), i.e.,

min D, (x5,%x5).
e N oy Do B0 %) (4)

Using the MDS generalized optimization, Appendix A:

min Dy (X) — Dy (V)3 5
subject to 7y (xx) € N (v (xk))

Definition 2 (Density-based Embedding) Consider a geometric graph based on a fized

set of points x1,...,x2 € R%. Let h be a real number defined for Ny, (v (xx)) such that

Dy~ (x4,%x5) < h implies that x, is connected to x; on the graph.

Using Definition 2, if we rewrite MDS distance equation instead of uniform neighboring
points on the HD and the LD space, but with a difference in pairwise distances in the HD
space as a constraint:
. 2
min [1Dg(X) = Dy (Y)]l -
subject to Dy~ (xi,%;) < h
where Dy (X) redefines as any pairwise distances on the surface of the HD manifold, M,
while the SP distance using an unweighted PR-based k-nearest neighbor graph, p,. Modi-
fied Dijkstra’s algorithm (Appendix B) calculates the shortest path and PR-Isomap under
Nih (7 (%)), where PR-window constraints the k-nearest neighbor path.
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Figure 2: Visualizations of the CT/PET images with tumors in the field of view for each
dataset. Tumors’ morphology and shape along with other visual features affect
the decision of an oncologist regarding treatment planning.

3.2. Treatment outcome prediction

We extracted HD radiomic features from image intensity, texture, and contextual informa-
tion within the intratumor that can be seen with an oncologist, more details are in Appendix
E. These HD radiomics were then transformed into an LD space while preserving maximum
information. To assess the predictive performance of LD radiomics for overall survival (OS),
we conducted binary classifications for treatment failure prediction. We also compared our
approach to other commonly used unsupervised dimensionality reduction (DR) methods,
including PR-Isomap, using multiple lung cancer datasets with diverse imaging parameters
to ensure robust performance. The following techniques are remained:

1) We used various frequently used DR models to reduce HD radiomics as baselines such
as the standard Isomap, tSNE, PCA, and PHATE models.

2) We conducted binary classification to investigate the power of prediction using LD ra-
diomics of a machine learning method, random forest. We performed 10-fold cross-validation
and fixed hyperparameters to ensure the quality of comparison.

3) The CPH model is used to predict OS. Kaplan Meier survival curves were also used to
distinguish between high- and low- risk patients with respect to median hazard.

4. Results and discussion

4.1. Study Data

NSCLC Radiogenomics (Multimodal PET/CT): the NSCLC-Radiogenomics dataset
Bakr et al. (2017); Gevaert et al. (2012); Clark et al. (2013) is used to provide images of
211 patients; we analyzed a sub-cohort of 130 patients for whom information on multimodal
imaging was available. These provided a dataset of 57836 CT images which had correspond-
ing PET images. We used our annotations of the tumors as observed on the medical images
using maps of tumors in the CT scans and from the PET scans.

NSCLC-Radiomics (LUNGO1): The second dataset contains images from 422 NSCLC
patients. The patients’ pretreatment was conducted using CT scans, and manual delin-
eation by a radiation oncologist of the 3D volume of the total tumor volume with additive
clinical outcome data Aerts et al. (2017, 2014).

NSCLC-Radiomics (LUNGO3): The third dataset contains 88 NSCLC CT scans and
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Figure 3: Visualization of the data dimensionality using heatmaps of CT radiomics of
NSCLC Radiogenomics dataset using different embedding methods.

Table 1: Predictive power via random forest for three different datasets, overall of 640 cases

of NSCLC.
Datasets Number of cases Modality PR-Isomap Isomap PCA tSNE PHATE
(Ours)
130 CT 78.5 (£4.4) 76.9(+5.8) 73.8 (£7.6) 76.9(£4.1) 76.2(£7.3)
NSCLC Radiogenomics
PET 78.5 (£5.1)  78.5(£6.3)  73.2 (£5.6) 76.9(%£5.3)  75.3(£9.9)
LUNGO3 88 cT 61.4 (£11.4) 52.7(+14.8) 49.6 (+15.1) 40.3(£15.5) 45.5(+14.4)
LUNGO1 422 CT 88.4 (+1.4) 87.7(£2.8) 86.9 (£2.5) 87.7(+3.1)  88.3 (+0.6)

mRNA expression Aerts et al. (2017, 2014).

A board-certified thoracic radiologist manually segmented the tumor area using the ITK-
SNAP software Yushkevich et al. (2006) (version 3.6.0) (Figure 2). Then HD radiomic
features Wilson and Devaraj (2017); Van Griethuysen et al. (2017) were extracted from
the images.

4.2. Experimental setup

Baselines. We compare PR density isometric mapping with four baselines, PCA Jolliffe
(2011), t-SNE Van der Maaten and Hinton (2008), standard Isomap Tenenbaum et al.
(2000), and PHATE Moon et al. (2019).

To visualize the LD embedded data in 3D, we use UMAP Mclnnes et al. (2018) to preserve
the data’s global structure.

Tasks. We employed three datasets to confirm the efficacy of PR-Isomap: NSCLC Ra-
diogenomics Bakr et al. (2017); Gevaert et al. (2012); Clark et al. (2013), LUNGO1 Aerts
et al. (2017, 2014), and LUNGO3 Aerts et al. (2017, 2014). More experimental details are
presented in Appendix C.



ONCOLOGISTS’ GAZE IMITATION

NSCLC Radiogenomics LUNGO1 LUNGO3
LD CT&PET radiomics w/ PRsomap & Clinical info. ~ L ~ H LD CT radiomics w/ PRIsomap & Clinical info. ~ L + H LD CT radiomics w/ PR-Isomap & Clinical info. = L ~ H
o0 100 100
%D 75 ;En 78 g 0.75-
Sos0 Soso Soso
S0 202 I
Loz 5% 80079 a 2 p=00076
- 000 000
; 00 2000 3600 100 [ 25000 50000 75000 16705
’ e e Time (Days) Time (Days)
no. at risk no. at risk no. at risk
65 26 5 0 21 89 42 25 7 44 30 16 7 ]
< 65 16 2 0 W21 53 20 9 1 W44 22 o 3 0
cT cT
9 LD CT radiomics using PR-Isomap L=-H “L=H 121D CT radiomics using PR-Isomap ~ L ~ H
z z z z
1 1 1 )
Sos £ Zosof K
H £ p'=0.0065 g 5
Time (Days) Time (Days) : Time (Days) : : Time (Days)
65 30 6 0 65 27 5 0 211 87 35 20 6 44 31 16 7 0
65 12 1 0 65 15 2 0 211 55 27 14 2 44 21 9 3 0
9 LD CT radiomics using Isomap L~H 9 LD PET radiomics using Isomap L~H 12 LD CT radiomics using Isomap L~H 10 LD CT radiomics using Isomap L+H
z s T . z R, z 5‘ \
H ] 1 § e
H H H H
5 1 s 1 -
3 . H H £os| oo
0% p=002 H H 0% FZ0.0e3
Tene Oos) Tine Oays) Tine Goys) L rmede -
65 2 5 0 65 25 5 0 211 85 38 20 4 44 26 14 6 0
65 18 2 0 65 17 2 0 211 57 24 14 4 44 26 1 4 0
9LD CT radiomics using PCA ~ L ~ H 9LD PET radiomics using PCA L ~ H 120D CT radiomics using PCA ~ L = H 10LD CT radiomics using PCA ~ L ~ H
o] TN, z z z
H - H H H
3 L 3 3 3
Sos B B K
H p=0043 3 H 3
Tene Ooys) Time Days) Tene (Bays) : Time Geys)
65 29 6 0 65 2 5 0 211 88 38 21 6 44 2 16 5 0
65 13 1 0 65 16 2 0 211 54 24 13 2 44 26 9 5 0
9 LD CT radiomics using tSNE L~H 10 LD CT radiomics using tSNE L~H
z e S z ::‘ ::‘ e,
{ i i {
30 3 H I
o p=0.085 H H % p=0.0032
Tene Oos) Tine Ooys) * e 0o : 0 e oy
65 20 3 0 65 23 5 0 211 82 37 21 5 44 33 17 7 0
65 22 4 0 65 19 2 0 211 60 25 13 3 44 19 8 3 0
91D PET radiomics using PHATE “LH g ipCTradiomics using PHATE e 12D CT radiomics using PHATE  + L = H 10LD CT radiomics using PHATE  ~ L = H
3 1 e — f@ \ i N
Eac - L g0 Eoo ——
§m 22058 E RO e L § B e
" Tme 0wy " 7 e " : T e - T e ow
o o sth o, stk [
65 27 3 [} 65 2 5 o 211 86 36 18 3 44 25 16 6 0
65 15 4 [ 7 2 o w211 56 2 16 5 44 27 9 4 0

Figure 4: LD Multivariant Survival prediction. Density isometric mapping exhibits
impressive discriminatory power in distinguishing between high-risk and low-risk
patients based on the median of diverse imaging biomarkers.

4.3. LD Multimodal Imaging Biomarkers

Classification evaluation and outcome prediction for the patients screening or under treat-
ment is a popular way of showing the predictability of LD radiomics. A supervised algo-
rithm, random forest classifier, was used to perform binary classification of patients’ treat-
ment responses to assess the prediction power of LD radiomics generated by the baselines.
Table 1 reports the quantitative accuracy produced by PR-Isomap, Isomap, tSNE, PCA,
and PHATE. PR-Isomap produces better accuracy than other baseline techniques. Thus,
PR-Isomap can be used to reduce HD radiomics and facilitate patient outcomes predictions.



4.4. Cox Proportional Hazard Model to Predict Survival

In Cox modeling of OS on the multimodal PET/CT dataset, the C-statistic of CT and
PET LD radiomics were 0.68 and 0.67 (95% CI), with the long-rank likelihood test p-value
of < 0.005, and 0.007, respectively. This result generated by PR-Isomap DR reduction
outperformed other DR methods used for the CT biomarker analysis while maintaining
the separation of high- and low- risk patients (Fig. 4). C-statistics of original Isomap
while having LD CT and PET radiomics yield 0.66 (p-value = 0.02) and 0.67 (p-value =
0.02), then the results of the CT biomarkers considered to be the second-best accuracy
after our proposed method. Despite slightly higher C-statistics of PHATE for the NSCLC
Radiogenomics dataset, 0.70 (0.06) for CT and 0.72 (0.02) for PET, the separation of high-
and low- risk patients under treatment was noticeably lower than other approaches (Fig.
4). In PET imaging markers, PCA generates the highest C statistic, which is inconsistent
with binary survival prediction. the lowest C statistic belonged to CT-PCA and PET-tSNE
radiomics yielding 0.63 (0.04) and 0.6 (0.02), respectively. A model including the CT-tSNE
radiomic avatars resulted in C-statistics of 0.64 with a p-value of 0.09. For both Lung01 and
Lung03 datasets, PR-Isomap generated LD radiomics alone yielded the highest C-Statistics
of 0.59 (< 0.0005) and 0.66 (0.002), respectively. Also, the Kaplan-Meier survival curve
indicates higher separation of the high- and low-risk patients based on the median of the
hazard (Fig. 4). The Cox models of OS all datasets using PR-Isomap radiomic avatars
had statistically significant separation of the Kaplan Meier curves for patients above versus
below the median hazard compared to other DR methods.

4.5. Discussion

Prediction of treatment response using HD radiomics to mimic an oncologist for specific
treatments for cancer patients using PR density isometric mapping showed considerable
strength compared to other commonly used techniques. PR-Isomap still suffers from the
same weaknesses as the original Isomap despite homogeneity constraint. This is due to
the nature of the data, which has been processed and may be improved using different
transformations to overcome the nonuniform structure of the data points on the manifold.

5. Conclusion

We propose predicting treatment response for NSCLC patients by looking at HD mul-
timodal imaging data. The density-based isometric mapping can be used to reduce the
dimensionality of data by projecting HD data to lower dimensional space. We use the
Parzen—Rosenblatt (PR) window to add a constrain to the initial isometrically mapping op-
timization maintaining more uniformity in the data projection. We applied density-based
isometric mapping to create LD projection of three NSCLC datasets containing multimodal
PET/CT and measured the classification accuracy and the predicted response of the LD
radiomics, to calculate the survival of the patients under specific treatment. The density-
based isometric mapping produces better outcomes than several popular unsupervised DR
methods to imitate an oncologist.
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Appendix A. MDS

Our data points can be shown as a combination of multiple vectorized data points, X =
[X1,X2,...,%,] € R¥>™ where {xi € Rd}?zl. We assume that there is a finite data point
drawn from our X. We can build a geometric graph G = (V; E) that has our data points
as vertices and connects vertices that are close to each other. We construct a k-nearest
neighbor graph for the x; connected to x; correspondingly and for x; to x;, show them by
(x;) and 7v(x;), v(xi), v(x;) € M. ~(.) represents a vector point on the manifold. The
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length of the path is defined by summing the edge weights along the path on the manifold.
The shortest path (SP) distance Dsp(y (x;), 7 (x;)) between two vertices v (x;), v (x;)
and defines based on the length of the SP connecting them. g (-) is a positive continuous
function for X in the given path v(-) connecting x; and x;, which is parameterized by
g-length of the path as

Dy (1) = / g(r(®) | A () dt, ()

where 7/(+) defines a small element on the manifold, also known as the line integral along
the path 7(-) with respect to g(-). Dy, denotes as distance on the manifold through
the shortest path. The g-geodesic path connecting x; and x; is the path with minimized
g-length Alamgir and Von Luxburg (2012). The shortest path is used for the Isomap
algorithm to find the path on the HD manifold for connecting two points. We assume that
the LD embedding of the training data with respect to the vectorized data points of the
observation can be shown as Y = [y1, yo,...,¥n] € RP*" where {yi € R”}?:l, and p < d,
desirably and usually p < d. The MDS method aims to project similar points of the data
close to each other and dissimilar points as far as possible. This is followed by the equation
below:

H%inHDgn(X) - Dg,v(Y)H%a (8)

where D, () is the shortest path distance from equation (1). D, (X) and Dy, (Y) are
any pairwise distances of the data in HD space and in the subspace and can be written by
similarity X7 X and YTY in the projected space, respectively. In MDS, the solution for
this problem is Y = Az VT, where VT and A are the eigenvector and eigenvalue matrices
of the input data, X.

Appendix B. Modified Algorithm

Density-based isometric embedding modifies Dijkstra’s algorithm is presented in Algorithm
1:

Appendix C. Experiment details

Implementation Details. To apply PCA and the standard t-SNE, we use the implemen-
tation from Minka (2000), and Hinton and van der Maaten (2008), respectively. To apply
UMAP for LD data visualization, we apply the implementation from Mclnnes et al. (2018).
For standard Isomap, we use Tenenbaum et al. (2000) implemented by Jake Vanderplas
(2011) '. We implement PR-Isomap based on the standard implementation of Isomap by
restricting k-nearest neighbors and the shortest path on the manifold and updating it with
the PR constraint.

Hyperparameters. For PCA and UMAP, we use the default hyperparameters, while we

1. Original implementation of isometric mapping https://scikit-learn.org/0.18/auto_examples/
manifold
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Algorithm 1: PR-Isometric Mapping. Dijkstra’s Algorithm

Data: {x;,X1,...,X,} € RP.
Result: {y1,y1,...,y.} € R%
Estimate: MDS on D- Geodesic distance pairwise point via shortest path & neighborhood
graph dissimilarity matrix D. D € R"*"(D;; =0, D;; > 0), K = —%HDH
K = —3HDH centering matrix of H, H = I — 1117
Y =Az VT
Constrained Dijkstra’s Algorithm
Form a weighted undirected graph G, = (v, Fe, w,) for g-nearest neighbor, ¢ < k.
For V vertex v, v € G : D4[v] <= 00, parent[v] <[], D[s]] < 0,
Q@ :=V nodes,n,n € g

while @ # [| do
u 4 v € Q & min D, [u]
remove u from Q
for V¥ NV;[u,v] € Q do
if D,u,v] <h, u,v € Ny then
alt < D, u] + Geedge(u,v)

if altjD~[v] then
D, [v] + alt
parent[v] < u

end
end

end
end

changed the tSNE iteration number to 500 and a random state of 3. For the binary classi-
fiers, we used untuned classification models but we feezed the hyperparameters throughout
the comparison for different DR methods and all models to keep the integrity of the analysis.
In Random Forest, we used 20 estimators, a maximum depth of the forest with four, and a
random state of 45. In the Naive Bayes, logistic regression, and support vector machine, we
use the default hyperparameters. The training follows the standard cross-validation score
with k = 8. For PR-Isomap, ® was a window function. h in the PR function was 16, and
10 for CT and PET radiomics for converting LD features.

Appendix D. Computational Complexity

PR-Isomap changes the complexity of Dijkstra’s algorithm on the new graph (see Algorithm
1), Ge, is O(log(N¢)Ee), N, and E, are the number of nodes and edges in G., respectively.
For a g-nearest-neighbor graph with the parameter ¢, we have ¢N/2 edges, resulting in
N, = qN/2 nodes in G.. Connecting each node to all ¢ neighbors, edges in G, in the worst
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case scenario is E. = ((¢NN/2)q)/2, leading to a complexity of O(log(¢N/2)((¢N/2)q)/2) =
O((q°N/4)log(gN/2)).

Appendix E. HD Medical Imaging Features

To extract radiomic features, the following steps must be taken: image acquisition, selection
of the region of interest (ROI) (usually a segmented tumor), and the application of various
imaging parameters (including non-contrast and contrast images, different convolutional
kernels, and varying slice thicknesses). A total of 862 features were extracted from these
images, 431 features from each imaging modality (Figure 4), divided into nine categories:
first-order statistics (FO), shape-based expression (SB), gray level co-occurrence matrix
(GLCM), gray level dependence matrix (GLDM), gray level run length matrix (GLRLM),
gray level size zone matrix (GLSZM), neighboring gray-tone difference matrix (NGTDM),
Laplacian of Gaussian (LOG), and three-layer filtering wavelet Wilson and Devaraj (2017);
Van Griethuysen et al. (2017).
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