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Abstract

Understanding the structure of multiple related tasks allows for multi-task learning to im-
prove the generalisation ability of one or all of them. However, it usually requires train-
ing each pairwise combination of tasks together in order to capture task relationships, at
an extremely high computational cost. In this work, we learn task relationships via an
automated weighting framework, named Auto-λ. Unlike previous methods where task re-
lationships are assumed to be fixed, i.e., task should either be trained together or not
trained together, Auto-λ explores continuous, dynamic task relationships via task-specific
weightings, and can optimise any choice of combination of tasks through the formulation
of a meta-loss; where the validation loss automatically influences task weightings through-
out training. We apply the proposed framework to both multi-task and auxiliary learning
problems in computer vision and robotics, and show that Auto-λ achieves state-of-the-
art performance, even when compared to optimisation strategies designed specifically for
each problem and data domain. Finally, we observe that Auto-λ can discover interesting
learning behaviors, leading to new insights in multi-task learning. Code is available at
https://github.com/lorenmt/auto-lambda.

1 Introduction

Multi-task learning can improve model accuracy, memory efficiency, and inference speed, when compared to
training tasks individually. However, it often requires careful selection of training tasks, to avoid negative
transfer, where irrelevant tasks produce conflicting gradients and complicate the optimisation landscape. As
such, without prior knowledge of the underlying relationships between the tasks, multi-task learning can
sometimes have worse prediction performance than single-task learning.

We define the relationship between two tasks to mean to what extent these two tasks should be trained
together, following a similar definition in (Zamir et al., 2018; Standley et al., 2020; Fifty et al., 2021). For
example, we say that task A is more related to task B than task C, if the performance of task A is higher
when training tasks A and B together, compared to when training tasks A and C together.

To determine which tasks should be trained together, we could exhaustively search over all possible task
groupings, where tasks in a group are equally weighted but all other tasks are ignored. However, this requires
training 2|T | − 1 multi-task networks for a set of tasks T , and the computational cost for this search can
be intractable when |T | is large. Prior works have developed efficient task grouping frameworks based on
heuristics to speed up training, such as using an early stopping approximation (Standley et al., 2020) and
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Figure 1: In Auto-λ, task weightings are dynamically changed along with the multi-task network parameters,
in joint optimisation. The task weightings can be updated in both the auxiliary learning setting (one task
is the primary task) and the multi-task learning setting (all tasks are the primary tasks). In this example,
in the auxiliary learning setting, semantic segmentation is the primary task which we are optimising for.
During training, task weightings provide interpretable dynamic task relationships, where high weightings
emerge when tasks are strongly related (e.g. normal prediction to segmentation) and low weightings when
tasks are weakly related (e.g. depth prediction to segmentation).

computing a lookahead loss averaged across a few training steps (Fifty et al., 2021). However, these task
grouping strategies are bounded by two prominent limitations. Firstly, they are designed to be two-stage
methods, requiring a search for the best task structure and then re-training of the multi-task network with
the best task structure. Secondly, higher-order task relationships for three or more tasks are not directly
obtainable due to high computational cost. Instead, higher-order relationships are approximated by small
combinations of lower-order relationships, and thus, as the number of training tasks increases, even evaluating
these combinations may become prohibitively costly.

In this paper, instead of requiring these expensive searches or approximations, we propose that the relation-
ship between tasks is dynamic, and based on the current state of the multi-task network during training.
We consider that task relationships could be inferred within a single optimisation problem, which runs re-
currently throughout training, and automatically balances the contributions of all tasks depending on which
tasks we are optimising for. In this way, we aim to unify multi-task and auxiliary learning into a single
framework — whilst multi-task learning aims to achieve optimal performance for all training tasks, auxiliary
learning aims to achieve optimal performance for only a subset of training tasks (usually only one), which
we call the primary tasks, and the rest of the training tasks are included purely to assist the primary tasks.

To this end, we propose a simple meta-learning algorithm, named Auto-λ. Auto-λ explores dynamic task
relationships parameterised by task-specific weightings, termed λ. Through a meta-loss formulation, we use
the validation loss of the primary tasks to dictate how the task weightings should be altered, such that the
performance of these primary tasks can be improved in the next iteration. This optimisation strategy allows
us to jointly update the multi-task network as well as task weightings in a fully end-to-end manner.

We extensively evaluate Auto-λ in both multi-task learning and auxiliary learning settings within both
computer vision and robotics domains. We show that Auto-λ outperforms not only all multi-task and
auxiliary learning optimisation strategies, but also the optimal (but static) task groupings we found in the
selected datasets. Finally, we take a deep introspection into Auto-λ’s learning behaviour, and we find that the
dynamic relationship between tasks is consistent across numerous multi-task architecture designs, with the
converged final relationships aligned with the fixed relationships we found via brute-force search. The simple
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and efficient nature of our method leads to a promising new insight towards understanding the structure of
tasks, task relationships, and multi-task learning in general.

2 Related Work

Multi-task Architectures Multi-Task Learning (MTL) aims at simultaneously solving multiple learning
problems while sharing information across tasks. The techniques used in multi-task architecture design can be
categorised into hard-parameter sharing (Kokkinos, 2017; Heuer et al., 2021), soft-parameter sharing (Misra
et al., 2016; Xu et al., 2018; Liu et al., 2019c; Maninis et al., 2019; Vandenhende et al., 2020), and neural
architecture search (Rosenbaum et al., 2018; Gao et al., 2020; Sun et al., 2020).

Multi-task and Auxiliary-task Optimisation In an orthogonal direction to advance architecture de-
sign, significant efforts have also been invested to improve multi-task optimisation strategies. Although
this is a multi-objective optimisation problem (Sener & Koltun, 2018; Lin et al., 2019; Ye et al., 2021), a
single surrogate loss consisting of linear combination of task losses are more commonly studied in practice.
Notable works have investigated finding suitable task weightings based on different criteria, such as task
uncertainty (Kendall et al., 2018), task prioritisation (Guo et al., 2018) and task loss magnitudes (Liu et al.,
2019c). Other works have focused on directly modify task gradients (Chen et al., 2018; 2020; Yu et al., 2020;
Javaloy & Valera, 2022; Liu et al., 2021a; Navon et al., 2022).

Similar to multi-task learning, there is a challenge in choosing appropriate tasks to act as auxiliaries for the
primary tasks. Du et al. (2018) proposed to use cosine similarity as an adaptive task weighting to determine
when a defined auxiliary task is useful. Navon et al. (2021) applied neural networks to optimally combine
auxiliary losses in a non-linear manner.

Auto-λ is a weighting-based optimisation framework by parameterising these task relationships via learned
task weightings. Though these multi-task and auxiliary learning optimisation strategies are encoded to each
problem, Auto-λ is designed to solve multi-task learning and auxiliary learning in a unified framework.

Understanding Task Grouping and Relationships Prior optimisation methods typically assume all
training tasks are somewhat related, and the problem of which tasks should be trained together is often
overlooked. In general, task relationships are often empirically measured by human intuition rather than
prescient knowledge of the underlying structures learned by a neural network. This motivated the study
of task relationships in the transfer learning setting (Zamir et al., 2018; Dwivedi & Roig, 2019). However,
Standley et al. (2020) showed that transfer learning algorithms do not carry over to the multi-task learning
domain and instead propose a multi-task specific framework to approximate exhaustive search performance.
Further work improved the training efficiency for which the task groupings are computed with only a single
training run (Fifty et al., 2021). Rather than exploring fixed relationships, our method instead explores
dynamic relationships directly during training.

Meta Learning for Multi-task Learning Meta learning (Vilalta & Drissi, 2002; Hospedales et al., 2020)
has been often used in the multi-task learning setting, such to generate auxiliary tasks in a self-supervised
manner (Liu et al., 2019b; Navon et al., 2021) and improve training efficiency on unseen tasks (Finn et al.,
2017; Wang et al., 2021). Our work is also closely related to Kaddour et al. (2020); Liu et al. (2020) which
proposed a task scheduler to learn a task-agnostic representation similar to supervised pre-training, whilst
ours learns a representation that can adapt specifically to the primary task; Ye et al. (2021) which applied
meta learning to solve multi-objective problems, whilst ours focuses on single-objective problems; Michel
et al. (2021) which applied meta learning to balance worst-performing tasks, whilst ours balances multi-
task learning by finding optimal task relationships. Related to meta learning, our framework is learning to
generate suitable and unbounded task weightings as a lookahead method, optimised based on the validation
loss of the primary tasks, as a form of gradient-based meta learning.

Meta Learning for Hyper-parameter Optimisation Since Auto-λ’s design models multi-task learning
optimisation as learning task weightings λ dynamically via gradients, we may also consider Auto-λ as a meta
learning-based hyper-parameter optimisation framework (Maclaurin et al., 2015; Franceschi et al., 2018; Baik
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et al., 2020) by treating λ as hyper-parameters. Similar to these frameworks, we also formulate a bi-level
optimisation problem. However, different to these frameworks, we offer training strategies specifically tailored
to the problem of multi-task learning whose goal is not only to obtain good primary task performance, but
also explore interesting learning behaviours of Auto-λ from the perspective of task relationships.

3 Background

Notations We denote a multi-task network to be f(· ; θ), with network parameters θ, consisting of task-
shared and K task-specific parameters: θ = {θsh, θ1:K}. Each task is assigned with task-specific weighting
λ = {λ1:K}. We represent a set of task spaces by a pair of task-specific inputs and outputs: T = {T1:K},
where Ti = (Xi, Yi).

The design of the task spaces can be further divided into two different settings: a single-domain setting
(where all inputs are the same Xi = Xj , i ̸= j, i.e., one-to-many mapping), and a multi-domain setting
(where all inputs are different: Xi ̸= Xj , i ̸= j, i.e., many-to-many mapping). We want to optimise θ for all
tasks T and obtain a good performance in some pre-selected primary tasks T pri ⊆ T . If T pri = T , we are
in the multi-task learning setting, otherwise we are in the auxiliary learning setting.

The Design of Optimisation Methods Multi-task or auxiliary learning optimisation methods are de-
signed to balance training and avoid negative transfer. These optimisation strategies can further be cate-
gorised into two main directions:

(i) Single Objective Optimisation:

min
θ

K∑
i=1

λi · Li (f (xi; θsh, θi) , yi) , (1)

where the task-specific weightings λ are applied for a linearly combined single valued loss. Each task’s
influence on the network parameters can be indirectly balanced by finding a suitable set of weightings which
can be manually chosen, or learned through a heuristic (Kendall et al., 2018; Liu et al., 2019c) — which we
called weighting-based methods; or directly balanced by operating on task-specific gradients (Du et al., 2018;
Yu et al., 2020; Chen et al., 2018; 2020; Javaloy & Valera, 2022; Liu et al., 2021a; Navon et al., 2022) —
which we called gradient-based methods. These methods are designed exclusively to alter optimisation.

On the other hand, we also have another class of approaches that determine task groupings (Standley et al.,
2020; Fifty et al., 2021), which can be considered as an alternate form of weighting-based method, by finding
fixed and binary task weightings indicating which tasks should be trained together. Mixing the best of both
worlds, Auto-λ is an optimisation framework, simultaneously exploring dynamic task relationships.

(ii) Multi-Objective Optimisation:

min
θ

[Li (f (xi; θsh, θi) , yi)i=1:K ]⊺ , (2)

a vector-valued loss which is optimised by achieving Pareto optimality — when no common gradient updates
can be found such that all task-specific losses can be decreased (Sener & Koltun, 2018; Lin et al., 2019).
Note that, this optimisation strategy can only be used in a multi-task learning setup.

4 Auto-λ: Exploring Dynamic Task Relationships

We now introduce our simple but powerful optimisation framework called Auto-λ, which explores dynamic
task relationships through task-specific weightings.

The Design Philosophy Auto-λ is a gradient-based meta learning framework, a unified optimisation
strategy for both multi-task and auxiliary learning problems, which learns task weightings, based on any
combination of primary tasks. The design of Auto-λ borrows the concept of lookahead methods in meta
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learning literature (Finn et al., 2017; Nichol et al., 2018), to update parameters at the current state of
learning, based on the observed effect of those parameters on a future state. A recently proposed task
grouping method (Fifty et al., 2021) also applied a similar concept, to compute the relationships based on
how gradient updates of one task can affect the performance of other tasks, additionally offering the option
to couple with other gradient-based optimisation methods. Auto-λ however is a standalone framework and
encodes task relationships explicitly with a set of task weightings associated with training loss, directly
optimised based on the validation loss of the primary tasks.

Bi-level Optimisation Let us denote P as the set of indices for all primary tasks defined in T pri;
(xval

i , yval
i ) and (xtrain

i , ytrain
i ) are sampled from the validation and training sets of the ith task space,

respectively. The goal of Auto-λ is to find optimal task weightings λ∗, which minimise the validation loss
on the primary tasks, as a way to measure generalisation, where the optimal multi-task network parameters
θ∗ are obtained by minimising the λ∗ weighted training loss on all tasks. This implies the following bi-level
optimisation problem:

min
λ

∑
i∈P

Li(f(xval
i ; θ∗

sh, θ∗
i ), yval

i )

s.t. θ∗ = arg min
θ

K∑
i=1

λi · Li(f(xtrain
i ; θsh, θi), ytrain

i ).
(3)

Approximation via Finite Difference Now, we may rewrite Eq. 3 with a simple approximation scheme
by updating θ and λ iteratively with one gradient update each:

θ′ = θ − α∇θ

K∑
i=1

λi · Li(f(xtrain
i ; θsh, θi), ytrain

i ), (4)

λ← λ− β∇λ

∑
i∈P

Li(f(xval
i ; θ′

sh, θ′
i), yval

i ), (5)

θ ← θ − α∇θ

K∑
i=1

λi · Li(f(xtrain
i ; θsh, θi), ytrain

i ), (6)

for which α, β are manually defined learning rates.

The above optimisation requires computing second-order gradients which may produce large memory and
slow down training speed. Therefore, we apply finite difference approximation to reduce complexity, similar
to other gradient-based meta learning methods (Finn et al., 2017; Liu et al., 2019a). For simplicity, let’s
denote L(θ, λ),Lpri(θ, λ) represent λ weighted loss produced by all tasks and primary tasks respectively.
The gradient to update λ can be approximated by:

∇λLpri(θ∗, 1) ≈ ∇λLpri(θ − α∇θL(θ, λ), 1) = ∇λLpri(θ′, 1)− α∇2
θ,λL(θ, λ)∇θ′Lpri(θ′, 1)

≈ −α
∇λL(θ+, λ)−∇λL(θ−, λ)

2ϵ
,

(7)

where θ′ ← θ − α∇θL(θ, λ) denotes the network weights for a one-step forward model, and θ± = θ ±
ϵ · ∇θ′Lpri(θ′, 1), with ϵ a small constant. 1 are constants indicating that all primary tasks are of equal
importance, and we may also apply different constants based on prior knowledge.

Note that, λ is only applied on the training loss not validation loss, otherwise, we would easily reach trivial
solutions λ = 0. In addition, assuming θ′ = θ∗ is also not applicable, otherwise we have ∇λ = 0.

Swapping Training Data In practice, instead of splitting training data into training and validation sets
as in the standard meta learning setup, we sampled training and validation data to be the different batches
in the same training dataset. We found that this simple swapping training data strategy can learn similar
weightings comparing to sampling batches in different datasets, making Auto-λ a single-stage framework.
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Stochastic Task Sampling Eq. 4 requires to compute gradients for all training tasks. This may lead
to significant GPU memory consumption particularly when the task-shared parameters are accumulating
gradients in a multi-domain setting. To further save memory, we optimise λ in multiple steps, and for each
step, we only compute gradients for K ′ ≪ K tasks sampled stochastically. This design allows Auto-λ to
be optimised with a constant memory independent of the number of training tasks. In practice, we choose
the largest possible K ′ in each dataset that fits in a GPU to speed up training, and we observed that the
performance is consistent from a wide range of different K ′.

5 Experiments

To evaluate the generalisation of Auto-λ, we experimented on both single and multi-domain computer vi-
sion and robotics datasets, in multi-task and auxiliary learning settings, with various choices of multi-task
architectures.

Baselines In multi-task experiments, we compared Auto-λ with state-of-the-art weighting-based multi-task
optimisation methods: i) Equal: all task weightings are 1, ii) Uncertainty (Kendall et al., 2018): task
weightings are optimised via Homoscedastic uncertainty, and iii) DWA (Liu et al., 2019c): task weightings
are optimised via the rate of change of training losses. In auxiliary learning experiments, we only compared
with GCS (Gradient Cosine Similarity) (Du et al., 2018) due to the limited works for this setting. Additional
experiments comparing to gradient-based methods are further shown in Additional Analysis (Section 7.2).

Optimisation Strategies By default, we considered each single task as the primary task in the auxiliary
learning setting, unless labelled otherwise. In all experiments, Auto-λ’s task weightings were initialised to
0.1, a small weighting which assumes that all tasks are equally not related. The learning rate to update
these weightings is hand-selected for each dataset. For fair comparison, the optimisation strategies used in
all baselines and our method are the same with respect to each dataset and in each data domain. Detailed
hyper-parameters are listed in Appendix A.

5.1 Results on Dense Prediction Tasks

First, we evaluated Auto-λ with dense prediction tasks in NYUv2 (Nathan Silberman & Fergus, 2012) and
CityScapes (Cordts et al., 2016), two standard multi-task datasets in a single-domain setting. In NYUv2,
we trained on 3 tasks: 13-class semantic segmentation, depth prediction, and surface normal prediction,
with the same experimental setting as in Liu et al. (2019c). In CityScapes, we trained on 3 tasks: 19-
class semantic segmentation, disparity (inverse depth) estimation, and a recently proposed 10-class part
segmentation (de Geus et al., 2021), with the same experimental setting as in Kendall et al. (2018). In both
datasets, we trained on two multi-task architectures: Split: the standard multi-task learning architecture
with hard parameter sharing, which splits at the last layer for the final prediction for each specific task;
MTAN (Liu et al., 2019c): a state-of-the-art multi-task architecture based on task specific feature-level
attention. Both networks were based on ResNet-50 (He et al., 2016) as the backbone architecture.

Evaluation Metrics We evaluated segmentation, depth and normal via mean intersection over union
(mIoU), absolute error (aErr.), and mean angle distances (mDist.), respectively. Following Maninis et al.
(2019), we also report the overall relative multi-task performance ∆MTL of model m averaged with respect
to each single-task baseline b:

∆MTL = 1
K

K∑
i=1

(−1)li(Mm,i −Mb,i)/Mb,i, (8)

where li = 1 if lower means better performance for metric Mi of task i, and 0 otherwise.

Noise Prediction as Sanity Check In auxiliary learning, we additionally trained with a noise prediction
task along with the standard three tasks defined in a dataset. The noise prediction task was generated
by assigning a random noise map sampled from a Uniform distribution for each training image. This
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NYUv2 Method Sem. Seg.
[mIoU ↑]

Depth
[aErr. ↓]

Normal
[mDist. ↓] ∆MTL ↑

Single-Task - 43.37 52.24 22.40 -

Split
Multi-Task

Equal 44.64 43.32 24.48 +3.57%
DWA 45.14 43.06 24.17 +4.58%
Uncertainty 45.98 41.26 24.09 +6.50%
Auto-λ 47.17 40.97 23.68 +8.21%

Split
Auxiliary-Task

Uncertainty 45.26 42.25 24.36 +4.91%
GCS 45.01 42.06 24.12 +5.20%
Auto-λ [3 Tasks] 48.04 40.61 23.31 +9.66%
Auto-λ [1 Task] 47.80 40.27 23.09 +10.02%

MTAN
Multi-Task

Equal 44.62 42.64 24.29 +4.27%
DWA 45.04 42.81 24.02 +4.89%
Uncertainty 46.41 40.94 23.65 +7.69%
Auto-λ 47.63 40.37 23.28 +9.54%

MTAN
Auxiliary-Task

Uncertainty 44.56 42.21 24.26 +4.55%
GCS 44.28 44.07 24.03 +3.49%
Auto-λ [3 Tasks] 47.35 40.10 23.41 +9.30%
Auto-λ [1 Task] 47.70 39.89 22.75 +10.69%

CityScapes Method Sem. Seg.
[mIoU ↑]

Part Seg.
[mIoU ↑]

Disp.
[aErr. ↓] ∆MTL ↑

Single-Task - 56.20 52.74 0.84 -

Split
Multi-Task

Equal 54.03 50.18 0.79 −0.92%
DWA 54.93 50.15 0.80 −0.80%
Uncertainty 56.06 52.98 0.82 +0.86%
Auto-λ 56.08 51.88 0.76 +2.56%

Split
Auxiliary-Task

Uncertainty 55.72 52.62 0.83 +0.04%
GCS 55.76 52.19 0.80 +0.98%
Auto-λ [3 Tasks] 56.42 52.42 0.78 +2.31%
Auto-λ [1 Task] 57.89 53.56 0.77 +4.30%

MTAN
Multi-Task

Equal 55.05 50.74 0.78 +0.43%
DWA 54.71 51.07 0.80 −0.35%
Uncertainty 56.28 53.24 0.82 +1.16%
Auto-λ 56.57 52.67 0.75 +3.75%

MTAN
Auxiliary-Task

Uncertainty 56.13 52.78 0.83 +0.38%
GCS 55.47 52.75 0.76 +2.75%
Auto-λ [3 Tasks] 57.64 52.77 0.78 +3.25%
Auto-λ [1 Task] 58.39 54.00 0.78 +4.48%

Table 1: Performance on NYUv2 and CityScapes datasets with multi-task and auxiliary learning methods in
Split and MTAN multi-task architectures. Auxiliary learning is additionally trained with a noise prediction
task. Results are averaged over two independent runs, and the best results are highlighted in bold.

task is designed to test the effectiveness of different auxiliary learning methods in the presence of useless
gradients. We trained from scratch for a fair comparison among all methods in our experiments, following
prior works (Kendall et al., 2018; Liu et al., 2019c; Sun et al., 2020).

Results Table 1 showed results for CityScapes and NYUv2 datasets in both Split and MTAN multi-task
architectures. Our Auto-λ outperformed all baselines in multi-task and auxiliary learning settings across
both multi-task networks, and has a particularly prominent effect in auxiliary learning setting where it
doubles the relative overall multi-task performance compared to auxiliary learning baselines.

We show results for two auxiliary task settings: optimising for just one task (Auto-λ [1 Task]), where the
other three tasks (including noise prediction) are purely auxiliary, and optimising for all three tasks (Auto-λ
[3 Tasks]), where only the noise prediction task is purely auxiliary. Auto-λ [3 Tasks] has nearly identical
performance to Auto-λ in a multi-task learning setting, whereas the best multi-task baseline Uncertainty
achieved notably worse performance when trained with noise prediction as an auxiliary task. This shows
that standard multi-task optimisation is susceptible to negative transfer, whereas Auto-λ can avoid negative
transfer due to its ability to minimise λ for tasks that do not assist with the primary task. We also show that
Auto-λ [1 Task] can further improve performance relative to Auto-λ [3 Tasks], at the cost of task-specific
training for each individual task.

5.2 Results on Multi-domain Classification Tasks

We now evaluate Auto-λ on image classification tasks in a multi-domain setting. We trained on CIFAR-
100 (Krizhevsky, 2009) and treated each of the 20 ‘coarse’ classes as one domain, thus creating a dataset
with 20 tasks, where each task is a 5-class classification over the dataset’s ‘fine’ classes, following Rosenbaum
et al. (2018); Yu et al. (2020). For multi-task and auxiliary learning, we trained all methods on a VGG-16
network (Simonyan & Zisserman, 2015) with standard hard-parameter sharing (Split), where each task has
a task-specific prediction layer.

Results In Table 2, we show classification accuracy on the 5 most challenging domains which had the lowest
single-task performance, along with the average performance across all 20 domains. Multi-task learning
in this dataset is particularly demanding, since we optimised with a ×20 smaller parameter space per
task compared to single-task learning. We observe that all multi-task baselines achieved similar overall
performance to single-task learning, due to limited per-task parameter space. However, Auto-λ was still
able to improve the overall performance by a non-trivial margin. Similarly, Auto-λ can further improve
performance in the auxiliary learning setting, with significantly higher per-task performance in challenging
domains with around 5− 7% absolute improvement in test accuracy.
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CIFAR-100 Method People Aquatic
Animals

Small
Mammals Trees Reptiles Avg.

Single-Task - 55.37 68.65 72.79 75.37 75.84 82.19

Multi-Task

Equal 57.73 73.59 74.41 74.64 76.69 82.46
Uncertainty 54.14 70.62 74.08 74.62 75.62 82.03
DWA 55.25 71.54 74.12 75.68 76.26 82.26
Auto-λ 57.57 74.00 75.05 75.15 77.55 83.92

Auxiliary-Task GCS 56.45 71.05 72.93 74.45 76.29 82.58
Auto-λ 60.89 75.70 75.64 77.38 81.75 84.92

Table 2: Performance of 20 tasks in CIFAR-100 dataset with multi-task and auxiliary learning methods.
We report the performance from 5 domains giving lowest single-task performance along with the averaged
performance across all 20 domains. Results are averaged over two independent runs, and the best results
are highlighted in bold.

5.3 Results on Robot Manipulation Tasks

Finally, to further emphasise the generality of Auto-λ, we also experimented on visual imitation learning
tasks within a multi-domain robotic manipulation setting.

To train and evaluate our method, we selected 10 tasks (visualised in Fig. 2) from the robot learning
environment, RLBench (James et al., 2020). Training data was acquired by first collecting 100 demonstrations
for each task, and then running keyframe discovery following James & Davison (2021), to split the task into
a smaller number of simple stages to create a behavioural cloning dataset. Our network takes RGB and
point-cloud inputs from 3 cameras (left shoulder, right shoulder, and wrist camera), and outputs a continuous
6D pose and discrete gripper action. To distinguish among each of the tasks, a learnable task encoding is
also fed to the network for multi-task and auxiliary learning. Full training details are given in Appendix B.

Figure 2: A visual illustration of 10 hand-selected RLBench tasks from the front-facing camera. Task names
are: reach target, push button, pick and lift, pick up cup, put knife on chopping board, take money out of safe,
put money in safe, take umbrella out of umbrella stand, stack wine, slide block to target.

Results In Table 3, we reported success rate of each and averaged performance over 10 RLBench tasks.
In addition to the baselines outlined in Section 5, we also included an additional baseline based on Priority
Replay (Schaul et al., 2016): a popular method for increasing sample efficiency in robot learning systems.
For this baseline, prioritisation is applied individually for each task. Similar to computer vision tasks, Auto-λ
achieved the best performance in both multi-task and auxiliary learning setup, particularly can improved up
to 30− 40% success rate in some multi-stage tasks compared to single-task learning.

RLBench Method Reach
Target

Push
Button

Pick And
Lift

Pick Up
Cup

Put Knife on
Chopping Board

Take Money
Out Safe

Put Money
In Safe

Pick Up
Umbrella

Stack
Wine

Slide Block
To Target Avg.

Single-Task - 100 95 82 72 36 38 31 37 23 36 55.0

Multi-Task

Equal 100 92 86 69 40 57 57 44 16 40 60.1
Uncertainty 100 95 75 56 19 60 79 70 16 65 63.5
DWA 100 90 88 82 35 66 57 61 16 66 66.1
Priority 100 96 78 78 28 52 36 46 15 34 56.2
Auto-λ 100 95 87 78 31 64 62 80 19 77 69.3

Auxiliary-Task GCS 100 97 81 67 42 56 58 60 14 77 65.2
Auto-λ 100 93 90 85 49 64 75 74 20 78 72.8

Table 3: Performance of 10 RLBench tasks with multi-task and auxiliary learning methods. We reported
the success rate with 100 evaluations for each task averaged across two random seeds. Best results are
highlighted in bold.

8



Published in Transactions on Machine Learning Research (05/2022)

6 Intriguing Learning Strategies in Auto-λ

In this section, we visualise and analyse the learned weightings from Auto-λ, and find that Auto-λ is able
to produce interesting learning strategies with interpretable relationships. Specifically, we focus on using
Auto-λ to understand the underlying structure of tasks, introduced next.

6.1 Understanding The Structure of Tasks

Task relationships are consistent. Firstly, we observe that the structure of tasks is consistent across
the choices of learning algorithms. As shown in Fig. 3, the learned weightings with both the NYUv2 and
CityScapes datasets are nearly identical, given the same optimisation strategies, independent of the network
architectures. This observation is also supported by the empirical findings in Zamir et al. (2018); Standley
et al. (2020) in both task transfer and multi-task learning settings.

Task relationships are asymmetric. We also found that the task relationships are asymmetric, i.e.
learning task A with the knowledge of task B is not equivalent to learning task B with the knowledge of task
A. A simple example is shown in Fig. 4 Right, where the semantic segmentation task in CityScapes helps
the part segmentation task much more than the part segmentation helps the semantic segmentation. This
also follows intuition: the representation required for semantic segmentation is a subset of the representation
required for part segmentation. This observation is also consistent with multi-task learning frameworks (Lee
et al., 2016; 2018; Zamir et al., 2020; Yeo et al., 2021).
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Figure 3: Auto-λ explored consistent task relationships in NYUv2 and CityScapes datasets for both Split
and MTAN architectures. Higher task weightings indicate stronger relationships, and lower task weightings
indicate weaker relationships.
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Figure 4: Auto-λ learned dynamic relationships based on the choice of primary tasks and can avoid negative
transfer. Whilst Uncertainty method is not able to avoid negative transfer, having a constant weighting on
noise prediction task across the entire training stage. [·] represents the choice of primary tasks.
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Figure 5: Auto-λ achieved best per-task performance
compared to every combination of fixed task groupings.

Task relationships are dynamic. A unique
property of Auto-λ is the ability to explore dy-
namic task relationships. As shown in Fig. 4 Left,
we can observe a weighting cross-over appears in
NYUv2 near the end of training, which can be
considered as a learning strategy of automated
curricula. Further, in Fig. 5, we verify that Auto-
λ achieved higher per-task performance compared
to every combination of fixed task groupings in
NYUv2 and CityScapes datasets. We can also
observe that the task relationships inferred by
the fixed task groupings is perfectly aligned with
the relationships learned with Auto-λ. For ex-
ample, the performance of semantic segmentation
trained with normal prediction (+6.6%) is higher
than the performance trained with depth predic-
tion (−6.0%), which is consistent with fact that
the weighting of normal prediction (0.84) is higher than depth prediction (0.52) as shown in Fig. 3. In
addition, we can observe that the Uncertainty method is not able to avoid negative transfer from the noise
prediction task, having a constant weighting across the entire training stage, which leads to a degraded
multi-task performance as observed in Table 1. These observations confirm that Auto-λ is an advanced
optimisation strategy, and is able to learn accurate and consistent task relationships.

7 Additional Analysis

Finally, we present some additional analyses with Split multi-task architecture to understand the behaviour
of Auto-λ with respect to different hyper-parameters and other types of optimisation strategies.

7.1 Robustness on Training Strategies

Here, we evaluate different hyper-parameters trained with Auto-λ [3 Tasks] in the auxiliary learning setting.
As seen in Fig. 6, we found that Auto-λ optimised with direct second-order gradients offers very similar
task weightings compared to when optimised with approximated first-order gradients. In addition, we
discovered that using first-order gradients may speed up training time roughly ×2.3. In Table 4, we show that
initialising with a small weighting and a suitable learning rate is important to achieve a good performance.
A larger learning rate leads to saturated weightings which causes unstable network optimisation, and a larger
initialisation would not successfully avoid negative transfer. In addition, optimising network parameters and
task weightings with different data is also essential which otherwise would slightly decrease performance.

Sem. Seg. Depth Normal Noise

0

0.05

0.10

Figure 6: Mean and the range of per-task
weighting difference for Auto-λ [3 Tasks] opti-
mised with direct and approximated gradients
in NYUv2 dataset.

Task Weightings ∆MTL
Sem. Seg. Depth Normal Noise

Init = 0.01 0.97 0.95 1.1 0.02 +8.98%
Init = 1.0 2.00 2.11 2.08 1.00 +1.42%
LR = 3 · 10−5 0.43 0.37 0.46 0.11 +8.53%
LR = 3 · 10−4 3.10 3.34 3.26 0.15 +8.56%
LR = 1 · 10−3 10.5 10.5 10.3 0.23 +5.04%
No Swapping 2.67 2.76 2.98 0.20 +8.17%

Our Setting 1.11 1.06 1.26 0.12 +9.66%

Table 4: Relative multi-task performance in NYUv2
dataset trained with Auto-λ [3 Tasks] with different
hyper-parameters. The default setting is Init = 0.1,
LR = 1 · 10−4 and with training data swapping.
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7.2 Comparison to Gradient-based Methods

Equal DWA Uncertainty Auto-λ

Vanilla +3.57% +4.58% +6.50% +8.21%
+ GradDrop +4.65% +5.93% +6.22% +8.12%
+ PCGrad +5.09% +4.37% +6.20% +8.50%
+ CAGrad +7.05% +8.08% +9.65% +11.07%

Table 5: NYUv2 relative multi-task performance trained
with both weighting-based and gradient-based methods
in the multi-task learning setting.

Since Auto-λ is a weighting-based optimisation
method, it can naturally be combined with
gradient-based methods to further improve per-
formance. We evaluated Auto-λ along with
the other weighting-based baselines described in
Sec. 5, when combined with recently proposed
state-of-the-art gradient-based methods designed
for multi-task learning: GradDrop (Chen et al.,
2020), PCGrad (Yu et al., 2020) and CA-
Grad (Liu et al., 2021a). We trained all methods
in NYUv2 dataset with standard 3 tasks in the multi-task learning setup.

In Table 5, we can observe that Auto-λ remains the best optimisation method even compared to other
gradient-based methods in the vanilla setting (with Equal weighting). Further, combined with a more
advanced gradient-based method such as CAGrad, Auto-λ can reach even higher performance.

7.3 Comparison to Strong Regularisation Methods

Finally, recent works (Lin et al., 2021; Kurin et al., 2022) suggested that many multi-task optimisation
methods can be interpreted as forms of implicit regularisation. They showed that when using strong regu-
larisation and stabilisation techniques from single-task learning, training by simply minimising the sum of
task losses, or with randomly generated task weightings, can achieve performance competitive with complex
multi-task methods.

As such, we now evaluate Auto-λ, along with all multi-task baselines evaluated in our Experiments section,
as well as all multi-task methods included in the original work of (Kurin et al., 2022), coupled with this

Unit. Scal. Uncert. DWA RLW
(Diri.)

RLW
(Norm.)

IMTL MGDA GradDrop PCGrad CAGrad Auto-λ
(MTL)

Auto-λ
(AL)

90.25
90.50
90.75
91.00
91.25

Task Mean
Accuracy (%)

(a) Mean and the range (3 runs) for the averaged task test accuracy

Unit. Scal. Uncert. DWA RLW
(Diri.)

RLW
(Norm.)

IMTL MGDA GradDrop PCGrad CAGrad Auto-λ

103

104

Training
Time (sec.)

(b) Mean per-epoch training time (10 reptitions)

Figure 7: All multi-task methods perform the same or worse than Unit. Scal. on the CelebA dataset trained
with strong regularisation, except Auto-λ. Part of the results are directly borrow from Kurin et al. (2022).
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strong regularisation on CelebA dataset (Liu et al., 2015), for a challenging 40-task classification problem.
We trained these multi-task methods with the exact same experimental setting in Kurin et al. (2022) for a
fair comparison. To conclude, we compared with: Unit. Scal. (Kurin et al., 2022), DWA (Liu et al., 2019c),
RLW (with weights sampled from a Dirichlet and a Normal Distribution) (Lin et al., 2021), IMTL (Liu et al.,
2021b), MGDA (Sener & Koltun, 2018), GradDrop (Chen et al., 2020), PCGrad (Yu et al., 2020), CAGrad
(Liu et al., 2021a), for a total of 10 multi-task optimsiation methods.

To our surprise, though most methods achieve similar performance, which is consistent with the findings in
(Kurin et al., 2022), Auto-λ is still able to improve performance (marginally in the multi-task learning setting,
and significantly in the auxiliary learning setting) with a clear statistical significance. The improvement is
especially pronounced in the auxiliary learning mode, which is the unique learning mode of Auto-λ, showing
the multi-task network’s generalisation imposed from Auto-λ is more than implicit regularisation.

In addition, we also compared training time across these multi-task methods, and we re-scaled the training
time in our implementation to Kurin et al. (2022)’s setting for a fair comparison. We can observe that
Auto-λ requires three times longer the training time than Unit. Scal. (Equal weighting) (Kurin et al., 2022),
in consistent with its theoretical design, since Auto-λ needs to compute additional two forward and two
backward passes to approximate the second-order gradients. Though Auto-λ requires longer training time,
it can outperform other multi-task methods, and still an order of magnitude faster than some gradient-based
methods such as PCGrad (Yu et al., 2020) and CAGrad (Liu et al., 2021a).

8 Conclusions, Limitations and Discussion

In this paper, we have presented Auto-λ, a unified multi-task and auxiliary learning optimisation framework.
Auto-λ operates by exploring task relationships in the form of task weightings in the loss function, which
are allowed to dynamically change throughout the training period. This allows optimal weightings to be
determined at any one point during training, and hence, a more optimal period of learning can emerge than
if these weightings were fixed throughout training. Auto-λ achieves state-of-the-art performance in both
computer vision and robotics benchmarks, for both multi-task learning and auxiliary learning, even when
compared to optimisation methods that are specifically designed for just one of those two settings.

For transparency, we now discuss some limitations of Auto-λ that we have noted during our implementations,
and we discuss our thoughts on future directions with this work.

Hyper-parameter Search To achieve optimal performance, Auto-λ still requires hyper-parameter search
(although the performance is primarily sensitive to only one parameter, the learning rate, making this search
relatively simple). Some advanced training techniques, such as incorporating weighting decay or bounded
task weightings, might be helpful to find a general set of hyper-parameters which work for all datasets.

Training Speed The design of Auto-λ requires computing second-order gradients, which is computation-
ally expensive. To address this, we applied a finite-difference approximation scheme to reduce the complexity,
which requires the addition of only two forward passes and two backward passes. However, this may still be
slower than alternative optimisation methods.

Single Task Decomposition Auto-λ can optimise on any type of task. Therefore, it is natural to consider
a compositional design, where we decompose a single task into multiple small sub-tasks, e.g. to decompose a
multi-stage manipulation tasks into a sequence of stages. Applying Auto-λ on these sub-tasks might enable
us to explore interesting learning behaviours to improve single task learning efficiency.

Open-ended Learning Given the dynamic structure of the tasks explored by Auto-λ, it would be inter-
esting to study whether Auto-λ could be incorporated into an open-ended learning system, where tasks are
continually added during training. The flexibility of Auto-λ to dynamically optimise task relationships may
naturally facilitate open-ended learning in this way, without requiring manual selection of hyper-parameters
for each new task.
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A Detailed Training Strategies

For dense prediction tasks, we followed the same training setup with MTAN based on the code that was
made publicly available by the authors (Liu et al., 2019c). We trained Auto-λ with learning rate 10−4 and
3 · 10−5 for NYUv2 and CityScapes respectively.

For multi-domain classification tasks, we trained each and all tasks with SGD momentum with 0.1 initial
learning rate, 0.9 momentum, and 5 ·10−4 weight decay. We applied cosine annealing for learning rate decay
trained with total 200 epochs. We set batch size 32 and we trained Auto-λ with 3 · 10−4 learning rate.

For robot manipulation tasks, we trained with Adam with a constant learning rate 10−3 for 8000 iterations.
We set batch size 32 and we trained Auto-λ with 3 · 10−5 learning rate.

B Detailed Experimental Setting for Robotic Manipulation Tasks

Naively applying behaviour cloning (e.g. mapping observations to joint velocities or end-effector incremental
poses) for robot manipulations tasks often requires thousands of demonstrations (James et al., 2017). To
circumvent that, we first pre-processed the demonstrations by running keyframe discovery (James & Davison,
2021); a process that iterates over each of the demo trajectories and outputs the transitions where interesting
things happen, e.g. change in gripper state, or velocities approach zero. The results of the keyframe discovery
is a small number of end-effector poses and gripper actions for each of the demonstrations, essentially splitting
the task into a set of simple stages. The goal of our behaviour cloning setup is to predict these end-effector
poses and gripper actions for new task configurations. Training data was then acquired by first collecting 100
demonstrations for each task, and then running keyframe discovery, to split the task into a smaller number
of simple stages to create our behavioural cloning dataset.
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Figure 8: Visualisation of the network design for RL-
Bench.

We optimised an encoder-decoder network which
takes the inputs of RGB and point-clouds captured
by three different cameras (left shoulder, right shoul-
der and wrist camera), and outputs a continuous 6D
pose and a discrete gripper action. The 6D pose is
composed of a 3-dimensional vector encoding spa-
tial position and a 4-dimensional vector encoding
rotation (parameterised by a unit quaternion); the
gripper action is represented by a binary scalar in-
dicating gripper open and close. The position and
rotation are learned through two separate decoders.
The position decoder predicts attention maps based
on RGB images, then we apply spatial (soft) argmax
(Levine et al., 2016) on the corresponding point
cloud to output a 3D spatial position of the attended
pixel. We additionally optimised a position off-set for each stage of the task, so the predicted position will
not be bounded by the position only available in the images. The rotation encoder predicts quaternion
and gripper action via direct regression. A learnable task embedding is fed to the network bottleneck for
multi-task and auxiliary learning.
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C Auto-λ Learned Weightings for NYUv2 and CityScapes

We found that the relationships in NYUv2 and CityScapes dataset are usually static from the beginning of
training (except for NYUv2 [3 tasks] where we can observe a clear weighting cross-over).
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Figure 9: Learning dynamics of Auto-λ optimised on various choices of primary tasks in the auxiliary learning
setup with Split architecture.

D Auto-λ Learned Weightings for RLBench

The relationships vary more wildly in RLBench tasks, where we can observe multiple weighting cross-over
in different training stages.
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Figure 10: Learning dynamics of Auto-λ optimised on each individual task in the auxiliary learning setup
for 10 RLBench tasks. We list 3 tasks with the highest task weightings in each setting.

18



Published in Transactions on Machine Learning Research (05/2022)

E Auto-λ Learned Weightings for CIFAR-100

Interestingly, in the multi-task learning setting of multi-domain classification tasks (last row of Fig. 11), we
can see a clear correlation between task weighting and single task learning performance, where the higher
weighting is applied for more difficult domain (with low single task learning performance). For example,
‘People’ and ‘Vehicles 2 ’, which have the lowest and highest single task learning performance respectively,
were assigned with the lowest and the highest task weightings.

ID 1 Aquatic
Mammals ID 2 Fish ID 3 Flowers ID 4 Food

Containers

ID 5 Fruit and
Vegetables ID 6 Household

Electrical Devices ID 7 Household
furniture ID 8 Insects

ID 9 Large
Carnivores ID 10 Large Man-made

Outdoor Things ID 11 large natural
outdoor scenes ID 12 Large Omnivores

and Herbivores

ID 13 Medium-sized
Mammals ID 14 Non-insect

Invertebrates ID 15 People ID 16 Reptiles

ID 17 Small
Mammals ID 18 Trees ID 19 Vehicles 1 ID 20 Vehicles 2

Table 6: The description of each domain ID in multi-domain CIFAR-100 dataset.

CIFAR-100 Method ID 1 ID 2 ID 3 ID 4 ID 5 ID 6 ID 7 ID 8 ID 9 ID 10

Single-Task - 68.65 81.00 82.34 83.71 89.10 88.72 84.75 85.88 87.07 90.15

Multi-Task

Equal 73.59 82.36 79.78 83.94 89.14 87.03 83.73 85.87 86.67 89.86
Uncertainty 70.62 81.01 80.46 83.59 88.06 86.83 82.96 86.46 87.40 89.58
DWA 71.54 82.12 81.60 83.22 89.70 86.64 82.57 86.17 87.34 90.19
Auto-λ 74.00 83.96 81.30 83.57 88.69 87.85 84.57 87.75 88.04 92.03

Auxiliary-Task
GCS 71.05 82.27 80.31 83.36 87.07 85.94 83.05 86.80 87.54 89.34
Auto-λ 75.70 84.39 82.71 84.64 90.23 88.02 85.52 87.36 89.04 92.20

Method ID 11 ID 12 ID 13 ID 14 ID 15 ID 16 ID 17 ID 18 ID 19 ID 20

Single-Task - 89.76 84.88 90.33 84.41 55.37 75.84 72.79 75.37 91.48 94.69

Multi-Task

Equal 89.21 86.40 89.45 85.52 57.73 76.69 74.41 74.64 90.64 94.21
Uncertainty 89.80 87.07 89.76 85.64 54.14 75.62 74.08 74.62 90.83 89.54
DWA 89.08 85.91 89.39 85.15 55.25 76.26 74.12 75.68 90.95 94.33
Auto-λ 90.05 88.00 91.25 84.98 57.57 77.55 75.05 75.15 91.87 95.19

Auxiliary-Task
GCS 89.80 85.59 89.41 85.70 56.45 76.29 72.93 74.45 90.31 93.98
Auto-λ 90.82 87.32 90.76 86.56 60.89 81.75 75.64 77.38 91.58 95.87

Table 7: The complete performance of 20 tasks in multi-domain CIFAR-100 dataset with multi-task and
auxiliary learning methods.
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Figure 11: Visualisation of learned weightings in Auto-λ in auxiliary learning and multi-task learning setup.
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