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Abstract
Despite advancements in Large Multimodal Mod-
els (LMMs), their integration into language-
grounded, human-like embodied agents remains
incomplete, hindering complex real-life task per-
formance in physical environments. Existing inte-
grations often feature limited open sourcing, chal-
lenging collective progress in this field. We intro-
duce LEGENT, an open, scalable platform for
developing embodied agents using LMMs. LEG-
ENT offers a dual approach: a rich, interactive 3D
environment with communicable and actionable
agents, paired with a user-friendly interface, and
a sophisticated data generation pipeline utilizing
advanced algorithms to exploit supervision from
simulated worlds at scale. In our experiments, an
embryonic vision-language-action model trained
on LEGENT-generated data surpasses GPT-4V
in embodied tasks, showcasing promising gener-
alization capabilities.

1. Introduction
Large Language Models (LLMs) and Large Multimodal
Models (LMMs) (Team et al., 2023; OpenAI, 2023), i.e.,
Multimodal Foundation Model, present inspiring capabil-
ities in understanding and generating human-like text and
realistic images. However, their direct application in em-
bodied AI, where agents interact in physical or simulated
environments, is still primitive. LMMs lack the necessary
grounding (Harnad, 1990) in physical interactions to operate
in these settings effectively.

Research in embodied intelligence has evolved significantly,
leading to more realistic and sophisticated environments
(Kolve et al., 2017; Puig et al., 2018; Savva et al., 2019;
Puig et al., 2023b) and increasingly challenging tasks (Das
et al., 2018; Gordon et al., 2018; Batra et al., 2020). How-
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ever, these traditional environments and approaches are typ-
ically incompatible with current LMMs, which hinders the
seamless integration of task execution via language interac-
tion. Consequently, these approaches do not leverage the
extensive generalizable knowledge present in LMMs.

To achieve generalizable embodied intelligence, two key fac-
tors are crucial: language grounding to utilize the extensive
knowledge in LMMs and the training data for embodied AI
at scale. There have been noteworthy efforts in combining
embodied AI with LMMs (Reed et al., 2022; Brohan et al.,
2023). They collect large-scale training data from embodied
scenes and train end-to-end models that interpret both lan-
guage and visual inputs and perform corresponding actions.
However, the lack of open-source access to these environ-
ments and datasets restricts open-source community-wide
progress in this field.

Towards this aspiration, we introduce LEGENT, an open-
source and user-friendly platform that enables scalable train-
ing of embodied agents based on LMMs. LEGENT con-
tains two parts. First, it provides a 3D embodied environ-
ment with the following features: (1) Diverse, realistic, and
interactive scenes; (2) Human-like agents with egocentric
vision capable of executing actions and engaging in direct
language interaction with users; (3) User-friendly interface
offering comprehensive support for researchers unfamiliar
with 3D environments. Second, LEGENT builds a system-
atic data generation pipeline for both scene generation and
agent behavior, incorporating state-of-the-art algorithms for
scene creation (Deitke et al., 2022; Yang et al., 2023b) and
optimal trajectory generation. In this way, extensive and
diverse trajectories of agent behavior with egocentric visual
observations and corresponding actions can be generated at
scale for embodied agent training.

To demonstrate the potential of LEGENT, we train a basic
vision-language-action model based on LMMs with gener-
ated data on two tasks: navigation and embodied question
answering. The model processes textual and egocentric
visual input and produces controls and textual responses di-
rectly. The prototype model outperforms GPT-4V (OpenAI,
2023), which lacks training in an embodied setting. The
generalization experiment reveals the LEGENT-trained
model’s ability to generalize to unseen settings. LEGENT
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platform and its documentation are publicly available at
https://docs.legent.ai.

2. Related Work
Embodied Environment. Embodied environments are ex-
tensively utilized in games (Oh et al., 2016) and robotics
(Kolve et al., 2017; Yan et al., 2018; Gan et al., 2020; Puig
et al., 2023a), with a primary focus on visual AI and rein-
forcement learning. Some platform focuses on specific
embodied tasks, such as manipulation (Yu et al., 2020;
Makoviychuk et al., 2021), navigation (Chang et al., 2017;
Dosovitskiy et al., 2017), or planning-oriented agents (Puig
et al., 2018; Shridhar et al., 2020). However, existing plat-
forms’ setups fall short in accommodating the training of
LMMs, which require diverse and large-scale supervised
data to integrate embodied capability.

LMMs-based Embodied Agent. Noteworthy studies have
concentrated on developing embodied models capable of
end-to-end operation, as demonstrated in the works of Reed
et al. (2022); Brohan et al. (2023); Belkhale et al. (2024).
Despite being generalizable, the datasets and models in
these studies are not publicly available.

Scene Generation. Scene generation has demonstrated
significant effectiveness in training embodied agents by
ProcTHOR (Deitke et al., 2022). Compared to employing
manually crafted rules used in ProcTHOR, recent studies
(Wen et al., 2023; Yang et al., 2023b; Feng et al., 2024)
leverage prior knowledge of large language models and
propose algorithms to generate diverse, high-quality scenes.

Agent Trajectory Generation. Some research focuses on
crafting reward functions to guide small policy models (Yu
et al., 2023; Xian et al., 2023; Wang et al., 2023; Ma et al.,
2023). However, there will be huge costs and instability
when applying reward-based training to large foundation
models. Meanwhile, pioneering efforts have been made
in code generation for robotics (Liang et al., 2023; Singh
et al., 2023; Vemprala et al., 2023; Huang et al., 2023) and
trajectory generation for imitation learning (Kamath et al.,
2023). We follow this paradigm and further scale agent
trajectory generation to cover a wide range of tasks.

3. LEGENT
In this section, we introduce our platform LEGENT. The
design of LEGENT involves scene, agent, and interface.
All three components are specially tailored for the integra-
tion of LMMs and ensure scalability.

3.1. Scene
The design of the scenes in LEGENT emphasizes inter-
activity and diversity, striving for a versatile and scalable
environment that enriches the training of embodied agents
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Figure 1. Features of LEGENT.

for wide application.

Realistic Physics. LEGENT provides a real-time simula-
tion that closely mirrors real-world physics based on game
engines. It supports realistic effects like gravity, friction,
and collision dynamics, improving agents’ embodied com-
prehension or aiding the development of generative world
simulators (Yang et al., 2023a).

Diverse Rendering. Unlike the fixed stylized renderings
in games and the photorealism in robotics, LEGENT in-
tegrates these styles by customizing rendering functions,
which allows easy transitions between rendering styles to
accommodate different requirements for flexible usage.

Interactable Objects. In LEGENT, both agents and users
can manipulate various fully interactable 3D objects, which
enables actions such as picking up, transporting, positioning,
and handing over these objects. Additionally, the environ-
ment supports interaction with dynamic structures, such as
doors and drawers. We anticipate that the scope of these
dynamic structures will be significantly broadened through
the application of generative methods (Chen et al., 2023).

Scalable Assets. LEGENT supports importing customized
objects, including user-supplied 3D objects, objects from
existing datasets (Deitke et al., 2023) and those created by
generative models (Siddiqui et al., 2023; Wang et al., 2024).
We choose glTF as the import format for its openness and
compatibility. This feature grants users the flexibility to
customize the scene by strategically placing these assets or
integrating them into scene generation algorithms.

3.2. Agent

The agent is designed with two criteria: emulating human
interactions and compatibility with LMMs.

Egocentric Observations. Following the previous study for

https://docs.legent.ai
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interactive embodied agents (Team et al., 2021), the agent
is equipped with egocentric vision. The egocentric vision is
captured by mounting a camera on the agent’s head.

Language Interaction. Users and agents can communicate
with each other in natural language in LEGENT. Grounding
language within the environment will potentially connect the
extensive knowledge in LMMs with embodied experience.

Generalizable Actions. Agents in LEGENT are capable of
performing a range of actions, including navigation, object
manipulation, and communication. Regarding the instantia-
tion of actions, existing literature can be broadly categorized
into two types: executable plans (Puig et al., 2018; Shridhar
et al., 2020) and control (Kolve et al., 2017; Savva et al.,
2019). In executable plans, actions are expressed through
sub-steps to complete a task, such as “walk towards ap-
ple 1”, which requires an additional module for execution.
Control, on the other hand, refers to the action expression
like “move forward 1 meter”. In LEGENT, we use control,
targeting generalizing to new environments with real-world
settings. The learned actions can be integrated with diverse
actuators with the least additional effort.

Another important action design is allowing the agent to
execute continuous actions such as moving forward across a
continuous distance, as opposed to moving in a grid-by-grid
manner. This design offers two advantages for LMM-based
agents: (1) It minimizes the inference cost of LMMs by elim-
inating the need for constant frame-by-frame inference. (2)
It addresses the issue of minimal information gain observed
when agents move incrementally in a stepwise manner, a
process that creates less effective data for model training.

Realistic Animation. LEGENT features precise humanoid
animations using inverse kinematics and spatial algorithms,
enabling lifelike movements. Also, when combined with
egocentric vision, it offers a cost-effective alternative for
immersive experiences similar to the Ego4D (Grauman et al.,
2022), which requires a huge cost to collect at scale.

3.3. Interface

Our platform offers a user-friendly interface for researchers
to integrate LMMs with the embodied environment easily,
with little need for expertise in 3D environments. LEGENT
is engineered to be cross-platform, ensuring smooth run-
ning on personal computers without demanding particular
prerequisites or complex setups, and it facilitates connec-
tions to remote servers for training and deployment. The
user interface of LEGENT is designed to be as intuitive as
playing a video game with the agent within the environment,
utilizing just a keyboard and mouse for navigation and in-
teraction. This interface facilitates straightforward visual
debugging and qualitative analysis. Besides, we provide
a concise Python toolkit to enable the interaction between

Figure 2. Generated scenes by ProcTHOR (L) and Holodeck (R).

the agent and the environment and support scene generation
and trajectory generation, which will be introduced in the
following sections. Detailed guidance is available in our
documentation.

4. Data Generation
The second part of LEGENT is a scalable data generation
pipeline. It aims to exploit the inherent supervision from
simulated worlds and support large-scale training of general-
purpose embodied agents.

4.1. Scene Generation

Scene generation offers agents with diverse embodied ex-
periences. LEGENT has currently integrated two scene
generation methods: (1) Procedure generation efficiently
creates large-scale scenes. (2) Language-guided genera-
tion captures the semantics of textual queries and leverages
common sense knowledge to optimize spatial layouts.

Procedural Generation. We utilize the procedural scene
generation proposed in ProcTHOR (Deitke et al., 2022), de-
signed to create realistic indoor scenes at scale by integrating
prior knowledge of object placement and spatial relation-
ships. The implementation process starts with drafting a
house layout, followed by the placement of large furniture,
and ends with the arrangement of small objects. We provide
an interface that allows users to input specific conditions for
object occurrence and placement, enabling the generation
of scenes tailored to specific tasks.

Language Guided Generation. We integrate
Holodeck (Yang et al., 2023b) into LEGENT to
generate indoor scenes given any natural language query.
This process resembles procedural generation but is driven
by LLMs instead of human-written programs. We ask
LLMs to determine the exact locations of doors and floor
objects, granting LLMs more control over the room layout.

4.2. Task Generation

We create diverse tasks expressed in language paired with
specific scenes, thereby contextualizing each task within the
environment. We employ the following two strategies.

Task Generation for Given Scenes. In this strategy, we
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Figure 3. A generated trajectory for task “Where is the orange”.
The actions for the three observations are: 1. rotate right(-59); 2.
move forward(1.2), rotate right(-35); 3. speak(”It’s on the sofa.”).

serialize the generated scenes into a detailed textual descrip-
tion and present it to LLMs with crafted instructions. LLMs
assume the role of human users, generating a variety of
tasks. This approach is especially effective for generating
diverse tasks automatically.

Scene Generation for Given Tasks. This approach ef-
ficiently generates large-scale samples for specific tasks,
provided that the scene generation algorithm fulfills the
required criteria. For instance, when the task involves query-
ing an object’s location, the algorithm generates a scene that
includes the object and its receptacle, inherently creating
question-answering annotations.

4.3. Trajectory Generation

Trajectories for training embodied agents comprise continu-
ous sequences of egocentric observations and actions. The
main challenge lies in accurately determining ground-truth
actions for each step. Inspired by pioneering works in code
generation for robotics, we utilize LLMs to write intermedi-
ate codes from provided state descriptions and instructions.
These codes are instantiated as multi-step controllers, de-
signed to calculate the optimal actions at each step given
the internal states of the environment.

We demonstrate this process using an example task “Where
is the orange?”. As shown in Figure 3, to finish the task, the
agent needs to search the room and answer the question. We
ask LLMs to determine the object identifier of the orange in
the scene and recognize its placement from the state descrip-
tion, thereby generating the following intermediate function
“find”: Then the code “find” is instantiated as a multi-step
controller that utilizes pathfinding algorithms (Hart et al.,
1968) incorporating visibility checks, which calculates the
waypoints of the shortest path from the agent to the target
object using a navigation mesh. The controller then cal-
culates the controls of the agent to navigate along these
waypoints. For instance, in the first observation shown in
Figure 3, the agent needs to rotate 59 degrees to the left
to orient to the next waypoint, resulting in the action “ro-
tate right(-59)”. LEGENT records the visual observations
and actions during this process as a trajectory, which can be
exported as a video or an image-text interleaved sequence.

Task Come Here Where Is

Room Num One Two One Two*

GPT-4V (zero-shot) 0.21 0.17 0.25 0.22

ViLA-7B-Sep 1K 0.87 0.28 0.30 0.22
ViLA-7B-Sep 10K 0.96 0.70 0.94 0.52
ViLA-7B-Joint 0.96 0.70 0.92 0.65

Table 1. Success rates on two tasks. VILA-Sep denotes models
fine-tuned separately for each task, whereas VILA-Joint means
models trained jointly on both tasks. * means generalization test.

4.4. Prototype Experiments

We conduct a prototype experiment to assess the utility
of generated data on two embodied tasks: “Come Here”
for social navigation (Puig et al., 2023a) and “Where Is”
for embodied question answering (Das et al., 2018). Task
complexity varied from navigating in one room to the more
intricate two rooms. We generate 1k and 10k trajectories
for the initial three tasks (“Come Here” in one or two rooms
and “Where Is” in one room) and assess the models on 100
trajectories across all four tasks. The “Where Is” task in the
two-room setting serves as a generalization test, which is
not included in the training data.

Due to the lack of powerful video understanding models,
we temporarily only focus on the observation at the end
of each continuous action, formulating one trajectory as
an image-text interleaved sequence. We utilize VILA-7B
(Lin et al., 2023) as our backbone due to its capability in
interleaved inputs. We train the model to output current
action based on task descriptions and interleaved context of
previous observations and actions.

The results presented in Table 1 lead to several observations:
(i) GPT-4V struggles in these tasks, reflecting a lack of
embodied experience in mainstream LMMs. (ii) Increasing
training data improves the model performance. (iii) The
navigational skills developed from the “Come Here” task
in a two-room environment generalize well to the untrained
task scenario, enhancing the model’s ability to navigate in
two rooms for the embodied question answering task. We
leave the exploration of more large-scale training in the
future work.

5. Conclusion and Future Work
In this work, we present LEGENT, an open platform for
developing embodied agents, focusing on integrating LMMs
with scalable embodied training. In our future releases,
we prioritize: (1) Building a more diverse data generation
pipeline. (2) Scaling model training. (3) Unifying humanoid
animation with robotic control and refining the physics. (4)
Improving scene generation and integrating 3D generation
methods to support more diverse and realistic scenes.
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