
Under review as a conference paper at ICLR 2024

ENRICHING TIME SERIES REPRESENTATION: INTE-
GRATING A NOISE-RESILIENT SAMPLING STRATEGY
WITH AN EFFICIENT ENCODER ARCHITECTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series analysis has been an important research area for decades, and with
the advent of foundation models, it has witnessed an explosive surge in interest.
Contrastive self-supervised learning stands out as a powerful technique to learn
representations capable of solving a wide range of downstream tasks. However,
there have been several challenges that persist. First, there is no previous work
explicitly considering noise, which is one of the critical factors affecting the
efficacy of time series tasks. Second, there is a lack of efficient yet lightweight
encoder architectures that can learn informative representations robust to various
downstream tasks. To fill in these gaps, we initiate a novel sampling strategy that
promotes consistent representation learning with the presence of noise in natural
time series. In addition, we propose an encoder architecture that utilizes dilated
convolution within the Inception block to create a scalable and robust network
architecture with a wide receptive field. Experiments demonstrate that our method
consistently outperforms state-of-the-art methods in forecasting, classification, and
abnormality detection tasks, e.g. ranks first over two-thirds of the classification
UCR datasets, with only 40% of the parameters compared to the second-best
approach.

1 INTRODUCTION

Motivation. Time series data, found in finance, medicine, and engineering, require essential analysis
in practical applications Shumway et al. (2000); Small (2005); Peng et al. (1995); Box et al. (2015).
Labeling such data is often difficult and costly due to their intricate, uninterpretable patterns, especially
in privacy-sensitive fields like healthcare and finance Kayaalp (2018); Mucherino et al. (2009); Ta et al.
(2016). Unsupervised learning offers a solution, enabling the learning of informative representations
for diverse downstream tasks without labels. While unsupervised representation learning thrives in
computer vision and natural language processing Caron et al. (2018); Zhang et al. (2016); Pathak
et al. (2016); Mikolov et al. (2013); Joulin et al. (2016); Wang et al. (2018), its potential in time series
remains underexplored. Recognizing this gap in existing works Franceschi et al. (2019); Tonekaboni
et al. (2021); Eldele et al. (2021); Yang & linda Qiao (2022); Yue et al. (2022), we address the time
series representation learning challenge.

Our framework design follows two crucial principles: (1) efficiency (ensuring accurate down-
stream task performance by capturing essential time series characteristics) and (2) scalability (being
lightweight to handle practical, lengthy, high-dimensional, and high-frequency time series data).

Related literature and our approach. Prior research on representation learning in time series
data has predominantly focused on employing the self-supervised contrastive learning technique
Franceschi et al. (2019); Tonekaboni et al. (2021); Eldele et al. (2021); Yang & linda Qiao (2022); Yue
et al. (2022), which consists of two main components: sampling strategy and encoder architecture.

Existing sampling strategies revolve around time series’ invariance characteristics, encompassing
temporal invariance Kiyasseh et al. (2021); Tonekaboni et al. (2021); Franceschi et al. (2019),
transformation and augmentation invariance Tang et al. (2020); Yang & linda Qiao (2022); Zhang
et al. (2022), and contextual invariance Eldele et al. (2021); Yue et al. (2022). For instance, TNC
Tonekaboni et al. (2021) leverages temporal invariance for positive pair sampling but faces limitations

1

Under review as a conference paper at ICLR 2024

in real-time applicability due to quadratic complexity. BTSF Yang & linda Qiao (2022) combines
dropout and spectral representations, yet its efficiency relies on dropout rate and time instance length.
Some studies Eldele et al. (2021); Yue et al. (2022) maintain contextual invariance, with Yue et al.
(2022) focusing on consistent representations across different contexts (i.e., time segments). However,
this may risk losing surrounding context information due to temporal masking. A common shortcom-
ing that emerges in existing methods is the way they handle noise during the learning of time series
representations, which significantly impacts task accuracy (Song et al. (2022); Wen et al. (2019)).
Many of these methods either disregard the noisy nature of time series or implicitly rely on the ability
of Neural Networks to deal with this undesired signal, instead of explicitly addressing them upon
learning time series representations. Acknowledging this, we devise a sampling strategy guided by the
principle that the presence of noise in the series should not hinder the functionality of our framework.
Ideally, it should generate consistent representations whether provided with noise-free or raw series,
highlighting noise-resiliency characteristics. To achieve this, we employ a spectrum-based low-pass
filter to generate correlated yet distinct views of each input time series. The corresponding representa-
tions are then guided by our proposed system of loss functions. These loss functions effectively align
embeddings of the raw-augmented couplets to attain desired noise invariance, while simultaneously
preserving important information through a Triplet-based regularization term. The advantages of this
combination are twofold: (1) the filter preserves key characteristics such as trend and seasonality, en-
suring deterministic and interpretable representations, while eliminating noise-prone high-frequency
components; (2) the loss system stably directs the network in improving noise resilience and retaining
information, leading to a significant enhancement in downstream task performance.

In addition to effective sampling strategies, the importance of robust encoder architectures for
generating versatile time series representations is often underestimated by researchers. Common
methods include linear models Zeng et al. (2023a), auto-encoders Choi et al. (2016), sequence-to-
sequence models Gupta et al. (2018); Lyu et al. (2018), and Convolution-based designs like Causal
Convolution Bai et al. (2018b); Wan et al. (2019); Franceschi et al. (2019) and Dilated Convolution
Franceschi et al. (2019); Yue et al. (2022). Yet, these approaches may struggle with long-term
dependencies, particularly for extensive time series data. Alternatively, Transformer-based models
and their variations Kitaev et al. (2020); Li et al. (2019b); Zhou et al. (2021); Fan et al. (2023);
Cao et al. (2023); Nie et al. (2022) are adopted to address long-term dependencies, but can be
computationally demanding and vulnerable to collapse on specific tasks or data Dong et al. (2021);
Shwartz-Ziv & Armon (2022); Sun et al. (2017); Zeng et al. (2023b). In response, we propose
an efficient and scalable encoder framework, combining the strengths of Dilated Convolution and
Inception idea. While Dilated Convolution achieves a broad receptive field without excessive depth,
the Inception concept, which utilize multi-scale filters, effectively automate the process of choos-
ing dilation factors, captures sequential correlations across scales. This dual approach balances
representation effectiveness and model scalability. In addition, we enhance the vanilla Inception
framework by introducing a novel convolution-based aggregator and extra skip connections within
the Inception block, boosting its ability to capture long-term dependencies in input time series.

Our contributions. In this study, we introduce CoInception, a noise-resilient, robust, and scalable
representation learning framework for time series. Our main contributions are as follows.

• We are the first to directly address the adverse effects of noise in learning time series repre-
sentations. Specifically, we introduce an effective combination of noise-resilient sampling
strategy and loss system that enables learning consistent representations even in the presence
of noise in natural time series data.

• We present a robust and scalable encoder that leverages the advantages of well-established
Inception blocks and the Dilation concept in convolution layers. With this, we can maintain
a lightweight, shallow, yet robust framework while ensuring a wide receptive field of the
final output.

• We conducted comprehensive experiments to evaluate the efficacy of CoInception and
analyze its behavior. Our empirical results demonstrate that our approach outperforms the
current state-of-the-art methods on three major time series tasks: forecasting, classification,
and anomaly detection.

2

Under review as a conference paper at ICLR 2024

2 PROPOSED METHOD

In this section, we majorly focus on the CoInception framework. We first present mathematical
definitions of different time series problems in Sec. 2.1. Following, the technical details and training
methodology of our method would be discussed in Sec. 2.2 and 2.3.

2.1 PROBLEM FORMULATION

The majority of natural time series can be represented as a continuous or discrete stream. Without
loss of generality, we only consider the discrete series (continuous ones can be discretized through a
quantization process). Let X = {x1,x2, . . . ,xn} be such a dataset with n sequences, where xi ∈
RM×N (M is sequence length and N is number of features), our goal is to obtain the corresponding
latent representations Z = {z1, z2, . . . , zn}, in which zi ∈ RM×H (M is sequence length and H
is desired latent dimension). The time resolution of the learnt representations is kept intact as the
original sequences, which has been shown to be more beneficial for adapting the representations to
many downstream tasks Yue et al. (2022). Our ultimate goal of learning the latent representations is
to adapt them as the new input for popular time series tasks, where we define the objectives below.
Let zi =

[
z1i , . . . , z

M
i

]
be the learned representation for each segment,

• Forecasting requires the prediction of corresponding T -step ahead future observations
yi =

[
yM+1
i , . . . , yM+T

i

]
;

• Classification aims at identifying the correct label in the form pi = [p1, . . . , pC], where C
is the number of classes;

• Anomaly detection determines whether the last time step xM
i (corresponding to zMi) is an

abnormal point (streaming evaluation protocol - Ren et al. (2019)).

From now on, without further mention, we would implicitly exclude the index number i for readability.

2.2 COINCEPTION FRAMEWORK

Adopting an unsupervised contrastive learning strategy, CoInception framework can be decomposed
into three distinct components: (1) Sampling strategy, (2) Encoder architecture, and (3) Loss function.
Figure 1 illustrates the overall architecture.

Original Series
DWT

Low-pass
filtering

Perturbed Series

Samples Pool

𝚾!

In
ce

pt
io

n
Bl

oc
k

In
ce

pt
io

n
Bl

oc
k

In
ce

pt
io

n
Bl

oc
k

Encoder Representations
Pool

Hierachical
Distance Triplet CoIn Loss

𝚾"
𝚾"!
𝚾""

𝐙!
𝐙"
𝐙$!
𝐙$"

𝐙! 𝐙"

𝐙$! 𝐙$"

Figure 1: Overview of the proposed CoInception framework. We use samples from Representation
Pool in different downstream tasks.

SAMPLING STRATEGY

Natural time series often contain noise, represented as a random process that oscillates independently
alongside the main signal (e.g., white noise Parzen (1966); Pagano (1974)). For illustration, se-
ries x could be decomposed into disentangled components x̂ and n, depicting the original signal
and an independent noise component, respectively. While existing approaches treat the signal and
noise separately when only the noise factor varies (e.g., n→ ñ), we argue that the high-frequency
noise-like elements, which appear in high frequency spectrum of the original series, provide little to

3

Under review as a conference paper at ICLR 2024

no meaningful information, and may degrade the accuracy of the downstream tasks severely. This
realization is well aligned with studies Huang et al. (2024); Wang et al. (2022); Woo et al. (2022)
emphasizing the utilization of disentangled components of raw series, such as seasonality or trends,
which exhibit persistence in a long-term context. In addition, to validate the sensitivity of existing
frameworks with noise, we conduct a toy experiment with a synthesized series (upper left plot in
Fig. 2) and its disturbed version with two noise signals added (upper right plot of Fig. 2). We adopt
cosine similarity as the correlation measurement. Considering the high correlation (0.961) between
noisy and noiseless series, together with their negligible visual differences (Fig. 2), we expect the
fundamental characteristics of learnt representations to remain intact. However, an existing state-of-
the-art (SOTA) framework Yue et al. (2022) fails to exhibit such a strong relation (correlation reduced
to 0.837, visually demonstrated by two bottom trajectories), highlighting its noise susceptibility. In
contrast, CoInception’s outcomes (two middle trajectories) show strong consistence (correlation of
0.983), capturing the original sine wave’s harmonic shift even in noisy scenario. This underscores
the importance of noise resiliency in representations, resisting such high-frequency signals. Figure

Corr: 0.961

Corr: 0.837

Corr: 0.983

Noiseless Noisy

Figure 2: Output representations for toy time series containing high-frequency noise. CoIncep-
tion’s results can still capture the periodic characteristics regardless of the presence of noise.

1 depicts an overview of the proposed sampling strategy. We leverage Discrete Wavelet Transform
(DWT) as a parameter-free low-pass filter Skodras (2015) to generate a perturbed version x̃ of original
series x. The DWT filter convolves the input series with a set of shifted wavelet functions to generate
coefficients representing their contributions at various intervals, before downsampling the result by the
factor of 2. This filter is applied L times, corresponding to L levels of decomposition, with the output
of previous iteration be the input of the next one. This process essentially segregates the original
series into L+ 1 distinct frequency bands, in which the low-frequency approximation coefficients
reflect the overall trend of the data, whereas the high-frequency detail coefficients represent noise-like
components. Here, L = ⌊log2(MK)⌋ is the maximum useful level of the decomposition, where K
is the length of chosen mother wavelet. Mathematically, let g and h denote the low-pass and its
quadrature-mirror high-pass filters, respectively. The working of DWT filter at the j-th level and
position n is as follows.

xj [n] =(xj−1∗gj)[n]=
∑

k xj−1[k]gj [2n−k],

dj [n] =(xj−1∗hj)[n]=
∑

k xj−1[k]hj [2n−k].

where ∗ represents convolution operator, k denotes the shifted coefficient, gj and hj are the low-
pass and high-pass filter coefficients, xj and dj represent the approximation and detail coefficients.
Following, to create a perturbed version of the input series, we intentionally retain only the significant
values in the detail coefficients dj (j ∈ {1, . . . , L}), while masking out unnecessary (potentially
noise) values, which result in perturbed detail coefficients d̃j as follows.

d̃j=

[
dk
|dk|×max(|dk|−γ,0)

∣∣∣k∈{1,...,len(dj)}
]
. (1)

With this strategy, we define a cutting threshold γ to be proportional to the maximum value of input
series x by a hyper-parameter α < 1, i.e., γ = α×max(x). Subsequently, the reconstruction process
involves the approximation coefficient xL and set of perturbed detail coefficients

{
d̃1, . . . , d̃L

}
using the inverse Discrete Wavelet Transform (iDWT), producing the modified series x̃. Details of

4

Under review as a conference paper at ICLR 2024

this process are provided in Appendix A.1. The sampling phase concludes with the implementation
of random cropping on both x and x̃, resulting in overlapping segments ⟨xp;xq⟩ and ⟨x̃p; x̃q⟩. These
segments are subsequently utilized by the CoInception encoder (Section 2.2).

INCEPTION-BASED DILATED CONVOLUTION ENCODER

𝒉!"#

Conv1d (1)

MaxPool1d (3)

Aggregator - Conv1d (3) Inception Block i

𝒃#!"# 𝒃$!"# 𝒃%!"#

𝒃#!
𝒃$! 𝒃%!𝒉!

Conv1d*(2)
Conv1d*(2) Conv1d*(1)

+
Basic Unit (2)

Basic Unit (5) Basic Unit (8)

(a) Inception Block

Inception
Block 1 -
Basic unit 1

Convolution operation Skip connection

Inception
Block 2 -
Basic unit 1

(b) Receptive field illustration

Figure 3: Illustration of the Inception block and the accumulated receptive field upon stacking.

In pursuit of an architecture that strikes a balance between robustness and efficiency, we deliver the
CoInception encoder which integrates principles from Dilated Convolution and the Inception concept.
Previous studies Bai et al. (2018a); Franceschi et al. (2019); Yue et al. (2022) highlight the robustness
of stacked Dilated Convolutional Networks in various tasks, emphasizing their potential. The strength
of this architecture lies in its ability to retain low scale of networks parameters, while maintaining
robustness via a large accumulative receptive field. However, a key weakness arises in the selection
of dilation factors, posing a trade-off between effectiveness and efficiency. Small factors reduce the
parameter-efficient gain, while large factors risk focusing too much on broad contextual information,
neglecting local details. To address this, our Inception-based design automates the incorporation of
different dilation factors into a single layer, called Inception block (Fig.3a). Specifically, within each
block, there are several Basic units encompassing 1D convolutional layers of varying filter lengths
and dilation factors. This configuration enables the encoder to consider input segments at diverse
scales and resolutions.

In addition, apart from existing Inception-based models Ismail Fawaz et al. (2020), Wu et al. (2022),
we introduce two additional modifications to improve robustness and scalability, without sacrificing
design simplicity: (1) an aggregator layer, and (2) extra skip connections (i.e., red arrows in Fig. 3b).
Regarding the aggregator, beyond the aim of reducing the number of parameters as in Szegedy et al.
(2016); Ismail Fawaz et al. (2020), it is intentionally placed after the Basic units to better combine
the features b produced by those layers, producing aggregated representation h. Moreover, with the
stacking nature of Inception blocks in our design, the aggregator can still inherit the low-channel-
dimension output of the previous block, just like the conventional Bottleneck layer. Furthermore,
we introduce extra skip connections that interconnect the outputs of these units across different
Inception blocks, denoted as modification (2). These skip connections have two-fold benefits of
serving as shortcut links for stable gradient flow and gluing up the Basic units of different Inception
blocks, making the entire encoder horizontally and vertically connected. In this way, our CoInception
framework can be seen as a set of multiple Dilated Convolution experts, with much shallower depth
and equivalent receptive fields compared with ordinary stacked Dilated Convolution networks Bai
et al. (2018a); Franceschi et al. (2019); Yue et al. (2022). Mathematically, let ku be the base kernel
size (the numbers in bracket of Fig.3a) for a Basic unit u within the ith Inception block (1-indexed),
the dilation factor and the receptive field are calculated as diu = (2k − 1)i−1; riu = (2k − 1)i.
Illustrated in Figure 3b is the accumulative receptive field associated with the Basic unit featuring a
base kernel size of 2, at the first and second Inception blocks.

2.3 HIERARCHICAL TRIPLET LOSS

Aligned with the sampling strategy outlined in Section 2.2, a system of loss functions are deployed
to attain robust and noise-resilient representation. We integrate the concept of hierarchical loss Yue
et al. (2022) and triplet loss Chechik et al. (2010); Hoffer & Ailon (2015) to enhance noise resiliency,

5

Under review as a conference paper at ICLR 2024

incorporating a variation of contextual consistency inspired by Yue et al. (2022) (details in Appendix
A.1). For simplicity in annotation, we use ⟨zp; zq⟩ and ⟨z̃p; z̃q⟩ to denote the representations of the
actual overlapping segments between the sampled couplets ⟨xp;xq⟩ and ⟨x̃p; x̃q⟩ (green timestamps
in Fig.1). With this, the noise-resilient characteristic is ensured by minimizing the distances between
representations of the original segments and their perturbed views - ⟨zp; z̃p⟩ and ⟨zq; z̃q⟩. In parallel,
the embeddings zp and zq should also be close in latent space to preserve the contextual consistency.
To model the distance within a couplet, we incorporate both instance-wise loss Franceschi et al.
(2019) (Lins) and temporal loss Tonekaboni et al. (2021) (Ltemp). The combination of these two
forms the consistency loss Lcon.

Ltemp(zp,zq) = −1
BT

∑B,T
b,t log

exp(zb,t
p ·zb,t

q)∑T
t̃

(
exp(zb,t

p ·zb,t̃
q)+1t ̸=t̃ exp(z

b,t
p ·zb,t̃

p)
) ,

Lins(zp,zq) = −1
BT

∑B,T
b,t log

exp(zb,t
p ·zb,t

q)∑B
b̃

(
exp(zb,t

p ·zb̃,t
q)+1b ̸=b̃ exp(zb,t

p ·zb̃,t
p)

) ,

Lcon(zp,zq) =Ltemp(zp,zq)+Lins(zp,zq).

In addition, to further enhance the reliability of learned representations, we propose to enforce an
auxiliary criteria, based on the following observation. Apart from the previously mentioned pairs,
extra couplets can be formed by comparing the representations of an original segment with a perturbed
version in a different context, e.g., ⟨zp; z̃q⟩. zp and zq are from the same original samples, forming
the common region of two segments xp and xq . Conversely, z̃p or z̃q arises from the overlap of two
perturbed segments x̃p and x̃q . Therefore, it is reasonable to expect the proximity between zp and the
unaltered representation zq is greater than that of zp and the modified counterpart z̃q . This condition
could also help in mitigating the over-smoothing effect potentially caused by the DWT-low pass
filter; details about this strength are mentioned in Appendix A.3. We incorporate this observation as a
constraint in the final loss function (denoted as Ltriplet) in the format of a triplet loss as follows.

Ltriplet(lpq,lpq̃,lp̃q,ϵ,ζ)=ϵ×
lpq+lpp̃+lqq̃

3 +(1−ϵ)×max(0,2×lpq−lpq̃−lp̃q+2×ζ), (2)

where lpq represents Lcon(zp, zq), lpq̃ is Lcon(zp, z̃q) and similar notations for remaining terms.
ϵ < 1 is the balance factor for two loss terms, while ζ denotes the triplet margin. To ensure the
CoInception framework can handle inputs of multiple granularity levels, we adopt a hierarchical
strategy similar to Yue et al. (2022) with our Ltriplet loss. We describe the details in Appendix A.3 -
Algorithm 1.

3 EXPERIMENTS

In this section, we empirically validate the effectiveness of the CoInception framework and compare
the results with the recent state of the arts. We consider three major tasks, including forecasting,
classification, and anomaly detection, as in Section 2.1. Our evaluation encompasses multiple
benchmarks, some of which also follow unsupervised training strategy and target multiple tasks: (1)
TS2Vec Yue et al. (2022) learns to preserve contextual invariance across multiple time resolutions
using a sampling strategy and hierarchical loss; (2) TS-TCC Eldele et al. (2021) combines cross-view
prediction and contrastive learning tasks by creating two views of the raw time series data using weak
and strong augmentations; (3) TNC Tonekaboni et al. (2021) tailors for time series data that forms
positive and negative pairs from nearby and distant segments, respectively, leveraging the stationary
properties of time series. For better comparison, in all of our experiments, we highlight best results in
bold and red, and second best results are in blue.

3.1 TIME-SERIES FORECASTING

Datasets & Settings. For this experiment, the same settings as Zhou et al. (2021) are adopted for
both short-term and long-term forecasting. In addition to the representative works, CoInception
is further compared with studies that delicately target the forecasting task, such as Informer Zhou
et al. (2021), StemGNN Cao et al. (2020), LogTrans Li et al. (2019a), N-BEATS Oreshkin et al.
(2019), and LSTnet Lai et al. (2018). Among these frameworks, Informer Zhou et al. (2021) is a
supervised model which requires no extra regressor to process its produced representations. For other
unsupervised benchmarks, a linear regression model is trained using the L2 norm penalty, with the

6

Under review as a conference paper at ICLR 2024

learned representation z as input to directly predict future values. To ensure a fair comparison with
works that only generate instance-level representations, only the M th timestep representation zM

produced by the CoInception framework is used for the input segment. The evaluation of the forecast
result is performed using two metrics, namely Mean Square Error (MSE) and Mean Absolute Error
(MAE). For the datasets used, the Electricity Transformer Temperature (ETT) Zhou et al. (2021)
datasets are adopted together with the UCI Electricity Trindade (2015) dataset.

Table 1: Multivariate time series forecasting results on MSE.

T TS2Vec TS-TCC TNC Informer StemGNN LogTrans CoInception T TS2Vec TS-TCC TNC Informer StemGNN LogTrans CoInception

ETTh1: ETTm1:
24 0.599 0.653 0.632 0.577 0.614 0.686 0.461 24 0.443 0.473 0.429 0.323 0.620 0.419 0.384
48 0.629 0.720 0.705 0.685 0.748 0.766 0.512 48 0.582 0.671 0.623 0.494 0.744 0.507 0.552
168 0.755 1.129 1.097 0.931 0.663 1.002 0.683 96 0.622 0.803 0.749 0.678 0.709 0.768 0.561
336 0.907 1.492 1.454 1.128 0.927 1.362 0.829 288 0.709 1.958 1.791 1.056 0.843 1.462 0.623
720 1.048 1.603 1.604 1.215 - 1.397 1.018 672 0.786 1.838 1.822 1.192 - 1.669 0.717
ETTh2: Electricity:
24 0.398 0.883 0.830 0.720 1.292 0.828 0.335 24 0.287 0.278 0.305 0.312 0.439 0.297 0.234
48 0.580 1.701 1.689 1.457 1.099 1.806 0.550 48 0.307 0.313 0.317 0.392 0.413 0.316 0.265
168 1.901 3.956 3.792 3.489 2.282 4.070 1.812 168 0.332 0.338 0.358 0.515 0.506 0.426 0.282
336 2.304 3.992 3.516 2.723 3.086 3.875 2.151 336 0.349 0.357 0.349 0.759 0.647 0.365 0.301
720 2.650 4.732 4.501 3.467 - 3.913 2.962 720 0.375 0.382 0.447 0.969 - 0.344 0.331

Results. Due to limited space, we only present the multivariate forecasting results on MSE in Table
1, while the full results for both the univariate and multivariate scenario can be found in the Appendix
C.1. Apparently, the proposed CoInception framework achieves the best results in most scenarios
over all 4 datasets in the multivariate setting. The numbers indicate that our method outperforms
existing state-of-the-art methods in most cases. Furthermore, the Inception-based encoder design
results in a CoInception model with only 40% number of parameters compared with the second-best
approach (see Table 2).

3.2 TIME-SERIES CLASSIFICATION

Datasets & Settings. For the classification task, we follow the settings in Franceschi et al. (2019)
and train an RBF SVM classifier on instance-level representations generated by our baselines.
However, since CoInception produces timestamp-level representations for each data instance, we
utilize the strategy from Yue et al. (2022) to ensure a fair comparison. Specifically, we apply a global
MaxPooling operation over z to extract the instance-level vector representing the input segment. We
assess the performance of all models using two metrics: prediction accuracy and the area under the
precision-recall curve (AUPRC). We test the proposed approach against multiple benchmarks on two
widely used repositories: the UCR Repository Dau et al. (2019) with 128 univariate datasets and
the UEA Repository Bagnall et al. (2018) with 30 multivariate datasets. To further strengthen our
empirical evidence, we additionally implement a K-nearest neighbor classifier equipped with DTW
Chen et al. (2013) metric, along with T-Loss Franceschi et al. (2019) and TST Zerveas et al. (2021)
beside the aforementioned SOTA approaches.

Figure 4: Critical Difference Diagram com-
paring different classifiers on 125 Datasets
from UCR Repository with the confidence
level of 95%.

Table 2: Time series classification results.

Dataset UCR repository UEA repository

Accuracy Rank Parameter Accuracy Rank Parameter
DTW 0.72 5.15 - 0.65 3.86 -
TNC 0.76 4.17 - 0.68 4.58 -
TST 0.64 6.00 2.88M 0.64 5.27 2.88M
TS-TCC 0.76 4.04 1.44M 0.68 3.86 1.44M
T-Loss 0.81 3.38 247K 0.67 3.75 247M
TS2Vec 0.83 2.28 641K 0.71 2.96 641K
CoInception 0.84 1.48 206K 0.72 1.89 206K

Results. Evaluation results of our proposed CoInception framework on UCR and UEA repositories
are presented in Table 2. It is important to highlight that the results presented here pertain exclusively
to 125 datasets within the UCR repository and 29 datasets in the UEA repository. The remainings are
omitted to ensure fair comparisons among different baselines. We provide additional details in the
Appendix C.2. For 125 univariate datasets in the UCR repository, CoInception ranks first in a majority

7

Under review as a conference paper at ICLR 2024

of 86 datasets, and for 29 UEA datasets it produces the best classification accuracy in 16 datasets. In
this table, we also add a detailed number of parameters for every framework when setting a fixed
latent dimension of 320. With the fusion of dilated convolution and Inception strategy, CoInception
achieves the best performance while being much more lightweight (2.35 times) than the second best
framework Yue et al. (2022). We also visualize the critical difference diagram Demšar (2006) for the
Nemenyi tests on 125 UCR datasets in Figure 4. Intuitively, in this diagram, classifiers connected by
a bold line indicate a statistically insignificant difference in average ranks. As suggested, CoInception
makes a clear improvement gap compared with other SOTAs in average ranks.

3.3 TIME-SERIES ANOMALY DETECTION

Datasets & Settings. For this task, we adopt the protocols introduced by Ren et al. (2019); Yue et al.
(2022). However, we make three forward passes during the evaluation process. In the first pass, we
mask xM and generate the corresponding representation zM1 . The second pass puts the input segment
x through DWT low-pass filter (Section 2.2) to generate the perturbed segment x̃, before getting the
representation zM2 . The normal input is used in the last pass, and zM3 is its corresponding output.
Accordingly, we define the abnormal score as αM = 1

2

(
∥zM1 − zM3 ∥1 + ∥zM2 − zM3 ∥1

)
. We keep

the remaining settings intact as Ren et al. (2019); Yue et al. (2022) for both normal and cold-start
experiments. Precision (P), Recall (R), and F1 score (F1) are used to evaluate anomaly detection
performance. We use the Yahoo dataset Laptev et al. (2015) and the KPI dataset Ren et al. (2019)
from the AIOPS Challenge. Additionally, we compare CoInception with other SOTA unsupervised
methods that are utilized for detecting anomalies, such as SPOT Siffer et al. (2017), DSPOT Siffer
et al. (2017), DONUT Xu et al. (2018), and SR Ren et al. (2019) for normal detection tasks, as
well as FFT Rasheed et al. (2009), Twitter-AD Vallis et al. (2014), and Luminol Luminol (2015) for
cold-start detection tasks that require no training data.

Table 3: Time series abnormaly detection results.

Dataset Metrics Normal Setting Cold-start Setting

SPOT DSPOT DONUT SR TS2Vec CoInception FFT Twitter-AD Luminol SR TS2Vec CoInception

Yahoo
F1 0.338 0.316 0.026 0.563 0.745 0.769 0.291 0.245 0.388 0.529 0.726 0.745
Precision 0.269 0.241 0.013 0.451 0.729 0.790 0.202 0.166 0.254 0.404 0.692 0.733
Recall 0.454 0.458 0.825 0.747 0.762 0.748 0.517 0.462 0.818 0.765 0.763 0.754

KPI
F1 0.217 0.521 0.347 0.622 0.677 0.681 0.538 0.330 0.417 0.666 0.676 0.682
Precision 0.786 0.623 0.371 0.647 0.929 0.933 0.478 0.411 0.306 0.637 0.907 0.893
Recall 0.126 0.447 0.326 0.598 0.533 0.536 0.615 0.276 0.650 0.697 0.540 0.552

Results. Table 3 presents a performance comparison of various methods on the Yahoo and KPI
datasets using F1 score, precision, and recall metrics. We observe that CoInception outperforms
existing SOTAs in the main F1 score for all two datasets in both the normal setting and the cold-
start setting. In addition, CoInception also reveals its ability to perform transfer learning from one
dataset to another, through steady enhancements in the empirical result for cold-start settings. This
transferability characteristic is potentially a key to attaining a general framework for time series data.
Futher experiments are presented in the Appendix C.7.

4 ANALYSIS

4.1 ABLATION ANALYSIS

In this experiment, we analyze the impact of different components on the overall performance of
the CoInception framework. We designed three variations: (1) Excluding noise-resilient sampling,
which follows the sampling strategy and hierarchical loss from Yue et al. (2022); (2) Excluding
Dilated Inception block, where a stacked Dilated Convolution network is used instead of our
CoInception encoder; and (3) Excluding triplet loss, which omits the triplet-based term from our
Ltriplet calculation. Our experiments encompass all three tasks, and the results are summarized
in Table 4. For the classification task, we present average metrics across 5 UCR datasets and 5
UEA datasets, details about which is discussed in Appendix C.4. Regarding the forecasting task,
we conducted univariate experiments on the ETTm1 dataset, with results averaged over various
forecasting lengths, encompassing both short-term and long-term forecasting. In the anomaly

8

Under review as a conference paper at ICLR 2024

detection task, scores for the Yahoo dataset in normal setting are provided. Overall, substantial
drops in performance are observed across all three versions in the primary time series tasks. The
exclusion of noise-resilient sampling led to a performance decrease from 8% in classification to
15% in anomaly detection. The removal of the Dilated Inception-based encoder resulted in up to
9% performance decline in anomaly detection, while the elimination of triplet loss contributed to
performance reductions ranging from 4% to 17%.

Table 4: Ablation analysis for the proposed CoIn-
ception framework.

CoInception (1) CoInception (2) CoInception (3) CoInception

Classification:
Acc. 0.645 (- 8.51%) 0.661 (- 6.24%) 0.624 (- 11.48%) 0.705
AUC. 0.704 (- 9.04%) 0.726 (- 6.20%) 0.691 (- 10.72%) 0.774

Forecasting:
MSE 0.067 (- 8.95%) 0.065 (- 6.15%) 0.064 (- 4.68%) 0.061
MAE 0.178 (- 2.81%) 0.180 (- 3.88%) 0.177 (- 2.26%) 0.173

Anomaly Detection:
F1 0.646 (- 15.99%) 0.704 (- 8.45%) 0.636 (-17.29%) 0.769
P. 0.607 (- 23.16%) 0.720 (- 8.86%) 0.581 (-26.45%) 0.790
R. 0.692 (- 7.48%) 0.689 (- 7.88%) 0.701 (- 6.28%) 0.748

Positive Pair Feature Distance

𝑙! Distances

Co
un
ts

(a) CoInception

Positive Pair Feature Distance

𝑙! Distances

Co
un
ts

(b) TS2Vec

Table 5: Alignment analysis. Distribution of l2
distance between features of positive pairs.

4.2 ALIGNMENT AND UNIFORMITY

All Classes Class 1 Class 2 Class 3

(a) CoInception

All Classes Class 1 Class 2 Class 3

(b) TS2Vec

Figure 5: Uniformity analysis. Feature distributions with Gaussian kernel density estimation (KDE)
(above) and von Mises-Fisher (vMF) KDE on angles (below).

We assess the learned representations via two qualities: Alignment and Uniformity, as proposed
in Wang & Isola (2020). Alignment measures feature similarity across samples, ensuring insensi-
tivity to noise in positive pairs. Uniformity aims to retain maximum information by minimizing
the intra-similarities of positive pairs and maximizing inter-distances of negative pairs while main-
taining a uniform feature distribution. Fig. 5 summarizes the alignment of testing set features for
the StarLightCurves dataset generated by CoInception and TS2Vec Yue et al. (2022). Generally,
CoInception’s features exhibit a more closely clustered distribution for positive pairs. CoInception
has smaller mean distances and decreasing bin heights as distance increases, unlike TS2Vec. In figure
5, we plot feature distributions using Gaussian kernel density estimation (KDE) and von Mises-Fisher
(vMF) KDE for angles. CoInception demonstrates superior uniform characteristics for the entire test
set representation, as well as better clustering between classes. Representations of different classes
reside on different segments of the unit circle.

5 CONCLUSION

We introduce CoInception, a framework designed to tackle the challenges of robust and efficient time
series representation learning. Our approach generates representations that are resilient to noise by
utilizing a DWT low-pass filter. By incorporating Inception blocks and dilation concepts into our
encoder framework, we strike a balance between robustness and efficiency. CoInception empirically
outperforms state-of-the-art methods across a range of time series tasks including forecasting, classi-
fication and abnormality detection. About the limitation, we do recognize several hyper-parameters
in our frameworks, which we believe extra efforts should be needed for particular tasks or datasets
for achieving the best performance. For future work, we aim to explore the transferability of our
approach and enhance its foundational characteristics for time series analysis.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075, 2018.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018a.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018b.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bixiong
Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-series
forecasting. Advances in neural information processing systems, 33:17766–17778, 2020.

Haizhou Cao, Zhenhao Huang, Tiechui Yao, Jue Wang, Hui He, and Yangang Wang. Inparformer:
Evolutionary decomposition transformers with interactive parallel attention for long-term time
series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, number 6, pp.
6906–6915, 2023.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsuper-
vised learning of visual features. In Proceedings of the European conference on computer vision
(ECCV), pp. 132–149, 2018.

Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. Large scale online learning of image
similarity through ranking. Journal of Machine Learning Research, 11(3), 2010.

Yahui Chen. Convolutional neural network for sentence classification. Master’s thesis, University of
Waterloo, 2015.

Yanping Chen, Bing Hu, Eamonn Keogh, and Gustavo EAPA Batista. Dtw-d: time series semi-
supervised learning from a single example. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 383–391, 2013.

Edward Choi, Mohammad Taha Bahadori, Elizabeth Searles, Catherine Coffey, Michael Thompson,
James Bost, Javier Tejedor-Sojo, and Jimeng Sun. Multi-layer representation learning for medical
concepts. In proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 1495–1504, 2016.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

Ingrid Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE
transactions on information theory, 36(5):961–1005, 1990.

Ingrid Daubechies. Ten lectures on wavelets. SIAM, 1992.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine
learning research, 7:1–30, 2006.

Ch Dolabdjian, J Fadili, and E Huertas Leyva. Classical low-pass filter and real-time wavelet-
based denoising technique implemented on a dsp: a comparison study. The European Physical
Journal-Applied Physics, 20(2):135–140, 2002.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In International Conference on Machine
Learning, pp. 2793–2803. PMLR, 2021.

10

Under review as a conference paper at ICLR 2024

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, C. Kwoh, Xiaoli Li, and Cun-
tai Guan. Time-series representation learning via temporal and contextual contrasting. ArXiv,
abs/2106.14112, 2021.

Jiayi Fan, Bingyao Wang, and Dong Bian. Tedformer: Temporal feature enhanced decomposed
transformer for long-term series forecasting. IEEE Access, 2023.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
learning for multivariate time series. Advances in neural information processing systems, 32, 2019.

Priyanka Gupta, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff. Transfer learning for clinical
time series analysis using recurrent neural networks. arXiv preprint arXiv:1807.01705, 2018.

X He, MS Bos, JP Montillet, and RMS Fernandes. Investigation of the noise properties at low
frequencies in long gnss time series. Journal of Geodesy, 93(9):1271–1282, 2019.

Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In Similarity-Based Pattern
Recognition: Third International Workshop, SIMBAD 2015, Copenhagen, Denmark, October
12-14, 2015. Proceedings 3, pp. 84–92. Springer, 2015.

Siyuan Huang, Yepeng Liu, Fan Zhang, Yue Li, Jinjiang Li, and Caiming Zhang. Crosswavenet: A
dual-channel network with deep cross-decomposition for long-term time series forecasting. Expert
Systems with Applications, 238:121642, 2024.

Md Amirul Islam, Sen Jia, and Neil DB Bruce. How much position information do convolutional
neural networks encode? arXiv preprint arXiv:2001.08248, 2020.

Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier, Daniel F Schmidt,
Jonathan Weber, Geoffrey I Webb, Lhassane Idoumghar, Pierre-Alain Muller, and François Petit-
jean. Inceptiontime: Finding alexnet for time series classification. Data Mining and Knowledge
Discovery, 34(6):1936–1962, 2020.

Brian Kenji Iwana and Seiichi Uchida. Time series data augmentation for neural networks by
time warping with a discriminative teacher. In 2020 25th International Conference on Pattern
Recognition (ICPR), pp. 3558–3565. IEEE, 2021.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient
text classification. arXiv preprint arXiv:1607.01759, 2016.

Mehmet Kayaalp. Patient privacy in the era of big data. Balkan medical journal, 35(1):8–17, 2018.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Dani Kiyasseh, Tingting Zhu, and David A Clifton. Clocs: Contrastive learning of cardiac signals
across space, time, and patients. In International Conference on Machine Learning, pp. 5606–5615.
PMLR, 2021.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference on
research & development in information retrieval, pp. 95–104, 2018.

Nikolay Laptev, Saeed Amizadeh, and Youssef Billawala. A benchmark dataset for time series
anomaly detection, 2015.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019a.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019b.

Luminol. linkedin luminol. https://github.com/linkedin/luminol, 2015. Accessed:
2023-04-11.

11

Under review as a conference paper at ICLR 2024

Xinrui Lyu, Matthias Hueser, Stephanie L Hyland, George Zerveas, and Gunnar Raetsch. Improving
clinical predictions through unsupervised time series representation learning. arXiv preprint
arXiv:1812.00490, 2018.

Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. Advances in neural information processing
systems, 26, 2013.

Antonio Mucherino, Petraq Papajorgji, and Panos M Pardalos. A survey of data mining techniques
applied to agriculture. Operational Research, 9:121–140, 2009.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437,
2019.

Marcello Pagano. Estimation of models of autoregressive signal plus white noise. The annals of
Statistics, pp. 99–108, 1974.

Emanuel Parzen. Time series analysis for models of signal plus white noise. Technical report,
STANFORD UNIV CALIF DEPT OF STATISTICS, 1966.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2536–2544, 2016.

C-K Peng, Shlomo Havlin, H Eugene Stanley, and Ary L Goldberger. Quantification of scaling expo-
nents and crossover phenomena in nonstationary heartbeat time series. Chaos: an interdisciplinary
journal of nonlinear science, 5(1):82–87, 1995.

Faraz Rasheed, Peter Peng, Reda Alhajj, and Jon Rokne. Fourier transform based spatial outlier
mining. In Intelligent Data Engineering and Automated Learning-IDEAL 2009: 10th International
Conference, Burgos, Spain, September 23-26, 2009. Proceedings 10, pp. 317–324. Springer, 2009.

Khandakar M Rashid and Joseph Louis. Times-series data augmentation and deep learning for
construction equipment activity recognition. Advanced Engineering Informatics, 42:100944, 2019.

Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou, Tony Xing, Mao
Yang, Jie Tong, and Qi Zhang. Time-series anomaly detection service at microsoft. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
3009–3017, 2019.

Robert H Shumway, David S Stoffer, and David S Stoffer. Time series analysis and its applications,
volume 3. Springer, 2000.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouet. Anomaly detection
in streams with extreme value theory. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1067–1075, 2017.

Athanassios Skodras. Discrete wavelet transform: An introduction, 12 2015.

Michael Small. Applied nonlinear time series analysis: applications in physics, physiology and
finance, volume 52. World Scientific, 2005.

Anne M Smith, Bobbi K Lewis, Urs E Ruttimann, Q Ye Frank, Teresa M Sinnwell, Yihong Yang,
Jeff H Duyn, and Joseph A Frank. Investigation of low frequency drift in fmri signal. Neuroimage,
9(5):526–533, 1999.

12

Under review as a conference paper at ICLR 2024

Xiaomin Song, Qingsong Wen, Yan Li, and Liang Sun. Robust time series dissimilarity measure
for outlier detection and periodicity detection. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, pp. 4510–4514, 2022.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE international conference on
computer vision, pp. 843–852, 2017.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Van-Dai Ta, Chuan-Ming Liu, and Goodwill Wandile Nkabinde. Big data stream computing in
healthcare real-time analytics. In 2016 IEEE international conference on cloud computing and big
data analysis (ICCCBDA), pp. 37–42. IEEE, 2016.

Chi Ian Tang, Ignacio Perez-Pozuelo, Dimitris Spathis, and Cecilia Mascolo. Exploring contrastive
learning in human activity recognition for healthcare. arXiv preprint arXiv:2011.11542, 2020.

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning
for time series with temporal neighborhood coding. In International Conference on Learning
Representations, 2021.

Artur Trindade. ElectricityLoadDiagrams20112014. UCI Machine Learning Repository, 2015. DOI:
https://doi.org/10.24432/C58C86.

Terry T Um, Franz MJ Pfister, Daniel Pichler, Satoshi Endo, Muriel Lang, Sandra Hirche, Urban
Fietzek, and Dana Kulić. Data augmentation of wearable sensor data for parkinson’s disease
monitoring using convolutional neural networks. In Proceedings of the 19th ACM international
conference on multimodal interaction, pp. 216–220, 2017.

Parishwad P Vaidyanathan. Multirate systems and filter banks. Pearson Education India, 2006.

Owen Vallis, Jordan Hochenbaum, and Arun Kejariwal. A novel technique for long-term anomaly
detection in the cloud. In 6th {USENIX} workshop on hot topics in cloud computing (HotCloud
14), 2014.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Ma-
chine Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/
vandermaaten08a.html.

Renzhuo Wan, Shuping Mei, Jun Wang, Min Liu, and Fan Yang. Multivariate temporal convolutional
network: A deep neural networks approach for multivariate time series forecasting. Electronics, 8
(8):876, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939. PMLR, 2020.

Zhiyuan Wang, Xovee Xu, Weifeng Zhang, Goce Trajcevski, Ting Zhong, and Fan Zhou. Learning
latent seasonal-trend representations for time series forecasting. Advances in Neural Information
Processing Systems, 35:38775–38787, 2022.

Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Huan Xu, and Shenghuo Zhu. Robuststl: A
robust seasonal-trend decomposition algorithm for long time series. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pp. 5409–5416, 2019.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Cost: Contrastive
learning of disentangled seasonal-trend representations for time series forecasting. arXiv preprint
arXiv:2202.01575, 2022.

13

Under review as a conference paper at ICLR 2024

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian
Zhao, Dan Pei, Yang Feng, et al. Unsupervised anomaly detection via variational auto-encoder
for seasonal kpis in web applications. In Proceedings of the 2018 world wide web conference, pp.
187–196, 2018.

Ling Yang and linda Qiao. Unsupervised time-series representation learning with iterative bilinear
temporal-spectral fusion. In International Conference on Machine Learning, 2022.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8980–8987, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023a.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, number 9, pp.
11121–11128, 2023b.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff.
A transformer-based framework for multivariate time series representation learning. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2114–2124,
2021.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part III 14, pp. 649–666. Springer, 2016.

Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised contrastive
pre-training for time series via time-frequency consistency. arXiv preprint arXiv:2206.08496,
2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. Proceedings
of the AAAI Conference on Artificial Intelligence, 35(12):11106–11115, May 2021. doi: 10.
1609/aaai.v35i12.17325. URL https://ojs.aaai.org/index.php/AAAI/article/
view/17325.

14

Under review as a conference paper at ICLR 2024

Enriching Time Series Representation: Integrating a
Noise-Resilient Sampling Strategy with an Efficient

Encoder Architecture
Appendix, ICLR 2024

A COINCEPTION SUPPLEMENT DETAILS

A.1 SAMPLING STRATEGY

This section cover the working of invert DWT low-pass filter Skodras (2015) to reconstruct perturbed
series x̃. This process involves combining the approximation coefficients xL and perturbed detail
coefficients

{
d̃1, . . . , d̃L

}
obtained during the decomposition process.

By utilizing the inverse low-pass and high-pass filters, the original signal can be reconstructed
from these coefficients. Let g̃ and h̃ represent these low- and high-pass filters, respectively. The
mathematical operations for the DWT reconstruction filters, which recover the perturbed signal x̃ at
level j and position n, can be represented as follows:

x̃j−1[n] = (x̂j ∗ g̃j)[n] + (d̃j ∗ h̃j)[n]

=
∑
k

x̂j [2n− k]g̃j [k] +
∑
k

d̃j [2n− k]h̃j [k],

where {
x̃L = xL

x̂j = Upsampling(x̃j , 2).

In these equations, x̂j represents the upsampled approximation at level j. The upsampling process
Upsampling involves inserting zeros between the consecutive coefficients to increase their length,
effectively expanding the signal toward the original length of input series. Following, the upsampled
coefficients are convolved with the corresponding reconstruction filters g̃j and h̃j to obtain the
reconstructed signal x̃j−1 at the previous level.

This recursive filtering and upsampling process is repeated until the maximum useful level of
decomposition, L = ⌊log2(MK)⌋, is reached. Here, M represents the length of the original signal
and K is the length of the mother wavelet. By iteratively applying the reconstruction filters and
combining the coefficients obtained after upsampling, the original signal can be reconstructed,
gradually restoring both the overall trend (approximation) and the high-frequency details captured by
the DWT decomposition.

To maintain the characteristic of context invariance, we employ a variation of the approach proposed
with TS2Vec Yue et al. (2022). Specifically, we choose to rely solely on random cropping for
generating overlapping segments, without incorporating temporal masking. This decision is based
on recognizing several scenarios that could undermine the effectiveness of this strategy. Firstly, if
heavy masking is applied, it may lead to a lack of explicit context information. The remaining context
information, after extensive occlusion, might be insufficient or unrepresentative for recovering the
masked timestamp, thus impeding the learning process. Secondly, when dealing with data containing
occasional abnormal timestamps (e.g., level shifts), masking these timestamps in both overlapping
segments (Figure 6) can also hinder the learning progress since the contextual information becomes
non-representative for inference.

According to the findings discussed in Yue et al. (2022), random cropping is instrumental in producing
position-agnostic representations, which helps prevent the occurrence of representation collapse when

15

Under review as a conference paper at ICLR 2024

Segment 𝑝

Segment 𝑞

Masked

Masked

Figure 6: Temporal Masking collapse. An il-
lustration for a case in which temporal masking
would hinder training progress.

Framework

A
c
c
u
ra
c
y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CoInception CoInception_crop CoInception_mask

Figure 7: Ablation in sampling strategy. Ac-
curacy distribution of different variants over
128 UCR dataset.

using temporal contrasting. This is attributed to the inherent capability of Convolutional networks
to encode positional information in their learned representations Islam et al. (2020); Chen (2015),
thereby mitigating the impact of temporal contrasting as a learning strategy. As the Inception block
in CoInception primarily consists of Convolutional layers, the adoption of random cropping assumes
utmost importance in enabling CoInception to generate meaningful representations.

The accuracy distribution for 128 UCR datasets across various CoInception variations is illustrated in
Figure 7. These variations include: (1) the ablation of Random Cropping, where two similar segments
are used instead, and (2) the inclusion of temporal masking on the latent representations, following
the approach in Yue et al. (2022). As depicted in the figure, both variations exhibit a decrease in
overall performance and a higher variance in accuracy across the 128 UCR datasets, compared with
our proposed framework.

A.2 INCEPTION-BASED DILATED CONVOLUTION ENCODER

While the main structure of our CoInception Encoder is a stack of Inception blocks, there are some
additional details discussed in this section.

Before being fed into the first Inception block, the input segments are first projected into a different
latent space, other than the original feature space. We intentionally perform the mapping with a
simple Fully Connected layer.

θ : RM×N → RM×K

θ(x) = Wx+ b

The benefits of this layer are twofold. First, upon dealing with high-dimensional series, this layer
essentially act as a filter for dimensionality reduction. The latent space representation retains the
most informative features of the input segment while discarding irrelevant or redundant information,
reducing the computational burden on the subsequent Inception blocks. This layer make CoInception
more versatile to different datasets, and ensure its scalability. Second, the projection by Fully
Connected layer help CoInception enhance its transferability. Upon adapting the framework trained
with one dataset to another, we only need to retrain the projection layer, while keeping the main
stacked Inception layers intact.

To provide a clearer understanding of the architecture depicted in Inception block 3a, we will provide
a detailed interpretation. In our implementation, each Inception block consists of three Basic units.
Let the outputs of these units be denoted as b1, b2, and b3. To enhance comprehension, we will use
the notation bj to represent these three outputs collectively. Additionally, we will use m to denote
the output of the Maxpooling unit, and h to represent the overall output of the entire Inception
block. The following formulas outline the operations within the ith Inception block.

bi
k = Conv1d*(σ(Conv1d*(h

i−1)))

+ σ(Conv1d*(b
i−1
k)),

mi = σ(Conv1d*(b
i−1
k)),

hi = Aggregator(Concat(bi
k,m

i)).

(3)

16

Under review as a conference paper at ICLR 2024

In these equations, σ represent the LeakyReLU activation function, which is used throughout the
CoInception architecture.

A.3 HIERARCHICAL TRIPLET LOSS

Mitigating over-smoothing effect. In our pursuit to uphold the noise-resilience and contextual-in-
variance features of learned representations, we acknowledge a potential challenge in the learning
process—the over-smoothing effect. This occurs when a low-pass filter eliminates excessive high-fre-
quency information. Under these circumstances, the Triplet loss regularization term plays a crucial
role in our CoInception framework. It automatically mitigates the need for strict alignment between
the representations of raw and perturbed series by giving higher priority to fostering proximity
between embeddings of overlapping segments.

Hierarchical Triplet Loss Algorithm 1 describe the procedure to calculate the hierarchical triplet
loss mentioned in the manuscript. With this loss, we cover and maintain the objectives set out in
various resolutions of input time series.

Algorithm 1 Hierarchical Triplet Loss Calculation
Input:
▷ zi, zj - latent representations of ith and jth segments;
▷ z̃i, z̃j - latent representations of ith and jth perturbed segments;
▷ ϵ - Balance factor between instance loss and temporal loss;
▷ ζ - Triplet loss margin.
Output:
▷ l3hier - Hierarchical triplet loss value

1: function HIERTRIPLETLOSS()
2: Initialize l3hier ← 0; r ← 0 ▷ Running variable
3: while time dimension(zi) > 1 do
4: ▷ Loop with reduced time resolution
5: lij ← Lcon(zi, zj);
7: lĩi ← Lcon(zi, zj);
9: ljj̃ ← Lcon(zj , zj̃)

10: ▷ Losses for main couplets
12: lij̃ ← Lcon(zi, zj̃);
14: l̃ij ← Lcon(zĩ, zj)

15: ▷ Losses for supporting couplets
17: l3hier ← l3hier + Ltriplet(lij , lij̃ , l̃ij , ϵ, ζ);
18:
20: zi ← max pool 1d(zi);
22: zj ← max pool 1d(zj)
24: z̃i ← max pool 1d(z̃i);
26: z̃j ← max pool 1d(z̃j);
27: ▷ Reducing the time resolution
29: d← d+ 1

30: end while
31: l3hier ← l3hier/d

32: return l3hier
33: end function

B IMPLEMENTATION DETAILS

B.1 ENVIRONMENT SETTINGS

All implementations and experiments are performed on a single machine with the following hardware
configuration: an 64−core Intel Xeon CPU with a GeForce RTX 3090 GPU to accelerate training.

17

Under review as a conference paper at ICLR 2024

Our codebase primarily relies on the PyTorch 2.0 framework for deep learning tasks. Additionally,
we utilize utilities from Scikit-learn, Pandas, and Matplotlib to support various functionalities in our
experiments.

B.2 COINCEPTION’S REPRODUCTION

Sampling Strategy. In our current implementation for CoInception, we employ the Daubechies
wavelet family Daubechies (1992), known for its widespread use and suitability for a broad range
of signals Daubechies (1990); Vaidyanathan (2006); Mallat (1999). Specifically, we utilize the
Daubechies D4 wavelets as both low and high-pass filters in CoInception across all experiments,
as mentioned in Dolabdjian et al. (2002). It is important to note, however, that our selection of the
mother wavelet serves as a reference, and it is advisable to invest additional effort in choosing the
optimal wavelets for specific datasets Dolabdjian et al. (2002). Such careful consideration may further
enhance the accuracy of CoInception for specific tasks.

Inception-Based Dilated Convolution Encoder. In our experiments, we incorporate three Inception
blocks, each comprising three Basic units. The base kernel sizes employed in these blocks are 2, 5,
and 8 respectively. For non-linear transformations, we utilize the LeakyReLU activation function
consistently across the architecture. To ensure fair comparisons across all benchmarks, we maintain a
constant latent dimension of 64 and a final output representation size of 320.

Hierarchical Triplet Loss. In the calculation of Ltriplet (Eq. 2), several hyperparameters are utilized.
The balance factor ϵ is assigned a value of 0.7, indicating a higher weight distribution towards
minimizing the distance between positive samples. The triplet term serves as an additional constraint
and receives a relatively smaller weight. For the triplet term itself, the margin η is set to 1.

B.3 BASELINES’ REPRODUCTION

Due to the extensive comparison of CoInception with numerous baselines, many of which are
specifically designed for particular tasks, we have chosen to reproduce results for a selected subset
while inheriting results from other relevant works. Specifically, we reproduce the results from three
works that focus on various time series tasks, namely TS2Vec Yue et al. (2022), TS-TCC Eldele et al.
(2021), and TNC Tonekaboni et al. (2021). The majority of the remaining results are directly sourced
from Yue et al. (2022), Franceschi et al. (2019), Zhou et al. (2021), Ren et al. (2019), and Yang &
linda Qiao (2022).

C FURTHER EXPERIMENT RESULTS AND ANALYSIS

C.1 TIME SERIES FORECASTING

Additional details. During the data processing stage, z-score normalization is applied to each feature
in both the univariate and multivariate datasets. All reported results are based on scores obtained from
these normalized datasets. In the univariate scenario, additional features are introduced alongside
the main feature, following a similar approach as described in Zhou et al. (2021); Yue et al. (2022).
These additional features include minute, hour, day of week, day of month, day of year, month of
year, and week of year. For the train-test split, the first 12 months are used for training, followed by
4 months for validation, and the last 4 months for three ETT datasets, following the methodology
outlined in Zhou et al. (2021). In the case of the Electricity dataset, a ratio of 60− 20− 20 is used
for the train, validation, and test sets, respectively, following Yue et al. (2022).

After the completion of the unsupervised training phase, the learned representations are evaluated
using a forecasting task, following a protocol similar to Yue et al. (2022). A linear regression model
with an L2 regularization term α is employed. The value of α is chosen through a grid search over
the search space {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}.
Additional results. The full results for the univariate and multivariate forecasting experiments are
presented in Table 6 and Table 7, respectively. For both circumstances, CoInception demonstrates
its superiority in every testing dataset, in most configurations for the output number of forecasting
timesteps (highlighted with bold, red numbers).

18

Under review as a conference paper at ICLR 2024

Table 6: Univariate time series forecasting results. Best results are bold and highlighted in red, and
second best results are in blue.

TS2Vec TS-TCC TNC Informer N-BEATS LogTrans CoInception
Dataset T MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.039 0.152 0.117 0.281 0.075 0.21 0.098 0.247 0.094 0.238 0.103 0.259 0.039 0.153
48 0.062 0.191 0.192 0.369 0.227 0.402 0.158 0.319 0.21 0.367 0.167 0.328 0.064 0.196
168 0.134 0.282 0.331 0.505 0.316 0.493 0.183 0.346 0.232 0.391 0.207 0.375 0.128 0.275
336 0.154 0.31 0.353 0.525 0.306 0.495 0.222 0.387 0.232 0.388 0.23 0.398 0.15 0.303

ETTh1

720 0.163 0.327 0.387 0.560 0.39 0.557 0.269 0.435 0.322 0.49 0.273 0.463 0.161 0.317

24 0.090 0.229 0.106 0.255 0.103 0.249 0.093 0.240 0.198 0.345 0.102 0.255 0.086 0.217
48 0.124 0.273 0.138 0.293 0.142 0.290 0.155 0.314 0.234 0.386 0.169 0.348 0.119 0.264
168 0.208 0.360 0.211 0.368 0.227 0.376 0.232 0.389 0.331 0.453 0.246 0.422 0.185 0.339
336 0.213 0.369 0.222 0.379 0.296 0.430 0.263 0.417 0.431 0.508 0.267 0.437 0.196 0.353

ETTh2

720 0.214 0.374 0.238 0.394 0.325 0.463 0.277 0.431 0.437 0.517 0.303 0.493 0.209 0.370

24 0.015 0.092 0.048 0.172 0.041 0.157 0.03 0.137 0.054 0.184 0.065 0.202 0.013 0.083
48 0.027 0.126 0.076 0.219 0.101 0.257 0.069 0.203 0.190 0.361 0.078 0.220 0.025 0.116
96 0.044 0.161 0.116 0.277 0.142 0.311 0.194 0.372 0.183 0.353 0.199 0.386 0.041 0.152
288 0.103 0.246 0.233 0.413 0.318 0.472 0.401 0.554 0.186 0.362 0.411 0.572 0.092 0.231

ETTm1

672 0.156 0.307 0.344 0.517 0.397 0.547 0.512 0.644 0.197 0.368 0.598 0.702 0.138 0.287

24 0.260 0.288 0.261 0.297 0.263 0.279 0.251 0.275 0.427 0.330 0.528 0.447 0.256 0.288
48 0.319 0.324 0.307 0.319 0.373 0.344 0.346 0.339 0.551 0.392 0.409 0.414 0.307 0.317
168 0.427 0.394 0.438 0.403 0.609 0.462 0.544 0.424 0.893 0.538 0.959 0.612 0.426 0.391
336 0.565 0.474 0.592 0.478 0.855 0.606 0.713 0.512 1.035 0.669 1.079 0.639 0.56 0.472

Elec.

720 0.861 0.643 0.885 0.663 1.263 0.858 1.182 0.806 1.548 0.881 1.001 0.714 0.859 0.638

Table 7: Multivariate time series forecasting results.

Dataset T TS2Vec TS-TCC TNC Informer StemGNN LogTrans CoInception

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.599 0.534 0.653 0.610 0.632 0.596 0.577 0.549 0.614 0.571 0.686 0.604 0.461 0.479
48 0.629 0.555 0.720 0.693 0.705 0.688 0.685 0.625 0.748 0.618 0.766 0.757 0.512 0.503
168 0.755 0.636 1.129 1.044 1.097 0.993 0.931 0.752 0.663 0.608 1.002 0.846 0.683 0.601
336 0.907 0.717 1.492 1.076 1.454 0.919 1.128 0.873 0.927 0.730 1.362 0.952 0.829 0.678

ETTh1

720 1.048 0.790 1.603 1.206 1.604 1.118 1.215 0.896 - - 1.397 1.291 1.018 0.770

24 0.398 0.461 0.883 0.747 0.830 0.756 0.720 0.665 1.292 0.883 0.828 0.750 0.335 0.432
48 0.580 0.573 1.701 1.378 1.689 1.311 1.457 1.001 1.099 0.847 1.806 1.034 0.550 0.560
168 1.901 1.065 3.956 2.301 3.792 2.029 3.489 1.515 2.282 1.228 4.070 1.681 1.812 1.055
336 2.304 1.215 3.992 2.852 3.516 2.812 2.723 1.340 3.086 1.351 3.875 1.763 2.151 1.188

ETTh2

720 2.650 1.373 4.732 2.345 4.501 2.410 3.467 1.473 - - 3.913 1.552 2.962 1.338

24 0.443 0.436 0.473 0.490 0.429 0.455 0.323 0.369 0.620 0.570 0.419 0.412 0.384 0.423
48 0.582 0.515 0.671 0.665 0.623 0.602 0.494 0.503 0.744 0.628 0.507 0.583 0.552 0.521
96 0.622 0.549 0.803 0.724 0.749 0.731 0.678 0.614 0.709 0.624 0.768 0.792 0.561 0.533
288 0.709 0.609 1.958 1.429 1.791 1.356 1.056 0.786 0.843 0.683 1.462 1.320 0.623 0.578

ETTm1

672 0.786 0.655 1.838 1.601 1.822 1.692 1.192 0.926 - - 1.669 1.461 0.717 0.639

24 0.287 0.374 0.278 0.370 0.305 0.384 0.312 0.387 0.439 0.388 0.297 0.374 0.234 0.335
48 0.307 0.388 0.313 0.392 0.317 0.392 0.392 0.431 0.413 0.455 0.316 0.389 0.265 0.356
168 0.332 0.407 0.338 0.411 0.358 0.423 0.515 0.509 0.506 0.518 0.426 0.466 0.282 0.372
336 0.349 0.420 0.357 0.424 0.349 0.416 0.759 0.625 0.647 0.596 0.365 0.417 0.301 0.388

Elec.

720 0.375 0.438 0.382 0.442 0.447 0.486 0.969 0.788 - - 0.344 0.403 0.331 0.409

C.2 TIME SERIES CLASSIFICATION

Additional details. During the data processing stage, all datasets from the UCR Repository are
normalized using z-score normalization, resulting in a mean of 0 and a variance of 1. Similarly,
for datasets from the UEA Repository, each feature is independently normalized using z-score
normalization. It is important to note that within the UCR Repository, there are three datasets that
contain missing data points: DodgerLoopDay, DodgerLoopGame, and DodgerLoopWeekend. These
datasets cannot be handled with T-Loss, TS-TCC, or TNC methods. However, with the employment
of CoInception, we address this issue by directly replacing the missing values with 0 and proceed
with the training process as usual.

As stated in the main manuscript, the representations generated by CoInception are passed through
a MaxPooling layer to extract the representative timestamp, which serves as the instance-level

19

Under review as a conference paper at ICLR 2024

representation of the input. This instance-level representation is subsequently utilized as the input for
training the classifier. Consistent with Franceschi et al. (2019); Yue et al. (2022), we employ a Radial
Basis Function (RBF) Support Vector Machine (SVM) classifier. The penalty parameter C for the
SVM is selected through a grid search conducted over the range

{
10i|i ∈ [−4, 4]

}
.

Additional results. The comprehensive results of our CoInception framework on the 128 UCR
Datasets, along with other baselines (TS2Vec Yue et al. (2022), T-Loss Franceschi et al. (2019), TS-
TCC Eldele et al. (2021), TST Zerveas et al. (2021), TNC Tonekaboni et al. (2021), and DWT Chen
et al. (2013)), are presented in Table 8. In general, CoInception outperforms other state-of-the-art
methods in 67% of the 128 datasets from the UCR Repository.

Similarly, detailed results for the 30 UEA Repository datasets are summarized in Table 9, accompanied
by the corresponding Critical Difference diagram for the first 29 datasets depicted in Figure 8. In line
with the findings in the univariate setting, CoInception also achieves better performance than more
than 55% of the datasets in the UEA Repository’s multivariate scenario.

From both tables, it is evident that CoInception exhibits superior performance for the majority of
datasets, resulting in a significant performance gap in terms of average accuracy.

Figure 8: Critical Difference Diagram. Different
classifiers’ ranks on 29 Datasets from UEA Reposi-
tory with the confidence level of 95%.

Framework

A
c
c
u
ra
c
y

0.56
0.6
0.64
0.68
0.72
0.76
0.8
0.84
0.88
0.92
0.96

1

CoInception CoInception* TS2Vec TS2Vec*

Figure 9: Transferability Analysis. Ac-
curacy distribution for the first 85 UCR
datasets.

C.3 TIME SERIES ABNORMALLY DETECTION

Additional details. In the preprocessing stage, we utilize the Augmented Dickey-Fuller (ADF) test,
as done in Tonekaboni et al. (2021); Yue et al. (2022), to determine the number of unit roots, denoted
as d. Subsequently, the data is differenced d times to mitigate any drifting effect, following the
approach described in Yue et al. (2022).

For the evaluation process, we adopt a similar protocol as presented in Yue et al. (2022); Ren et al.
(2019); Xu et al. (2018), aimed at relaxing the point-wise detection constraint. Within this protocol, a
small delay is allowed after the appearance of each anomaly point. Specifically, for minutely data, a
maximum delay of 7 steps is accepted, while for hourly data, a delay of 3 steps is employed. If the
detector correctly identifies the point within this delay, all points within the corresponding segment
are considered correct; otherwise, they are deemed incorrect.

C.4 NOISE RESILIENCY TECHNIQUES ANALYSIS

In our current sampling strategy, DWT low-pass filter acts as a denoising method treating input series
x as a signal. While an alternative of introducing noise (like jittering) to ensure noise resiliency is
feasible, our preference for the DWT denoising technique stem from a realization. Jittering makes
certain assumptions about the characteristics of the introduced noise, which may not be universally
applicable to all time series or signals. In contrast, DWT denoising does not rely on such assumptions.
The multiresolution breakdown in frequency achieved by DWT filters allows us to target specific
high-frequency components prone to noise within the original signal. Through empirical analysis, we
demonstrate the robustness of the DWT denoising technique compared to jittering.

We adhere to the commonly used parameters for the jittering augmentation technique described in
Um et al. (2017); Iwana & Uchida (2021); Rashid & Louis (2019), where random noise is added
from a Gaussian distribution with a mean (µ) of 0 and a standard deviation (σ) of 0.03. To ensure a

20

Under review as a conference paper at ICLR 2024

Table 8: UCR 128 Datasets classification results. Best results are bold and highlighted in red.

Dataset TS2Vec T-Loss TNC TS-TCC TST DTW CoInception CoInception’s Rank

Adiac 0.762 0.675 0.726 0.767 0.550 0.604 0.767 1
ArrowHead 0.857 0.766 0.703 0.737 0.771 0.703 0.863 1
Beef 0.767 0.667 0.733 0.600 0.500 0.633 0.733 2
BeetleFly 0.900 0.800 0.850 0.800 1.000 0.700 0.850 3
BirdChicken 0.800 0.850 0.750 0.650 0.650 0.750 0.900 1
Car 0.833 0.833 0.683 0.583 0.550 0.733 0.867 1
CBF 1.000 0.983 0.983 0.998 0.898 0.997 1.000 1
ChlorineConcentration 0.832 0.749 0.760 0.753 0.562 0.648 0.813 2
CinCECGTorso 0.827 0.713 0.669 0.671 0.508 0.651 0.765 2
Coffee 1.000 1.000 1.000 1.000 0.821 1.000 1.000 1
Computers 0.660 0.664 0.684 0.704 0.696 0.700 0.688 4
CricketX 0.782 0.713 0.623 0.731 0.385 0.754 0.805 1
CricketY 0.749 0.728 0.597 0.718 0.467 0.744 0.818 1
CricketZ 0.792 0.708 0.682 0.713 0.403 0.754 0.808 1
DiatomSizeReduction 0.984 0.984 0.993 0.977 0.961 0.967 0.984 2
DistalPhalanxOutlineCorrect 0.761 0.775 0.754 0.754 0.728 0.717 0.779 1
DistalPhalanxOutlineAgeGroup 0.727 0.727 0.741 0.755 0.741 0.770 0.748 3
DistalPhalanxTW 0.698 0.676 0.669 0.676 0.568 0.590 0.705 1
Earthquakes 0.748 0.748 0.748 0.748 0.748 0.719 0.748 1
ECG200 0.920 0.940 0.830 0.880 0.830 0.770 0.920 2
ECG5000 0.935 0.933 0.937 0.941 0.928 0.924 0.944 1
ECGFiveDays 1.000 1.000 0.999 0.878 0.763 0.768 1.000 1
ElectricDevices 0.721 0.707 0.700 0.686 0.676 0.602 0.741 1
FaceAll 0.771 0.786 0.766 0.813 0.504 0.808 0.842 1
FaceFour 0.932 0.920 0.659 0.773 0.511 0.830 0.955 1
FacesUCR 0.924 0.884 0.789 0.863 0.543 0.905 0.928 1
FiftyWords 0.771 0.732 0.653 0.653 0.525 0.690 0.778 1
Fish 0.926 0.891 0.817 0.817 0.720 0.823 0.954 1
FordA 0.936 0.928 0.902 0.930 0.568 0.555 0.930 2
FordB 0.794 0.793 0.733 0.815 0.507 0.620 0.832 1
GunPoint 0.980 0.980 0.967 0.993 0.827 0.907 0.987 2
Ham 0.714 0.724 0.752 0.743 0.524 0.467 0.810 1
HandOutlines 0.922 0.922 0.930 0.724 0.735 0.881 0.935 1
Haptics 0.526 0.490 0.474 0.396 0.357 0.377 0.510 2
Herring 0.641 0.594 0.594 0.594 0.594 0.531 0.594 2
InlineSkate 0.415 0.371 0.378 0.347 0.287 0.384 0.424 1
InsectWingbeatSound 0.630 0.597 0.549 0.415 0.266 0.355 0.634 1
ItalyPowerDemand 0.925 0.954 0.928 0.955 0.845 0.950 0.962 1
LargeKitchenAppliances 0.845 0.789 0.776 0.848 0.595 0.795 0.893 1
Lightning2 0.869 0.869 0.869 0.836 0.705 0.869 0.902 1
Lightning7 0.863 0.795 0.767 0.685 0.411 0.726 0.836 2
Mallat 0.914 0.951 0.871 0.922 0.713 0.934 0.953 1
Meat 0.950 0.950 0.917 0.883 0.900 0.933 0.967 1
MedicalImages 0.789 0.750 0.754 0.747 0.632 0.737 0.795 1
MiddlePhalanxOutlineCorrect 0.838 0.825 0.818 0.818 0.753 0.698 0.832 2
MiddlePhalanxOutlineAgeGroup 0.636 0.656 0.643 0.630 0.617 0.500 0.656 1
MiddlePhalanxTW 0.584 0.591 0.571 0.610 0.506 0.506 0.604 2
MoteStrain 0.861 0.851 0.825 0.843 0.768 0.835 0.873 1
NonInvasiveFetalECGThorax1 0.930 0.878 0.898 0.898 0.471 0.790 0.919 2
NonInvasiveFetalECGThorax2 0.938 0.919 0.912 0.913 0.832 0.865 0.942 1
OliveOil 0.900 0.867 0.833 0.800 0.800 0.833 0.900 1
OSULeaf 0.851 0.760 0.723 0.723 0.545 0.591 0.835 2
PhalangesOutlinesCorrect 0.809 0.784 0.787 0.804 0.773 0.728 0.818 1
Phoneme 0.312 0.276 0.180 0.242 0.139 0.228 0.310 2
Plane 1.000 0.990 1.000 1.000 0.933 1.000 1.000 1
ProximalPhalanxOutlineCorrect 0.887 0.859 0.866 0.873 0.770 0.784 0.911 1
ProximalPhalanxOutlineAgeGroup 0.834 0.844 0.854 0.839 0.854 0.805 0.849 3
ProximalPhalanxTW 0.824 0.771 0.810 0.800 0.780 0.761 0.824 1

fair evaluation, we adopt all the settings as CoInception framework, making alterations only to the
strategy employed in generating the perturbed series x during the training process.

Our experiments encompass all three main tasks, and the full results are reported in Table 10. Regard-
ing the classification task, we present average performance metrics across a set of 5 UCR datasets and
5 UEA datasets. 5 datasets in UCR repository include Rock, PigCVP, CinCECGTorso, SemgHand-
MovementCh2, HouseTwenty; while the chosen datasets from UEA repository are DuckDuckGeese,
AtrialFibrillation, Handwriting, RacketSports, SelfRegulationSCP1. In the context of the forecasting
task, we execute univariate experiments utilizing the ETTm1 dataset, with the results averaged across
various prediction horizons, encompassing both short-term and long-term forecasts. As for the
anomaly detection task, we offer scores for the Yahoo dataset under normal circumstances. Across
these three tasks, the DWT-based denoising technique consistently demonstrates its notable superior-

21

Under review as a conference paper at ICLR 2024

Dataset TS2Vec T-Loss TNC TS-TCC TST DTW CoInception CoInception’s Rank

RefrigerationDevices 0.589 0.515 0.565 0.563 0.483 0.464 0.597 1
ScreenType 0.411 0.416 0.509 0.419 0.419 0.397 0.413 5
ShapeletSim 1.000 0.672 0.589 0.683 0.489 0.650 0.994 2
ShapesAll 0.902 0.848 0.788 0.773 0.733 0.768 0.898 2
SmallKitchenAppliances 0.731 0.677 0.725 0.691 0.592 0.643 0.792 1
SonyAIBORobotSurface1 0.903 0.902 0.804 0.899 0.724 0.725 0.908 1
SonyAIBORobotSurface2 0.871 0.889 0.834 0.907 0.745 0.831 0.939 1
StarLightCurves 0.969 0.964 0.968 0.967 0.949 0.907 0.971 1
Strawberry 0.962 0.954 0.951 0.965 0.916 0.941 0.970 1
SwedishLeaf 0.941 0.914 0.880 0.923 0.738 0.792 0.950 1
Symbols 0.976 0.963 0.885 0.916 0.786 0.950 0.970 2
SyntheticControl 0.997 0.987 1.000 0.990 0.490 0.993 0.997 2
ToeSegmentation1 0.917 0.939 0.864 0.930 0.807 0.772 0.943 1
ToeSegmentation2 0.892 0.900 0.831 0.877 0.615 0.838 0.908 1
Trace 1.000 0.990 1.000 1.000 1.000 1.000 1.000 1
TwoLeadECG 0.986 0.999 0.993 0.976 0.871 0.905 0.998 2
TwoPatterns 1.000 0.999 1.000 0.999 0.466 1.000 1.000 1
UWaveGestureLibraryX 0.795 0.785 0.781 0.733 0.569 0.728 0.817 1
UWaveGestureLibraryY 0.719 0.710 0.697 0.641 0.348 0.634 0.739 1
UWaveGestureLibraryZ 0.770 0.757 0.721 0.690 0.655 0.658 0.771 1
UWaveGestureLibraryAll 0.930 0.896 0.903 0.692 0.475 0.892 0.937 1
Wafer 0.998 0.992 0.994 0.994 0.991 0.980 0.999 1
Wine 0.870 0.815 0.759 0.778 0.500 0.574 0.907 1
WordSynonyms 0.676 0.691 0.630 0.531 0.422 0.649 0.683 2
Worms 0.701 0.727 0.623 0.753 0.455 0.584 0.740 2
WormsTwoClass 0.805 0.792 0.727 0.753 0.584 0.623 0.818 1
Yoga 0.887 0.837 0.812 0.791 0.830 0.837 0.882 2
ACSF1 0.900 0.900 0.730 0.730 0.760 0.640 0.910 1
AllGestureWiimoteX 0.777 0.763 0.703 0.697 0.259 0.716 0.799 1
AllGestureWiimoteY 0.793 0.726 0.699 0.741 0.423 0.729 0.776 2
AllGestureWiimoteZ 0.746 0.723 0.646 0.689 0.447 0.643 0.747 1
BME 0.993 0.993 0.973 0.933 0.760 0.900 0.980 3
Chinatown 0.965 0.951 0.977 0.983 0.936 0.957 0.985 1
Crop 0.756 0.722 0.738 0.742 0.710 0.665 0.757 1
EOGHorizontalSignal 0.539 0.605 0.442 0.401 0.373 0.503 0.577 2
EOGVerticalSignal 0.503 0.434 0.392 0.376 0.298 0.448 0.564 1
EthanolLevel 0.468 0.382 0.424 0.486 0.260 0.276 0.496 1
FreezerRegularTrain 0.986 0.956 0.991 0.989 0.922 0.899 0.994 1
FreezerSmallTrain 0.870 0.933 0.982 0.979 0.920 0.753 0.919 5
Fungi 0.957 1.000 0.527 0.753 0.366 0.839 0.962 2
GestureMidAirD1 0.608 0.608 0.431 0.369 0.208 0.569 0.662 1
GestureMidAirD2 0.469 0.546 0.362 0.254 0.138 0.608 0.592 2
GestureMidAirD3 0.292 0.285 0.292 0.177 0.154 0.323 0.392 1
GesturePebbleZ1 0.930 0.919 0.378 0.395 0.500 0.791 0.872 3
GesturePebbleZ2 0.873 0.899 0.316 0.430 0.380 0.671 0.911 1
GunPointAgeSpan 0.987 0.994 0.984 0.994 0.991 0.918 1.000 1
GunPointMaleVersusFemale 1.000 0.997 0.994 0.997 1.000 0.997 1.000 1
GunPointOldVersusYoung 1.000 1.000 1.000 1.000 1.000 0.838 1.000 1
HouseTwenty 0.916 0.933 0.782 0.790 0.815 0.924 0.899 4
InsectEPGRegularTrain 1.000 1.000 1.000 1.000 1.000 0.872 1.000 1
InsectEPGSmallTrain 1.000 1.000 1.000 1.000 1.000 0.735 1.000 1
MelbournePedestrian 0.959 0.944 0.942 0.949 0.741 0.791 0.961 1
MixedShapesRegularTrain 0.917 0.905 0.911 0.855 0.879 0.842 0.933 1
MixedShapesSmallTrain 0.861 0.860 0.813 0.735 0.828 0.780 0.876 1
PickupGestureWiimoteZ 0.820 0.740 0.620 0.600 0.240 0.660 0.880 1
PigAirwayPressure 0.630 0.510 0.413 0.380 0.120 0.106 0.827 1
PigArtPressure 0.966 0.928 0.808 0.524 0.774 0.245 0.966 1
PigCVP 0.812 0.788 0.649 0.615 0.596 0.154 0.899 1
PLAID 0.561 0.555 0.495 0.445 0.419 0.840 0.533 4
PowerCons 0.961 0.900 0.933 0.961 0.911 0.878 0.983 1

ity over the jittering technique. It’s worth reiterating that jittering assumes specific characteristics of
the introduced noise, which may not universally apply to all time series or signals. In contrast, DWT
denoising relies on an assumption generally applicable to natural signals: noisy elements typically
manifest as high-frequency components within the original signal. We leave theoretical analysis and
further exploration as open questions for our future research.

C.5 RECEPTIVE FIELD ANALYSIS

This experiment aims to investigate the scalability of the CoInception framework in comparison to
the stacked Dilated Convolution network proposed in Yue et al. (2022). We present a visualization of
the relationship between the network depth, the number of parameters, and the maximum receptive
fields of output timestamps in Figure 10.

22

Under review as a conference paper at ICLR 2024

Dataset TS2Vec T-Loss TNC TS-TCC TST DTW CoInception CoInception’s Rank

Rock 0.700 0.580 0.580 0.600 0.680 0.600 0.660 3
SemgHandGenderCh2 0.963 0.890 0.882 0.837 0.725 0.802 0.962 2
SemgHandMovementCh2 0.860 0.789 0.593 0.613 0.420 0.584 0.811 2
SemgHandSubjectCh2 0.951 0.853 0.771 0.753 0.484 0.727 0.918 2
ShakeGestureWiimoteZ 0.940 0.920 0.820 0.860 0.760 0.860 0.920 2
SmoothSubspace 0.980 0.960 0.913 0.953 0.827 0.827 0.993 1
UMD 1.000 0.993 0.993 0.986 0.910 0.993 1.000 1
DodgerLoopDay 0.562 – – – 0.200 0.500 0.588 1
DodgerLoopGame 0.841 – – – 0.696 0.877 0.884 1
DodgerLoopWeekend 0.964 – – – 0.732 0.949 0.986 1

Avg. (first 125 datasets) 0.829 0.806 0.761 0.757 0.641 0.726 0.843 1

Table 9: UEA 30 Datasets classification results. Best results are bold and highlighted in red.

Dataset TS2Vec T-Loss TNC TS-TCC TST DTW CoInception Rank

ArticularyWordRecognition 0.987 0.943 0.973 0.953 0.977 0.987 0.987 1
AtrialFibrillation 0.200 0.133 0.133 0.267 0.067 0.200 0.333 1
BasicMotions 0.975 1.000 0.975 1.000 0.975 0.975 1.000 1
CharacterTrajectories 0.995 0.993 0.967 0.985 0.975 0.989 0.992 3
Cricket 0.972 0.972 0.958 0.917 1.000 1.000 0.986 3
DuckDuckGeese 0.680 0.650 0.460 0.380 0.620 0.600 0.500 5
EigenWorms 0.847 0.840 0.840 0.779 0.748 0.618 0.847 1
Epilepsy 0.964 0.971 0.957 0.957 0.949 0.964 0.978 1
ERing 0.874 0.133 0.852 0.904 0.874 0.133 0.900 2
EthanolConcentration 0.308 0.205 0.297 0.285 0.262 0.323 0.319 2
FaceDetection 0.501 0.513 0.536 0.544 0.534 0.529 0.550 1
FingerMovements 0.480 0.580 0.470 0.460 0.560 0.530 0.550 3
HandMovementDirection 0.338 0.351 0.324 0.243 0.243 0.231 0.351 1
Handwriting 0.515 0.451 0.249 0.498 0.225 0.286 0.549 1
Heartbeat 0.683 0.741 0.746 0.751 0.746 0.717 0.790 1
JapaneseVowels 0.984 0.989 0.978 0.930 0.978 0.949 0.992 1
Libras 0.867 0.883 0.817 0.822 0.656 0.870 0.867 3
LSST 0.537 0.509 0.595 0.474 0.408 0.551 0.537 3
MotorImagery 0.510 0.580 0.500 0.610 0.500 0.500 0.560 3
NATOPS 0.928 0.917 0.911 0.822 0.850 0.883 0.972 1
PEMS-SF 0.682 0.676 0.699 0.734 0.740 0.711 0.786 1
PenDigits 0.989 0.981 0.979 0.974 0.560 0.977 0.991 1
PhonemeSpectra 0.233 0.222 0.207 0.252 0.085 0.151 0.260 1
RacketSports 0.855 0.855 0.776 0.816 0.809 0.803 0.868 1
SelfRegulationSCP1 0.812 0.843 0.799 0.823 0.754 0.775 0.765 6
SelfRegulationSCP2 0.578 0.539 0.550 0.533 0.550 0.539 0.556 2
SpokenArabicDigits 0.988 0.905 0.934 0.970 0.923 0.963 0.979 2
StandWalkJump 0.467 0.333 0.400 0.333 0.267 0.200 0.533 1
UWaveGestureLibrary 0.906 0.875 0.759 0.753 0.575 0.903 0.894 3
InsectWingbeat 0.466 0.156 0.469 0.264 0.105 – 0.449 3

Avg. (first 29 datasets) 0.712 0.675 0.677 0.682 0.635 0.650 0.731 1

The receptive field represents the number of input timestamps involved in calculating an output
timestamp. The reported statistics for both the number of parameters and the receptive field are
presented in logarithmic scale to ensure smoothness and a smaller number range.

As depicted in the figure, CoInception consistently exhibits a lower number of parameters compared
to TS2Vec, across a network depth ranging from 1 to 30 layers. It is worth noting that the inclusion
of a 30-layer CoInception framework in the visualization is purely for illustrative purposes, as we
believe a much smaller depth is sufficient for the majority of time series datasets. In fact, we only
utilize 3 layers for all datasets in the remaining sections. Furthermore, CoInception, with its multiple
Basic units of varying filter lengths, can easily achieve very large receptive fields even with just a few
layers.

C.6 CLUSTERABILITY ANALYSIS

Through this experiment, we test the clusterability of the learnt representations in the latent space. We
visualize the feature representations with t-SNE proposed by Maaten and partners - van der Maaten &
Hinton (2008) in two dimensional space. In the best scenario, the representations should be presented
in latent space by groups of clusters, basing on their labels - their underlying states.

23

Under review as a conference paper at ICLR 2024

Table 10: Noise Resillency Techniques Comparison

Task CoInception w. jittering CoInception w. DWT filtering

Acc. 0.656 (- 6.95%) 0.705Classification AUC. 0.727 (- 6.07%) 0.774

MSE 0.12 (- 49.12%) 0.061Forecasting MAE 0.262 (- 33.91%) 0.173

F1 0.613 (- 20.28%) 0.769
P. 0.548 (- 30.63%) 0.790Anomaly Detection
R. 0.695 (- 7.08%) 0.748

CoInception
TS2Vec

Depth

Pa

ra
m

s

Re
ce

pt
iv

e
Fi

el
d

Figure 10: Receptive Field Analysis. The relation between models’ depth with their number of
parameters and their maximum receptive field.

Figure 11 compares the distribution of representations learned by CoInception and TS2Vec in three
dataset with greatest test set in UCR 128 repository. It is evident that the proposed CoInception does
outperform the second best TS2Vec in terms of representation learning from the same hidden state.
The clusters learnt by CoInception are more compact than those produced by TS2Vec, especially
when the number of classes increase for ElectricDevices or Crop datasets.

C.7 TRANSFERABILITY ANALYSIS

We assess the transferability of CoInception framework under all three tasks: forecasting, classifica-
tion and anomaly detection.

For the forecasting task, we evaluate the transferability of the CoInception framework using the
following approach. The ETT datasets Zhou et al. (2021) consist of power transformer data collected
from July 2016 to July 2018. We focus on the small datasets, which include data from 2 stations,
specifically load and oil temperature. ETTh1 and ETTh2 are datasets with a temporal granularity of 1
hour, corresponding to the two stations. Since these two datasets exhibit high correlation, we leverage
transfer learning between them. Initially, we perform the unsupervised learning step on the ETTh1
dataset, similar to the process used for forecasting assessment. Subsequently, the weights of the
CoInception Encoder are frozen, and we utilize this pre-trained Encoder for training the forecasting
framework, employing a Ridge Regression model, on the ETTh2 dataset. The detailed results are

Table 11: Transferability analysis with time series forecasting task.

Forecasting (ETTh1 ->ETTh2)
Model 24 Step 48 Step 168 Step 336 Step 720 Step

TS2Vec 0.090 0.124 0.208 0.213 0.214
TS2Vec* 0.100 0.143 0.236 0.223 0.217
CoInception 0.086 0.119 0.185 0.196 0.209
CoInception* 0.084 0.118 0.188 0.201 0.211

presented in Table 11. Overall, CoInception demonstrates its strong adaptability to the ETTh2 dataset,
surpassing TS2Vec and even performing comparably to its own results in the regular forecasting
setting.

24

Under review as a conference paper at ICLR 2024

TS2Vec

CoInception

(a) StarLightCurves

TS2Vec

CoInception

(b) ElectricDevices

TS2Vec

CoInception

(c) Crop

Figure 11: Comparing clusterability of our CoInception with TS2Vec over three benchmark datasets
in UCR 125 Repository.

Figure 12: Ablation analysis for Inception block of CoInception framework.

CoInception (2a) CoInception (2b) CoInception (2c) CoInception

Classification:
Acc. 0.671 (- 4.82%) 0.571 (- 19.00%) 0.654 (- 7.23%) 0.705
AUC. 0.734 (- 5.16%) 0.635 (- 17.95%) 0.719 (- 7.11%) 0.774

Forecasting:
MSE 0.068 (- 10.29%) 0.064 (- 4.68%) 0.060 (+ 1.66%) 0.061
MAE 0.186 (- 6.98%) 0.178 (- 2.80%) 0.172 (+ 0.58%) 0.173

Anomaly Detection:
F1 0.648 (- 15.73%) 0.647 (- 15.86%) 0.653 (-15.08%) 0.769
P. 0.626 (- 20.75%) 0.639 (- 19.11%) 0.617 (-21.89%) 0.790
R. 0.671 (- 10.29%) 0.656 (- 12.29%) 0.694 (- 7.21%) 0.748

For classification task, we follow the settings in Franceschi et al. (2019). We first train our Encoder
unsupervisedly with training data from FordA dataset. Following, for each dataset in UCR repository,
the SVM classifier is trained on top of the representations produced by the frozen CoInception
Encoder with this dataset. Table 12 provides a summary of the transferability results on the first 85
UCR datasets. Although CoInception exhibits lower performance compared to its own results in the
regular classification setting in most datasets, its overall performance, as measured by the average
accuracy, is still comparable to TS2Vec in its normal settings.

For anomaly detection, the settings are inherited from Ren et al. (2019); Yue et al. (2022), and we
have already presented the results with cold-start settings in the main manuscript.

C.8 ADDITIONAL ABLATION ANALYSIS

Through this experiment, we further analyze the effect of each individual contribution within In-
ception block. To be specific, three variances are adopts: (2a) We replace Aggregator with simple
concatenation operation, and add Bottleneck layer followed the design in Wu et al. (2022); (2b)
Dilated Convolution are turned into normal 1D Convolution layer; (2c) Skip connections between
Basic Units of different layers are removed. The results are provided in Table 12. Overall, while
different ablations show the greater detrimental levels in different tasks, we consistently notice a
decline in the whole performance when any suggested alteration is excluded or substituted. This
pattern indicates the positive impact of each change on the robustness of the CoInception framework.

25

Under review as a conference paper at ICLR 2024

Table 12: Transferability analysis for time series classification.

Dataset TS2Vec TS2Vec∗ T-Loss T-Loss∗ CoInception CoInception∗

Adiac 0.762 0.783 0.760 0.716 0.767 0.803
ArrowHead 0.857 0.829 0.817 0.829 0.863 0.806
Beef 0.767 0.700 0.667 0.700 0.733 0.733
BeetleFly 0.900 0.900 0.800 0.900 0.850 0.900
BirdChicken 0.800 0.800 0.900 0.800 0.900 0.800
Car 0.833 0.817 0.850 0.817 0.867 0.883
CBF 1.000 1.000 0.988 0.994 1.000 0.997
ChlorineConcentration 0.832 0.802 0.688 0.782 0.813 0.814
CinCECGTorso 0.827 0.738 0.638 0.740 0.765 0.772
Coffee 1.000 1.000 1.000 1.000 1.000 1.000
Computers 0.660 0.660 0.648 0.628 0.688 0.668
CricketX 0.782 0.767 0.682 0.777 0.805 0.767
CricketY 0.749 0.746 0.667 0.767 0.818 0.751
CricketZ 0.792 0.772 0.656 0.764 0.808 0.762
DiatomSizeReduction 0.984 0.961 0.974 0.993 0.984 0.977
DistalPhalanxOutlineCorrect 0.761 0.757 0.764 0.768 0.779 0.775
DistalPhalanxOutlineAgeGroup 0.727 0.748 0.727 0.734 0.748 0.741
DistalPhalanxTW 0.698 0.669 0.669 0.676 0.705 0.698
Earthquakes 0.748 0.748 0.748 0.748 0.748 0.748
ECG200 0.920 0.910 0.830 0.900 0.920 0.920
ECG5000 0.935 0.935 0.940 0.936 0.944 0.942
ECGFiveDays 1.000 1.000 1.000 1.000 1.000 1.000
ElectricDevices 0.721 0.714 0.676 0.732 0.741 0.722
FaceAll 0.771 0.786 0.734 0.802 0.842 0.821
FaceFour 0.932 0.898 0.830 0.875 0.955 0.807
FacesUCR 0.924 0.928 0.835 0.918 0.928 0.923
FiftyWords 0.771 0.785 0.745 0.780 0.778 0.804
Fish 0.926 0.949 0.960 0.880 0.954 0.943
FordA 0.936 0.936 0.927 0.935 0.930 0.943
FordB 0.794 0.779 0.798 0.810 0.802 0.796
GunPoint 0.980 0.993 0.987 0.993 0.987 0.987
Ham 0.714 0.714 0.533 0.695 0.810 0.648
HandOutlines 0.922 0.919 0.919 0.922 0.935 0.930
Haptics 0.526 0.526 0.474 0.455 0.510 0.513
Herring 0.641 0.594 0.578 0.578 0.594 0.609
InlineSkate 0.415 0.465 0.444 0.447 0.424 0.453
InsectWingbeatSound 0.630 0.603 0.599 0.623 0.634 0.630
ItalyPowerDemand 0.925 0.957 0.929 0.925 0.962 0.963
LargeKitchenAppliances 0.845 0.861 0.765 0.848 0.893 0.787
Lightning2 0.869 0.918 0.787 0.918 0.902 0.852
Lightning7 0.863 0.781 0.740 0.795 0.836 0.808
Mallat 0.914 0.956 0.916 0.964 0.953 0.966
Meat 0.950 0.967 0.867 0.950 0.967 0.967
MedicalImages 0.789 0.784 0.725 0.784 0.795 0.792
MiddlePhalanxOutlineCorrect 0.838 0.794 0.787 0.814 0.832 0.838
MiddlePhalanxOutlineAgeGroup 0.636 0.649 0.623 0.656 0.656 0.662
MiddlePhalanxTW 0.584 0.597 0.584 0.610 0.604 0.610
MoteStrain 0.861 0.847 0.823 0.871 0.873 0.822
NonInvasiveFetalECGThorax1 0.930 0.946 0.925 0.910 0.919 0.947
NonInvasiveFetalECGThorax2 0.938 0.955 0.930 0.927 0.942 0.950
OliveOil 0.900 0.900 0.900 0.900 0.900 0.900
OSULeaf 0.851 0.868 0.736 0.831 0.835 0.777
PhalangesOutlinesCorrect 0.809 0.794 0.784 0.801 0.818 0.800
Phoneme 0.312 0.260 0.196 0.289 0.310 0.294

C.9 NOISE RATIO ANALYSIS

This experiment aims to assess the robustness of the CoInception framework under various noise
ratios within a given dataset. Additionally, it aims to demonstrate the partial enhancement of noise
resilience achieved by CoInception, particularly through its focus on the high-frequency component.
For comparison, we also verify this characteristic of TS2Vec Yue et al. (2022). For this experiment,
we select forecasting as the representative task, using the ETTm1 dataset. By introducing random
Gaussian noises with a mean equal to x% of the input series’s mean attitude in pretraining stage, the
goal is for two models to learn efficient representations even with the presence of noise. The current
experiment sets x to be 10, 20, 30, 40, and 50, as going beyond these values would result in the noise
outweighing the underlying series, making it impractical to be considered as noise. We also report
the results without noise (noted as x = 0) for complete reference. It is understandable that the model
performance deteriorates when the noise level increases.

26

Under review as a conference paper at ICLR 2024

Dataset TS2Vec TS2Vec∗ T-Loss T-Loss∗ CoInception CoInception∗

Plane 1.000 0.981 0.981 0.990 1.000 1.000
ProximalPhalanxOutlineCorrect 0.887 0.876 0.869 0.859 0.911 0.893
ProximalPhalanxOutlineAgeGroup 0.834 0.844 0.839 0.854 0.849 0.844
ProximalPhalanxTW 0.824 0.805 0.785 0.824 0.824 0.820
RefrigerationDevices 0.589 0.557 0.555 0.517 0.597 0.635
ScreenType 0.411 0.421 0.384 0.413 0.413 0.469
ShapeletSim 1.000 1.000 0.517 0.817 0.994 1.000
ShapesAll 0.902 0.877 0.837 0.875 0.898 0.863
SmallKitchenAppliances 0.731 0.747 0.731 0.715 0.792 0.717
SonyAIBORobotSurface1 0.903 0.884 0.840 0.897 0.908 0.903
SonyAIBORobotSurface2 0.871 0.872 0.832 0.934 0.939 0.940
StarLightCurves 0.969 0.967 0.968 0.965 0.971 0.974
Strawberry 0.962 0.962 0.946 0.946 0.970 0.970
SwedishLeaf 0.941 0.931 0.925 0.931 0.950 0.957
Symbols 0.976 0.973 0.945 0.965 0.970 0.961
SyntheticControl 0.997 0.997 0.977 0.983 0.997 0.990
ToeSegmentation1 0.917 0.947 0.899 0.952 0.943 0.947
ToeSegmentation2 0.892 0.946 0.900 0.885 0.908 0.900
Trace 1.000 1.000 1.000 1.000 1.000 1.000
TwoLeadECG 0.986 0.999 0.993 0.997 0.998 0.999
TwoPatterns 1.000 0.999 0.992 1.000 1.000 1.000
UWaveGestureLibraryX 0.795 0.818 0.784 0.811 0.817 0.820
UWaveGestureLibraryY 0.719 0.739 0.697 0.735 0.739 0.738
UWaveGestureLibraryZ 0.770 0.757 0.729 0.759 0.771 0.754
UWaveGestureLibraryAll 0.930 0.918 0.865 0.941 0.937 0.956
Wafer 0.998 0.997 0.995 0.993 0.999 0.998
Wine 0.870 0.759 0.685 0.870 0.907 0.907
WordSynonyms 0.676 0.693 0.641 0.704 0.683 0.691
Worms 0.701 0.753 0.688 0.714 0.740 0.701
WormsTwoClass 0.805 0.688 0.753 0.818 0.818 0.779
Yoga 0.887 0.855 0.828 0.878 0.882 0.854

Avg. (first 85 datasets) 0.829 0.824 0.786 0.821 0.841 0.829

Figure 14 and the quantitative results in Table 13 summarize our findings with this experiment. In
general, while both methods illustrate the decrease in performance upon the introduction of noise,
CoInception still consistently outperforms TS2Vec, suggested by the performance decrease (in per-
centage) of TS2Vec compared with CoInception in Table 13. This results attributes to our strategy to
ensure noise-resilience toward high-frequency noisy components.

Figure 13: CoInception
and TS2Vec performance
with different noise ratio
in ETTm1 dataset.

Noise Ratio CoInception TS2Vec

0% MSE 0.061 0.069 (-11.59%)
MAE 0.173 0.186 (-6.98%)

10% MSE 0.17 0.203 (-16.25%)
MAE 0.332 0.364 (-8.79%)

20% MSE 0.175 0.209 (-4.79%)
MAE 0.336 0.369 (-8.94%)

30% MSE 0.177 0.21 (-15.71%)
MAE 0.339 0.37 (-8.27%)

40% MSE 0.18 0.211 (-14.69%)
MAE 0.342 0.371 (-7.81%)

50% MSE 0.181 0.213 (-15.02%)
MAE 0.343 0.371 (-7.54%)

Figure 14: Assessing CoInception and TS2Vec performance with exposure
to different noise ratio in ETTm1 dataset.

D ADDITIONAL DICUSSIONS REGARDING COINCEPTION

This section is dedicated to discussing certain limitations and potential drawbacks of the CoInception
framework. These insights aim to assist readers in determining suitable applications for CoInception.

About the sampling strategy based on DWT, we implicitly limit the noise being targeted in this study
to be high-frequency. By removing the high-frequency components, the filter helps to smooth out the
signal and eliminate rapid fluctuations caused by noise, while better revealing the underlying trends
or slow-varying patterns in the time series. However, this strategy does not necessarily create an ideal
noise-free signal of the series. In the circumstance where the dataset is either completely free of noise

27

Under review as a conference paper at ICLR 2024

or inherently possesses noise predominantly in the low-frequency spectrum (such as a drifting effect
Smith et al. (1999); He et al. (2019)), our proposed strategy might not offer significant benefits in
managing those noisy signals.

About the encoder architecture, while the current design aligns with our main criteria of reaching
both efficiency and effectiveness, it comes with a potential trade-off. With the use of Inception idea to
automate the choice of scaling dilation factors, the problem of optimizing the number of layers used
remains to be answered. This problem is also related to efficiency-effectiveness trade-off, hence it
still needs extra effort to determine the number of layers used in the architecture. While we currently
limit and fix our framework with 3 layers, we make no claim about the optimal number of layers to
be used, but should be fine-tuned instead depending on the tasks or datasets specifically. We would
consider this factor for a future study.

28

