
Published in Transactions on Machine Learning Research (07/2025)

Adaptive Gradient Normalization and Independent Sampling
for (Stochastic) Generalized-Smooth Optimization

Yufeng Yang yufeng.yang@tamu.edu
Department of Computer Science and Engineering
Texas A& M University
College Station, TX 77843, USA

Erin E. Tripp etripp@hamilton.edu
Mathematics and Statistics Department
Hamilton College
Clinton, NY 13323, USA

Yifan Sun ysun@cs.stonybrook.edu
Department of Computer Science
Stony Brook University
Stony Brook, NY 11794, USA

Shaofeng Zou zou@asu.edu
School of Electrical, Computer and Energy Engineering
Arizona State University
Tempe, AZ 85287, USA

Yi Zhou yi.zhou@tamu.edu
Department of Computer Science and Engineering
Texas A&M University
College Station, TX 77843, USA

Reviewed on OpenReview: https: // openreview. net/ forum? id= KKSQQMlEfw

Abstract

Recent studies have shown that many nonconvex machine learning problems satisfy a
generalized-smooth condition that extends beyond traditional smooth nonconvex optimiza-
tion. However, the existing algorithms are not fully adapted to such generalized-smooth
nonconvex geometry and encounter significant technical limitations on their convergence
analysis. In this work, we first analyze the convergence of adaptively normalized gradi-
ent descent under function geometries characterized by generalized-smoothness and gen-
eralized PŁ condition, revealing the advantage of adaptive gradient normalization. Our
results provide theoretical insights into adaptive normalization across various scenarios. For
stochastic generalized-smooth nonconvex optimization, we propose Independent-Adaptively
Normalized Stochastic Gradient Descent algorithm, which leverages adaptive gradient
normalization, independent sampling, and gradient clipping to achieve an O(ϵ−4) sam-
ple complexity under relaxed noise assumptions. Experiments1 on large-scale nonconvex
generalized-smooth problems demonstrate the fast convergence of our algorithm.

1 Introduction

In modern machine learning, the convergence of gradient-based optimization algorithms has been well studied
in the standard smooth nonconvex setting. However, it has been shown recently that the standard L-

1Code available at github.com/ynyang94/Gensmooth-IAN-SGD
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smoothness fails to hold in many nonconvex machine learning problems, including distributionally-robust
optimization(DRO) (Levy et al., 2020; Jin et al., 2021), meta-learning (Nichol et al., 2018; Chayti & Jaggi,
2024) and language models (Liu et al., 2023; Zhang et al., 2019). Instead, these problems were shown to
satisfy a so-called generalized-smooth condition (Zhang et al., 2019), in which the smoothness parameter can
scale with the gradient norm in the optimization process.

In the existing literature, various works have proposed different algorithms for solving generalized-smooth
nonconvex optimization problems. Specifically, Li et al. (2024); Zhang et al. (2019); Chen et al. (2023);
Gorbunov et al. (2024); Vankov et al. (2024b); Reisizadeh et al. (2023) have demonstrated that deterministic
first-order algorithms such as gradient descent, normalized gradient descent and clipped gradient descent
can achieve O(ϵ−2) iteration complexity under mild assumptions. These complexity results match the lower
bound obtained by classical first-order methods (Arjevani et al., 2023). In particular, Chen et al. (2023)
empirically demonstrated that proper usage of adaptive gradient normalization can substantially accelerate
convergence. However, the formal theoretical justification and understanding of adaptive gradient normal-
ization is still lacking for first-order algorithms in generalized-smooth optimization.

On the other hand, some other works, including Li et al. (2024); Zhang et al. (2019; 2020a) studied first-order
stochastic algorithms in generalized-smooth nonconvex optimization. Specifically, one line of works (Li et al.,
2024) focused on the classic stochastic gradient descent (SGD) algorithm (Ghadimi & Lan, 2013). However,
in generalized-smooth setting, the convergence analysis of SGD either relies on adopting very large batch
size or involves large constants (Li et al., 2024). These theoretical bottlenecks may be a key factor limiting
the practical performance of SGD. Empirical observations from Chen et al. (2023) indicate that SGD often
converges slowly due to ill-conditioned smoothness parameters when the gradient norm is large. Another line
of works (Zhang et al., 2019; 2020a; Reisizadeh et al., 2023; Koloskova et al., 2023) focused on clipped SGD,
which leverages gradient normalization and clipping to handle the generalized-smooth geometry. Although
clipped SGD has demonstrated superior performance in solving large-scale problems, the existing theoretical
analysis has several limitations. First, to establish convergence guarantees in the stochastic setting, existing
studies often rely on strong assumptions, such as the stochastic approximation error being almost surely
bounded or the use of extremely large batch sizes. Second, the existing designs of clipped SGD adopt the
standard stochastic gradient normalization scheme, which is not fully adapted to the function geometry
characterized by the generalized-smooth condition.

Having observed the algorithmic and theoretical limitations discussed above, we aim to advance the algorithm
design and analysis for generalized-smooth optimization through investigating the following two fundamental
and complementary questions.

• Q1: In deterministic generalized-smooth optimization, how does adaptive gradient normalization affect
the convergence rate of first-order algorithm, e.g., under Polyak-Łojasiewicz type conditions?

• Q2: In stochastic generalized-smooth optimization, can we design a novel algorithm that guarantees con-
vergence under relaxed noise assumptions while relying on only a small number of samples for computing
each stochastic gradient?

In this work, we provide comprehensive answers to both questions by developing new algorithms and conver-
gence analysis in generalized-smooth nonconvex optimization. We summarize our contributions as follows.

1.1 Our Contributions

To understand the advantage of using adaptive gradient normalization, we first study the convergence rate of
adaptive normalized gradient descent (AN-GD) in deterministic generalized-smooth optimization under the
generalized Polyak-Łojasiewicz (PŁ) condition over a broad spectrum of gradient normalization parameters.
Our results reveal the interplay among learning rate, gradient normalization parameter and function geometry
parameter, and characterize their impact on the type of convergence rate. In particular, our results reveal
the advantage of using adaptive gradient normalization and provide theoretical guidance on choosing proper
gradient normalization parameter to improve convergence rate.
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We further propose a novel Independent-Adaptively Normalized Stochastic Gradient Descent (IAN-SGD) al-
gorithm tailored for stochastic generalized-smooth nonconvex optimization. Specifically, IAN-SGD leverages
normalized gradient updates with independent sampling and gradient clipping to reduce bias and enhance
algorithm stability. Consequently, we are able to establish convergence of IAN-SGD with O(ϵ−4) sample
complexity under a relaxed assumption on the approximation error of stochastic gradient and constant-level
batch size. This makes the algorithm well-suited for solving large-scale problems.

We compare the numerical performance of our IAN-SGD algorithm with other state-of-the-art stochastic
algorithms in applications of nonconvex phase retrieval, distributionally-robust optimization and training
deep neural networks, all of which are generalized-smooth nonconvex problems. Our results demonstrate the
efficiency of IAN-SGD in solving generalized-smooth nonconvex problems.

2 Related Work

Generalized-Smoothness. The concept of generalized-smoothness was first introduced by Zhang et al.
(2019) with the (L0, L1)-smooth condition, which allows a function to either have an affine-bounded Hessian
norm or be locally L-smooth within a specific region. This definition was extended by Chen et al. (2023), who
proposed the L∗

asym(α) and L∗
sym(α) conditions, controlling gradient changes globally with both a constant

term and a gradient-dependent term associated with power α, thus applying more broadly. Later, Li et al.
(2024) introduced ℓ-smoothness, which use a non-decreasing sub-quadratic polynomial to control gradient
differences. Mishkin et al. (2024) proposed directional smoothness, which preserves L-smoothness along
specific directions.

Algorithms for Generalized-Smooth Optimization. Motivated by achieving comparable lower bounds
presented in Arjevani et al. (2023) under standard assumptions, algorithms for solving generalized-smooth
problems can be categorized into two main series. The first series focuses on gradient descent methods with
constant learning rate. Li et al. (2024) proved that GD, SGD converge with O(ϵ−2) and O(ϵ−4) complexity
under generalized-smoothness. To ensure convergence, Li et al. (2024) adopted assumptions such as gradient
upper-bound and bounded variance assumption.

Another series of work focuses on adaptive methods. In the nonconvex deterministic settings, Zhang et al.
(2019; 2020a); Gorbunov et al. (2024); Vankov et al. (2024b) showed that clipped GD can achieve an iteration
complexity of O(ϵ−2) under mild assumptions. Later, Chen et al. (2023) proposed β-GD that achieves
O(ϵ−2) iteration complexity. Specifically, in the convex setting, Vankov et al. (2024b) analyzed clipped and
normalized gradient descent under mild assumptions. Gorbunov et al. (2024) studied smoothed gradient
clipping, gradient descent with Polyak step-size rule, and triangle method by varying the learning rates.
Both works achieve the best-known O(ϵ−1) convergence rate for generalized-smooth convex optimization. In
the nonconvex stochastic setting, Zhang et al. (2020b) proved that clipped SGD achieves an O(ϵ−4) sample
complexity under the standard L-smoothness and bounded variance assumptions. Also, Zhang et al. (2019)
established the same convergence rate for clipped SGD under generalized smoothness and almost surely
bounded noise assumption. Later, Reisizadeh et al. (2023); Koloskova et al. (2023) analyzed the convergence
of clipped SGD under the bounded variance assumption. Notably, Koloskova et al. (2023) pointed out that,
with bounded variance assumption, clipped SGD converges to ϵ-stationary point with sample complexity
O(ϵ−5) when using Ω(1) samples per iteration. To improve convergence sample complexity, Reisizadeh et al.
(2023) employed a large batch size O(ϵ−2) to suppress the impact of the variance term and achieve O(ϵ−4)
complexity. We summarize these results under mild assumptions in Table 1.

A number of works also investigated the performance of diverse stochastic algorithms—extending beyond
SGD and clipped SGD under the generalized-smooth condition. Wang et al. (2023); Faw et al. (2023); Hong
& Lin (2024) studied AdaGrad (Duchi et al., 2011b) under generalized-smooth and affine variance assump-
tion with different learning rate schemes. They all attain Õ(1/

√
T ) convergence rate under mild conditions.

Xie et al. (2024a) studied trust-region methods convergence under generalized-smoothness. For stochastic
acceleration methods under the generalized-smoothness condition, Zhang et al. (2020a) proposed a general
clipping framework by leveraging momentum clipping and they achieve O(ϵ−4) sample complexity under
almost sure bounded noise assumption; Jin et al. (2021) studied normalized SGD with momentum under
parameter-dependent learning rates schemes, which achieves O(ϵ−4) sample complexity under generalized-
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smooth and affine variance assumption; Hübler et al. (2024) studied normalized SGD with momentum
(Cutkosky & Mehta, 2020) under parameter-agnostic learning rates schemes, which establishes Õ(ϵ−4) con-
vergence rate under bounded variance assumption. Chen et al. (2023); Reisizadeh et al. (2023) demonstrated
that the SPIDER algorithm (Fang et al., 2018) can reach the optimal O(ϵ−3) sample complexity under affine
variance assumption for sum-type functions by employing a large batch size. Furthermore, Zhang et al.
(2024b); Wang et al. (2024a;b); Li et al. (2023) explored the convergence of RMSprop (Hinton et al., 2012)
and Adam (Kingma, 2014) under different noise assumptions, including coordinate-wise affine variance, ex-
pected affine variance, bounded variance and sub-gaussian distribution. The acceleration of sign-SGD was
explored by Jiang et al. (2024); Sun et al. (2023b), and its generalized-smooth variants were subsequently
analyzed by Crawshaw et al. (2022); Sun et al. (2023a), where they both obtain O(ϵ−4) under almost-sure
bound and bounded variance assumptions, respectively.

Method Smoothness1 Noise assumption2 Algorithm3 Batch Size4 Convergence5 Complexity
Zhang et al. (2019) GS a.s. bound Clip-SGD Ω(1) ϵ-stationary O(ϵ−4)
Zhang et al. (2020b) LS var bound Clip-SGD Ω(1) ϵ-stationary O(ϵ−4)
Zhang et al. (2020a) GS a.s. bound General-Clip Ω(1) ϵ-stationary O(ϵ−4)
Li et al. (2024) GS var bound SGD Ω(1) ϵ-stationary O(ϵ−4)
Reisizadeh et al. (2023) GS var bound Clip-SGD Ω(ϵ−2) ϵ-stationary O(ϵ−4)
Koloskova et al. (2023) GS var bound Clip-SGD Ω(1) ϵ-stationary O(ϵ−5)
Our Method GS a.s. affine IAN-SGD Ω(1) ϵ-stationary O(ϵ−4)

Table 1: Comparison of existing clipping-based algorithms. Denote the stochastic gradient and clipping
threshold as ∇fξ(wt) and c, respectively. Explanation of abbreviations: (GS) refers to the generalized-
smoothness condition, and (LS) refers to the standard L-smoothness condition. (a.s. bound) means that
for every sample, the stochastic gradient bias is almost surely bounded, i.e., ∥∇fξ(wt) − ∇F (wt)∥ ≤ τ2;
(var bound) denotes the bounded variance condition, i.e., Eξ[∥∇fξ(wt) − ∇F (wt)∥2] ≤ τ2

2 ; (a.s. affine)
implies that for every sample, the stochastic gradient bias satisfies the affine bound ∥∇fξ(wt) − ∇F (wt)∥ ≤
τ1∥∇F (wt)∥+τ2 almost surely, for some 0 ≤ τ1 < 1 and τ2 > 0. The term Clip-SGD refers to algorithms that
use stochastic gradient clipping of the form wt+1 = wt−γmin{1, c

∥∇fξ(wt)∥ }∇fξ(wt); SGD refers to stochastic
gradient descent; General-Clip denotes algorithms that incorporate momentum during clipping and updates
wt+1 = wt − (νmin{c, γ

∥mt∥ }mt + (1 − ν) min{c, γ
∥∇fξ(wt)∥ }∇fξ(wt)), where mt+1 = (1 − ϑ)mt + ϑ∇fξ(wt).

The label ϵ-stationary indicates that the algorithm can converge to an arbitrary target error. For Koloskova
et al. (2023), we report their convergence result under learning rate γ = ϵ2/

(
τ2

2 (L0 + cL1)
)

with c = τ2/ϵ,
where their analysis guarantees convergence to an ϵ-stationary point.

Machine Learning Applications. Generalized-smoothness has been studied under various machine learn-
ing frameworks. Levy et al. (2020); Jin et al. (2021) studied the dual formulation of regularized DRO prob-
lems, where the loss function objective satisfies generalized-smoothness. Chayti & Jaggi (2024) identified
their meta-learning objective’s smoothness constant increases with the norm of the meta-gradient. Gong
et al. (2024b); Hao et al. (2024); Gong et al. (2024a); Liu et al. (2022b) explored algorithms for bi-level
optimization and federated learning within the context of generalized-smoothness. Zhang et al. (2024a)
developed algorithms for multi-task learning problem where the objective is generalized-smooth. Xie et al.
(2024b) studied online mirror descent when the objective is generalized-smooth. Xian et al. (2024) studied
min-max optimization algorithms’ convergence behavior under generalized-smooth condition. There is a
concurrent work (Vankov et al., 2024a) using independent sampling with clipped SGD framework to solve
variational inequality problem (SVI). Based on this idea, they also propose stochastic Korpelevich method for
clipped SGD. Under generalized-smooth condition, they proved almost-sure convergence in terms of distance
to solution set tailored for solving stochastic SVI problems.

3 Notations

Throughout the work, we denote D as a set of training examples, ξ as an example sampled from the training
dataset D, f(·) as the objective function, fξ(·) as the objective function associated with data sample ξ,
F (w) = Eξ∼P[fξ(w)] as the expected loss over all samples following distribution P, and ∥ · ∥ as ℓ2-norm over
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Euclidean space. Let w ∈ Rd denote the parameters of function f (i.e., the weights for linear model and
neural networks), f∗ denote the infimum of f . L0, L1 and α are positive constants used to characterize the
generalized-smoothness condition (see Assumption 1). ρ, µ are positive constant used to describe generalized
PŁ-condition (see Assumption 2). τ1, τ2 characterize the stochastic gradient noise (see Assumption 4).
γ, β denote the learning rate and normalization power used in adaptive normalization, respectively. In the
Distributionally Robust Optimization (DRO) experiments (see Section 7), we define L(w, η) with parameter
w and dual variable η, as the dual objective derived from a regularized ϕ-divergence primal DRO problem.

4 Generalized-Smooth nonconvex Optimization

We first introduce generalized-smooth optimization problems. Consider the following optimization problem.

min
w∈Rd

f(w), (1)

where f : Rd → R denotes a nonconvex and differentiable function and w corresponds to the model
parameters. We assume that function f satisfies the following generalized-smooth condition.

Assumption 1 (Generalized-smooth) The objective function f satisfies the following conditions.

1. f is differentiable and bounded below, i.e., f∗ := infw∈Rd f(w) > −∞;

2. There exists constants L0, L1 > 0 and α ∈ [0, 1] such that for any w, w′ ∈ Rd, it holds that∥∥∇f(w) − ∇f(w′)
∥∥ ≤

(
L0 + L1

∥∥∇f(w′)
∥∥α)∥∥w − w′∥∥. (2)

The generalized-smooth condition in Assumption 1 is a generalization of the standard smooth condition,
which corresponds to the special case of α = 0. It allows the smoothness parameter to scale with the
gradient norm polynomially, and therefore Assumption 1 can model functions with highly irregular geometry.
Moreover, following the standard proof, it is easy to show that generalized-smooth functions satisfy the
following descent lemma. See Proof 1 in Appendix B.

Lemma 1 Under Assumption 1, function f satisfies, for any w,w′ ∈ Rd,

f(w) ≤ f(w′) + ⟨∇f(w′), w − w′⟩ + 1
2(L0 + L1

∥∥∇f(w′)
∥∥α)

∥∥w − w′∥∥2
. (3)

We note that there are several variants of generalized-smooth conditions proposed by the previous works
(Zhang et al., 2019; Jin et al., 2021; Chen et al., 2023). Below, we briefly discuss the relationship between
the generalized-smooth condition in Assumption 1 and these existing notions.

Remark 1 ((L0, L1)-generalized-smooth condition) The descent lemma of (L0, L1)-generalized-smooth
condition proposed in Zhang et al. (2019) is given as

f(w) ≤ f(w′) + ⟨∇f(w′), w − w′⟩ + 1
2(4L0 + 5L1∥∇f(w′)∥)∥w − w′∥2,

which is the same as Lemma 1 with α = 1 up to differences in the constant coefficients.

Remark 2 (Symmetric generalized-smooth condition) Chen et al. (2023) introduced a symmetric
version of generalized-smooth condition, by replacing ∥∇f(w′)∥α in equation 2 with maxwθ

∥f(wθ)∥α, where
wθ = θw′ +(1−θ)w. We notice that the asymmetric generalized-smooth condition adopted in our Assumption
1 can also imply the following similar symmetric generalized-smooth condition,

∥∥∇f(w) − ∇f(w′)
∥∥ ≤

(
L0 + L1

(∥∥∇f(w)
∥∥α +

∥∥∇f(w′)
∥∥α

2
))∥∥w − w′∥∥. (4)
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In Jin et al. (2021), it has been shown that certain regularized nonconvex distributionally robust optimization
(DRO) problems satisfy the generalized-smooth condition in equation 2 with L0 = L, L1 = 2M(G+1)2

λ , α = 1.
Moreover, the classic nonconvex phase retrieval problem (Drenth, 2007; Miao et al., 1999) can be shown to
satisfy the above symmetric generalized-smooth condition in equation 4 (see Proof 2 in Appendix C).

In the following sections, we first consider deterministic generalized-smooth optimization and study the
impact of adaptive gradient normalization on the convergence rate of gradient methods. Then, we consider
stochastic generalized-smooth optimization and propose a novel independent sampling scheme for improving
the convergence guarantee of stochastic gradient methods under relaxed noise assumption.

5 Adaptive Gradient Normalization for Deterministic Generalized-Smooth
Optimization

In deterministic generalized-smooth optimization, several previous works have empirically demonstrated the
faster convergence of normalized gradient descent-type algorithms (e.g., clipped GD) over the standard
gradient descent algorithm in various machine learning applications (Zhang et al., 2019; Chen et al., 2023).
On the other hand, theoretically, these algorithms were only shown to achieve the same iteration complexity
O(ϵ−2) as the gradient descent algorithm in generalized-smooth optimization. In this section, to further
advance the theoretical understanding and explain the inconsistency between theory and practice, we explore
the advantage of adapting gradient normalization to the special Polyak-Łojasiewicz-type (PŁ) geometry in
generalized-smooth optimization. We aim to show that gradient normalization, when properly adapted to
the underlying PŁ geometry, can help accelerate the convergence rate in generalized-smooth optimization.

Specifically, we consider the class of generalized-smooth problems that satisfy the following generalized PŁ
geometry.

Assumption 2 (Generalized Polyak-Łojasiewicz Geometry) There exists constants µ ∈ R+ and 0 <
ρ ≤ 2 such that f(·) satisfies, for all w ∈ Rd,∥∥∇f(w)

∥∥ρ ≥ 2µ(f(w) − f∗). (5)

The above generalized PŁ condition is inspired by the Kurdyka-Łojasiewicz (KŁ)-exponent condition pro-
posed in Li & Pong (2018). When ρ > 1, equation 5 reduces to the KŁ-exponent condition. When ρ = 2,
equation 5 reduces to the standard PŁ condition. Moreover, some recent works have shown that PŁ-type
geometries widely exist in the loss landscape of phase retrieval (Zhou et al., 2016) and over-parametrized
deep neural networks (Liu et al., 2022a; Scaman et al., 2022), and we hope that our analysis based on
Assumption 2 will allow researchers to rethink the relationship between adaptive normalization and loss
landscape geometry.

Here, we consider the adaptively normalized gradient descent (AN-GD) algorithm proposed by Chen et al.
(2023) for generalized-smooth nonconvex optimization. The algorithm normalizes the gradient update as
follows

(AN-GD) wt+1 = wt − γ
∇f(wt)

∥∇f(wt)∥β
, (6)

where γ > 0 denotes the learning rate and β is a normalization scaling parameter that allows us to adapt the
normalization scale of the gradient norm to the underlying function geometry. Intuitively, when the gradient
norm is large, a smaller β would make the normalized gradient update more aggressive; when the gradient
norm is small, normalization can slow down gradient vanishing and improve numerical stability.

Chen et al. (2023) studied AN-GD in generalized-smooth nonconvex optimization, showing that it achieves
the standard O(ϵ−2) iteration complexity lower bound. In the following theorem, we obtain the convergence
rate of AN-GD under the generalized PŁ condition. See Proof 4 in Appendix E.

Theorem 1 (Convergence of AN-GD) Let Assumptions 1 and 2 hold. Denote ∆t := f(wt) − f∗ as the
function value gap. Choose target error 0 < ϵ ≤ min{1, 1

2µ} and define learning rate γ = (2µϵ)β/ρ

8(L0+L1)+1 ≤ 2
µ for

some β ∈ [α, 1]. Then, the following statements hold,
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• If β < 2 − ρ, in order to achieve ∆T ≤ ϵ, the total number of iterations must satisfy

T ≥ max
{ 8ρ(8(L0 + L1) + 1)

(2 − β − ρ)(2µ)2/ρϵ(2−ρ)/ρ ,
1

(2(2−β−ρ)/(2−β) − 1)∆(ρ+β−2)/ρ
0 ϵ(2−β−ρ)/ρ

}
= Ω

(
(1
ϵ

)
2−ρ

ρ
)
. (7)

• If β = 2 − ρ, in order to achieve ∆T ≤ ϵ, the total number of iterations must satisfy

T ≥ 21−β/ρ · (8(L0 + L1) + 1)
µ · (µϵ)β/ρ · log(∆0

ϵ
) = Ω

(
(1
ϵ

)
β
ρ · log(∆0

ϵ
)
)
. (8)

• If 1 ≥ β > 2 − ρ, and for some T0 satisfying ∆T0 ≤ O
(
(γµ(2−β)/(ρ+β−2))

ρ
ρ+β−2

)
, then the total number of

iterations after T0 must satisfy

T ≳Ω
(

log
((1
ϵ

) β
ρ+β−2

)
+ log

(
log

( (2µ)2/(ρ+β−2)

(32(L0 + L1) + 4)ρ/(ρ+β−2)ϵ

)))
= Ω

(
log

(
(1
ϵ

)
β

ρ+β−2
))
. (9)

Theorem 1 characterizes the convergence rates of AN-GD under different choices of ρ and β. In particular,
when α = β = 0 and ρ = 2, Theorem 1 reduces to the linear convergence rate achieved by gradient descent
under the standard PŁ and L-smooth condition. Theorem 1 also guides the choice of gradient normalization
parameter β under different geometric conditions. For example, if there exists β ∈ [α, 1] such that ρ+β > 2,
AN-GD can boost its convergence rate from polynomial to local linear convergence. It also indicates when
ρ is very small such that ρ + β < 2, the effects of β can be marginal. However, for ρ + β ≤ 2, the
iteration complexities depend more on the specific values of ρ and β. For example, when ρ = 1 and consider
two different choices of gradient normalization parameters β1 = 2

3 , β2 = 1, AN-GD achieves the iteration
complexities O(ϵ−1) and Õ(ϵ−1), respectively. This result matches the empirical observation made in (Chen
et al., 2023) that choosing a smaller β ∈ [α, 1] can improve the convergence rate.

We note that several concurrent works also studied normalized gradient descent methods in deterministic
convex settings. In Gorbunov et al. (2024), the authors consider various update rules such as wt+1 =
wt − γ ∇f(wt)

L0+L1∥∇f(wt)∥ and wt+1 = wt − γ f(wt)−f(w∗)
∥∇f(wt)∥ ∇f(wt). For generalized smooth convex optimization,

they obtain a two-phase convergence result, similar to the case when 1 ≥ β > 2 − ρ in Theorem 1, where
the second phase achieves complexity bound O(ϵ−1). They further employ the triangle method to derive
a global O(ϵ−1) complexity bound. In Vankov et al. (2024b), the authors propose a related framework by
choosing γ = 1√

T∥∇f(wt)∥ , which aligns with our AN-GD when β = 1. They also obtain O(ϵ−1) complexity
for generalized smoothness convex optimization.

5.1 Comparison between AN-GD and GD.

In Li et al. (2024), it has been shown that GD achieves O(log(ϵ−1)), O(ϵ−1), O(ϵ−2) complexity bounds
for generalized-smooth strongly convex, convex and non-convex optimization, respectively. Compared with
Chen et al. (2023), both AN-GD and GD achieve O(ϵ−2) complexity bound for generalized non-convex
optimization, and hence are optimal deterministic methods. On the other hand, the following Proposition
1 further obtains the convergence rate of gradient descent (GD) under the same Assumptions 1 and 2. See
Proof 5 in Appendix F.

Proposition 1 (Convergence of GD) Let Assumptions 1 and 2 hold. Assume there exists a positive
constant G such that ∥∇f(xt)∥ ≤ G,∀t ∈ T , When ρ = α = 1 and setting γ ≤ min{ 1

L0
, 1

2L1G
}, gradient

descent converges to an ϵ-stationary point within T ≥ Ω(Gϵ ) iterations.

From Theorem 1, under the setting ρ = α = 1 and with β = 1, AN-GD converges to a ϵ-stationary point in
Õ(ϵ−1) iterations. However, the convergence guarantee for GD requires an additional assumption that the
gradient norm is upper bounded by a constant G. This constant typically depends on the function value gap
∆0 and ∥x0 − x∗∥, which can be large in generalized smooth optimization settings. Such large value can be
the key reason for the slower empirical convergence of GD observed in Chen et al. (2023).
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Figure 1: Comparison between normalized full gradient (blue) and expected normalized stochastic gradient
(red). Here, ξ1 and ξ2 are sampled uniformly at random.

6 Independently-and-Adaptively Normalized SGD for Stochastic
Generalized-Smooth Optimization

In this section, we study stochastic generalized-smooth optimization problems, where we denote fξ as the
loss function associated with the data sample ξ, and we assume that the following expected loss function
F (·) satisfies the generalized-smooth condition in Assumption 1.

min
w∈Rd

F (w) = Eξ∼P
[
fξ(w)

]
. (10)

Having discussed the superior theoretical performance of AN-GD in the previous section, we aim to leverage
adaptive gradient normalization to further develop an adaptively normalized algorithm tailored for stochastic
generalized-smooth optimization.

6.1 Normalized SGD and Its Limitations

To solve the stochastic generalized-smooth problem in equation 10, one straightforward approach is to replace
the full batch gradient in the AN-GD update rule, equation 6 with the stochastic gradient ∇fξ(wt), resulting
in the following adaptively normalized SGD (AN-SGD) algorithm.

(AN-SGD) wt+1 = wt − γ
∇fξ(wt)

∥∇fξ(wt)∥β
. (11)

AN-SGD-type algorithms have attracted a lot of attention recently for solving stochastic generalized-smooth
problems (Zhang et al., 2019; 2020a; Liu et al., 2022b; Jin et al., 2021). In particular, previous works
have shown that, when choosing β = 1 and using gradient clipping or momentum acceleration, AN-SGD’s
variations (e.g., NSGD with momentum (Cutkosky & Mehta, 2020; Jin et al., 2021), clipped SGD (Zhang
et al., 2019; 2020a)) can achieve a sample complexity of O(ϵ−4). This result matches the convergence order
of the standard SGD (Ghadimi & Lan, 2013) for solving classic stochastic smooth problems. However,
AN-SGD has several limitations as summarized below.

• Biased gradient estimator: The normalized stochastic gradient used in equation 11 is biased, i.e.,
E[ ∇fξ(wt)

∥∇fξ(wt)∥β ] ̸= ∇F (wt)
∥∇F (wt)∥β . This is due to the dependence between ∇fξ(wt) and ∥∇fξ(wt)∥β . In par-

ticular, the bias can be huge if the stochastic gradients are diverse, as illustrated in Figure 1.

• Strong assumptions: To control the estimation bias and establish theoretical convergence guarantee for
ANSGD-type algorithms in generalized-smooth nonconvex optimization, the existing studies need to
adopt strong assumptions. For example, Zhang et al. (2019; 2020a) and Liu et al. (2022b) assume that
the stochastic approximation error ∥∇fξ(w)−∇F (w)∥ is bounded by a constant almost surely. In practical
applications, this constant can be a large numerical number if certain sample ξ happen to be an outlier.
On the other hand, Chen et al. (2023); Reisizadeh et al. (2023) require AN-SGD type of algorithms such
as SPIDER (Fang et al., 2018) to have Ω(ϵ−2) batch size to ensure fast convergence. It essentially makes
it a full-batch algorithm and is impractical in practice.

8
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6.2 Independently-and-Adaptively Normalized SGD

To overcome the aforementioned limitations, we propose the following independently-and-adaptively nor-
malized stochastic gradient (IAN-SG) estimator

(IAN-SG estimator) ∇fξ(w)
∥∇fξ′(w)∥β , (12)

where ξ and ξ′ are samples drawn independently from the underlying data distribution. Intuitively, the
independence between ξ and ξ′ decorrelates the denominator from the numerator, making it an unbiased
stochastic gradient estimator (up to a scaling factor). Specifically, we have that

Eξ,ξ′

[
∇fξ(w)

∥∇fξ′(w)∥β

]
= Eξ′

[
Eξ

[
∇fξ(w)

]
∥∇fξ′(w)∥β

]
∝ ∇F (w). (13)

Moreover, as we show later under mild assumptions, the scaling factor E
[
∥∇fξ′(w)∥−β]

can be roughly
bounded by the full gradient norm and hence resembling the full-batch AN-GD update. Based on this idea,
we formally propose the following independently-and-adaptively normalized SGD (IAN-SGD) algorithm (see
equation 14), where A, Γ,δ are positive constants, ∇fξ(wt), ∇fξ′(wt) corresponds to the stochastic gradient
associated with two independent samples ξ, ξ′ sampled at time t.

(IAN-SGD): wt+1 = wt − γ
∇fξ(wt)
hβt

,

where ht = max
{

1,Γ ·
(
A

∥∥∇fξ′(wt)
∥∥ + δ

)}
. (14)

The above IAN-SGD algorithm adopts a clipping strategy for the normalization term ht. Intuitively, when
gradient converges in the later optimization phase, the term ht = 1 and IAN-SGD reduces to SGD. This
is consistent with the fact that the generalized-smooth condition reduces to the standard smooth condition
when gradient approaches to 0. Moreover, imposing a constant lower bound δ on ht in equation 14 helps
develop the theoretical convergence analysis and avoid numerical instability in practice. As we show in the
ablation study presented in the appendix, the convergence speed of IAN-SGD is insensitive to the choice of
δ. We also note that IAN-SGD requires querying two batches of samples in every iteration. However, we
show later in the Theorem 2 and experiments that these batch sizes can be chosen at a constant level in
both theory and practice.

6.3 Convergence Analysis of IAN-SGD

We adopt the following bias assumption on the stochastic gradient ∇fξ(w).

Assumption 3 (Unbiased stochastic gradient) The stochastic gradient ∇fξ(w) is unbiased, i.e.,
Eξ∼P

[
∇fξ(w)

]
= ∇F (w) for all w ∈ Rd.

Assumption 4 (Affine approximation Error) There exists 0 ≤ τ1 < 1, τ2 > 0 such that for any w ∈ Rd,∥∥∇fξ(w) − ∇F (w)∥ ≤ τ1
∥∥∇F (w)

∥∥ + τ2 a.s. ∀ξ ∼ P. (15)

Assumption 4 allows the approximation error of stochastic gradient scaling with the full gradient norm on a
per-sample basis, while only requiring the error to remain bounded at stationary points. Compared to other
noise assumptions, Assumption 4 is much weaker than the almost sure error bound (i.e., τ1 = 0) adopted
in Zhang et al. (2019; 2020a); Liu et al. (2022b) but stronger than expected error bound (i.e., bounded
variance assumption Eξ∥∇f(w) − ∇F (w)∥2 ≤ τ2

2 ) adopted in Koloskova et al. (2023); Reisizadeh et al.
(2023). Our motivation for studying the convergence of IAN-SGD under this noise assumption is to strike
a balance between achieving standard convergence rates (i.e., O(ϵ−4)) under relaxed noise conditions, while
keeping the batch size at the Ω(1)-level. As later we show in Theorem 2, IAN-SGD achieves O(ϵ−4) sample
complexity under Assumption 4.

9
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Remark 3 Existing work (Koloskova et al., 2023) has shown that when adopting Ω(1) sample per iteration,
clipped SGD attains O(ϵ−5) sample complexities under generalized-smooth and bounded variance assumptions.
In order to achieve the standard O(ϵ−4) sample complexity under such assumption, Reisizadeh et al. (2023)
demonstrated that clipped SGD requires Ω(ϵ−2) samples per iteration. Through this way, the constant arising
from the variance of the approximation error can be controlled at the O(ϵ2)-level. This, in turn, relaxes the
burden on iteration complexity, requiring only O(ϵ−2) iterations for averaging during convergence proof. We
leave technical discussions on optimizing the batch size while maintaining O(ϵ−4) total sample complexity of
IAN-SGD for future work.

Based on these assumptions, we first obtain the following upper bounds regarding ∥∇F (wt)∥, ∥∇fξ(wt)∥.
See Proof 6 in Appendix G.

Lemma 2 Let Assumptions 3 and 4 hold. The gradient ∥∇F (wt)∥ and stochastic gradient ∇fξ(wt) satisfy

∥∇F (wt)∥ ≤ 1
1 − τ1

∥∇fξ(wt)∥ + τ2

1 − τ1
, and

∥∇fξ(wt)∥ ≤ (1 + τ1)∥∇F (wt)∥ + τ2. (16)

Lemma 2 indicates that the full gradient norm can be upper bounded by the stochastic gradient plus a
constant. This result suggests that for ht in equation 14, one can choose A = 1

τ1−1 and δ = τ2
1−τ1

, and it is
very useful in our convergence analysis to effectively bound the stochastic gradient norm in ht. We obtain
the following convergence result of IAN-SGD. See Proof 8 in Appendix I

Theorem 2 (Convergence of IAN-SGD) Let Assumptions 1, 3 and 4 hold. For the IAN-SGD algo-
rithm, choose learning rate γ = min{ 1

4L0(2τ2
1 +1) ,

1
4L1(2τ2

1 +1) ,
1√
T
, 1

8L1(2τ2
1 +1)(2τ2/(1−τ1))β }, and A = 1

1−τ1

δ = τ2
1−τ1

, Γ = (4L1γ(2τ2
1 + 1))

1
β . Denote Λ := F (w0) − F ∗ + 1

2 (L0 + L1)(1 + 4τ2
2 )2. Then, with prob-

ability at least 1
2 , IAN-SGD produces a sequence satisfying mint≤T ∥∇F (wt)∥ ≤ ϵ if the total number of

iteration T satisfies

T ≥ Λ max
{256Λ

ϵ4
,

64L1(2τ2
1 + 1)(2 + 2τ1)β

(1 − τ1)βϵ2−β , (2τ2
1 + 1) · 64(L0 + L1) + 128L1(2τ2/(1 − τ1))β

ϵ2

}
. (17)

Remark 4 Existing work (Zhang et al., 2019) studied the iteration complexity of clipped SGD (i.e., β = 1
and ξ′ = ξ, without independence sampling) in the special bounded noise setting τ1 = 0, and obtained the
complexity

T ≥ Λ max
{4Λ
ϵ4
,

128L1

ϵ
,

80L0 + 512L1τ2

ϵ2

}
, (18)

where Λ =
(
F (x0) −F ∗ + (5L0 + 2L1τ2)τ2

2 + 9τ2L
2
0/L1

)
. As a comparison, the above Theorem 2 establishes a

comparable complexity result under the more general noise model (τ1 ≥ 0) in Assumption 4, by leveraging the
adaptive gradient normalization and independent sampling of IAN-SGD. In particular, in the special setting
of τ1 = 0, β = 1, these two complexity results match up to absolute constant coefficients.

Another existing work Zhang et al. (2020a) analyzed a generalized clipping framework that com-
bines momentum acceleration and gradient clipping, namely wt+1 = wt −

(
νmin

{
c, γ

∥mt∥
}
mt + (1 −

ν) min
{
c, γ

∥∇fξ(wt)∥
}

∇fξ(wt)
)
, under a bounded noise setting (i.e., τ1 = 0). They establish a complexity

of O
(
(F (w0) −F ∗)τ2

2L0/ϵ
4)

when γ/c = Θ(τ2), where mt denotes the momentum term and c is the clipping
threshold. This framework enables them to construct a recursion based directly on ∥∇F (wt)∥, whereas our
analysis is built around recursive bounds involving ∥∇F (wt)∥2 or ∥∇F (wt)∥2−β at each step. Consequently,
while both approaches yield the same order of convergence in terms of ϵ, the complexity expressions slightly
differ in the numerators due to different recursions.

Compared to the existing studies (Zhang et al., 2019; 2020b; Reisizadeh et al., 2023; Zhang et al., 2020a;
Koloskova et al., 2023) on gradient clipping algorithms, Theorem 2 establishes convergence guarantees with-
out the bounded approximation error assumption and the use of extremely large batch sizes that depend on

10
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the target error ϵ. Through numerical experiments in Section 7 and ablation study in A.2 later, we show
that it suffices to query a small number of independent samples for IAN-SGD in practice.

6.3.1 Proof outline and novelty

The independent sampling strategy adopted by IAN-SGD naturally decouples stochastic gradient from gradi-
ent norm normalization, making it easier to achieve the desired optimization progress in generalized-smooth
optimization under relaxed conditions. By the descent lemma, we have that

Eξ,ξ′
[
F (wt+1) − F (wt)|wt

]
(i)
≤Eξ′

[
−
γ

∥∥∇F (wt)
∥∥2

hβt
+
γ2(L0 + L1

∥∥∇F (wt)
∥∥α)

2h2β
t

Eξ
[∥∥∇fξ(wt)

∥∥2]
|wt

]
(ii)
≤ Eξ′

[( γ

hβt

(
− 1 + γ(2τ2

1 + 1)
L0 + L1

∥∥∇F (wt)
∥∥α

hβt

))
∥∇F (wt)

∥∥2 + γ2 2τ2
2 (L0 + L1

∥∥∇F (wt)
∥∥α)

h2β
t

|wt
]
, (19)

where (i) follows from the descent lemma (conditioned on wt) and the independence between ξ and ξ′;
(ii) leverages Assumption 4 to bound the second moment Eξ[∥∇fξ(wt)∥2] by (4τ2

1 + 2)∥∇F (wt)∥2 + 4τ2
2 .

Then, for the first term in equation 19, we leverage the clipping structure of ht to bound the coefficient
γ(2τ2

1 + 1)(L0 +L1∥∇F (w)∥α)/hβt by 1
2 . For the second term in equation 19, we again leverage the clipping

structure of ht and consider two complementary cases: when ∥∇F (wt)∥ ≤
√

1 + 4τ2
2 /(2τ2

1 + 1), this term
can be upper bounded by 1

2γ
2(L0 +L1)(1 + 4τ2

2 )2; when ∥∇F (wt)∥ >
√

1 + 4τ2
2 /(2τ2

1 + 1), this term can be
upper bounded by γ

4hβ
t

∥∇F (wt)∥2. Summing them up gives the desired bound. We refer to Lemma 5 in the
appendix for more details. Substituting these bounds into equation 19 and rearranging the terms yields that

Eξ′
[ γ

4hβt

∥∥∇F (wt)
∥∥2]

≤Eξ,ξ′
[
F (wt) − F (wt+1)

]
+ 1

2(L0 + L1)γ2(1 + 4τ2
2 )2.

Furthermore, by leveraging the clipping structure of hβt and Assumption 4, the left hand side of above inequal-
ity can be lower bounded as γ∥∇F (wt)∥2

hβ
t

≥ min{γ∥∇F (wt)∥2, ∥∇F (wt)∥2−β

4((2τ2+2)/1−τ1)βL1(2τ2
1 +1) }. Finally, telescoping

the above inequalities over t and taking expectation leads to the desired bound in equation 17.

As a comparison, in the previous works on clipped SGD (Zhang et al., 2019; 2020a), their stochastic gradient
and normalization term ht depend on the same mini-batch of samples, and therefore cannot be treated
separately in the analysis. For example, their analysis proposed the following decomposition.

Eξ
[∥∇fξ(wt)∥2

h2β
t

]
= Eξ

[(
∥∇F (wt)∥2 + ∥∇fξ(wt) − ∇F (wt)∥2 + 2⟨∇F (wt),∇fξ(wt) − ∇F (wt)⟩

)
/h2β

t

]
.

Hence their analysis needs to assume a constant upper bound for the approximation error ∥∇fξ(wt) −
∇F (wt)∥ in order to obtain a comparable bound to ours.

6.3.2 IAN-SGD under generalized PŁ condition

Under Assumption 2, we obtain the following recursion for IAN-SGD. See Appendix J for Proof details.

Lemma 3 (Descent inequality of IAN-SGD under generalized PŁ condition) Let Assumptions 1,
2, 3 and 4 hold. For the IAN-SGD algorithm, choose target error 0 < ϵ ≤ min{1, 1/2µ} and learning rate γ =
(2µϵ)

4−2β
ρ · min{ 1

4L0(2τ2
1 +1) ,

1
4L1((2τ1+2)/(1−τ1))(2τ2

1 +1) ,
1

8L1(2τ2
1 +1)(2τ2/(1−τ1))β ,

L1(2τ2
1 +1)

16((L0+L1)(1+4τ2
2 )+L1(τ2

1 +1/2))2 },

and A = 1
1−τ1

δ = τ2
1−τ1

, Γ = (4L1γ(2τ2
1 + 1))

1
β . Then, we have the following descent inequality

Ewt+1 [∆t+1] ≤ Ewt
[∆t − γ3/2(L1(2τ2

1 + 1))1/2(2µ∆t)(2−β)/ρ

4 + γ3/2(L1(2τ2
1 + 1))1/2(2µϵ)(2−β)/ρ

8 ]. (20)

We notice that equation 20 is almost the same as the recursion of AN-GD obtained in Appendix D. The main
difference between equation 20 and equation 35 is the usage of γ 3

2 instead of γ to characterize the recursion.
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As a result, the convergence rate of IAN-SGD is expected to be much slower than AN-GD, i.e., IAN-SGD
converge with rate Õ(ϵ−

3β
ρ ) when ρ+ β = 2; IAN-SGD converge with rate O(ϵ−

3(2−ρ)
ρ ) when ρ+ β < 2. We

omit the discussions of proof as its convergence analysis exactly follows the proof presented in Appendix E.

7 Experiments

We conduct numerical experiments to compare IAN-SGD with other state-of-the-art stochastic algorithms,
including the standard SGD (Ghadimi & Lan, 2013), normalized SGD (NSGD), clipped SGD (Zhang et al.,
2019), SPIDER (Fang et al., 2018), normalized SGD with momentum (Cutkosky & Mehta, 2020)(NSGDm)
etc. Compared with previous works that study clipped SGD (Zhang et al., 2019; 2020a;b; Koloskova et al.,
2023; Reisizadeh et al., 2023), the main change of IAN-SGD lies in its usage of independent sampling
and adaptive normalization. To empirically validate the effect of adaptive normalization in accordance with
Theorem 1, our experiments focus on nonconvex phase retrieval, distributionally robust optimization (DRO),
and deep neural network training. Prior works (Zhou et al., 2016; Jin et al., 2021; Liu et al., 2022a; Scaman
et al., 2022) have shown that phase retrieval and deep neural networks satisfy generalized PŁ conditions
under mild assumptions. Accordingly, we evaluate the convergence of all algorithms in terms of total sample
complexity (for phase retrieval and DRO) and number of epochs (for deep neural networks). Furthermore,
to align the DRO formulation with our theoretical assumptions, we focus on regression tasks and adopt
the χ2-divergence to model distributional uncertainty. All experiments were conducted on a PC computer
equipped with a 24-core CPU, 32GB of RAM, and a single NVIDIA RTX4090 GPU, running Python 3.8.

7.1 Nonconvex Phase Retrieval

The phase retrieval problem arises in optics, signal processing, and quantum mechanics (Drenth, 2007). The
goal is to recover a signal from measurements where only the intensity is known, and the phase information
is missing or difficult to measure. Specially, denote the underlying object as w ∈ Rd. Suppose we take m
intensity measurements yr = |aTr w|2 + nr for r = 1 · · ·m, where ar denotes the measurement vector and nr
is the additive noise. We aim to reconstruct w by solving the following regression problem,

min
w∈Rd

f(w) = 1
2m

m∑
r=1

(
yr −

∣∣aTr w∣∣2)2
. (21)

Such nonconvex function satisfies generalized-smooth with parameter α = 2
3 . In this experiment, we generate

the initialization w0 ∼ N (1, 6) and the underlying true object w∗ ∼ N (0, 0.5) with dimension d = 100. We
take m = 3k measurements with ar ∼ N (0, 0.5) and nr ∼ N (0, 16). We implement all of the stochastic
algorithms in original form as described in previous literature. We set batch size |B| = 64, and for IAN-
SGD, we choose a small independent batch size |B′| = 4. We fine-tuned learning rate for all algorithms, i.e.,
γ = 5e−5 for SGD, γ = 0.2 for NSGD and NSGD with momentum, γ = 0.6 for clipped SGD, and γ = 0.25
for SPIDER and IAN-SGD. We set the maximal gradient clipping constant as 20, δ = 1e−3 for both clipped
SGD and IAN-SGD. And we set normalization parameter β = 2

3 . Figure 2 (left) shows the comparison of
objective value versus sample complexity. It can be observed that IAN-SGD consistently converges faster
than other baseline algorithms.

7.2 Distributionally-Robust Optimization

Distributionally-robust optimization (DRO) is a popular approach to enhance robustness against data dis-
tribution shift. We consider the regularized DRO problem minw∈Rd f(w) = supQ

{
Eξ∼Q[ℓξ(w)] −λϕ(P;Q)

}
,

where Q, P represents the underlying distribution and the nominal distribution respectively. λ denotes a
regularization hyper-parameter and ϕ denotes ϕ-divergence metric. Under mild technical assumptions, Jin
et al. (2021) showed that such a problem has the following equivalent dual formulation

min
w∈Rd,η∈R

L(w, η) = λEξ∼Pϕ
∗
(ℓξ(w) − η

λ

)
+ η, (22)
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Figure 2: Experimental Results on Phase Retrieval and DRO

where ϕ∗ denotes the convex conjugate function of ϕ. In particular, such dual objective function satisfies
the generalized-smooth condition 2 with parameter α = 1 (Jin et al., 2021; Chen et al., 2023). In this
experiment, we use the Life Expectancy data (Arshi, 2017) for regression task. For objective equation 22,
we set λ = 0.01, select ϕ∗(t) = 1

4 (t + 2)2
+ − 1, which is the convex conjugate of χ2-divergence. We adopt

the regularized loss ℓξ(w) = 1
2 (yξ −x⊤

ξ w)2 + 0.1
∑34
j=1 ln(1 + |w(j)|), where xξ, yξ represent input and output

data, respectively. And we optimize the primal and dual variable of L(w, η) in parallel following conclusion
drawn from Jin et al. (2021).

For the stochastic momentum moving average parameter used for acceleration methods, we set it as 0.1
and 0.25 for NSGD with momentum and SPIDER respectively. For stochastic algorithms without usage of
multiple mini-batches, i.e., SGD, NSGD, NSGD with momentum and clipped SGD, we set their batch sizes
as |B| = 128. For SPIDER, we set |B| = 128 and |B′| = 2313, where the algorithm will conduct a full-
gradient computation after every 15 iterations. For IAN-SGD, we set the batch size for two batch samples
as |B| = 128 and |B′| = 8. We fine-tuned the learning rate for each algorithm, i.e., γ = 4e−5 for SGD,
γ = 5e−3 for NSGD, NSGD with momentum and SPIDER, γ = 0.11 for clipped SGD and IAN-SGD. We
set the δ = 1e−1, maximal gradient clipping constant as 30, 25 for clipped SGD and IAN-SGD respectively.
And we set normalization parameter β = 2

3 . Figure 2 (right) shows the comparison of objective value versus
sample complexity. It can be observed that objective value optimized by IAN-SGD consistently converges
faster than other baselines algorithms.

7.3 Deep Neural Networks

Figure 3: Experimental Result on training ResNet18, ResNet50.
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According to Zhang et al. (2019), generalized-smooth condition 2 has been observed to hold in deep neural
networks. To further demonstrate the effectiveness of IAN-SGD algorithm, we conduct experiments for
training deep neural networks. Specially, we train ResNet18 and ResNet50 (He et al., 2016) on CIFAR10
Dataset (Krizhevsky, 2009) from scratch. We resize images as 32 × 32 and normalize images with standard
derivation equals to 0.5 on each dimension. At the beginning of each algorithm, we fix the random seed and
initialize model parameters using the Kaiming initialization (He et al., 2015). We compare our algorithm
with several baseline methods, including SGD (Robbins & Monro, 1951), Adam (Kingma, 2014), Adagrad
(Duchi et al., 2011a), NSGD, NSGD with momentum (Cutkosky & Mehta, 2020) and clipped SGD (Zhang
et al., 2019).

For SGD, Adam and Adagrad, we utilize PyTorch built-in optimizer (Paszke et al., 2019) to implement
training pipelines. We implement training pipelines for NSGD, NSGD with momentum, clipped SGD and
IAN-SGD. The normalization constant is computed through all model parameters at each iteration. The
detailed algorithm settings are as follows. For batch size, all algorithms use B = 128, and B′ = 32 for
IAN-SGD. For stochastic momentum moving average parameter, we set it as 0.9, 0.99 for Adam, and 0.25
for normalized SGD with momentum. For clipping threshold used in clipped SGD and IAN-SGD, we set
them as 2 and δ = 1e−1. The normalization power used for IAN-SGD is β = 2

3 . We fine-tuned learning
rate for all algorithms, i.e., γ = 1e−3 for SGD, Adam and Adagrad, γ = 1e−1 for NSGD and NSGD with
momentum, γ = 2e−1 for clipped SGD and IAN-SGD. We trained ResNet18, ResNet50 on CIFAR10 dataset
for 60, 80 epochs and plot the training loss in Figure 3. Figure 3 (left) shows the training loss of ResNet18,
Figure3 (right) shows the training loss of ResNet50. As we can see from these figures, the (pink) loss curve
optimized by IAN-SGD indicates fast convergence rate comparable with several baselines, including SGD,
NSGD NSGDm, clipped SGD, which demonstrate the effectiveness of IAN-SGD framework.

Based on our experiments on non-convex phase retrieval, distributionally robust optimization (DRO), deep
neural networks, and an ablation study A.1, we found that IAN-SGD performs best when the adaptive
normalization parameter is set to β = 2

3 . When β is too small, i.e., β ≤ 1
2 , IAN-SGD struggles to converge;

when β is close to 1, its performance resembles that of clipped SGD. To achieve fast convergence, the learning
rate for IAN-SGD should lie between 1e−1 and 2e−1. Users should carefully fine-tune this parameter, as
overly large learning rates may lead to divergence.

Regarding the numerical stabilization term δ, our ablation study (see Appendix A.3) shows that IAN-SGD
is empirically insensitive to its value; small value such as 1e−3 is sufficient to ensure convergence. Finally,
to balance stable performance and fast convergence, ablation results (see Appendix A.2) suggest that user
should set batch size B ≥ 16 and the independent sample batch size |B′| should be at least one-quarter of
batch size |B|.

8 Conclusion

In this work, we provide theoretical insights on how normalization interplays with function geometry, and
their overall effects on convergence. We then propose independent normalized stochastic gradient descent
for stochastic setting, achieving same sample complexity under relaxed assumptions. Our results extend the
existing boundary of first-order nonconvex optimization and may inspire new developments in this direction.
In the future, it is interesting to explore if the popular acceleration method such as stochastic momentum and
variance reduction can be combined with independent sampling and normalization to improve the sample
complexity.
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A Ablation Study

In order to have a comprehensive understanding of the performance of IAN-SGD in practical problems, we
conduct ablation studies regarding on important components of IAN-SGD, including adaptive normalization
β, batch size |B′| of independent samples and numerical stabilizer δ.

A.1 Effects of β

To justify the advantage of using adaptive normalization, we conduct the following two experiments.

In the first experiment, we choose a unified normalization parameter β = 2
3 for all the normalized methods,

i.e., NSGD, NSGD with momentum, clipped SGD, SPIDER and IAN-SGD. To guarantee convergence, we
fine-tuned the learning rate accordingly, i.e., γ = 0.03 for NSGD and NSGD with momentum, γ = 0.05
for SPIDER, γ = 0.17 for both clipped SGD and IAN-SGD. To make a fair comparison, we keep other
parameters unchanged. Figure 4 (left) shows the comparison of objective value versus sample complexity
for the Phase Retrieval problem. It can be observed that, by adjusting β = 2

3 , the objective value optimized
by all algorithms decreases much faster compared with Figure 2. This indicates that adaptive normalization
can accelerate convergence. Moreover, compared with other normalization methods, although IAN-SGD
requires additional sampling at each iteration, the training loss still decreases faster than NSGD SGD with
momentum and SPIDER.

Similarly, for DRO, we unify the normalization parameter of all the normalized methods, i.e., NSGD, NSGD
with momentum, clipped SGD, SPIDER and IAN-SGD with β = 2

3 . To guarantee algorithm convergence,
we fine-tuned learning rate accordingly. For NSGD, NSGDm and SPIDER, we keep learning rate unchanged;
For clipped SGD, and IAN-SGD, we set γ = 0.08. To make a fair comparison, we keep other parameters
unchanged. Figure 4 (right) shows the comparison of objective value versus sample complexity. It can
be observed that, by setting β = 2

3 , the objective value optimized by all normalization methods decreases
faster than Figure 2. This verifies the effectiveness of adaptive normalization. Although IAN-SGD requires
additional sampling, it converges faster than other normalized methods.

In summary, the results in Figure 4 indicate that independent sampling and adaptive normalization doesn’t
increase the sample complexity to find a stationary point, which justifies IAN-SGD framework’s effectiveness
when dealing with nonconvex geometry characterized by generalized-smooth condition.

Figure 4: Advantage of using adaptive normalization on normalized first-order algorithms

In the second experiment, we vary β for IAN-SGD and keep other parameters unchanged. Figure 5 shows
the convergence result with different β for Phase Retrieval and DRO. It can be observed that decreasing β
accelerates convergence in general. However, small β can make convergence unstable. In the DRO experiment
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shown in Figure 5 (right), we observed that when β = 3
5 , the objective value curve fluctuates a lot. If β is

smaller than 3
5 , the algorithm fails to converge. This phenomenon matches the implications of Theorem 1,

where β must satisfy β ∈ [α, 1] to guarantee convergence.

Figure 5: Effects of adaptive normalization on convergence of IAN-SGD

A.2 Effects of Independent Samples’ Batch Size

In this section, we study the effects of batch size for independent samples used in IAN-SGD. For Phase
retrieval, we keep |B| = 64 and other parameters same as section A.1, and we vary independent batch sizes
to be |B′| = {4, 8, 16, 32, 64}. Similarly, for DRO, we keep |B| = 128 and other parameters same as section
A.1, and we vary batch size of independent samples |B′| = {16, 32, 64, 128}.

The following Figure 6 shows the convergence of IAN-SGD under different batch size choices for Phase
Retrieval (left) and DRO (right). It can be observed that for Phase retrieval and DRO problem, small batch

Figure 6: Effects of independent samples’ batch size on convergence

sizes such as |B′| = {4, 8} are sufficient to guarantee convergence, whereas large batch sizes of |B′| do not
significantly increase the sample complexity, which verifies the effectiveness of independent sampling.
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A.3 Effects of δ

In Theorem 2, we set δ = τ2
1−τ1

based on Assumption 4, which assumes an affine bound for approximation
error ∥∇fξ(w) − ∇F (w)∥. This assumption relaxes the strong assumption used in Zhang et al. (2019); Liu
et al. (2022b); Zhang et al. (2020a), where they assume that the approximation error ∥∇fξ(w) − ∇F (w)∥
is upper bounded by a constant. The major weakness is that if certain samples have outlier gradients,
such constant upper bound can be very large. Thus, to verify the effectiveness of Assumption 4, we expect
convergence of IAN-SGD under a wide range of δ, especially for small δ.

To study the effect of δ, we keep other parameters the same as mentioned in Section A.1 and only vary δ.
For Phase Retrieval, we vary δ = {1e−8, 1e−3, 1e−1, 1, 10} and Figure 7 (left) shows the corresponding con-
vergence result. For DRO, we vary δ = {1e−8, 1e−3, 1e−1, 1, 10} and Figure 7 (right) shows the convergence
result. We observe that IAN-SGD convergence is robust to the choice of δ. But δ = 1e−3, 1e−1 demonstrate
faster convergence than others for Phase retrieval and DRO experiments. This result indicates that a small
δ is sufficient to guarantee convergence, which verifies the effectiveness of assumption 4 and IAN-SGD when
dealing with stochastic nonconvex generalized-smooth geometry.

Figure 7: Effects of δ on convergence

A.3.1 Effects of τ1, τ2 on convergence

In Theorem 2, we set A = 1
1−τ1

and δ = τ2
1−τ1

, making the sample complexity dependent on both τ1 and
τ2. To further investigate the effect of the gradient noise assumption, we perform experiments that allow
flexible choices of τ1 and τ2. Specifically, we control the stochastic gradient noise by computing gradients
over mini-batch samples with B = B′ = 16 at each iteration. We then evaluate IAN-SGD under various noise
settings with τ1 ∈ {0, 0.5, 0.8} and τ2 ∈ {10−8, 10−3, 10−1, 1, 10}. As a result, the scaling factor becomes
A ∈ {1, 2, 5} and we define δ = A · {10−8, 10−3, 10−1, 1, 10} accordingly. For phase retrieval, we use a unified
learning rate γ = 1e−1, and for DRO, we set γ = 5e−3. Other parameters, such as the clipping threshold
and β, remain unchanged. Figure 8 plots the results, where the first row shows IAN-SGD’s convergence for
phase retrieval, and the second row shows IAN-SGD’s convergence for DRO.

As we can see from these figures, IAN-SGD converges slightly slower as τ1 increases for both the phase
retrieval and DRO problems. This observation aligns with Theorem 2, which shows that when τ1 > 0, the
resulting complexity is slightly worse than in the case τ1 = 0. Regarding τ2, although the final convergence
intervals remain approximately the same, we find that smaller values lead to less stable convergence for
phase retrieval. For DRO, the variation in τ2 does not significantly affect convergence when learning rate is
unified. This might be because for the DRO experiment, the model initialization and data processing have
reduced the noise of the stochastic gradients, enabling convergence with flexible choices of τ2.
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Figure 8: Effects of τ1, τ2 for IAN-SGD convergence

A.4 Ablation Study on Extreme Small Batch Size |B|, |B′|

In this subsection, we study the effects of batch size in IAN-SGD. Specially, we want to justify if IAN-SGD
works with B,B′ = Ω(1) in practice. For phase retrieval, we set B = B′ and keep other parameters the
same as in section A.1. For comparison, we vary batch sizes to be {1, 2, 4, 8, 16, 32}. To guarantee algorithm
converging to same level of magnitude, we fine-tune learning rates accordingly, i.e., for each batch size, we set
γ = {5e−4, 5e−3, 2e−2, 4e−2, 0.10, 0.10}, respectively. Similarly, for DRO, we set |B| = |B′| and keep other
parameters the same as section A.1. For comparison, we vary batch size to be {1, 2, 4, 8, 16, 32}, and we fine-
tuned learning rates accordingly, i.e., for each batch size, we set γ = {5e−4, 1e−3, 1e−3, 5e−3, 5e−3, 1e−2},
respectively. Figure 6 plots the convergence of IAN-SGD under different batch size choices for Phase Retrieval
(left) and DRO (right). We conclude IAN-SGD converges under constant-level batch size B,B′ = Ω(1).

Figure 9: Effects of batch size on convergence for IAN-SGD

Next, we compare IAN-SGD with other baseline methods under small batch size. To make a trade-off between
convergence and stability, we set |B| = 2 for SGD, NSGD with momentum, Clip-SGD and SPIDER; For
SPIDER algorithm (Fang et al., 2018), we set epoch size to be 20. For phase retrieval, we fine-tuned learning
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rate for all algorithms, i.e., γ = 1e−5 for SGD, γ = 1e−2 for NSGD, NSGD with momentum, γ = 5e−3 for
clipped SGD and IAN-SGD, γ = 5e−2 for SPIDER. Similarly, for DRO, we set |B| = 2 for SGD, NSGD with
momentum, clipped SGD and SPIDER. We fine-tuned learning rate for all algorithms, i.e., γ = 1e−6 for
SGD, γ = 1e−3 for NSGD, NSGD with momentum, clipped SGD and IAN-SGD, γ = 5e−3 for SPIDER. We
keep other parameters the same as in Section A.1. The first row of Figure 10 plots the comparison results
of Phase Retrieval (left) and DRO (right). We find in both problems, normalized methods such as NSGD,
SPIDER, clipped SGD are slow to converge under small batch size.

To further justify the effectiveness of IAN-SGD under small batch size, we also test IAN-SGD and other
baseline methods using small batch size to train ResNet (He et al., 2016) over CIFAR10 (Krizhevsky, 2009).
For all algorithms, we unify the batch size B = 32. We fine-tuned learning for all algorithms, i.e., γ = 1e−5

for SGD, γ = 1e−4 for Adam, γ = 1e−3 for Adagrad, γ = 5e−2 for NSGD and NSGD with momentum,
γ = 8e− 2 for clipped SGD and IAN-SGD, the second row of Figure 10 plots the corresponding results for
training ResNet18 (left) and ResNet50 (right). As a result, we found IAN-SGD still outperforms than most
baselines. This verifies the effectiveness of using IAN-SGD with small batch size in practice.

Figure 10: Comparison of IAN-SGD with other baselines under small batch size
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B Proof of Descent Lemma 1

Lemma 1 Under Assumption 1, function f satisfies, for any w,w′ ∈ Rd,

f(w) ≤ f(w′) + ⟨∇f(w′), w − w′⟩ + 1
2(L0 + L1

∥∥∇f(w′)
∥∥α)

∥∥w − w′∥∥2
. (3)

Proof 1 Denote wθ = θw′ + (1 − θ)w. By the fundamental theorem of calculus we have f(w′) − f(w) =∫ 1
0 ⟨∇f(wθ), w′ − w⟩dθ, which implies that

f(w′) − f(w) − ⟨∇f(w), w′ − w⟩ =
∫ 1

0
⟨∇f(wθ), w′ − w⟩dθ −

∫ 1

0
⟨∇f(w), w′ − w⟩dθ,

Substituting the generalized-smooth condition in Assumption 1 into the above equation, we have

f(w′) − f(w) − ⟨∇f(w), w′ − w⟩

=
∫ 1

0
⟨∇f(wθ), w′ − w⟩dθ −

∫ 1

0
⟨∇f(w), w′ − w⟩dθ

=
∫ 1

0
⟨∇f(wθ) − ∇f(w), w′ − w⟩dθ

(i)
≤

∫ 1

0

∥∥∇f(wθ) − ∇f(w)
∥∥∥∥w′ − w

∥∥dθ

(ii)
≤

∫ 1

0
θ(L0 + L1

∥∥∇f(w)
∥∥α)

∥∥w′ − w
∥∥2dθ

=1
2(L0 + L1

∥∥∇f(w)
∥∥α)

∥∥w′ − w
∥∥2
, (23)

where (i) applies Cauchy-schwarz inequality on ⟨∇f(wθ) − ∇f(w), wθ − w⟩, and (ii) is due to Assumption
1, ∥∇f(wθ) − ∇f(w)

∥∥ ≤ (L0 + L1∥∇f(w)∥α)∥wθ − w∥ = θ(L0 + L1∥∇f(w)∥α)∥w′ − w∥. Re-organizing the
above inequality gives the desired result.

C Proof for Nonconvex Phase Retrieval

The proof of generalized-smooth property for nonconvex Phase retrieval problem is similar as proof in Chen
et al. (2023) with minor changes. We present the proof details here for completeness.

Proof 2 The objective function of phase retrieval problem can be expressed in the following form

F (w) = 2
m

∑
ξ∈D

fξ(w) = 1
2m

∑
ξ∈D

(
yξ −

∣∣a⊤
ξ w

∣∣2)2
, (24)

where fξ(w) = 1
4 (yξ − |aTξ w|2)2.

We prove that for every sample ξ, ∇fξ(w) = −(yξ − |a⊤
ξ w|2)(aξaξ⊤)w satisfies equation 4 with α = 2

3 . And
thus F (w) satisfies finite-sum versions of equation 4, namely

2
m

∑
ξ∈D

∥∥fξ(w) − fξ(w′)
∥∥ ≤

∥∥w − w′∥∥ ·
(
L0 + L1

m

∑
ζ∈D

∥∇fξ(w)∥α + ∥∇fξ(w′)∥α
2

)
(25)
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We construct a lower bound of ∥∇fξ(w)∥ given w and ξ as following∥∥∇fξ(w)
∥∥ 2

3 =
∥∥(∣∣a⊤

ξ w
∣∣2 − yξ

)(
aξa

⊤
ξ

)
w

∥∥ 2
3

=
∥∥(∣∣a⊤

ξ w
∣∣2 · a⊤

ξ w − yξa
⊤
ξ w

)
aξ

∥∥ 2
3

(i)=
∣∣∣∣∣a⊤

ξ w
∣∣3 − yξ

∣∣a⊤
ξ w

∣∣∣∣∣ 2
3 ∥∥aξ∥∥ 2

3

(ii)
≥

(∣∣a⊤
ξ w

∣∣2 −
∣∣∣yξ∣∣a⊤

ξ w
∣∣∣∣∣ 2

3 )∥∥aξ∥∥ 2
3

(iii)
≥ 2

3
(∣∣a⊤

ξ w
∣∣2 −

∣∣yξ∣∣)∥∥aξ∥∥ 2
3 , (26)

where (i) extracts scalar
∣∣∣∣∣a⊤

ξ w
∣∣3 − yξ

∣∣a⊤
ξ w

∣∣∣∣∣ 2
3 out; (ii) uses inequality |a − b| 2

3 ≥ |a| 2
3 − |b| 2

3 holding for
any a, b ∈ R (sub-additive property of function f(x) = x2/3); (iii) applies young’s inequality |yξ|

2
3 |a⊤

ξ w| 2
3 ≤

1
3 ∥a⊤

ξ w∥2 + 2
3 |yξ|.

Then, for any w,w′ ∈ Rd, we have∥∥∇fξ
(
w′) − ∇fξ(w)

∥∥
=

∥∥(∣∣a⊤
ξ w

′∣∣2 − yξ
)(
aξa

⊤
ξ

)
w′ −

(∣∣a⊤
ξ w

∣∣2 − yξ
)(
aξa

⊤
ξ

)
w

∥∥
=1

2
∥∥2

(∣∣a⊤
ξ w

′∣∣2 − yξ
)(
aξa

⊤
ξ

)
w′ − 2

(∣∣a⊤
ξ w

∣∣2 − yξ
)(
aξa

⊤
ξ

)
w +

(∣∣a⊤
ξ w

′∣∣2 − yξ
)(
aξa

⊤
ξ

)
w −

(∣∣a⊤
ξ w

∣∣2 − yξ
)
(aξa⊤

ξ )w′

−
(∣∣a⊤

ξ w
′∣∣2 − yξ

)(
aξa

⊤
ξ

)
w +

(∣∣a⊤
ξ w

∣∣2 − yξ
)
(aξa⊤

ξ )w′∥∥
=1

2
∥∥(∣∣a⊤

ξ w
′∣∣2 − yξ

)(
aξa

⊤
ξ

)
w′ −

(∣∣a⊤
ξ w

′∣∣2 − yξ
)(
aξa

⊤
ξ

)
w +

(∣∣a⊤
ξ w

∣∣2 − yξ
)
(aξa⊤

ξ )w′ −
(∣∣a⊤

ξ w
∣∣2 − yξ

)(
aξa

⊤
ξ

)
w

+
(∣∣a⊤

ξ w
′∣∣2 − yξ

)(
aξa

⊤
ξ

)
w′ +

(∣∣a⊤
ξ w

′∣∣2 − yξ
)(
aξa

⊤
ξ

)
w −

(∣∣a⊤
ξ w

∣∣2 − yξ
)
(aξa⊤

ξ )w′ −
(∣∣a⊤

ξ w
∣∣2 − yξ

)(
aξa

⊤
ξ

)
w

∥∥
=1

2
∥∥(∣∣a⊤

ξ w
′∣∣2 +

∣∣a⊤
ξ w

∣∣2 − 2yξ
)(
aξa

⊤
ξ

)(
w′ − w

)
+

(∣∣a⊤
ξ w

′∣∣2 −
∣∣a⊤
ξ w

∣∣2)(
aξa

⊤
ξ

)(
w′ + w

)∥∥
(i)
≤ 1

2
∥∥(∣∣a⊤

ξ w
′∣∣2 +

∣∣a⊤
ξ w

∣∣2 − 2yξ
)(
aξa

⊤
ξ

)(
w′ − w

)∥∥ + 1
2

∥∥(∣∣a⊤
ξ w

′∣∣2 −
∣∣a⊤
ξ w

∣∣2)(
aξa

⊤
ξ

)(
w′ + w

)∥∥
=1

2
∥∥(∣∣a⊤

ξ w
′∣∣2 +

∣∣a⊤
ξ w

∣∣2 − 2yξ
)(
aξa

⊤
ξ

)(
w′ − w

)∥∥ + 1
2

∥∥(∣∣a⊤
ξ w

′∣∣2 −
∣∣a⊤
ξ w

∣∣2)
aξ

(
a⊤
ξ w

′ + a⊤
ξ w

)∥∥
(ii)
≤ 1

2
∥∥(∣∣a⊤

ξ w
′∣∣2 +

∣∣a⊤
ξ w

∣∣2 − 2yξ
)(
aξa

⊤
ξ

)(
w′ − w

)∥∥ + 1
2

∥∥(∣∣a⊤
ξ w

′∣∣2 −
∣∣a⊤
ξ w

∣∣2)
aξ

(∣∣a⊤
ξ w

′∣∣ +
∣∣a⊤
ξ w

∣∣)∥∥
(iii)
≤ 1

2
∥∥aξ∥∥2(∣∣a⊤

ξ w
′∣∣2 +

∣∣a⊤
ξ w

∣∣2 + 2
∣∣yξ∣∣)∥∥w′ − w

∥∥ + 1
2

∥∥aξ∥∥2(∣∣a⊤
ξ w

′∣∣ +
∣∣a⊤
ξ w

∣∣)2∥∥w′ − w
∥∥

(iv)
≤ 1

2
∥∥w′ − w

∥∥∥∥aξ∥∥2(
3
∣∣a⊤
ξ w

′∣∣2 + 3
∣∣a⊤
ξ w

∣∣2 + 2
∣∣yξ∣∣)

≤1
2

∥∥w′ − w
∥∥∥∥aξ∥∥ 4

3
∥∥aξ∥∥ 2

3 ·
(
3
∣∣a⊤
ξ w

′∣∣2 + 3
∣∣a⊤
ξ w

∣∣2 − 3
∣∣yξ∣∣ − 3

∣∣yξ∣∣ + 8
∣∣yξ∣∣)

(v)
≤

∥∥w′ − w
∥∥(9

4a
4
3max

∥∥∇fξ
(
w′)∥∥ 2

3 + 9
4a

4
3max

∥∥∇fξ(w)
∥∥ 2

3 + 4ymaxa
2
max

)
, (27)

where (i) uses triangular inequality; (ii) uses the fact aTξ w ≤ |aTξ w|; (iii) uses the fact ∥aξa⊤
ξ ∥ = ∥aξ∥2

and equation 28; (iv) uses (|a⊤
ξ w

′| + |a⊤
ξ w|)2 ≤ 2|a⊤

ξ w
′|2 + 2|a⊤

ξ w|2; (v) uses equation 26 and denotes
ymax = max ∥yξ∥ and amax = max

∥∥aξ∥∥.

The inequality used in (iii) is constructed as following∣∣∣∣a⊤
ξ w

′∣∣2 −
∣∣a⊤
ξ z

∣∣2∣∣ =
(∣∣a⊤

ξ w
′∣∣ +

∣∣a⊤
ξ w

∣∣)(∣∣a⊤
ξ w

′∣∣ −
∣∣a⊤
ξ w

∣∣)
≤

(∣∣a⊤
ξ w

′∣∣ +
∣∣a⊤
ξ w

∣∣)∥∥a⊤
ξ

(
w′ − w

)∥∥
≤

∥∥a⊤
ξ

∥∥(∣∣a⊤
ξ w

′∣∣ +
∣∣a⊤
ξ w

∣∣)∥∥w′ − w
∥∥. (28)
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Thus, fξ(w) = 1
4 (yξ − |aTξ w|2)2 satisfies equation 4 with α = 2

3 , L0 = 4ymaxa
2
max, and L1 = 9

2a
4
3max. Thus,

F (w) satisfies equation 25 with α = 2
3 , L0 = 8ymaxa

2
max, and L1 = 9a

4
3max.

D Proof of Descent Lemma under Generalized PŁ condition

Lemma 5 in Chen et al. (2023). For any x ≥ 0, C ∈ [0, 1], ∆ > 0, and 0 ≤ w ≤ w′ such that ∆ ≥ w′ − w,
we have the following inequality hold

Cxw ≤ xw
′
+ C

w′
∆ . (29)

The proof details for this lemma can be found at Chen et al. (2023), Lemma 5 at Appendix.

Lemma 4 (Descent Lemma under Generalized PL condition) Let Assumption 1 and 2 hold. Apply
AN-GD with β ∈ [α, 1]. Choose target error 0 < ϵ ≤ min{1, 1/2µ}. Let step size γ = (2µϵ)β/ρ

8(L0+L1)+1 . Denote
∆t = f(wt) − f∗, then we have

∆t+1 ≤ ∆t − γ(2µ)
2−β

ρ

2 ∆
2−β

ρ

t + γ

4 (2µϵ)
2−β

ρ , ∀t. (30)

Proof 3 We consider two complementary cases α > 0 and α = 0.

When α > 0, we have β ≥ α > 0, and by the descent lemma 1, we have that

f
(
wt+1

)
− f

(
wt

)
(i)
≤∇f

(
wt

)⊤(
wt+1 − wt

)
+ 1

2
(
L0 + L1

∥∥∇f
(
wt

)∥∥α)∥∥wt+1 − wt
∥∥2

(ii)= − γ
∥∥∇f

(
wt

)∥∥2−β + γ

4
(
2L0γ ·

∥∥∇f
(
wt

)∥∥2−2β + 2L1γ ·
∥∥∇f

(
wt

)∥∥2+α−2β)
(iii)
≤ − γ

∥∥∇f
(
wt

)∥∥2−β + γ

4
(
2
∥∥∇f

(
wt

)∥∥2−β +
(
2L0γ

) 2
β −1 +

(
2L1γ

) 2
β −1)

(iv)
≤ − γ

2
∥∥∇f

(
wt

)∥∥2−β + γ
2
β

4
(
2L0 + 2L1

) 2
β −1

(v)
≤ − γ

2
∥∥∇f

(
wt

)∥∥2−β + (2µϵ)
2
ρ

(8(L0 + L1) + 1)
2
β

(1
4)(8(L0 + L1) + 1)

2
β −1

(vi)
≤ − γ

2
∥∥∇f

(
wt

)∥∥2−β + 1
4

(2µϵ)
β
ρ (2µϵ)

2−β
ρ

8(L0 + L1) + 1

= − γ

2
∥∥∇f

(
wt

)∥∥2−β + γ

4 (2µϵ)
2−β

ρ , (31)

where (i) follows from the descent lemma 1; (ii) follows from the AN-GD update rule by replacing wt+1 −wt
with −γ ∇f(wt)

∥∇f(wt)∥β ; (iii) follows from the technical lemma 5 above proved in Chen et al. (2023) by letting
ω′ = 2 − β, ∆ = β and substituting equation 29 to 2L0γ∥∇f(wt)∥2−2β and 2L1γ∥∇f(wt)∥2+α−2β (Let
x = ∥∇f(wt)∥ and C = 2L0γ or 2L1γ , C ∈ [0, 1] because ϵ ≤ 1/2µ); (iv) follows from the fact that aτ +bτ ≤
(a+b)τ with τ = 2/β−1 ≥ 1 and a, b ≥ 0, (v) follows from the step size rule γ = (2µϵ)β/ρ/(8(L0 + L1) + 1);
(vi) follows from the facts that 2L0 + 2L1 ≤ 8(L0 +L1) + 1 and (2L0 + 2L1)

2
β −1 ≤ (8(L0 +L1) + 1)

2
β −1 when

β > 0.
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When α = 0, the same argument applies if β > 0. Next, we consider the case α = β = 0, and we have
γ = 1

8(L0+L1)+1 . We obtain that

f
(
wt+1

)
− f

(
wt

)
(i)
≤∇f

(
wt

)⊤(
wt+1 − wt

)
+ 1

2
(
L0 + L1

)∥∥wt+1 − wt
∥∥2

(ii)= − γ
∥∥∇f

(
wt

)∥∥2 + γ

4
(
2L0γ ·

∥∥∇f
(
wt

)∥∥2 + 2L1γ ·
∥∥∇f

(
wt

)∥∥2)
= − γ

∥∥∇f
(
wt

)∥∥2 + γ2

4
(
2L0 + 2L1

)∥∥∇f(wt)
∥∥2

(iii)
≤ − γ

∥∥∇f
(
wt

)∥∥2 + γ

4
1

8(L0 + L1) + 1
(
8(L0 + L1) + 1

)∥∥∇f(wt)
∥∥2

(iv)
≤ − γ

∥∥∇f
(
wt

)∥∥2 + γ

2
∥∥∇f(wt)

∥∥2

(v)
≤ − γ

∥∥∇f
(
wt

)∥∥2 + γ

2
∥∥∇f(wt)

∥∥2 + γ

4 (2µϵ)
2
ρ

= − γ

2
∥∥∇f

(
wt

)∥∥2 + γ

4 (2µϵ)
2
ρ , (32)

where (i) follows from the descent lemma 1 with α = 0; (ii) follows from the update rule of AN-GD by
replacing wt+1 − wt with −γ∇f(wt) (Normalization term vanishes due to β = 0); (iii) follows the fact that
2L0 + 2L1 ≤ 8(L0 + L1) + 1; (iv) follows from the fact γ

4 ≤ γ
2 and (v) holds by adding additional positive

number γ
4 (2µϵ)

2
ρ .

Thus, in conclusion, for any β ∈ [α, 1], we always have the following descent lemma

f
(
wt+1

)
− f

(
wt

)
≤ −γ

2
∥∥∇f

(
wt

)∥∥2−β + γ

4 (2µϵ)
2−β

ρ (33)

under the step size rule γ = (2µϵ)β/ρ

8(L0+L1)+1 . Moreover, by the generalized PŁ-condition in Definition 5, we have∥∥∇f(w)
∥∥ ≥ (2µ)

1
ρ
(
f(w) − f∗) 1

ρ ,

which implies that ∥∥∇f(wt)
∥∥2−β ≥ (2µ)

2−β
ρ

(
f(wt) − f∗) 2−β

ρ = (2µ)
2−β

ρ ∆
2−β

ρ

t . (34)

Substituting equation 34 into equation 33, we have

f(wt+1) − f(wt) ≤ −γ

2 (2µ)
2−β

ρ
(
f(wt) − f∗) 2−β

ρ + γ

4 (2µϵ)
2−β

ρ .

Subtracting f∗ on both sides, we have

f(wt+1) − f∗ ≤ f(wt) − f∗ − γ

2 (2µ)
2−β

ρ (f(w) − f∗)
2−β

ρ + γ

4 (2µϵ)
2−β

ρ .

Denote ∆t = f(wt) − f∗, the above inequality can be written as

∆t+1 ≤ ∆t − γ(2µ)
2−β

ρ

2 ∆
2−β

ρ

t + γ

4 (2µϵ)
2−β

ρ , ∀t. (35)

E Proof of Theorem 1

Theorem 1 (Convergence of AN-GD) Let Assumptions 1 and 2 hold. Denote ∆t := f(wt) − f∗ as the
function value gap. Choose target error 0 < ϵ ≤ min{1, 1

2µ} and define learning rate γ = (2µϵ)β/ρ

8(L0+L1)+1 ≤ 2
µ for

some β ∈ [α, 1]. Then, the following statements hold,
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• If β < 2 − ρ, in order to achieve ∆T ≤ ϵ, the total number of iterations must satisfy

T ≥ max
{ 8ρ(8(L0 + L1) + 1)

(2 − β − ρ)(2µ)2/ρϵ(2−ρ)/ρ ,
1

(2(2−β−ρ)/(2−β) − 1)∆(ρ+β−2)/ρ
0 ϵ(2−β−ρ)/ρ

}
= Ω

(
(1
ϵ

)
2−ρ

ρ
)
. (7)

• If β = 2 − ρ, in order to achieve ∆T ≤ ϵ, the total number of iterations must satisfy

T ≥ 21−β/ρ · (8(L0 + L1) + 1)
µ · (µϵ)β/ρ · log(∆0

ϵ
) = Ω

(
(1
ϵ

)
β
ρ · log(∆0

ϵ
)
)
. (8)

• If 1 ≥ β > 2 − ρ, and for some T0 satisfying ∆T0 ≤ O
(
(γµ(2−β)/(ρ+β−2))

ρ
ρ+β−2

)
, then the total number of

iterations after T0 must satisfy

T ≳Ω
(

log
((1
ϵ

) β
ρ+β−2

)
+ log

(
log

( (2µ)2/(ρ+β−2)

(32(L0 + L1) + 4)ρ/(ρ+β−2)ϵ

)))
= Ω

(
log

(
(1
ϵ

)
β

ρ+β−2
))
. (9)

Proof 4 Given target error 0 < ϵ ≤ min{1, 1/2µ}, define stopping time as the first time that ∆t satisfies
∆t ≤ ϵ, i.e., T = inf{t|∆t ≤ ϵ}. In the following proof, we provide an estimate of such stopping time T .

For any t satisfies ∆t > ϵ, we must have ∆(2−β)/ρ
t > ϵ(2−β)/ρ since 2−β

ρ > 0. This implies that
γ
4 (2µϵ)(2−β)/ρ < γ

4 (2µ)(2−β)/ρ∆(2−β)/ρ
t . Thus, equation 35 further reduces to the following descent inequality

∆t+1 ≤ ∆t − γ(2µ)
2−β

ρ

4 ∆
2−β

ρ

t . (36)

For above equation 36, we provide convergence rate based on the value of ρ and β.
Case I: β < 2 − ρ
This is equivalent to 2−β

ρ > 1. For simplicity of notation, denote θ = 2−β
ρ . When θ > 1, we have following

inequalities

∆t+1 ≤∆t

∆θ
t+1 ≤∆θ

t

∆−θ
t+1 ≥∆−θ

t . (37)

Now define an auxiliary function Φ(t) = 1
θ−1 t

1−θ, where its derivative is Φ′(t) = −t−θ We divide the last
inequality of equation 37 into two different cases for analysis. One is the case when ∆−θ

t ≤ ∆−θ
t+1 ≤ 2∆−θ

t ,
another is the case when ∆−θ

t+1 ≥ 2∆−θ
t .

When ∆−θ
t ≤ ∆−θ

t+1 ≤ 2∆−θ
t , we have

Φ(∆t+1) − Φ(∆t) =
∫ ∆t+1

∆t

Φ′(t)dt =
∫ ∆t

∆t+1

t−θdt

(i)
≥ (∆t − ∆t+1)∆−θ

t

(ii)
≥ (∆t − ∆t+1)

∆−θ
t+1
2

(iii)
≥ γ(2µ)θ

4 ∆θ
t

∆−θ
t+1
2

(iv)
≥ γ(2µ)θ

4 ∆θ
t+1

∆−θ
t+1
2 = γ(2µ)θ

8 ,

where (i) applies mean value theorem such that Φ(∆t+1) − Φ(∆t) = |∆t+1 − ∆t∥Φ′(ξ)| and ∆−θ
t+1 ≥ |Φ′(ξ)| ≥

∆−θ
t holds for any ξ ∈ [∆t+1,∆t]; (ii) uses the fact ∆−θ

t+1 ≤ 2∆−θ
t ; (iii) utilizes recursion ∆t − ∆t+1 ≥

γ(2µ)θ

4 ∆θ
t ; (iv) uses the fact that ∆θ

t > ∆θ
t+1 for all θ > 0.
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When ∆−θ
t+1 > 2∆−θ

t , it holds that ∆1−θ
t+1 = (∆−θ

t+1)
1−θ
−θ > 2

1−θ
−θ ∆1−θ

t . Then, we have

Φ(∆t+1) − Φ(∆t) = 1
θ − 1(∆1−θ

t+1 − ∆1−θ
t )

(i)
≥ 1
θ − 1

(
(2)

θ−1
θ − 1

)
∆1−θ
t

(ii)
≥ 1
θ − 1

(
(2)

θ−1
θ − 1

)
∆1−θ

0 ,

where (i) is due to the recursion ∆1−θ
t+1 = (∆−θ

t+1)
1−θ
−θ > 2

1−θ
−θ ∆1−θ

t ; (ii) is due to the fact the sequence {∆t}Tt=1
generated by equation 36 is non-increasing. Substitute θ = 2−β

ρ in and denote

C = min
{γ(2µ)

2−β
ρ

8 ,
ρ

2 − β − ρ
(2

2−β−ρ
2−β − 1)∆

β+ρ−2
ρ

0

}
.

We conclude for all t, we have

Φ(∆t) ≥ Φ(∆t) − Φ(∆0) =
t−1∑
i=0

Φ(∆i+1) − Φ(∆i) ≥ Ct,

Substituting the expression Φ(∆t) = 1
θ−1 ∆1−θ

t into the above inequality, we have

∆t ≤
( ρ

(2 − β − ρ) · Ct

) ρ
2−ρ−β

, (38)

In order to obtain ∆T ≤ ϵ, when C = ρ
2−β−ρ (2(2−β−ρ)/(2−β) − 1)∆(β+ρ−2)/ρ

0 , T should satisfy

T = 1
(2(2−β−ρ)/(2−β) − 1)∆(ρ+β−2)/ρ

0 ϵ(2−β−ρ)/ρ
; (39)

When C = γ(2µ)2−β/ρ

8 = (2µ)2/ρ·ϵβ/ρ

8(8(L0+L1)+1) , T should satisfy

T = 8ρ(8(L0 + L1) + 1)
(2 − β − ρ)(2µ)2/ρϵ(2−ρ)/ρ . (40)

This concludes when ρ+ β < 2, T should satisfy

T ≥ max
{ 8ρ(8(L0 + L1) + 1)

(2 − β − ρ)(2µ)2/ρϵ(2−ρ)/ρ ,
1

(2(2−β−ρ)/(2−β) − 1)∆(ρ+β−2)/ρ
0 ϵ(2−β−ρ)/ρ

}
= Ω

(
(1
ϵ

)
2−ρ

ρ
)
. (41)

Case II: β = 2 − ρ

This is equivalent to 2−β
ρ = 1, equation 36 reduces to

∆t+1 ≤ ∆t − γµ

2 ∆t = (1 − γµ

2 )∆t,

which leads to

∆t ≤ (1 − γµ

2 )t∆0 = O
(

(1 − γµ

2 )t
)
.

To obtain ∆T ≤ ϵ, we have

∆t ≤ (1 − γµ

2 )t∆0 ≤ exp(−γµt

2 )∆0. (42)
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To obtain ∆t ≤ ϵ, iteration complexity should satisfy

T ≥ 2
γµ

log(∆0

ϵ
) = 21−β/ρ · (8(L0 + L1) + 1)

µ · (µϵ)β/ρ · log(∆0

ϵ
) = Ω

(
(1
ϵ

)
β
ρ · log(∆0

ϵ
)
)
.

Case III: 1 ≥ β > 2 − ρ

This is equivalent to 2−β
ρ < 1.

For simplicity of notation, denote ω = ρ
2−β and C = (2µ)

2−β
ρ

4 . Then, equation 36 can be rewritten as

∆t+1 ≤ ∆t − Cγ∆
1
ω
t . (43)

When ∆t is small enough, ∆1/ω
t+1 will dominate ∆t+1 order-wisely since 1/ω < 1. This fact leads to

Cγ∆
1
ω
t+1

(i)
≤ ∆t+1 + Cγ∆

1
ω
t+1

(ii)
≤ ∆t+1 + Cγ∆

1
ω
t

(iii)
≤ ∆t,

where (i) is because ∆t+1 ≥ 0; (ii) is because ∆t+1 ≤ ∆t; (iii) is because re-organization of equation 36.
There exists a time T0 = inf{t ∈ N|∆t/(Cγ)ω/(ω−1)

< 1} such that for any T0 ≤ t ≤ T , we have

∆t+1 ≤ (Cγ)−ω∆ω
t =(Cγ)−ω−ω2−...−ωt−T0 ∆ωt−T0

T0

=(Cγ)
ω(1−ωt−T0 )

ω−1 ∆ωt−T0
T0

=(Cγ)ω/ω−1(
(Cγ)ω/ω−1)ω−t−T0

∆ωt−T0
T0

. (44)

To simplify analysis, denote all parameters associated with ϵ as Ĉ = ( C(2µ)β/ρ

8(L0+L1)+1 )ω/ω−1. We have
(Cγ)ω/ω−1 = Ĉϵβ/(ρ+β−2) ≤ Ĉ. This enables us to further reduce the recursion to

∆t+1 ≤(Cγ)ω/ω−1(
(Cγ)ω/ω−1)ω−t−T0

∆ωt−T0
T0

≤Ĉ
(

(Cγ) ω
ω−1

)−ωt−T0

∆ωt−T0
T0

=O
(( ∆T0

γω/ω−1

)ωt−T0
)
. (45)

To obtain ∆T ≤ ϵ, above recursion should satisfy

Ĉ
(

(Cγ) ω
ω−1

)−ωt−T0

∆ωt−T0
T0

= ϵ.

Taking logarithm on both sides and extracting ϵβ/(ρ+β−2) from (Cγ)ω/ω−1/∆T0 , we have

log(Ĉ/ϵ) = ωt−T0 · log
(

(Cγ) ω
ω−1 /∆T0

)
= ωt−T0 · log

((
Ĉ/∆T0

)
· ϵ

β
ρ+β−2

)
≤ ωt−T0

(
Ĉ/∆T0

)
· ϵ

β
ρ+β−2 .

Taking logarithm again on both sides of the above inequality, we have

t− T0 ≥ 1
log

(
ρ

2−β )
·
[

log
( β

ρ+ β − 2 · log
(1
ϵ

)
+ log

(
log

( (2µ)2/(ρ+β−2)

(32(L0 + L1) + 4)ρ/(ρ+β−2)ϵ

))
+ log

( (32(L0 + L1) + 4)ρ/(ρ+β−2)∆T0

(2µ)2/(ρ+β−2)

)]
≳Ω

(
log

( β

ρ+ β − 2 · log
(1
ϵ

)
+ log

(
log

( (2µ)2/(ρ+β−2)

(32(L0 + L1) + 4)ρ/(ρ+β−2)ϵ

)))
=Ω

(
log

(
(1
ϵ

)
β

ρ+β−2
))
.
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F Proof of Proposition 1

Proposition 1 (Convergence of GD) Let Assumptions 1 and 2 hold. Assume there exists a positive
constant G such that ∥∇f(xt)∥ ≤ G,∀t ∈ T , When ρ = α = 1 and setting γ ≤ min{ 1

L0
, 1

2L1G
}, gradient

descent converges to an ϵ-stationary point within T ≥ Ω(Gϵ ) iterations.

Proof 5 When α = 1, putting the update rule of gradient descent wt+1 = wt − γ∇f(wt) into descent lemma
equation 1 yields

f(wt+1)
(i)
≤f(wt) − γ

∥∥∇f(wt)
∥∥2 + γ2

2 (L0 + L1
∥∥∇f(wt)

∥∥)
∥∥∇f(wt)

∥∥2

=f(wt) − (γ − L0γ
2

2 )
∥∥∇f(wt)

∥∥2 + L1γ
2

2
∥∥∇f(wt)

∥∥3

(ii)
≤ f(wt) − γ

2
∥∥∇f(wt)

∥∥2 + L1γ
2

2
∥∥∇f(wt)

∥∥3

(iii)
≤ f(wt) − γ

4
∥∥∇f(wt)

∥∥2 (46)

where (i) is due to descent lemma equation 1; (ii) and (iii) are due to the learning rate design γ ≤
min{ 1

L0
, 1

2L1G
}, which ensures −(γ − L0γ

2

2 ) ≤ −γ
2 and L1γ

2

2 ∥∇f(wt)∥3 ≤ γ
4 ∥∇f(wt)∥2.

When applying Assumption 2 with ρ = 1 and denote f(wt) − f∗ as ∆t, we have

∆t+1 ≤ ∆t − γµ2∆2
t (47)

The rest of proof is exactly the same as proof for Theorem 1 Case I, we omit discussion here. As a result,
one can show equation 47 converges to a ϵ-stationary point after O(Gϵ ) iterations.
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G Proof of Lemma 2

Lemma 2 Let Assumptions 3 and 4 hold. The gradient ∥∇F (wt)∥ and stochastic gradient ∇fξ(wt) satisfy

∥∇F (wt)∥ ≤ 1
1 − τ1

∥∇fξ(wt)∥ + τ2

1 − τ1
, and

∥∇fξ(wt)∥ ≤ (1 + τ1)∥∇F (wt)∥ + τ2. (16)

Proof 6 Based on Assumption 4, we have

∥∇F (wt) − ∇fξ′(wt)∥ ≤ τ1∥∇F (wt)∥ + τ2,

which, by triangle inequality, further implies that

∣∣∥∇F (wt)∥ − ∥∇fξ′(wt)∥
∣∣ ≤ ∥∇F (wt) − ∇fξ′(wt)∥ ≤ τ1∥∇F (wt)∥ + τ2.

Rearranging the above inequality yields that

∥∇F (wt)∥ ≤ 1
1 − τ1

∥∇fξ′(wt)∥ + τ2

1 − τ1
.

For the upper bound of ∥∇fξ′(wt)∥, it directly follows from Assumption 4.

H Lemma 5 and Proof

Lemma 5 For 1
2γ

2 (L0+L1

∥∥∇F (wt)
∥∥α

)
h2β

t

· 4τ2
2 , we have the following upper bound

1
2γ

2 (L0 + L1
∥∥∇F (wt)

∥∥α)
h2β
t

· 4τ2
2 ≤ 1

2γ
2(L0 + L1)(1 + 4τ2

2 )2 + γ

4hβt

∥∥∇F (wt)
∥∥2
. (48)

Proof 7 When
∥∥∇F (wt)

∥∥ ≤
√

1 + 4τ2
2 /(2τ2

1 + 1), we have
∥∥∇F (wt)

∥∥α ≤ (1 + 4τ2
2 /(2τ2

1 + 1)) α
2 for any

α > 0. Then, we have

γ2

2
(L0 + L1

∥∥∇F (wt)
∥∥α)

h2β
t

4τ2
2

≤1
2γ

2(1 + 4τ2
2

2τ2
1 + 1) α

2
(L0 + L1)

h2β
t

4τ2
2

≤1
2γ

2(L0 + L1)(1 + 4τ2
2 ) α

2 (1 + 4τ2
2 )

≤1
2γ

2(L0 + L1)(1 + 4τ2
2 )2, (49)

where the first inequality uses ∥∇F (wt)∥α ≤ (1 + 4τ2
2 /(2τ2

1 + 1))α/2 and (1 + 4τ2
2 /(2τ2

1 + 1))α/2 ≥ 1; the
second inequality uses the fact that 1

ht
≤ 1 (so does 1

h2β
t

) and upper bound 4τ2
2 by 1 + 4τ2

2 ; the last inequality
uses the fact that thus (1 + 4τ2

2 )1+α/2 ≤ (1 + 4τ2
2 )2.
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When
∥∥∇F (wt)

∥∥ > √
1 + 4τ2

2 /(2τ2
1 + 1), we have

γ2

2
L1

∥∥∇F (wt)
∥∥α

h2β
t

· 4τ2
2

= γ2

2hβt

L1
∥∥∇F (wt)

∥∥α
hβt

· 4τ2
2

(i)
≤ γ2

2hβt

L1
∥∥∇F (wt)

∥∥α
4L1γ(2τ2

1 + 1)( 1
1−τ1

∥∇fξ′(wt)∥ + τ2
1−τ1

)β
· 4τ2

2

= γ2

2hβt

L1
∥∥∇F (wt)

∥∥α
4L1γ( 1

1−τ1
∥∇fξ′(wt)∥ + τ2

1−τ1
)β

· 4τ2
2

(2τ2
1 + 1)

(ii)
<

γ2

2hβt

L1
∥∥∇F (wt)

∥∥α
(4L1γ)( 1

1−τ1

∥∥∇fξ′(wt)
∥∥ + τ2

1−τ1
)β

·
∥∥∇F (wt)

∥∥2

(iii)
≤ γ2

2hβt

L1
∥∥∇F (wt)

∥∥α
(4L1γ)

∥∥∇F (wt)
∥∥β ∥∥∇F (wt)

∥∥2

= γ2

2hβt

L1

4L1γ
∥∥∇F (wt)

∥∥β−α

∥∥∇F (wt)
∥∥2

(iv)
<

γ2

2hβt

L1

4L1γ

∥∥∇F (wt)
∥∥2

= γ

8hβt

∥∥∇F (wt)
∥∥2
, (50)

where (i) uses the fact 1
hβ

t

≤ 1
4L1γ(2τ2

1 +1)( 1
1−τ1

∥∇fξ′ (wt)∥+ τ2
1−τ1

)β ; (ii) uses the fact that now ∥∇F (wt)∥2 >

1 + 4τ2
2 /(2τ2

1 + 1) ≥ 4τ2
2 /(2τ2

1 + 1); (iii) uses the fact ∥∇F (wt)∥ ≤ 1
1−τ1

∥∇fξ′(wt)∥ + τ2
1−τ1

; (iv) uses the fact∥∥∇F (wt)
∥∥ > √

1 + 4τ2
2 /(2τ2

1 + 1) ≥ 1 and thus 1
∥∇F (wt)∥β−α < 1.

Similarly, when
∥∥∇F (wt)

∥∥ > √
1 + 4τ2

2 /(2τ2
1 + 1), for 1

2h2β
t

γ2L0 · 4τ2
2 , we have

1
2h2β

t

γ2L0 · 4τ2
2

= γ

2h2β
t

(γL0) · 4τ2
2

≤ γ

2hβt
(γL0) · 4τ2

2

≤ γ

2hβt

1
4 · (2τ2

1 + 1)4τ2
2

= γ

8hβt

4τ2
2

2τ2
1 + 1

≤ γ

8hβt

(
1 + 4τ2

2
2τ2

1 + 1

)
<

γ

8hβt

∥∥∇F (wt)
∥∥2
, (51)

where the first inequality uses the fact that 1
hβ

t

≤ 1; the second inequality uses the fact γ ≤ 1
4L0(2τ2

1 +1) ;

the third inequality uses the fact 4τ2
2

2τ2
1 +1 ≤ 1 + 4τ2

2
2τ2

1 +1 ; the fourth inequality uses the fact that
∥∥∇F (wt)

∥∥2
>

1 + 4τ2
2 /(2τ2

1 + 1). Combining equation 49, equation 50, equation 51 gives us the desired result.
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I Proof of Theorem 2

Theorem 2 (Convergence of IAN-SGD) Let Assumptions 1, 3 and 4 hold. For the IAN-SGD algo-
rithm, choose learning rate γ = min{ 1

4L0(2τ2
1 +1) ,

1
4L1(2τ2

1 +1) ,
1√
T
, 1

8L1(2τ2
1 +1)(2τ2/(1−τ1))β }, and A = 1

1−τ1

δ = τ2
1−τ1

, Γ = (4L1γ(2τ2
1 + 1))

1
β . Denote Λ := F (w0) − F ∗ + 1

2 (L0 + L1)(1 + 4τ2
2 )2. Then, with prob-

ability at least 1
2 , IAN-SGD produces a sequence satisfying mint≤T ∥∇F (wt)∥ ≤ ϵ if the total number of

iteration T satisfies

T ≥ Λ max
{256Λ

ϵ4
,

64L1(2τ2
1 + 1)(2 + 2τ1)β

(1 − τ1)βϵ2−β , (2τ2
1 + 1) · 64(L0 + L1) + 128L1(2τ2/(1 − τ1))β

ϵ2

}
. (17)

Proof 8 By the descent lemma in equation 3 and the update rule of IAN-SGD in equation 14, we have

F
(
wt+1

)
− F

(
wt

)
≤∇F

(
wt

)⊤(
wt+1 − wt

)
+ 1

2
(
L0 + L1

∥∥∇F
(
wt

)∥∥α)∥∥wt+1 − wt
∥∥2

= −γ
∇F

(
wt

)⊤∇fξ(wt)
hβt

+ 1
2γ

2(
L0 + L1

∥∥∇F
(
wt

)∥∥α)∥∥∇fξ(wt)
∥∥2

h2β
t

. (52)

Taking expectation over ξ,ξ′ and wt, and by the independence between ξ and ξ′, we have

Ewt

[[
Eξ,ξ′

[
F (wt+1) − F (wt)|wt

]]
≤Ewt,ξ′

[−γ
∥∥∇F (wt)

∥∥2

hβt
+ 1

2γ
2(L0 + L1

∥∥∇F (wt)
∥∥α)

Eξ
[∥∥∇fξ(wt)

∥∥2|wt
]

h2β
t

]
.

From Assumption 4, we have

Eξ
[∥∥∇fξ(wt)

∥∥2|wt
]

=Eξ
[∥∥∇fξ(wt) − ∇F (wt) + ∇F (wt)

∥∥2|wt
]

(i)
≤2Eξ

[∥∥∇fξ(wt) − ∇F (wt)
∥∥2|wt

]
+ 2

∥∥∇F (wt)
∥∥2

(ii)
≤ 2(τ1

∥∥∇F (wt)
∥∥ + τ2)2 + 2

∥∥∇F (wt)
∥∥2

(iii)
≤ (4τ2

1 + 2)
∥∥∇F (wt)

∥∥2 + 4τ2
2 , (53)

where inequalities (i) and (iii) are direct applications of (a+b)2 ≤ 2a2+2b2, and (ii) follows from Assumption
4. Substituting equation 53 into the above descent lemma, we have

Ewt,ξ′
[
Eξ

[
F (wt+1) − F (wt)|wt

]]
≤Ewt,ξ′

[
− γ

∥∥∇F (wt)
∥∥2

hβt
+ 1

2γ
2(L0 + L1

∥∥∇F (wt)
∥∥α)

Eξ
[∥∥∇fξ(wt)

∥∥2|wt
]

h2β
t

]
≤Ewt,ξ′

[
− γ

∥∥∇F (wt)
∥∥2

hβt
+ 1

2γ
2(L0 + L1

∥∥∇F (wt)
∥∥α)

(4τ2
1 + 2)

∥∥∇F (wt)
∥∥2 + 4τ2

2

h2β
t

]
=Ewt,ξ′

[( γ

hβt

(
− 1 + γ(2τ2

1 + 1) ·
L0 + L1

∥∥∇F (wt)
∥∥α

hβt

))
∥∇F (wt)

∥∥2 + 1
2γ

2L0 + L1
∥∥∇F (wt)

∥∥α
h2β
t

4τ2
2

]
. (54)

Next, we provide an upper bound of the term γ(2τ2
1 + 1) · L0+L1∥∇F (wt)∥α

hβ
t

in the above equation. By the
clipping structure and step size rule, we have 1

hβ
t

= min
{

1, 1
4L1γ(2τ2

1 +1)( 1
1−τ1

∥∇fξ′ (wt)∥+ τ2
1−τ1

)β

}
≤ 1 and

γ ≤ 1
4L0(2τ2

1 +1) , which imply that

(2τ2
1 + 1) · γL0

hβt
< (2τ2

1 + 1) · γL0 ≤1
4 , (55)
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On the other hand, we have

1
4h

β
t

(i)
≥ 1

4h
α
t

=1
4(hβt )

α
β

(ii)
≥ 1

4(4γL1(2τ2
1 + 1))

α
β

( 1
1 − τ1

∥∥∇fξ′(wt)
∥∥ + τ2

1 − τ1

)α
(iii)
≥ 1

4(4γL1(2τ2
1 + 1))

( 1
1 − τ1

∥∥∇fξ′(wt)
∥∥ + τ2

1 − τ1

)α
(iv)
≥ γL1(2τ2

1 + 1)
∥∥∇F (wt)

∥∥α, (56)

where (i) utilizes the fact ht ≥ 1 and β ≥ α; (ii) utilizes the fact that hβt ≥ 4L1γ(2τ2
1 + 1)( 1

1−τ1

∥∥∇fξ′(wt)
∥∥ +

τ2
1−τ1

)β; (iii) utilizes the fact that γ ≤ 1
4L1(2τ2

1 +1) , thus (4γL1(2τ2
1 +1)) ≤ (4γL1(2τ2

1 +1))α/β since β ∈ [α, 1];
(iv) follows from Lemma 2.

Combining equation 55 and equation 56, we conclude that γ(2τ2
1 + 1) · L0+L1∥∇F (wt)∥α

hβ
t

≤ 1
2 , and equation 54

further reduces to

Ewt

[
Eξ,ξ′

[
F (wt+1) − F (wt)|wt

]]
≤ Ewt,ξ′

[
− γ

2hβt

∥∥∇F (wt)
∥∥2 + 1

2γ
2L0 + L1

∥∥∇F (wt)
∥∥α

h2β
t

4τ2
2

]
(i)
≤ Ewt,ξ′

[
− γ

2hβt

∥∥∇F (wt)
∥∥2 + 1

2γ
2(L0 + L1)(1 + 4τ2

2 )2 + γ

4hβt

∥∥∇F (wt)
∥∥2

]
= Ewt,ξ′

[
− γ

4hβt

∥∥∇F (wt)
∥∥2 + 1

2γ
2(L0 + L1)(1 + 4τ2

2 )2
]
, (57)

where (i) follows from equation 48 in the auxiliary Lemma 5. Rearranging the above inequality yields that

Ewt,ξ′

[ γ

4hβt

∥∥∇F (wt)
∥∥2

]
≤ Ewt

[
Eξ,ξ′

[
F (wt) − F (wt+1)|wt

]]
+ 1

2(L0 + L1)γ2(1 + 4τ2
2 )2. ∀t ∈ [T ] (58)
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Next, we further lower bound ∥∇F (wt)∥2

hβ
t

by ∥∇F (wt)∥ to eliminate the randomness in ht. We have

γ

∥∥∇F (wt)
∥∥2

hβt
(i)=γmin

{
1, 1

4L1(2τ2
1 + 1)γ( 1

1−τ1

∥∥∇fξ′(wt)
∥∥ + τ2

1−τ1
)β

}∥∥∇F (wt)
∥∥2

(ii)
≥ γmin

{
1, 1

4L1γ(2τ2
1 + 1)

( τ1 + 1
1 − τ1︸ ︷︷ ︸
C1

∥∥∇F (wt)
∥∥ + 2τ2

1 − τ1︸ ︷︷ ︸
C2

)β }∥∥∇F (wt)
∥∥2

(iii)
≥ γmin

{
1, 1

4L1γ(2τ2
1 + 1)

(
2C1

∥∥∇F (wt)
∥∥)β , 1

4L1γ(2τ2
1 + 1)

(
2C2

)β }∥∥∇F (wt)
∥∥2

(iv)= min
{
γ,

1
4L1(2τ2

1 + 1)
(
2C1

∥∥∇F (wt)
∥∥)β , 1

4L1(2τ2
1 + 1)(2C2)β

}∥∥∇F (wt)
∥∥2

(v)= min
{
γ,

1
4L1(2τ2

1 + 1)
(
2C1

∥∥∇F (wt)
∥∥)β }∥∥∇F (wt)

∥∥2

= min
{
γ

∥∥∇F (wt)
∥∥2
,

∥∥∇F (wt)
∥∥2−β

4(2C1)βL1(2τ2
1 + 1)

}
, (59)

where (i) expands the expression of 1
hβ

t

; (ii) utilizes the second inequality of Lemma 2 to upper bound
∥∇fξ′(wt)∥ by (τ1 + 1)∥∇F (wt)∥ + τ2; (iii) utilizes the fact 1

(a+b)β ≥ min{ 1
(2a)β ,

1
(2b)β } by setting a =

τ1+1
1−τ1

∥∥∇F (wt)
∥∥, b = 2τ2

1−τ1
, β ≥ 0; (iv) substitute γ inside the minimum operator. Moreover, (v) follows

from the step size rule γ = 1
8L1(2τ2

1 +1)(2τ2/(1−τ1))β ≤ 1
4L1(2τ2

1 +1)(4τ2/(1−τ1))β . Substituting equation 59 into
equation 58 and summing over t from 0 to T − 1, we obtain that

T−1∑
t=0

Ewt

[
min

{γ
4

∥∥∇F (wt)
∥∥2
,

∥∥∇F (wt)
∥∥2−β

16L1(2C1)β(2τ2
1 + 1)

}]
≤
T−1∑
t=0

Ewt,ξ′

[ γ

4hβt

∥∥∇F (wt)
∥∥2

]
≤
T−1∑
t=0

Ewt

[
Eξ,ξ′

[
F (wt) − F (wt+1)|wt

]]
+ T

1
2γ

2(L0 + L1)(1 + 4τ2
2 )2.

By step size rule γ ≤ 1√
T

, the above inequality becomes

T−1∑
t=0

Ewt

[
min

{γ
4

∥∥∇F (wt)
∥∥2
,

∥∥∇F (wt)
∥∥2−β

16L1(2C1)β(2τ2
1 + 1)

}]
≤ F (w0) − F ∗ + 1

2(L0 + L1)(1 + 4τ2
2 )2.

Denote K = {t|t ∈ [T ] such that γ
∥∥∇F (wt)

∥∥2 ≤ ∥∇F (wt)∥2−β

4L1(2C1)β(2τ2
1 +1) }, then the above inequality implies that

∑
t∈K

Ewt

[γ
4

∥∥∇F (wt)
∥∥2

]
≤ F (w0) − F ∗ + 1

2(L0 + L1)(1 + 4τ2
2 )2, (60)

and

∑
t∈Kc

Ewt

[ ∥∥∇F (wt)
∥∥2−β

16L1(2C1)β(2τ2
1 + 1)

]
≤ F (w0) − F ∗ + 1

2(L0 + L1)(1 + 4τ2
2 )2. (61)
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Now denote RHS as Λ := F (w0) − F ∗ + 1
2 (L0 + L1)(1 + 4τ2

2 )2, then we have

Ewt

[
min
t∈T

∥∥∇F (wt)
∥∥]

≤Ewt

[
min

{ 1
|K|

∑
t∈K

∥∥∇F (wt)
∥∥, 1

|Kc|
∑
t∈Kc

∥∥∇F (wt)
∥∥}]

(i)
≤Ewt

[
min

{√
1

|K|
∑
t∈K

∥∥∇F (wt)
∥∥2
,
( 1

|Kc|
∑
t∈Kc

∥∥∇F (wt)
∥∥2−β

) 1
2−β

}]
(ii)
≤ max

{
Ewt

√
1

|K|
∑
t∈K

∥∥∇F (wt)
∥∥2
,Ewt

( 1
|Kc|

∑
t∈Kc

∥∥∇F (wt)
∥∥2−β

) 1
2−β

}
(iii)
≤ max

{√
1

|K|
∑
t∈K

Ewt

∥∥∇F (wt)
∥∥2
,
( 1

|Kc|
∑
t∈Kc

Ewt

∥∥∇F (wt)
∥∥2−β

) 1
2−β

}
(iv)
≤ max

{√
(4Λ)4(L0 + L1)(2τ2

1 + 1) +
√
T + 8L1(2τ2

1 + 1)((2τ2)/(1 − τ1))β
T

,

(
Λ32L1(2τ2

1 + 1)((2τ1 + 2)/1 − τ1)β
T

) 1
2−β

}
,

where (i) uses the concavity ψ(·) = y
1
2 and ψ(·) = y

1
2−β and Jensen’s inequality ψ(

∑
i
xi

n ) ≥
∑

i
ψ(xi)
n applied

on ∥∇F (wt)∥; (ii) uses the fact E[min{A,B}] ≤ E[A] ≤ max{E[A],E[B]}; (iii) applies Jensen’s inequality
over concave function Ψ(·) = y

1
2 and Ψ(·) = y

1
2−β ; (iv) is due to re-organize equation 60, equation 61 and set

K = T , Kc = T
2 (Since we require either K or Kc should be larger than T

2 to guarantee that K +Kc = T ).

Thus, in order to find a point satisfies

Pr(min
t∈[T ]

∥∇F (wt)∥ ≥ ϵ) ≤ 1
2 ,

We must have Ewt
[mint∈[T ] ∥∇F (wt)∥] ≤ ϵ

2 .

This indicates that the RHS of the above inequality should be smaller than ϵ
2 , this implies T satisfies

T ≥ Λ max
{256Λ

ϵ4
,

64L1(2τ2
1 + 1)(2 + 2τ1)β

(1 − τ1)βϵ2−β , (2τ2
1 + 1) · 64(L0 + L1) + 128L1((2τ2)/(1 − τ1))β

ϵ2

}
. (62)

J IAN-SGD under generalized PŁ condition

Lemma 3 (Descent inequality of IAN-SGD under generalized PŁ condition) Let Assumptions 1,
2, 3 and 4 hold. For the IAN-SGD algorithm, choose target error 0 < ϵ ≤ min{1, 1/2µ} and learning rate γ =
(2µϵ)

4−2β
ρ · min{ 1

4L0(2τ2
1 +1) ,

1
4L1((2τ1+2)/(1−τ1))(2τ2

1 +1) ,
1

8L1(2τ2
1 +1)(2τ2/(1−τ1))β ,

L1(2τ2
1 +1)

16((L0+L1)(1+4τ2
2 )+L1(τ2

1 +1/2))2 },

and A = 1
1−τ1

δ = τ2
1−τ1

, Γ = (4L1γ(2τ2
1 + 1))

1
β . Then, we have the following descent inequality

Ewt+1 [∆t+1] ≤ Ewt
[∆t − γ3/2(L1(2τ2

1 + 1))1/2(2µ∆t)(2−β)/ρ

4 + γ3/2(L1(2τ2
1 + 1))1/2(2µϵ)(2−β)/ρ

8 ]. (20)

Proof 9 When chosen target error 0 < ϵ ≤ min{1, 1/2µ} and learning rate satisfy

γ ≤ (2µϵ)
4−2β

ρ · 1
4L0(2τ2

1 + 1) ≤ 1
4L0(2τ2

1 + 1)

γ ≤ (2µϵ)
4−2β

ρ · 1
4L1((2τ1 + 2)/(1 − τ1))(2τ2

1 + 1) ≤ 1
4L1(2τ2

1 + 1)

γ ≤ (2µϵ)
4−2β

ρ · 1
8L1(2τ2

1 + 1)(2τ2/(1 − τ1))β ≤ 1
8L1(2τ2

1 + 1)(2τ2/(1 − τ1))β , (63)

38



Published in Transactions on Machine Learning Research (07/2025)

the derivations from equation 52 to equation 58 stated in Proof G are still valid, we omit discussions of
detailed derivation here.

Next, we lower bound ∥∇F (wt)∥2

hβ
t

by ∥∇F (wt)∥ to eliminate the randomness in ht. For any β > α > 0, we
have

γ

∥∥∇F (wt)
∥∥2

hβt
(i)=γmin

{
1, 1

4L1(2τ2
1 + 1)γ( 1

1−τ1

∥∥∇fξ′(wt)
∥∥ + τ2

1−τ1
)β

}∥∥∇F (wt)
∥∥2

(ii)
≥ γmin

{
1, 1

4L1γ(2τ2
1 + 1)

( τ1 + 1
1 − τ1︸ ︷︷ ︸
C1

∥∥∇F (wt)
∥∥ + 2τ2

1 − τ1︸ ︷︷ ︸
C2

)β }∥∥∇F (wt)
∥∥2

(iii)
≥ γmin

{
1, 1

4L1γ(2τ2
1 + 1)

(
2C1

∥∥∇F (wt)
∥∥)β , 1

4L1γ(2τ2
1 + 1)

(
2C2

)β }∥∥∇F (wt)
∥∥2

(iv)= min
{
γ,

1
4L1(2τ2

1 + 1)
(
2C1

∥∥∇F (wt)
∥∥)β , 1

4L1(2τ2
1 + 1)(2C2)β

}∥∥∇F (wt)
∥∥2

(v)= min
{
γ,

1
4L1(2τ2

1 + 1)
(
2C1

∥∥∇F (wt)
∥∥)β }∥∥∇F (wt)

∥∥2

= min
{
γ

∥∥∇F (wt)
∥∥2
,

∥∥∇F (wt)
∥∥2−β

4(2C1)βL1(2τ2
1 + 1)

}
(vi)
≥ min{γ(L1γ(2τ2

1 + 1))β/2∥∇F (wt)∥2−β − γ2L1(2τ2
1 + 1),

∥∥∇F (wt)
∥∥2−β

4(2C1)βL1(2τ2
1 + 1)}

(vii)
≥ min{γ3/2(L1(2τ2

1 + 1))1/2∥∇F (wt)∥2−β − γ2L1(2τ2
1 + 1),

∥∥∇F (wt)
∥∥2−β

4(2C1)βL1(2τ2
1 + 1)}

(viii)
≥ min{γ3/2(L1(2τ2

1 + 1))1/2∥∇F (wt)∥2−β ,

∥∥∇F (wt)
∥∥2−β

4(2C1)βL1(2τ2
1 + 1)} − γ2L1(2τ2

1 + 1)

(x)
≥γ3/2(L1(2τ2

1 + 1))1/2∥∇F (wt)∥2−β − γ2L1(2τ2
1 + 1)

(ix)
≥ γ3/2(L1(2τ2

1 + 1))1/2(2µ∆t)(2−β)/ρ − γ2L1(2τ2
1 + 1) (64)

where (i)-(v) follows the same arguments stated in Proof G. (vi) applies equation 29 by setting C = (L1γ(2τ2
1 +

1)β/2) (since L1γ(2τ2
1 + 1) < 1), x = ∥∇F (wt)∥, ∆ = β, ω′ = 2, ω = 2 − β; (vii) follows from (L1γ(2τ2

1 +
1))β/2 ≥ (L1γ(2τ2

1 + 1))1/2 as (L1γ(2τ2
1 + 1)) < 1; (viii) follows from fact for any b ≥ 0, min{a − b, c} ≥

min{a, c} − b;(x) follows from fact γ ≤ 1
4L1((2τ1+2)/(1−τ1))(2τ2

1 +1) ≤ 1
4L1(2C1)β(2τ2

1 +1) . Thus, L1γ(2τ2
1 + 1) <

1 and γ3/2(L1(2τ2
1 + 1))1/2 ≤ γ ≤ 1

4(2C1)β(2τ2
1 +1) always holds; (ix) substitutes assumption 2 to replace

∥∇F (wt)∥ by (2µ∆t)1/ρ.

When α = 0, β > 0, above argument still applies, next, we consider the case when α = β = 0, we have

γ∥∇F (wt)∥2 ≥γ(L1γ(2τ2
1 + 1))1/2∥∇F (wt)∥2

≥γ(L1γ(2τ2
1 + 1))1/2∥∇F (wt)∥2 − γ2L1(2τ2

1 + 1)
≥γ(L1γ(2τ2

1 + 1))1/2(2µ∆t)2/ρ − γ2L1(2τ2
1 + 1)

=γ3/2(L1(2τ2
1 + 1))(2µ∆t)2/ρ − γ2L1(2τ2

1 + 1), (65)

where the first inequality is due to γ ≤ 1
L1(2τ2

1 +1) and the last inequality substitutes assumption 2 to replace
∥∇F (wt)∥ by (2µ∆t)1/ρ.
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Combining two cases, we conclude that for any β ≥ 0, we always have

γ

∥∥∇F (wt)
∥∥2

hβt
≥ γ3/2(L1(2τ2

1 + 1))(2µ∆t)(2−β)/ρ − γ2L1(2τ2
1 + 1) (66)

Substituting equation 66 into equation 58 and re-arranging terms, we have

Ewt

[γ3/2(L1(2τ2
1 + 1))1/2(2µ∆t)(2−β)/ρ

4

]
≤Ewt

[[
F (wt) − F (wt+1)

]]
+ 1

2(L0 + L1)γ2(1 + 4τ2
2 )2 + γ2L1(2τ2

1 + 1)
4 .

=Ewt

[[
F (wt) − F (wt+1)

]]
+ 1

2γ
2(

(L0 + L1)(1 + 4τ2
2 )2 + L1(2τ2

1 + 1)
2

)
(67)

Substituting F ∗ on both sides and re-arranging terms yields that

Ewt+1 [∆t+1] ≤ Ewt [∆t − γ3/2(L1(2τ2
1 + 1))1/2(2µ∆t)(2−β)/ρ

4 + 1
2γ

2(
(L0 + L1)(1 + 4τ2

2 )2 + L1(τ2
1 + 1/2))].

Since γ < L1(2τ2
1 +1)(2µϵ)(4−2β)/ρ

16((L0+L1)(1+4τ2
2 )+L1(τ2

1 +1/2))2 , the above inequality further implies

Ewt+1 [∆t+1] ≤ Ewt
[∆t − γ3/2(L1(2τ2

1 + 1))1/2(2µ∆t)(2−β)/ρ

4 + γ3/2(L1(2τ2
1 + 1))1/2(2µϵ)(2−β)/ρ

8 ], (68)

which gives the desired result.
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