
Under review as submission to TMLR

Overcoming Order in Autoregressive Graph Generation

Anonymous authors

Paper under double-blind review

Abstract

Graph generation is a fundamental problem in various domains, including chemistry and
social networks. Recent work has shown that molecular graph generation using recurrent
neural networks (RNNs) is advantageous compared to traditional generative approaches
which require converting continuous latent representations into graphs. One issue which
arises when treating graph generation as sequential generation is the arbitrary order of
the sequence which results from a particular choice of graph flattening method. In this
work we propose using RNNs, taking into account the non-sequential nature of graphs
by adding an Orderless Regularization (OLR) term that encourages the hidden state of
the recurrent model to be invariant to di�erent valid orderings present under the training
distribution. We demonstrate that sequential graph generation models benefit from our
proposed regularization scheme, especially when data is scarce. Our findings contribute to
the growing body of research on graph generation and provide a valuable tool for various
applications requiring the synthesis of realistic and diverse graph structures.

1 Introduction

Graphs are powerful representations of complex relationships and structures found in a wide range of domains,
including social networks, molecular chemistry, transportation networks, distributed algorithms and many
more. A dedicated class of architectures, Graph Neural Networks (GNNs), has been developed to handle the
specific properties of graphs. Graphs are naturally versatile objects, but such versatility comes at the cost
of lack of structure and no naturally induced order. Most GNN architectures therefore operate by applying
a neural architecture at the node level followed by an aggregation step which takes into account the local
neighborhood structure of the graph. By stacking multiple such layers, a GNN is able to perform node-level
or graph-level tasks that take into account the entire structure of the graph.

The ability to generate realistic and structured graphs is essential for various applications ranging from drug
design (De Cao & Kipf, 2018; Du et al., 2022b; Honda et al., 2019; Jin et al., 2018; Madhawa et al., 2019;
Shi et al., 2020; You et al., 2018a; Zang & Wang, 2020) to program synthesis (Brockschmidt et al., 2018;
Hindle et al., 2016; Chen et al., 2021a; Allamanis et al., 2017; Hellendoorn et al., 2019; Yin & Neubig, 2017;
Bielik et al., 2016; Dai et al., 2018). In recent years a wide variety of generative models have been developed,
including generative adversarial networks (GANs), variational autoencoders (VAEs), normalizing flows, and
di�usion models. These algorithms devise di�erent strategies to learn continuous mappings from a latent
distribution to a space of realistic examples. Unfortunately, graphs do not admit a natural representation
in a continuous space; consequently, the discrete and unordered nature of graphs make them less amenable
to the methods mentioned above for the task of graph generation. A di�erent type of generative model
relies on autoregressive architectures which enable processing a sequence and generating the next element;
for example, these architectures are commonly used for large language models. Generally, autoregressive
models are applicable when the generated objects admit a sequential order.

In this work we focus on sequential generation of graphs using autoregressive neural architectures. A strong
motivating factor for choosing autoregressive architectures is that we are particularly interested in molecular
graph generation; and in this context Flam-Shepherd et al. (2022) have shown that sequential generation is
favorable compared to other approaches. The specific representation we consider is depth-first search (DFS)
trajectories of graphs. The reasons for this choice of representation is twofold: (a) DFS is a natural way

1

Under review as submission to TMLR

of flattening graphs into sequences; (b) in the chemistry community DFS is used to convert molecules into
strings. However, an issue arises when converting graphs into sequences: there are many DFS trajectories
for a given graph. Indeed, for many graph flattening methods, there is an arbitrariness in the order of the
sequence which results (Vinyals et al., 2015; Chen et al., 2021b).

In order to alleviate the dependency on a specific trajectory, we add a regularization term dubbed Orderless
Regularization (OLR) which ensures the learnt model is invariant to di�erent DFS orderings of the same
graph. For the sake of training with OLR, one needs to generate di�erent DFS trajectories with a com-
mon end-vertex which is known to be hard (Beisegel et al., 2019). We formalize the notion of graph-level
invariance and devise an e�cient algorithm to generate such trajectories under certain constraints. Finally,
we demonstrate empirically that our regularization term is beneficial when the amount of training data is
limited by considering the use case of small molecule generation.

The reminder of the paper is structured as follows: in Section 2 we provide background and introduce the
concepts, definitions, and notations used throughout the paper. Section 3 goes into the details of OLR over
DFS trajectories. Section 4 is devoted to related work. In Section 5 we provide empirical evidence for the
e�ectiveness of OLR. Section 6 provides concluding remarks.

2 Background

In this section we formally define the problem of graph generation, the notations and definitions necessary
to present our proposed method. We denote matrices by bold uppercase letters, M P Rnˆm, vectors by bold
lowercase letters, v, and the ith entry of v by vi. We proceed with a general formulation of recurrent models.

2.1 Recurrent Models

Let X , H, and Y be the spaces of inputs, hidden states, and outputs, respectively. Given an input sequence
x ” px1, . . . , xnq P X

n, a recurrent model consists of two functions, the state update function fu : HˆX Ñ H,

ht`1 “ fupht, xtq, (2.1)

and the output function fo : H ˆ X Ñ Y,

yt “ fopht, xtq. (2.2)

where h0 P H. We overload the notation and denote the hidden state and output of a recurrent model over
a sequence as fupxq and fopxq respectively.

The formulation presented of recurrent models is broad and able to capture RNNs as well as more complex
architectures such as Gated Recurrent Units (GRUs, (Chung et al., 2014)) and Long-Short Term Memory
networks (LSTMs, (Hochreiter & Schmidhuber, 1997)). For example, in the case of a very simple, vanilla
RNN,1

ht`1 “ ‡hpAht ` Bxtq (2.3)

and
yt “ ‡ypCht ` Dxtq (2.4)

where A, B, C, D are matrices with the appropriate dimensions and ‡h, ‡y are standard non-linearities such
as sigmoid or tanh.

2.2 Graph Generation

A graph is given by G “ pV, Eq where V is a set of nodes (or vertices) and E Ñ V ˆ V is a set of tuples
denoting the nodes connected by an edge in the graph. Additionally, for each v P V, denote by xv P Rm

the features of node v. Similarly, euv P Rk denotes the features of the edge pu, vq P E . For example, in
1
Note that the bias term may be encapsulated into the input processing matrices by expanding the input with an additional

dimension and assigning a fixed value of 1 on that coordinate.

2

Under review as submission to TMLR

a molecular graph, nodes are atoms, and their features will contain the element; and edges correspond to
bonds, and their features will contain the bond types (single, double, etc.).2 Another example is of social
networks, where nodes corresponds to users and their features to user profiles; and edges correspond to
connections between users and their features contain metadata on this connection.

The topic of designing neural networks to operate specifically on graphs is dominated by Graph Neural
Networks (GNNs) which mostly rely on a message-passing scheme to propagate information between nodes.
While these architectures are extremely successful in node level and graph level prediction, they are not
as prevalent in the context of graph generation, and many such approaches are restricted to small graphs
(though (Davies et al., 2023) is a notable exception).

Formally, the task of graph generation is usually concerned with learning to model distributions: concretely,
given a set of N graphs tGiuN

i“1 originating from an underlying distribution p, the goal of graph generation is
to devise an algorithm that generates new graphs from the underlying distribution p. Prior work has mostly
adapted successful generative methods over a continuous space to the domain of graphs (Gómez-Bombarelli
et al., 2018; Blaschke et al., 2018; Kadurin et al., 2017; Prykhodko et al., 2019). In this work we focus on
using recurrent models which can be employed naturally to generate discrete objects. Crucially, Flam et

al. (Flam-Shepherd et al., 2022) have shown that sequential generation is favorable compared to competing
approaches in the context of molecular graph generation.

2.3 Sequential Graph Generation

When applying recurrent models for graph generation, the graph first needs to be “flattened” into a sequence.
As there is no natural order for a graph, one must artificially induce such an order; for example, the approach
taken by (You et al., 2018b) considers generation of breadth-first search (BFS) trajectories. While there
are many ways to convert a graph into a sequence, in this work we focus on depth-first search (DFS); a
strong motivation for this choice is that this is the method used to convert graph molecules into a linear
representation called SMILES strings (Weininger, 1988). By convention, the output of the DFS algorithm
is a spanning tree and we consider the induced order of the graph as the order in which the vertices were
visited during the DFS run (also known as pre-order traversal).

In what follows we formally define the concepts discussed.
Definition 2.1. Given a connected graph G “ pV, Eq with |V| “ n, we say the permutation fi P Sn is a
valid ordering of G if it is possible to run DFS over G and visit the vertices in the order induced by fi.

Denote the sequence corresponding to a valid ordering fi of G by

spG, fiq “ pvfip1q, . . . , vfipnqq. (2.5)

Denote the set of all such sequences for a given graph G by

SpGq “ tspG, fiq : fi is a valid ordering of Gu. (2.6)

Clearly, for a non-trivial graph SpGq will contain many sequences. In this work we have a special interest in
sequences that share the same end vertex.
Definition 2.2. Let SpG, vq denote all sequences terminating at node v P V, formally,

SpG, vq “ ts P SpGq : sn “ vu (2.7)

In the following section we discuss the desired properties for recurrent models when used for graph generation.

3 Structure Agnostic Recurrent Models

Recurrent models are a natural choice when generating discrete objects such as text. On the other hand,
graphs are discrete objects with no naturally induced order. In Section 2 we described a mapping between
graphs and sequences; and in particular, the fact that many di�erent sequences correspond to the same
graph. In this section we present our method that overcomes the issues described.

2
Molecular node and edge features may contain other properties as well.

3

Under review as submission to TMLR

A

B C D

E F

1

2

3 4

5 6

A

B C D

E F

1

3

5 4

2 6

Figure 1: Illustration of two DFS traversals of the same graph starting from node A and terminating
at node D, blue lines denote traversal order. (Left) traversal resulting in the sequence ApBEF qpCqD.
(Right) traversal resulting in the sequence ApCqpBFEqD. The parentheses denote the opening and closing
of branches when traversing the tree; with this syntax it is possible to reconstruct the tree from such
sequences. Note that multiple sequences correspond to the same tree, a fact that lies at the heart of this
work.

3.1 Generating Depth-First Search Traversals

In this work we use recurrent models to generate DFS traversals of graphs. Clearly when generating a DFS
traversal, the next node to be generated depends on the nodes generated thus far and in particular the last
generated node. An important observation is that the output of the recurrent model should be invariant

to di�erent valid orderings corresponding to the same subgraph as long as they lead to the same node. The
following definition formalizes this notion,
Definition 3.1. We say a recurrent model is structure invariant with respect to a connected graph G if

@v P V, @s1, s2 P SpG, vq it is the case that fops1q “ fops2q. (3.1)

If the above condition is satisfied for all G „ D, we say that the recurrent model is structure invariant
with respect to a distribution D.

Figure 1 depicts a graph and two di�erent DFS traversals sharing the same root and terminal node. A
recurrent model processing the two DFS traversals will ideally generate the same node that will be attached
to node D.

Definition 3.1 describes the structure invariance property with respect to a graph. Since recurrent models
generate the traversal sequentially, we would like this property to hold at any moment during generation,
i.e., we want to modify Definition 3.1 to take into account partial DFS traversals.
Definition 3.2. For a connected graph G, we say a connected subgraph G̃ Ñ G is induced by DFS over
G if there exists a valid ordering fi P Sn of G, and k § n such that pvfip1q, . . . , vfipkqq is a valid ordering of

G̃. Denote the set of all DFS induced subgraphs over G by GDF SpGq.

At this stage, a reader might question the necessity of Definition 3.2 and why GDF SpGq di�ers from the set
of all connected subgraphs of G. We note that for a general connected graph GDF SpGq does not correspond
to the set of all connected subgraphs.

4

Under review as submission to TMLR

A

B C D

GFE

A

B C D

GFE

1

2

3

4

5

Figure 2: Illustration of the same graph with two connected subgraphs: (Left) subgraph which is not induced
by DFS. (Right) subgraph induced by DFS, arrows depict a traversal resulting in the sequence BApCF qD.

Proposition 3.3. For a connected graph G,

GDF SpGq ‰

G̃ | G̃ Ñ G and G̃ is connected

(
(3.2)

Figure 2 depicts a graph and two connected subgraphs, one which is induced by DFS and the other that
cannot be obtained by a DFS traversal.

With the notion of DFS induced subgraphs in hand, we now present the following definition of total structure

invariance:
Definition 3.4. We say a recurrent model is totally structure invariant with respect to a connected

graph G, if

@G̃ P GDF SpGq, @v P VpG̃q, @s1, s2 P SpG̃, vq it is the case that fops1q “ fops2q. (3.3)

If the above condition is satisfied for all G „ D, we say that the recurrent model is totally structure
invariant with respect to a distribution D.

In the next section we discuss how to train recurrent models which are totally structure invariant with respect
to a given training distribution over graphs.

3.2 Regularizing Towards Total Structure Invariance

Motivated by the observation discussed in Section 3.1, we propose training recurrent models that are to-
tally structure invariant with respect to the underlying distribution over graphs. It would be appealing to
characterize the class of all totally structure invariant functions and optimize over those. Unfortunately, it
is di�cult to attain a crisp characterization of structure invariance as this property depends on the training
distribution.

Instead, we propose encouraging total structure invariance via regularization. Specifically, we would like to
minimize the following auxiliary loss,

EG„DEG̃„GDF SpGqEvPVpG̃qEs1,s2PSpG̃,vq
”
pfops1q ´ fops2qq2

ı
(3.4)

5

Under review as submission to TMLR

which we refer to as Orderless Regularization (OLR). Examining Equation 3.4, we note that sampling from
GDF SpGq is easily done by randomly selecting a root node and running DFS with stochastic decision making.
On the other hand, given G̃ and v, sampling from SpG̃, vq is hard and has been shown to be NP-complete
(Beisegel et al., 2019).

3.3 Sampling Trajectories with Common End Vertex

The problem of generating all DFS trajectories that terminate at the same vertex is hard and there are no
known e�cient algorithms for this task. In order to overcome this obstacle we apply a heuristic for computing
such trajectories. We highlight that our proposed scheme is not equivalent to a uniform sampling over all
possible trajectories; however, in Section 5 we show that the resulting regularization scheme is e�ective
empirically.

Next, we formally show that for practical graphs there exists e�cient algorithms to generate such trajectories.
Definition 3.5. Let G “ pV, Eq be an arbitrary graph. G is said to be k-edge-connected if the subgraph

G1 “ pV, EzẼq is connected for all Ẽ Ñ E such that |Ẽ | † k.

Proposition 3.6. There is an e�cient algorithm to find distinct DFS trajectories with common end vertex

for any k-edge connected graph for k § 2.

We note that in many real world tasks, graph are rarely k-edge connected for k ° 2. For example, in the
ZINC molecular dataset, more than 99.5% of molecular graphs are 1-edge connected.

Proof Sketch. Find a min-cut: by the definition of 1-edge-connected graphs the min-cut includes a single
crossing edge pu, vq. By removing pu, vq the graph is partitioned into two connected components, G1 and G2
containing u and v respectively. Run a DFS on G1 with u as the root vertex to result in pu1, . . . , ukq, and
similarly for G2 to result in pv1, . . . , vmq (where v1 “ v and u1 “ u).3 We can now construct a DFS traversal
on G by ‘gluing’ together the sequences as,

pv1, u1, . . . , uk, v2, . . . , vmq (3.5)

We can run another (stochastic) DFS on G1 from u to obtain
`
ufĩp1q, . . . , ufĩpkq

˘
where fi P Sk and fĩp1q “ 1.

We can construct a second DFS sequence as in Equation 3.5,

pv1, ufĩp1q, . . . , ufĩpkq, v2, . . . , vmq (3.6)

We have created two valid DFS sequences that both terminate at vm.

See Appendix B for the full details and the case of 2-edge connected graphs.

4 Related Work

In this section we discuss several relevant topics to graph generation. For a comprehensive review on graph
generation see (Guo & Zhao, 2022; Zhu et al., 2022).

One Shot Generation Classic generative architectures (e.g. Variational autoencoders (VAEs) (Kingma
& Welling, 2013), Generative adversarial networks (GANs) (Goodfellow et al., 2020), etc.) work by learning
a continuous mapping from a latent distribution to generate new examples with similar properties to the
training distribution. These models usually incorporate a neural architecture that maps directly from the
latent space to the domain of the training data (e.g. images) and therefore the output space must be
predetermined. These properties pose a challenge when applied to the domain of graphs, as the latter are
discrete objects with variable size and no naturally induced order. In order to circumvent these caveats,
prior work (Assouel et al., 2018; De Cao & Kipf, 2018; Du et al., 2022a; Fan & Huang, 2019; Flam-Shepherd
et al., 2020; Guo et al., 2020; Honda et al., 2019; Ma et al., 2018; Madhawa et al., 2019; Shi et al., 2020;

3k and m denote the size of partitions and satisfy k ` m “ |V|.

6

Under review as submission to TMLR

Simonovsky & Komodakis, 2018; Zou & Lerman, 2019) has used a one-shot generation strategy. That is, the
output space is limited by design to a specific representation of graphs (i.e. adjacency matrix or adjacency
list) of specific size and the output is generated in a single forward pass. While the one-shot strategy has
its merits, there are a few significant drawbacks such as the inability to generate graphs with arbitrary large
number of nodes.

Sequential Generation The idea of using autoregressive models for graph generation is not new and there
have been several works in this vein. GraphRNN (You et al., 2018b) proposes generating BFS trajectories in
order to limit the number of possible orderings per graph. Other works take a di�erent approach of generating
edges in an autoregressive manner (Bacciu et al., 2020; Goyal et al., 2020). Additional approaches include
MolecularRNN (Popova et al., 2019) which incorporates a reinforcement learning environment to generate
nodes and edges sequentially. Yet another approach includes sequentially generating subgraph structures
(Jin et al., 2018; Liao et al., 2019; Podda et al., 2020). Another recent work (Bu et al., 2023) treats the
induced order as a problem of dimensionality reduction and attempts to learn mappings from graphs to
sequences. In this work we argue that the most e�ective inductive bias for the use of autoregressive models
to generate graphs is to be invariant to di�erent orderings possible under the training distribution.

Molecule Generation One of the most prominent uses of graph generation, which is used for evaluation
in this work, is that of molecule generation. Molecular generation is applicable to the development of syn-
thetic materials, drug development and more. Molecules are 3D objects which are naturally represented as
point clouds4 with corresponding geometric approaches (Garcia Satorras et al., 2021; Simm et al., 2020a;b;
Hoogeboom et al., 2022) which utilize inherent symmetries in the architectures employed. While 3D repre-
sentations are richer and carry significant information that does not transfer to 1D and 2D representations,
they are costly to obtain and therefore the corresponding amount of data is limited as compared to 1D and
2D representations, which are ubiquitous. Another aspect of molecule generation is when the generation is
conditioned to satisfy certain properties. For example, (Skalic et al., 2019; Zhang et al., 2022; Rozenberg
& Freedman, 2023) generate molecules that are conditioned to bind to specific ligand structures, (Kang &
Cho, 2018; Zang & Wang, 2020) generate molecules that fulfill certain chemical properties. In this work we
consider the task of de-novo generation (Arús-Pous et al., 2019; Lim et al., 2018; Pogány et al., 2018; Tong
et al., 2021) where the objective is to generate molecules with similar properties to those in the training
data.

Permutation Invariant Recurrent Models Another relevant topic is the use of autoregressive models
for problems over sets which, like graphs, lack a natural order. There have been many works focusing on
problems over sets. The most prominent of these is DeepSets (Zaheer et al., 2017) which applies a deep neural
network on each element of the set and then aggregates the result with a permutation invariant operator
(e.g. sum or max), finally applying another deep neural network on the aggregated result. There have
also been autoregressive works designed for sets: (Murphy et al., 2018) use RNNs on di�erent permutations
and output the average. While this requires n! orderings for a set of size n, the authors have presented
several approximation techniques and justified them empirically. (Cohen-Karlik et al., 2020) have shown that
while DeepSets are universal, some permutation invariant functions require unbounded width to implement
successfully and have proposed using RNNs with a reqularization term which enforces permutation invariance.

5 Experiments

5.1 Wiener Index

In order to gauge the e�ectiveness of OLR, we conducted a straightforward experiment designed to predict
the Wiener index of graphs. The Wiener index is a topological metric for molecules, involving the summation
of distances between all pairs of vertices within a given graph. These graphs are symbolically represented
as strings, using parentheses as exemplified in Figure 1. We employed a Long Short-Term Memory (LSTM)
model with a hidden width of 100, trained as a regression task. During training, we used graphs containing

4
In a point-cloud representation of a molecule each point represents an atom and bonds are implicit from the distances

between atoms.

7

Under review as submission to TMLR

Table 1: Results for training with and without OLR. We report Mean Absolute Error (MAE) and accuracy
(computed by rounding the output to the nearest integer). For both metrics considered, training with OLR
dramatically improves performance.

MAE (Ó) Accuracy (Ò)

Vanilla 2.24 (0.12) 0.18 (0.02)
OLR 1.32 (0.10) 0.28 (0.04)

10 nodes and a training set consisting of 50 examples; our aim was to determine the e�ectiveness of OLR
in the case when data is extremely scarce. The network was trained until convergence with perfect training
accuracy and evaluated on a test set consisting of 200 data points. We report the average mean absolute
error and accuracy as computed by rounding the networks output. As can be seen in Table 1, using OLR
improves results significantly.

5.2 De Novo Molecule Generation

A prominent application of graph generation is that of molecule design. Graph generation tasks range from
de novo generation where the objective is to generate molecules with similar properties to a given dataset,
to conditional generation for which the task is to generate a graph given a second graph with specific
characteristics, i.e. a ligand that binds to a specific target. Our empirical evaluation focuses on the former.
We evaluate our proposed regularization method on the MOSES benchmark (Polykovskiy et al., 2020) and
compare to relevant baselines. Our implementation is based on the work of CharRNN which use three layers
of the LSTM architecture each with hidden dimension of 600 (for complete details refer to (Segler et al.,
2018)). We find a consistent improvement when adding OLR to the objective of autoregressive models.

The data curated by (Polykovskiy et al., 2020) is refined from the ZINC dataset (Sterling & Irwin, 2015)
which contains approximately 4.6M molecules. The authors filter the data based on molecular weights,
number of rotational bonds, lipophilicity, etc. to result in a total of 2M molecules. The authors provide
partitions of the data into train, test and sca�old test to allow fair evaluation.5

Computing Trajectories OLR works by feeding two di�erent trajectories that terminate at the same
node. While this calculation is feasible to perform during the forward pass it introduces a computational
bottleneck. In order to circumvent this issue we employ the following calculations o�ine. For each molecule
we first index all min-cuts and randomly select one. We then generate multiple (10) traversals terminating
at the same node as described in Section 3.3 and write the sequences into a file along with the original
molecule from which the trajectories are derived from. When loading the data, two trajectories are selected
at random and used as inputs to the OLR objective described in Section 3.2.

Data Filtering Our o�ine computation of trajectories in Section 5.2 requires that there are min-cuts
that induce su�cient number of di�erent DFS traversals terminating at the same node. While 99.9% of
the molecules in MOSES have at least two such trajectories, we filter the data to remain with molecules
which have at least 10 di�erent trajectories satisfying the criteria defined. After filtering we are left with
approximately 500K molecules for training, and 55K for test and sca�old test partitions. We note that
in following sections we show our method is most e�ective when training data is scarce and therefore the
filtering process does not limit the applicability of our proposed regularization scheme.

Results Our results for training with OLR compared to other baselines trained on the same data are
shown in Table 2. The most relevant baselines is CharRNN (Segler et al., 2018) which is an autoregressive
model trained on Canonical SMILES. We further compare to a randomized version of CharRNN inspired

5
The sca�old of a molecule is the structure induced by its ring systems along with the connectivity pattern between these

systems. The sca�old test partition contains molecules with structures that did not appear in the train and test partitions.

The sca�old test allows for the evaluation of how well the model can generate previously unobserved sca�olds.

8

Under review as submission to TMLR

Table 2: Generation results at validity threshold of 0.8. Leading result highlighted in bold for each metric.
Rank Average is the average position of each method over all metrics considered. As can be seen, OLR
outperforms the baselines considered. Refer to the text for further details.

Metric Canonical Randomized OLR + Randomized

Unique@1K (Ò) 1.0 1.0 1.0

Unique@10K (Ò) 0.9965 0.9975 0.9981

FCD/Test (Ó) 0.6623 0.8568 0.7784
FCD/TestSF (Ó) 1.1980 0.4967 0.4936

SNN/Test (Ò) 0.5012 0.9947 0.9958

SNN/TestSF (Ò) 0.4835 0.8246 0.8220
Frag/Test (Ò) 0.9960 1.4236 1.3089
Frag/TestSF (Ò) 0.9943 0.4795 0.4769
Scaf/Test (Ò) 0.8193 0.9919 0.9926

Scaf/TestSF (Ò) 0.0862 0.1185 0.0931
IntDiv (Ò) 0.8515 0.8508 0.8537

IntDiv2 (Ò) 0.8457 0.8449 0.8479

Filters (Ò) 0.9720 0.9705 0.9702
Novelty (Ò) 0.9749 0.9797 0.9809

Rank Average 2.42 1.85 1.50

by the finding of (Arús-Pous et al., 2019) which show that augmenting the data by using randomly gener-
ated SMILES representations of the same molecule improves performance. We also attempted to compare
our method to other non-autoregressive models such as those based on Variational Autoencoders (VAEs)
(Blaschke et al., 2018; Gómez-Bombarelli et al., 2018; Kadurin et al., 2017); however, we found that the
models did not produce valid molecules when trained with 1000 examples, so we do not report these results.
We use the metrics defined by the MOSES benchmark (Polykovskiy et al., 2020); see Appendix A for a
thorough description of these metrics.

In order to demonstrate the e�ectiveness of OLR we use 1000 randomly sampled data points from the
training set and evaluate over the entire test set. When training with small amounts of data there is a trade-
o� between the validity of the generated molecules and the uniqueness and other metrics. Our evaluation
considers the best performing models for each method providing the validity of the generated molecules
exceeds 80%.

Results are depicted in Table 2. As can be seen, adding randomized variants of the molecules outperforms
the original work of (Segler et al., 2018) which train an RNN as a language model using only canonical
SMILES. Furthermore, adding the OLR objective exceeds the performance of randomized SMILES. In order
to clearly depict the performance di�erence, we calculate the rank of each method on each metric considered.
The average rank of each method is added as the last row of Table 2.

6 Conclusions

In this work we highlight the innate gap that every autoregressive model for graph generation must mitigate
- the induced order on graphs. We propose a di�erent approach to previous works by introducing a novel
regularization scheme that encourages learning hypotheses that are invariant to di�erent DFS orderings. We
demonstrate empirically that our proposed method improves performance for autoregressive models and is
especially e�ective when the available datasets are small, as is the case in many real world problems. We
believe that our approach can contribute to the applicability of autoregressive models for graph generation
and that similar ideas may be incorporated in various generation strategies beyond the scope of this work.

9

Under review as submission to TMLR

References

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs with
graphs. arXiv preprint arXiv:1711.00740, 2017.

Josep Arús-Pous, Simon Viet Johansson, Oleksii Prykhodko, Esben Jannik Bjerrum, Christian Tyrchan,
Jean-Louis Reymond, Hongming Chen, and Ola Engkvist. Randomized smiles strings improve the quality
of molecular generative models. Journal of cheminformatics, 11(1):1–13, 2019.

Rim Assouel, Mohamed Ahmed, Marwin H Segler, Amir Sa�ari, and Yoshua Bengio. Defactor: Di�erentiable
edge factorization-based probabilistic graph generation. arXiv preprint arXiv:1811.09766, 2018.

Davide Bacciu, Alessio Micheli, and Marco Podda. Edge-based sequential graph generation with recurrent
neural networks. Neurocomputing, 416:177–189, 2020.

Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaz Krnc, Nevena Pivac, Robert Sche�er, and Martin
Strehler. On the end-vertex problem of graph searches. Discrete Mathematics & Theoretical Computer

Science, 21, 2019.

Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks. Journal of

medicinal chemistry, 39(15):2887–2893, 1996.

Pavol Bielik, Veselin Raychev, and Martin Vechev. Phog: probabilistic model for code. In International

conference on machine learning, pp. 2933–2942. PMLR, 2016.

Thomas Blaschke, Marcus Olivecrona, Ola Engkvist, Jürgen Bajorath, and Hongming Chen. Application of
generative autoencoder in de novo molecular design. Molecular informatics, 37(1-2):1700123, 2018.

Marc Brockschmidt, Miltiadis Allamanis, Alexander L Gaunt, and Oleksandr Polozov. Generative code
modeling with graphs. arXiv preprint arXiv:1805.08490, 2018.

Jie Bu, Kazi Sajeed Mehrab, and Anuj Karpatne. Let there be order: Rethinking ordering in autoregressive
graph generation. arXiv preprint arXiv:2305.15562, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code.(2021). arXiv preprint arXiv:2107.03374, 2021a.

Xiaohui Chen, Xu Han, Jiajing Hu, Francisco JR Ruiz, and Liping Liu. Order matters: Probabilistic
modeling of node sequence for graph generation. arXiv preprint arXiv:2106.06189, 2021b.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Edo Cohen-Karlik, Avichai Ben David, and Amir Globerson. Regularizing towards permutation invariance
in recurrent models. Advances in Neural Information Processing Systems, 33:18364–18374, 2020.

Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational autoencoder
for structured data. arXiv preprint arXiv:1802.08786, 2018.

Alex O Davies, Nirav S Ajmeri, et al. Hierarchical gnns for large graph generation. arXiv preprint

arXiv:2306.11412, 2023.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs. arXiv

preprint arXiv:1805.11973, 2018.

Jörg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of compiling and
using’drug-like’chemical fragment spaces. ChemMedChem: Chemistry Enabling Drug Discovery, 3(10):
1503–1507, 2008.

10

Under review as submission to TMLR

Yuanqi Du, Xiaojie Guo, Hengning Cao, Yanfang Ye, and Liang Zhao. Disentangled spatiotemporal graph
generative models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
6541–6549, 2022a.

Yuanqi Du, Xiaojie Guo, Amarda Shehu, and Liang Zhao. Interpretable molecular graph generation via
monotonic constraints. In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM),
pp. 73–81. SIAM, 2022b.

Shuangfei Fan and Bert Huang. Labeled graph generative adversarial networks. arXiv preprint

arXiv:1906.03220, 2019.

Daniel Flam-Shepherd, Tony Wu, and Alan Aspuru-Guzik. Graph deconvolutional generation. arXiv preprint

arXiv:2002.07087, 2020.

Daniel Flam-Shepherd, Kevin Zhu, and Alán Aspuru-Guzik. Language models can learn complex molecular
distributions. Nature Communications, 13(1):3293, 2022.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E (n) equivariant
normalizing flows. Advances in Neural Information Processing Systems, 34:4181–4192, 2021.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín
Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams,
and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020.

Nikhil Goyal, Harsh Vardhan Jain, and Sayan Ranu. Graphgen: a scalable approach to domain-agnostic
labeled graph generation. In Proceedings of The Web Conference 2020, pp. 1253–1263, 2020.

Xiaojie Guo and Liang Zhao. A systematic survey on deep generative models for graph generation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2022.

Xiaojie Guo, Liang Zhao, Zhao Qin, Lingfei Wu, Amarda Shehu, and Yanfang Ye. Interpretable deep graph
generation with node-edge co-disentanglement. In Proceedings of the 26th ACM SIGKDD international

conference on knowledge discovery & data mining, pp. 1697–1707, 2020.

Vincent J Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber. Global relational
models of source code. In International conference on learning representations, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural infor-

mation processing systems, 30, 2017.

Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu. On the naturalness of
software. Communications of the ACM, 59(5):122–131, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Shion Honda, Hirotaka Akita, Katsuhiko Ishiguro, Toshiki Nakanishi, and Kenta Oono. Graph residual flow
for molecular graph generation. arXiv preprint arXiv:1909.13521, 2019.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant di�usion for
molecule generation in 3d. In International conference on machine learning, pp. 8867–8887. PMLR, 2022.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular
graph generation. In International conference on machine learning, pp. 2323–2332. PMLR, 2018.

11

Under review as submission to TMLR

Artur Kadurin, Alexander Aliper, Andrey Kazennov, Polina Mamoshina, Quentin Vanhaelen, Kuzma
Khrabrov, and Alex Zhavoronkov. The cornucopia of meaningful leads: Applying deep adversarial au-
toencoders for new molecule development in oncology. Oncotarget, 8(7):10883, 2017.

Seokho Kang and Kyunghyun Cho. Conditional molecular design with deep generative models. Journal of

chemical information and modeling, 59(1):43–52, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Greg Landrum. Rdkit: Open-source cheminformatics. 2006. Google Scholar, 2006.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel Urtasun, and
Richard Zemel. E�cient graph generation with graph recurrent attention networks. Advances in neural

information processing systems, 32, 2019.

Jaechang Lim, Seongok Ryu, Jin Woo Kim, and Woo Youn Kim. Molecular generative model based on
conditional variational autoencoder for de novo molecular design. Journal of cheminformatics, 10(1):1–9,
2018.

Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs via regularizing
variational autoencoders. Advances in Neural Information Processing Systems, 31, 2018.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invertible flow
model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

Andreas Mayr, Günter Klambauer, Thomas Unterthiner, Marvin Steijaert, Jörg K Wegner, Hugo Ceulemans,
Djork-Arné Clevert, and Sepp Hochreiter. Large-scale comparison of machine learning methods for drug
target prediction on chembl. Chemical science, 9(24):5441–5451, 2018.

Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pooling: Learning
deep permutation-invariant functions for variable-size inputs. arXiv preprint arXiv:1811.01900, 2018.

Marco Podda, Davide Bacciu, and Alessio Micheli. A deep generative model for fragment-based molecule
generation. In International Conference on Artificial Intelligence and Statistics, pp. 2240–2250. PMLR,
2020.

Peter Pogány, Navot Arad, Sam Genway, and Stephen D Pickett. De novo molecule design by translating
from reduced graphs to smiles. Journal of chemical information and modeling, 59(3):1136–1146, 2018.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai Tatanov,
Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark Veselov, et al. Molec-
ular sets (moses): a benchmarking platform for molecular generation models. Frontiers in pharmacology,
11:565644, 2020.

Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating realistic
molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372, 2019.

Oleksii Prykhodko, Simon Viet Johansson, Panagiotis-Christos Kotsias, Josep Arús-Pous, Esben Jannik
Bjerrum, Ola Engkvist, and Hongming Chen. A de novo molecular generation method using latent vector
based generative adversarial network. Journal of Cheminformatics, 11(1):1–13, 2019.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical information and

modeling, 50(5):742–754, 2010.

Eyal Rozenberg and Daniel Freedman. Semi-equivariant conditional normalizing flows, with applications to
target-aware molecule generation. Machine Learning: Science and Technology, 4(3):035037, 2023.

Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused molecule
libraries for drug discovery with recurrent neural networks. ACS central science, 4(1):120–131, 2018.

12

Under review as submission to TMLR

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a flow-based
autoregressive model for molecular graph generation. arXiv preprint arXiv:2001.09382, 2020.

Gregor Simm, Robert Pinsler, and José Miguel Hernández-Lobato. Reinforcement learning for molecular
design guided by quantum mechanics. In International Conference on Machine Learning, pp. 8959–8969.
PMLR, 2020a.

Gregor NC Simm, Robert Pinsler, Gábor Csányi, and José Miguel Hernández-Lobato. Symmetry-aware
actor-critic for 3d molecular design. arXiv preprint arXiv:2011.12747, 2020b.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using variational
autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International

Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27, pp.
412–422. Springer, 2018.

Miha Skalic, Davide Sabbadin, Boris Sattarov, Simone Sciabola, and Gianni De Fabritiis. From target to
drug: generative modeling for the multimodal structure-based ligand design. Molecular pharmaceutics, 16
(10):4282–4291, 2019.

Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical information

and modeling, 55(11):2324–2337, 2015.

Xiaochu Tong, Xiaohong Liu, Xiaoqin Tan, Xutong Li, Jiaxin Jiang, Zhaoping Xiong, Tingyang Xu, Hualiang
Jiang, Nan Qiao, and Mingyue Zheng. Generative models for de novo drug design. Journal of Medicinal

Chemistry, 64(19):14011–14027, 2021.

Leonid Nisonovich Vaserstein. Markov processes over denumerable products of spaces, describing large
systems of automata. Problemy Peredachi Informatsii, 5(3):64–72, 1969.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets. arXiv

preprint arXiv:1511.06391, 2015.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodology and
encoding rules. Journal of chemical information and computer sciences, 28(1):31–36, 1988.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code generation. arXiv

preprint arXiv:1704.01696, 2017.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy network
for goal-directed molecular graph generation. Advances in neural information processing systems, 31,
2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating realistic
graphs with deep auto-regressive models. In International conference on machine learning, pp. 5708–5717.
PMLR, 2018b.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexan-
der J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In Pro-

ceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
617–626, 2020.

Zaixi Zhang, Yaosen Min, Shuxin Zheng, and Qi Liu. Molecule generation for target protein binding with
structural motifs. In The Eleventh International Conference on Learning Representations, 2022.

Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A survey on
deep graph generation: Methods and applications. arXiv preprint arXiv:2203.06714, 2022.

Dongmian Zou and Gilad Lerman. Encoding robust representation for graph generation. In 2019 Interna-

tional Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE, 2019.

13

	Introduction
	Background
	Recurrent Models
	Graph Generation
	Sequential Graph Generation

	Structure Agnostic Recurrent Models
	Generating Depth-First Search Traversals
	Regularizing Towards Total Structure Invariance
	Sampling Trajectories with Common End Vertex

	Related Work
	Experiments
	Wiener Index
	De Novo Molecule Generation

	Conclusions
	Metric Details
	Missing Proofs

