
Control-DAG: Constrained Decoding for Non-Autoregressive Directed
Acyclic T5 using Weighted Finite State Automata

Anonymous ACL submission

Abstract

The Directed Acyclic Transformer is a fast001
non-autoregressive (NAR) model that performs002
well in Neural Machine Translation. Two is-003
sues prevent its application to general Natural004
Language Generation (NLG) tasks: frequent005
Out-Of-Vocabulary (OOV) errors and the in-006
ability to faithfully generate entity names. We007
introduce Control-DAG, a constrained decod-008
ing algorithm for our Directed Acyclic T5 (DA-009
T5) model which offers lexical, vocabulary and010
length control. We show that Control-DAG011
significantly enhances DA-T5 on the Schema012
Guided Dialogue and the DART datasets, estab-013
lishing strong NAR results for Task-Oriented014
Dialogue and Data-to-Text NLG.015

1 Introduction016

Non-autoregressive (NAR) models for text gener-017

ation offer the promise of much faster generation018

than auto-regressive (AR) models. However NAR019

models have been largely developed for Neural Ma-020

chine Translation (NMT) (Xiao et al., 2022), with021

other Natural Language Generation (NLG) tasks022

less well studied. We will show how a NAR model023

developed for NMT, the Directed Acyclic Trans-024

former (DAT) (Huang et al., 2022), can be used for025

generation in Task-Oriented Dialogue (TOD) and026

Data-to-Text (D2T) scenarios.027

DATs as originally developed for NMT perform028

poorly in NLG on TOD and D2T tasks: they fail029

to generate specified entity names in up to 40% of030

responses and frequently (>20%) produce Out-Of-031

Vocabulary (OOV) words. Practical systems must032

operate at zero error rate in these aspects to be033

deployable at scale. Previous NAR study reported034

similar error patterns (Xiao et al., 2022). Unless035

these shortcomings are addressed, NAR models036

will not be usable for general NLG.037

We introduce three constrained decoding proce-038

dures for NLG using DATs. Our approach converts039

Directed Acyclic Graphs (DAG) generated by DAT040

into Weighted Finite State Automata (WFSA). We 041

then intersect these WFSAs with other automata 042

that are defined to ensure that designated entities 043

(lexical constraints) are generated and OOVs are 044

eliminated (vocabulary constraints). To avoid gen- 045

erating responses that are too short, we employ 046

a Viterbi decoding algorithm to control the target 047

length of the generated text (length constraints). 048

We refer to the decoding procedure that in- 049

corporates all these steps as Control-DAG. We 050

evaluate extensively on the Schema Guided Di- 051

alogue (SGD) (Rastogi et al., 2020) and the Data 052

Record To Text (DART) datasets (Nan et al., 2021) 053

for NLG in TOD and D2T domains. Our Di- 054

rected Acyclic T5 model, when decoded with 055

Control-DAG, is free from OOV error, faithfully 056

generates all specified entity names, and achieves 057

marked BLEU and BLEURT gains on both datasets. 058

We use pynini (Gorman, 2016) for WFSA opera- 059

tions. Code will be released upon publication. Our 060

contributions are summarized below: 061

1. We introduce Control-DAG, a constrained de- 062

coding algorithm which simultaneously offers 063

lexical, vocabulary, and length controls for 064

Directed Acyclic models, addressing key limi- 065

tations in NAR text generation. 066

2. We demonstrate the effectiveness of 067

Control-DAG on two major NLG tasks: 068

Task-Oriented Dialogues and Data-to-Text. 069

To our knowledge, DA-T5 with Control-DAG 070

is the first practical NAR benchmark on the 071

SGD and the DART datasets. 072

2 Related Work 073

The Directed Acyclic Transformer (DAT) (Huang 074

et al., 2022) performs on par with AR baselines 075

in NMT and has attracted much interests. Shao 076

et al. (2022) developed a Viterbi decoding algo- 077

rithm for DAT. Ma et al. (2023) introduced a fuzzy 078

1

alignment objective to improve DAT training. In079

NLG, PreDAT (Huang et al., 2023) pretrains a DAT080

for open-domain dialogue, notably with high word081

error rate reported even after extensive pre-training.082

Our work highlights the links between DATs and083

automata, and shows well-studied WFSA algo-084

rithms (Mohri et al., 2002) can be used in con-085

strained decoding to eliminate OOV errors.086

Enforcing lexical constraints in auto-regressive087

decoding has been studied extensively. Con-088

strained beam search (CBS) (Post and Vilar, 2018;089

Hu et al., 2019; Li et al., 2020) is a widely used090

family of lexically constrained decoding procedure.091

We show how CBS can be adapted to NAR Di-092

rected Acyclic models.093

3 Constrained Decoding with DA-T5094

The architecture of our DA-T5 model follows that095

of the DAT by Huang et al. (2022). Conceptually,096

DAT takes an input sequence and generates a DAG097

with a pre-determined number of DAG vertices.098

Vertex embeddings are produced first, and then099

token emission probabilities and state transition100

probabilities are generated from these vertex em-101

beddings via softmax and self-attention, resp. Each102

vertex has a token emission distribution. These103

vertices and transitions define a weighted DAG104

that contains output string hypotheses. DAT uses a105

vanilla Transformer to produce vertex embeddings106

whereas we use T5, hence the name DA-T5.107

In training DA-T5, we use ‘glancing training’108

(Qian et al., 2021) as DAT. In inference, DAGs are109

generated with DA-T5 and converted to WFSAs.110

The procedure is simply Moore-to-Mealy Machine111

conversion (Appendix B.1). Prior to the conver-112

sion, we perform likelihood-based pruning of each113

vertex, keeping Ke most likely output tokens and114

Kt most likely out-going arcs. This pruning bal-115

ances coverage against decoding speed, with larger116

thresholds leading to a more complete WFSA at117

the cost of slower decoding.118

3.1 Constrained Decoding119

For hard lexical and vocabulary constraints we120

build corresponding Finite State Automata (FSA).121

Intersecting the WFSA with these constraint FSAs122

produces a WFSA that only contains hypotheses123

that satisfy all constraints (Mohri et al., 2002). For124

length constraints, we propose a pruned version125

of DAT Viterbi decoding by Shao et al. (2022)126

to search for strings with specified length. Ap-127

pendix B gives implementation details and com- 128

plexity analyses. 129

Hard Lexical Constraints (HLC) For each 130

phrase Ci that must appear in the generation, we 131

construct a constraint FSA Ai that accepts and 132

only accepts strings where the phrase Ci appears at 133

least once, corresponding to the regular expression 134

“. ∗ (Ci).∗” (IEEE, 2004). We then intersect the 135

WFSA converted from the DAG with all of the con- 136

straint FSAs. The resulting WFSA WHLC contains 137

only hypotheses that satisfy all lexical constraints. 138

Vocabulary Constraints (VC) We build a vo- 139

cabulary FSA Avocab that accepts and only accepts 140

strings of words from a valid vocabulary; intersec- 141

tion with Avocab prevents OOV errors. Avocab is 142

obtained from three FSAs: a dictionary FSA Adict 143

that accepts and only accepts English words; a spe- 144

cial token FSA Aspec that accepts and only accepts 145

numbers, punctuation, and special tokens; and a 146

dynamic FSA Adyn that accepts and only accepts 147

entity names specified in the input. The final vo- 148

cabulary FSA Avocab is obtained by unioning the 149

three FSAs and taking the Kleene closure (Eq.1). 150

Avocab = (Adict ∪Aspec ∪Adyn)
∗ (1) 151

For efficiency, we perform a one-time deter- 152

minization and minimization (Mohri et al., 2002) 153

of the union (Adict∪Aspec) and store the optimized 154

FSA in memory. 155

Length Constraints (LC) Shao et al. (2022) in- 156

troduced a Viterbi decoding procedure for DAT that 157

finds the highest scoring hypothesis for each string 158

length. We find this exact Viterbi procedure to be 159

impractical because the number of WFSA states 160

can be large (>30,000) after intersection with the 161

constraint FSAs. We introduce a pruned version of 162

this procedure, Depth-First Search Viterbi (DFS- 163

Viterbi). DFS-Viterbi searches the WFSA with 164

DFS and keeps the best hypotheses of all possible 165

string lengths at each vertex to avoid repeated com- 166

putation. During DFS, we only explore the minimal 167

set of out-going edges such that their cumulative 168

probability is bigger than a threshold p. This prun- 169

ing is inadmissible but works well in practice. We 170

also introduce an exponential length penalty that 171

penalizes strings shorter than target length Ltgt and 172

select the hypothesis with the lowest overall costs. 173

In experiments to follow, Ltgt is obtained via sim- 174

ple linear regression. 175

2

Decoding BLEURT BLEU BLEU-BP NEO↓ SER↓ Time Spd. Up
T5-small (Auto-regressive)

1 Greedy 69.7 28.8 1.00 0.0 0.49 13:30 x1.6
2 Beam search (BS) 70.2 29.1 1.00 0.0 0.12 16:05 x1.4
3 Constrained beam (CBS) 65.6 22.5 1.00 0.0 0.0 22:15 x1.0

Directed Acyclic T5-small (Non-Autoregressive)
4 Greedy 56.0 18.3 0.92 29.7 46.3 2:52 x7.8
5 Beam search 55.6 16.0 0.60 20.7 20.6 6:50 x3.3
6 CBS-DAG 59.8 21.7 0.73 19.2 0.0 5:57 x3.7
7 WFSA shortest path 53.8 13.0 0.44 12.2 34.8 3:04 x7.3
8 w/ HLC 58.1 20.2 0.58 11.0 0.0 5:16 x4.2
9 w/ VC 54.0 14.1 0.45 0.0 47.5 4:18 x5.2
10 w/ LC (DFS-Viterbi) 58.5 20.8 1.00 21.9 45.8 3:31 x6.3
11 Control-DAG 60.0 22.9 1.00 0.0 0.0 13:14 x1.7

Table 1: Main results on the SGD dataset. For reference, auto-regressive T5-small by Kale and Rastogi (2020)
achieves 26.2 BLEU and 0.80 SER. BP stands for the brevity penalty term in computing BLEU. SER stands for Slot
Error Rate in percentage. All speed ups are computed against auto-regressive constrained beam search. Constrained
beam search (Row 3) forces the replication of slot values that need to appear exactly and hence has zero slot
error rate. CBS-DAG (Row 6) refers to Constrained beam search adapted for Directed Acyclic Graph introduced
in Sec.3.1. HLC refers to Hard Lexical Constraint; VC is Vocabulary Constraint; and LC is Length Constraint.
Control-DAG (Row 11) is WFSA shortest path decoding with HLC, VC, and LC applied simultaneously.

HLC with CBS In addition to automata-based176

methods, we introduce CBS-DAG, a constrained177

beam search algorithm for our NAR DA-T5. CBS-178

DAG is straight-forwardly adapted from AR CBS179

by Hu et al. (2019) (Appendix B.4).180

4 Experiments and Results181

We evaluate on the SGD and the DART182

datasets. In SGD, the aim is to generate183

natural utterances from dialogue actions (e.g.,184

INFORM(destination=Cambridge)) that contain185

the specified information. DART is a more general186

data-to-text task that takes triplets of (SUBJECT,187

RELATION, OBJECT) to generate natural texts.188

Hyper-parameters and implementation details are189

in Appendix A.190

Metrics We use BLEURT (Sellam et al., 2020)191

and BLEU (Papineni et al., 2002) to measure text192

quality relative to ground truth text. We also report193

the BLEU Brevity Penalty (BP), as a small BP indi-194

cates too short generation. For SGD, we use Slot195

Error Rate (SER) (Kale and Rastogi, 2020) to eval-196

uate lexical faithfulness. A slot error occurs when197

a slot value that should be reproduced exactly (e.g.,198

a phone number) is not in the generated text. For199

DART, we use subjects/objects whose string val-200

ues are always in the ground-truth training text as201

hard lexical constraints and propose Exact Occur-202

rence error Rate (EOR) for evaluation. EOR is the203

percentage of model responses where at least one 204

of the string values from these subjects/objects is 205

missing. For OOV errors, we define neologism rate 206

(NEO) to be the percentage of model’s responses 207

that contain at least one OOV generation. 208

We emphasize that SER, EOR, and OOV are crit- 209

ical metrics as even a small error rate could lead to 210

an intolerable number of misleading responses for 211

systems deployed at scale. ‘Speed up’ is measured 212

against auto-regressive CBS implemented by Li 213

et al. (2020) with batch size of 1 to reflect a realis- 214

tic NLG system that operates at zero SER/EOR. 215

Training We train DA-T5 from scratch by glanc- 216

ing training by Qian et al. (2021) on the SGD and 217

the DART datasets for 30 and 50 epochs, respec- 218

tively. Auto-regressive T5 is trained following 219

Chen et al. (2023). 220

Decoding configurations We use Kt = Ke = 3 221

and Kt = Ke = 5 for DAG-to-WFSA conversion 222

on SGD and DART, respectively. For LC, we fit a 223

simple linear regression model on the training set to 224

predict the target token length given the input token 225

length. Decoding hyper-parameters are determined 226

on the validation sets. 227

4.1 Non-Autoregressive NLG on SGD 228

Table 1 reports NLG performance on SGD with 229

auto-regressive T5 decoding in Rows 1-2 with 230

3

Decoding BLEURT BLEU NEO SER
Greedy 56.0 18.3 29.7 46.3
Lookahead 56.6 19.3 23.0 44.6
Viterbi 52.7 13.4 12.4 50.5
Joint Viterbi 52.1 12.6 10.5 50.6
Control-DAG 60.0 22.9 0.00 0.00

Table 2: Performance on the SGD dataset using Control-
DAG and other decoding algorithms in the literature.
NEO stands for Neologism rate. Huang et al. (2022)
proposed Lookahead. Shao et al. (2022) introduced
Viterbi and Joint Viterbi.

greedy and beam search. Although these sys-231

tems yield high BLEURT and BLEU, they still232

commit slot errors (SER=0.12%). Constrained233

Beam Search (CBS) eliminates slot errors by forc-234

ing the generation of designated slot values, but235

with longer decoding times (16:05→ 22:15) and a236

degradation in BLEU (−6.6) and BLEURT (−4.6)237

compared to unconstrained beam search. This238

constraint-quality trade-off is also observed in pre-239

vious study (Post and Vilar, 2018); See Appendix240

E for CBS failure modes. Auto-regressive T5 is241

completely free from OOV errors (NEO=0.0).242

Turning to non-autogressive NLG, generation243

with DA-T5 using common decoding methods244

(greedy, beam search) leads to very high SER (>245

20%) and OOV errors in at least 20% of the gen-246

erated responses (Rows 4, 5). Although our CBS-247

DAG (Row 6) eliminates SER by design and en-248

hances quality as measured by BLEURT (+3.8) and249

BLEU (+3.4), its neologism rate is still unusably250

high (19.2%).251

We now discuss the performance of our con-252

strained decoding methods. Unconstrained WFSA253

shortest path decoding (Row 7) is as fast as254

greedy decoding, showing that DAGs can be ef-255

ficiently converted to WFSAs. However, uncon-256

strained generation directly from the WFSA fre-257

quently leads to slot errors (SER=34.8%), OOV258

errors (NEO=12.2%), and a harsh brevity penalty259

(BP=0.44). These aspects of text quality can be260

improved individually by constrained decoding261

(Rows 8-10): Hard Lexical Constrained decod-262

ing eliminates slot errors (SER=0); Vocabulary263

constraints eliminate OOV errors (NEO=0); and264

Length constrained decoding leads to better text265

lengths (BP=1.0). Control-DAG (Row 11) com-266

bines these methods to achieves zero SER and zero267

neologism rate while satisfying the length require-268

ment and yielding a speed advantage of x1.7 rela-269

tive to auto-regressive CBS. 270

Table 2 compares decoding procedures devel- 271

oped for DA-Transformer in NLG from DA-T5 272

models. Control-DAG has the overall best BLEU 273

(22.9) and BLEURT (60.0) . 274

4.2 Results on DART 275

Decoding BLEURT NEO↓ EOR↓ Spd.Up
BS 72.8 3.2 3.9 x1.1
CBS 70.5 3.3 0.0 x1.0
Greedy 45.0 48.9 39.5 x10.1
Control-DAG 46.8 0.0 0.0 x1.4

Table 3: Results on the DART dataset. The upper two
rows are from AR T5-small and the lower two from
NAR DA-T5. EOR is Exact Occurrence Error (Sec.A).
The full table is in Appendix (Table 4).

The results on DART (Table 3) validate our find- 276

ings on the SGD dataset: Control-DAG yields the 277

best performance while maintaining a speed ad- 278

vantage and each constrained decoding step con- 279

tributes as expected (Table 4, Appendix). We now 280

contrast performance on DART and SGD to show 281

how Control-DAG performs on tasks with very dif- 282

ferent characteristics. 283

DART has a challenging vocabulary that causes 284

even AR models to commit OOV errors. This is 285

also reflected by the much higher neologism rate 286

when decoding DA-T5 with greedy (48.9% versus 287

29.7% in SGD). This explains why less aggres- 288

sive pruning (top-5) is needed for DART relative 289

to SGD (top-3). We find the simple procedure 290

of searching the training data for subjects/objects 291

whose values are exactly reproduced and using 292

them as lexical constraints boosts DA-T5 perfor- 293

mance by +4.7 BLEURT and +3.6 BLEU (Row 294

8, Table 4). This demonstrates that hard lexical 295

constraints are effective and easy to apply for less 296

lexically constrained NLG tasks such as DART. 297

5 Conclusion 298

We propose Control-DAG for decoding non- 299

autoregressive Directed Acyclic models with lex- 300

ical, vocabulary, and length constraints, address- 301

ing key limitations in NAR text generation. Con- 302

strained decoding is efficiently performed via well- 303

studied Weighted Finite State Automata algorithms. 304

DA-T5 with Control-DAG establishes strong NAR 305

results on the Schema Guided Dialogue and the 306

DART datasets, bridging gaps in NAR research. 307

4

6 Limitation308

Given our focus on decoding algorithms, we leave309

further training and model scaling to future work.310

It is possible to further improve inference speed311

by writing the DAG-to-WFSA conversion and the312

DFS-Viterbi algorithm in C to reduce overhead313

from the python interface. In this paper, we demon-314

strate significant speed-up can be achieved without315

these optimizations and leaves further speed-up316

techniques to future work.317

7 Ethical Statement318

We trained two versions of the DA-T5 model: one319

on the training set of Schema Guided Dialogue and320

one on the training set of the DART dataset. These321

are English datasets and do not contain sensitive322

personal information or offensive language. De-323

tailed statistics of the SGD and DART datasets can324

be found in Rastogi et al. (2020) and Nan et al.325

(2021), respectively. We note that the model may326

hallucinates information or generates language that327

appears offensive. Some linguistic phenomena of328

our DA-T5 models are in Appendix E. It is vital that329

developers test DA-T5 fully before deployment.330

All software packages that our code built on are331

used as their original intention. We will release our332

code under the MIT license.333

References334

Jinghong Chen, Weizhe Lin, and Bill Byrne. 2023.335
Schema-guided semantic accuracy: Faithfulness in336
task-oriented dialogue response generation. CoRR,337
abs/2301.12568.338

Kyle Gorman. 2016. Pynini: A Python library for339
weighted finite-state grammar compilation. In Pro-340
ceedings of the SIGFSM Workshop on Statistical NLP341
and Weighted Automata, pages 75–80, Berlin, Ger-342
many. Association for Computational Linguistics.343

J. Edward Hu, Huda Khayrallah, Ryan Culkin, Patrick344
Xia, Tongfei Chen, Matt Post, and Benjamin Van345
Durme. 2019. Improved lexically constrained de-346
coding for translation and monolingual rewriting. In347
Proceedings of the 2019 Conference of the North348
American Chapter of the Association for Computa-349
tional Linguistics: Human Language Technologies,350
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-351
7, 2019, Volume 1 (Long and Short Papers), pages352
839–850. Association for Computational Linguistics.353

Fei Huang, Pei Ke, and Minlie Huang. 2023. Di-354
rected acyclic transformer pre-training for high-355
quality non-autoregressive text generation. CoRR,356
abs/2304.11791.357

Fei Huang, Hao Zhou, Yang Liu, Hang Li, and Minlie 358
Huang. 2022. Directed acyclic transformer for non- 359
autoregressive machine translation. In Proceedings 360
of the 39th International Conference on Machine 361
Learning, volume 162 of Proceedings of Machine 362
Learning Research, pages 9410–9428. PMLR. 363

The Open Group IEEE. 2004. Chapter 9: Regular 364
Expressions, ieee std 1003.1, 2004 edition edition, 365
volume 6, chapter 9. IEEE. Archived from the origi- 366
nal on 2011-12-02. Retrieved 2011-12-13. 367

Mihir Kale and Abhinav Rastogi. 2020. Template 368
guided text generation for task-oriented dialogue. In 369
Proceedings of the 2020 Conference on Empirical 370
Methods in Natural Language Processing, EMNLP 371
2020, Online, November 16-20, 2020, pages 6505– 372
6520. Association for Computational Linguistics. 373

Zhongyang Li, Xiao Ding, Ting Liu, J. Edward Hu, 374
and Benjamin Van Durme. 2020. Guided generation 375
of cause and effect. In Proceedings of the Twenty- 376
Ninth International Joint Conference on Artificial 377
Intelligence, IJCAI 2020, pages 3629–3636. ijcai.org. 378

Zhengrui Ma, Chenze Shao, Shangtong Gui, Min Zhang, 379
and Yang Feng. 2023. Fuzzy alignments in directed 380
acyclic graph for non-autoregressive machine trans- 381
lation. In The Eleventh International Conference 382
on Learning Representations, ICLR 2023, Kigali, 383
Rwanda, May 1-5, 2023. OpenReview.net. 384

Mehryar Mohri, Fernando Pereira, and Michael Riley. 385
2002. Weighted finite-state transducers in speech 386
recognition. Comput. Speech Lang., 16(1):69–88. 387

Linyong Nan, Dragomir R. Radev, Rui Zhang, Am- 388
rit Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xi- 389
angru Tang, Aadit Vyas, Neha Verma, Pranav Kr- 390
ishna, Yangxiaokang Liu, Nadia Irwanto, Jessica 391
Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma, 392
Yasin Tarabar, Ankit Gupta, Tao Yu, Yi Chern Tan, 393
Xi Victoria Lin, Caiming Xiong, Richard Socher, and 394
Nazneen Fatema Rajani. 2021. DART: open-domain 395
structured data record to text generation. In Proceed- 396
ings of the 2021 Conference of the North American 397
Chapter of the Association for Computational Lin- 398
guistics: Human Language Technologies, NAACL- 399
HLT 2021, Online, June 6-11, 2021, pages 432–447. 400
Association for Computational Linguistics. 401

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 402
Jing Zhu. 2002. Bleu: A method for automatic evalu- 403
ation of machine translation. In Proceedings of the 404
40th Annual Meeting on Association for Computa- 405
tional Linguistics, ACL ’02, page 311–318, USA. 406
Association for Computational Linguistics. 407

Matt Post and David Vilar. 2018. Fast lexically con- 408
strained decoding with dynamic beam allocation for 409
neural machine translation. In Proceedings of the 410
2018 Conference of the North American Chapter 411
of the Association for Computational Linguistics: 412
Human Language Technologies, NAACL-HLT 2018, 413

5

https://doi.org/10.48550/arXiv.2301.12568
https://doi.org/10.48550/arXiv.2301.12568
https://doi.org/10.48550/arXiv.2301.12568
https://doi.org/10.18653/v1/W16-2409
https://doi.org/10.18653/v1/W16-2409
https://doi.org/10.18653/v1/W16-2409
https://doi.org/10.18653/v1/n19-1090
https://doi.org/10.18653/v1/n19-1090
https://doi.org/10.18653/v1/n19-1090
https://doi.org/10.48550/arXiv.2304.11791
https://doi.org/10.48550/arXiv.2304.11791
https://doi.org/10.48550/arXiv.2304.11791
https://doi.org/10.48550/arXiv.2304.11791
https://doi.org/10.48550/arXiv.2304.11791
https://proceedings.mlr.press/v162/huang22m.html
https://proceedings.mlr.press/v162/huang22m.html
https://proceedings.mlr.press/v162/huang22m.html
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.24963/ijcai.2020/502
https://doi.org/10.24963/ijcai.2020/502
https://doi.org/10.24963/ijcai.2020/502
https://openreview.net/pdf?id=LSz-gQyd0zE
https://openreview.net/pdf?id=LSz-gQyd0zE
https://openreview.net/pdf?id=LSz-gQyd0zE
https://openreview.net/pdf?id=LSz-gQyd0zE
https://openreview.net/pdf?id=LSz-gQyd0zE
https://doi.org/10.1006/csla.2001.0184
https://doi.org/10.1006/csla.2001.0184
https://doi.org/10.1006/csla.2001.0184
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/n18-1119
https://doi.org/10.18653/v1/n18-1119
https://doi.org/10.18653/v1/n18-1119
https://doi.org/10.18653/v1/n18-1119
https://doi.org/10.18653/v1/n18-1119

New Orleans, Louisiana, USA, June 1-6, 2018, Vol-414
ume 1 (Long Papers), pages 1314–1324. Association415
for Computational Linguistics.416

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin417
Qiu, Weinan Zhang, Yong Yu, and Lei Li. 2021.418
Glancing transformer for non-autoregressive neural419
machine translation. In Proceedings of the 59th An-420
nual Meeting of the Association for Computational421
Linguistics and the 11th International Joint Confer-422
ence on Natural Language Processing, ACL/IJCNLP423
2021, (Volume 1: Long Papers), Virtual Event, Au-424
gust 1-6, 2021, pages 1993–2003. Association for425
Computational Linguistics.426

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,427
Raghav Gupta, and Pranav Khaitan. 2020. Towards428
scalable multi-domain conversational agents: The429
schema-guided dialogue dataset. In Proceedings of430
the AAAI Conference on Artificial Intelligence, vol-431
ume 34, pages 8689–8696.432

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.433
2020. BLEURT: learning robust metrics for text434
generation. In Proceedings of the 58th Annual Meet-435
ing of the Association for Computational Linguistics,436
ACL 2020, Online, July 5-10, 2020, pages 7881–7892.437
Association for Computational Linguistics.438

Chenze Shao, Zhengrui Ma, and Yang Feng. 2022.439
Viterbi decoding of directed acyclic transformer for440
non-autoregressive machine translation. In Findings441
of the Association for Computational Linguistics:442
EMNLP 2022, Abu Dhabi, United Arab Emirates,443
December 7-11, 2022, pages 4390–4397. Associa-444
tion for Computational Linguistics.445

Tyler Barrus. 2018. Pyspellchecker: Pure Python446
Spell Checking. https://pypi.org/project/447
pyspellchecker/. Python version: 3.448

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min449
Zhang, Tao Qin, and Tie-Yan Liu. 2022. A survey450
on non-autoregressive generation for neural machine451
translation and beyond. CoRR, abs/2204.09269.452

A Experiment setup details453

Metrics details For BLEURT, we use the454

BLEURT-20 checkpoint. For BLEU, we use the455

sacrebleu implementation. Decoding times are456

average of three runs on a single A100 GPU for457

the SGD dataset and on a single V100 GPU for the458

DART dataset.459

Vocabulary for neologism evaluation From the460

entire corpus, we extract all space-delimited words,461

strip punctuation and numbers, and maintain true462

cases. All words in the test corpus are also added to463

the evaluation vocabulary without pre-processing.464

Note that they are not added to the constraint vo-465

cabulary for VC decoding to avoid leakage. For466

the SGD, we also add all words in the slot names, 467

slot values, and slot descriptions from the schema, 468

resulting in a vocabulary of 19,126 words. In evalu- 469

ation, we only strip punctuation from words in the 470

generated texts. We also use the pyspellchecker 471

library (Tyler Barrus, 2018) to check that the word 472

in question is indeed OOV. 473

Exact Occurrence Error We go through the 474

training data to identify subjects/objects that are al- 475

ways present in the ground-truth text. For example, 476

we find that the subject of the relation priceRange 477

always appear in the ground-truth text. Whenever 478

priceRange appears during testing, we treat the 479

string value of its subject as hard lexical constraints. 480

If the string cannot be found in the generated text, 481

an exact occurrence error is flagged. 482

Data Preprocessing We linearize the input di- 483

alogue actions or triplets to strings as input to 484

our DA-T5 model. On the SGD, we follow the 485

Schema Guided Linearization by Kale and Rastogi 486

(2020) to process our input data. On DART, we 487

process the triplets into arrays of “<h> SUBJECT 488

<r> RELATION <t> OBJECT” where <h>, <r>, and 489

<t> are special tokens. 490

Training hyper-parameters The DAG vertex 491

size L is determined by the upsample factor λ 492

(L = λ × N where N is the input length) with 493

λ = 5 for both the SGD and the DART datasets. 494

We use the T5-small architecture with randomly 495

initialized weights to generate vertex embeddings 496

(79.3M trainable parameters). We train the model 497

with a learning rate of 1e-4, a batch size of 8 using 498

the AdamW optimizer. Glancing training is used 499

to facilitate training with a constant annealing fac- 500

tor τ = 1.0. SGD training took around 13 hours 501

(25 minutes per epoch) on a single A100 GPU in- 502

cluding all validation runs. DART training took 24 503

hours on a single V100 GPU. We find that glancing 504

training is critical to successful training. Without it 505

the model performs poorly (4.6 BLEU on the SGD 506

when decoded with Greedy). 507

Target length predictor Let x be the input 508

length in tokens, Ltgt = ⌈26.1x + 0.4⌉ for the 509

SGD and Ltgt = ⌈0.5x + 11.9⌉ for DART. Co- 510

efficients are fitted on the validation set. We use 511

strictness A = 1 in LC decoding. 512

Beam search Auto-regressive Beam Search (BS) 513

and Constrained Beam Search (CBS) use beam size 514

6

https://doi.org/10.18653/v1/2021.acl-long.155
https://doi.org/10.18653/v1/2021.acl-long.155
https://doi.org/10.18653/v1/2021.acl-long.155
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.322
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.322
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.322
https://pypi.org/project/pyspellchecker/
https://pypi.org/project/pyspellchecker/
https://pypi.org/project/pyspellchecker/
https://doi.org/10.48550/arXiv.2204.09269
https://doi.org/10.48550/arXiv.2204.09269
https://doi.org/10.48550/arXiv.2204.09269
https://doi.org/10.48550/arXiv.2204.09269
https://doi.org/10.48550/arXiv.2204.09269

= 5. CBS-DAG uses a base beam size of 4 with515

dynamic adjustment (Sec.B.4).516

B Algorithmic details517

B.1 DAG-to-WFSA conversion518

A Weighted FSA (WFSA) consists of states and519

weighted directed arcs connecting the states. The520

outputs (tokens) are labeled on the arcs. DAG-521

to-WFSA is simply Moore Machine to Mealy522

Machine conversion by treating DAG vertices as523

WFSA states and exploding the output tokens at524

DAG vertices to WFSA arc labels. WFSA arc525

weights are the sum of negative log-likelihood for526

state transition and token emission. The best path527

has maximal likelihood.528

We prune the DAG before conversion to reduce529

the number of WFSA arcs. For each vertex u in530

the DAG, we only keep the top Ke tokens and top531

Kt transitions in descending probabilities. We also532

keep tokens that appear in the constraint phrases,533

ensuring there exists paths that realize lexical con-534

straints in the WFSA (Algo.2). Algo.1 shows535

pseudo-code. × denotes Cartesian product.536

Algorithm 1 DAG to WFSA conversion
Inputs: DAG vertices V , transition matrix
E, emission matrix P , emission degree Ke

and transition degree Kt. Lexical constraint
phrases C = [C1, ..., CM].

1: E ← ∅
2: for u ∈ topological_sort(V) do
3: T [u]← arg topk(P [u, :],Ke)
4: S[u]← arg topk(E[u, :],Kt)
5: T [u]← T [u] ∪ FORCEEMIT(u, C)

▷ Forced emission (Algo.2)
6: for t, v ∈ T [u]× S[u] do
7: w = −(logP [u, t] + logE[u, v])
8: e← (u, t, w, v)
9: E ← E ∪ {e}

10: end for
11: end for
12: Construct the WFSA with edge set E

Finding the shortest path has linear complex-537

ity in the number of edges because our WFSA is538

acyclic. The pruning parameters, Kt and Ke, trades539

of completeness with decoding speed. Larger val-540

ues lead to a more complete WFSA at the cost of541

longer decoding time.542

Algorithm 2 The ForceEmit function
Inputs: Vertex predecessors under top-K tran-
sition pruning N−

Kt
(v). Lexical constraint

phrases C = [C1, ..., CM]. Emission tokens
at all predecessor vertices T [·]

1: function FORCEEMIT(u, C)
2: F ← ∅
3: for phrase Ci ∈ C do
4: for token tj in Ci[: −1] do
5: for v ∈ N−

Kt
(u) do

6: if tj ∈ T [v] then
7: F ← F ∪ {tj+1}

▷ Force-emit the next token tj+1 in phrase Ci

8: end if
9: end for

10: end for
11: end for
12: return F

B.2 Vocabulary Constraint 543

We elaborate on how to construct the FSAs for 544

vocabulary constraints below: 545

Dictionary FSA From the training corpus, we ex- 546

tract space-delimited unigrams, strip numbers and 547

punctuation, sort them in descending frequency, 548

and cutoff at 90% cumulative frequency. This re- 549

sults in a vocabulary V of 1129 words on the SGD 550

dataset. We then tokenize each unigram with the T5 551

tokenizer, build FSA that accepts and only accepts 552

the tokenized sequence (e.g. “photosynthesis” 553

→ “_photo”, “synthesis”), and union these 554

FSAs to form the dictionary FSA Adict. 555

Special token FSA Aspec accepts and only 556

accepts punctuation “$&’()*+,-./:;=>?@[]_”, 557

start-of-sentence <s>, end-of-sentence token </s>, 558

and T5 tokenizer’s start-of-word mark (u2581 “_”). 559

Dynamic FSA : Adyn is built for each input. 560

Given the entity names, we tokenize them, build 561

FSAs that accepts and only accepts the token se- 562

quence for each entity, and take the union. Note 563

that entity names may include space. For exam- 564

ple, Adyn may accept “Hong Kong” but not the 565

constituent unigrams “Hong” and “Kong”. 566

B.3 Length Constraint 567

Algo.3 lists the DFS-Viterbi algorithm and the sym- 568

bol definitions. The recursive relation is given in 569

Eq.2. For each vertex, we memoize the current best 570

7

string of each length and their costs. The shortest571

path is recovered with parent pointers.572

δ(u, l + 1) = min
v∈N+

p (u)
w(u, v) + δ(v, l) (2)573

We fit a first-order linear model to predict target574

length Ltgt from input length. Length is measured575

in tokens and coefficients are given in Appendix576

A. Enforcing a strict length constraint can lead577

to incomplete sentences. Therefore, we find the578

best l−length string for l = 1, . . . , Lupper, where579

Lupper = min(Ltgt + 5, Ltgt × 1.5) and intro-580

duce an exponential length penalty (Eq.3) similar581

to BLEU. The candidate with the lowest overall582

cost C ′ (Eq.4) is chosen as the final generation. We583

use simple linear regression to specify the length584

target Ltgt.585

LP =

{
exp

(
A(Ltgt/l − 1)

)
, if l < Ltgt

1, otherwise
(3)586

C ′ = LP × δ(us, l) (4)587

The WFSA software implementation,588

pynini (Gorman, 2016), allows us to effi-589

ciently traverse the WFSA as graphs. Prior to590

running DFS-Viterbi, we sort the WFSA states591

topologically and perform epsilon-removal (Mohri592

et al., 2002). Epsilon transitions do not have593

actual token labels, and are removed to prevent594

over-counting the output length. The WFSA can be595

topologically sorted because intersection preserves596

the acyclic property of its input: any cycles will597

result in strings of unbounded length which cannot598

be accepted by the acyclic WFSA.599

Let |V | be the number of WFSA states. The600

space complexity of memoization is O(Ltgt×|V |).601

The worst-case time complexity is exponential602

O(L
|V |
tgt). However, we observe a linear time com-603

plexity of O(Ltgt) when applying DFS-Viterbi to604

our trained DA-T5 model. We attribute the effi-605

ciency to: (1) memoization; (2) transition probabil-606

ities are concentrated on a few successors. We find607

that the number of out-going edges after pruning,608

|N+
p (u)|, approximates 1 when p = 0.7, leading to609

very efficient search.610

B.4 Constrained Beam Search for Directed611

Acyclic Graphs (CBS-DAG)612

CBS-DAG follows the beam expansion and prun-613

ing rules in Dynamic Beam Allocation (DBA) (Post614

Algorithm 3 DFS-Viterbi finds the shortest path
with exactly Ltgt edges.

1: function DFS-VITERBI(u, l, δ, Ltgt, N+, w)
2: Arguments:
3: u: current vertex.
4: l: target length (number of edges) from

vertex u to a final vertex.
5: δ: memoization table storing shortest dis-

tance to vertex u with exactly l edges.
6: F : set of final states (vertices).
7: N+

p (u): minimal set of successors of ver-
tex u with cumulative probability > p.

8: w(u, v): edge weight from vertex u to v.
9: if v is in F then

10: return 0
11: end if
12: if δ[u, l] is not NULL then
13: return δ[u, l]
14: end if
15: min_distance←∞
16: for all v ∈ N+(u) do
17: dist← w(u, v)+ DFS-VITERBI(v, l+

1, δ, F,N+, w)
18: if dist < min_distance then
19: min_distance← dist
20: end if
21: end for
22: δ[u, l]← min_distance
23: return min_distance
24: end function=0

8

and Vilar, 2018). Let K be the beam size. At each615

vertex transition, CBS-DAG extends the beam with616

the top-K tokens from model prediction, the next617

token in active constraints, and the first token in618

non-active constraints. Active constraints are iden-619

tified by the KMP string-matching algorithm. After620

beam expansion, we regroup the candidates into621

“banks” by the number of unmet constraint tokens622

and retain the most likely candidate within each623

bank. We dynamically adjust the beam size such624

that beam size is always larger than the number625

of non-empty banks (i.e., the number of constraint626

tokens plus one).627

C Further Analysis628

DA-T5 produces sparse DAGs We find that DA-629

T5 learns to produce a sparse DAG in the following630

sense: on average, each vertex has 1.68 transitions631

with probability > 0.2 and 1.58 emissions with632

probability > 0.2 after training. These statistics633

are computed over the validation set, and explain634

why we can prune aggressively during WFSA-to-635

DAG conversion (top-3 for the SGD and top-5 for636

DART) for speed without much loss of information.637

D Full Results on DART638

The full results on the DART dataset is presented639

in Table 4.640

E Qualitative Study641

9

Model BLEURT BLEU BP NEO↓ EOR↓ Time Spd. Up
T5-small (Auto-regressive)

1 Greedy 71.2 31.3 0.95 4.1 5.0 24:50 x1.3
2 Beam search 72.8 31.9 0.93 3.2 3.9 30:53 x1.1
3 Constrained beam 70.5 29.3 0.95 3.3 0.0 33:10 x1.0

Directed Acyclic T5-small (Non-Autoregressive)
4 Greedy 45.0 18.2 1.00 48.9 39.5 3:17 x10.1
5 Beam search 45.6 14.0 0.53 34.3 43.6 9:29 x3.5
6 CBS-DAG 46.0 18.9 0.80 36.1 0.0 7:26 x4.5
7 WFSA shortest 42.1 10.8 0.38 27.3 45.4 3:49 x8.7
8 w/ HLC 46.8 14.4 0.46 24.4 0.0 9:39 x3.4
9 w/ VC 39.3 7.7 0.28 0.0 45.1 10:38 x3.1
10 w/ LC (DFS-Viterbi) 46.8 18.3 0.86 44.4 40.3 5:26 x6.1
11 CONTROL-DAG 46.8 19.0 1.00 0.0 0.0 24:03 x1.4

Table 4: Results on the DART dataset. The naming convention for metrics and decoding methods follow that in
Table 1.

10

Model input:

Control-DAG

Explanation: When decoded with Joint Viterbi, DA-T5 drops the restaurant name. CBS-DAG fulfills all lexical constraints (followed
by "COPY=" in the input), but misses how many seats to reserve and is repetitive.

Please confirm the following details: Booking a table for 2 at Baan
Thai House & Wine Bar in San Francisco on March 1st at 11:30 am.

SER NEO

Please confirm: Booking a table for 2 on March 1st at 11:30 am on
March 1st at 11:30 am.

Joint Viterbi

Please confirm: March 1st for 11:30 am Baan Thai House & Wine Bar in
San Francisco on March 1st at 11:30 am.

CBS-DAG

CONFIRM (Name of the restaurant
COPY= Baan Thai House & Wine Bar)
CONFIRM (City where the
restaurant is located COPY= San
Francisco) CONFIRM (Tentative
time of restaurant reservation
COPY= 11:30 am) CONFIRM (
Tentative date of restaurant
reservation COPY= March 1st)
CONFIRM (Number of seats to
reserve at the restaurant = 2)

Reference

Please confirm the following details: Book a table for 2 at Baan Thai
House & Wine Bar in San Francisco for 11:30 am on March 1st.

Model input:

Control-DAG

Explanation: When decoded with Joint Viterbi and CBS-DAG, the generation contains OOV errors ("Performhanna", "Louer").
CBS-DAG is again repetitive. The text generated using Control-DAG is fluent and accurate.

I found 6 songs for you. How about California King Bed by Rihanna
from the album Loud?'

SER NEO

I found 6 songs. How about Performhanna from theanna?

Joint Viterbi

I found 6 songs. How about California King Loudd Bed by Rihanna by
California King Beder from the album Louer Bed.

CBS-DAG

Reference

I found 6 songs. How about California King Bed by Rihanna from the
album Loud?'

OFFER (Name of the song COPY=
California King Bed) OFFER (
Performer's name COPY= Rihanna)
OFFER (Collection of the song
COPY= Loud) INFORM_COUNT (
count = 6)

Model input:

Control-DAG

Explanation: Decoding with Joint Viterbi yields duplicated letter "e"s in the station name. While the generated text from CBS-DAG
is factually correct, it is too short and appears too blunt compared to the reference.

you will arrive at peachtree station

SER NEO

peachtreee station

Joint Viterbi

peachtree station

CBS-DAG

Reference

you will arrive at peachtree station

INFORM (Name of station at
ending city COPY= peachtree
station)

Has error

No error

Figure 1: Case study comparing DA-T5 with Control-DAG, Joint Viterbi, and CBS-DAG decoding on the SGD
dataset.

11

	Introduction
	Related Work
	Constrained Decoding with DA-T5
	Constrained Decoding

	Experiments and Results
	Non-Autoregressive NLG on SGD
	Results on DART

	Conclusion
	Limitation
	Ethical Statement
	Experiment setup details
	Algorithmic details
	DAG-to-WFSA conversion
	Vocabulary Constraint
	Length Constraint
	Constrained Beam Search for Directed Acyclic Graphs (CBS-DAG)

	Further Analysis
	Full Results on DART
	Qualitative Study

