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Abstract

The transition from feature-based language-audio representations to more high-dimensional
ones from pre-trained foundation models has enabled us to map audio content to a signif-
icantly broader vocabulary of natural language. However, some interpretability of the
alignment between the embedding spaces of the two modalities and their relation to psy-
choacoustic features is lost as a byproduct. In this study, we investigate timbre repre-
sentations in CLAP in both the text embedding space and audio embedding space. We
identify directions for different timbral qualities in each embedding space and use them
as perturbation vectors in uni-modal and cross-modal Text-to-Music (TTM) Retrieval and
Generation downstream tasks. We find that although both audio and text embeddings
move monotonically along their respective timbre directions, timbral variation is more lin-
early distributed—and therefore more easily exploitable—in the audio embedding space.
Cross-modal perturbation experiments further reveal that the audio and text embedding
spaces form a geometrically aligned subspace with respect to timbre. Additionally, our
analysis identifies cases where CLAP’s timbre representations closely align with perceptu-
ally grounded spectral features, and cases where such alignment is limited.

Keywords: CLAP, Timbre, Embedding Space, Interpretability, Text-to-Music Retrieval,
Text-to-Music Generation

1. Introduction

Early Music Information Retrieval (MIR) systems linked Natural Language to Audio by
connecting descriptive words to psychoacoustic features (Slaney, 2002), (Turnbull et al.,
2008). With the advent of Deep Learning, these discrete representations have been re-
placed by more continuous, high-dimensional ones, in the form of embeddings from pre-
trained language-audio models. CLAP (Wu et al., 2022) is one of the most widely used
pre-trained models in this category, in tasks such as Text-to-Music (TTM) Retrieval, Gen-
eration, and Query-Based Audio Source Separation. While such a representation opens the
gateway to language-audio tasks of higher complexity by allowing the use of more diverse
text descriptions, some interpretability on the alignment between language and audio is
lost. This “black box” nature makes it challenging to design balanced training sets for
downstream tasks.

Identifying semantic directions in CLAP’s latent space—and further, investigating the
nature of alignment between directions across the two modalities—would allow us to regu-
larize downstream models more easily. This is especially beneficial for timbre, an aspect of
sound that is more complex and harder to quantify as compared to pitch or rhythm (Saitis
and Weinzierl, 2019). Verifying that a foundation model captures timbre coherently across
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modalities, and identifying circumstances under which it does not, would benefit several
downstream tasks where timbral accuracy is imperative. This study aims to identify timbre
directions in both the audio and text latent spaces of CLAP. Our pipeline for identifying
these directions is inspired by the approach proposed in (Srivastava et al., 2022) and (Deng
et al., 2025). The validity and dimensionality of these directions are then investigated
by using them as perturbation vectors in both unimodal and cross-modal settings. The
perturbed embeddings are used in TTM Retrieval and Generation downstream tasks and
performance is compared with that of the systems that use the original embeddings.

2. Methodology

2.1. Datasets

To isolate timbre, each audio signal for a given instrument must maintain constant timbre,
pitch, and loudness throughout its duration. Furthermore, for signals of the same instru-
ment at the same pitch, any differences should arise solely from timbre. The audio data
must also be paired with natural language descriptions relating to spectral content for this
study. Large descriptive datasets like MusicCaps (Agostinelli et al., 2023) and SongDe-
scriber (Manco et al., 2023) were unsuitable because each clip contains complex mixtures
of multiple instruments and exhibits varying acoustic properties. We therefore use Nsynth
(Engel et al., 2017) which provides isolated single-instrument notes labeled with three tim-
bral adjectives (‘bright,’ ‘dark,’ ‘distorted’). We keep only those audio samples in each
instrument category that are labeled with one of the three timbral adjectives. The large
scale of Nsynth provides sufficient data to support a robust investigation of CLAP’s em-
bedding space despite this filtering.

2.2. Identifying timbre directions in the audio embedding space

We use Singular Value Decomposition (SVD) to find a direction in the audio embedding
space that encodes each timbral quality. CLAP embeddings of audio samples from the
Nsynth training set are organized into a matrix for each timbral quality. It is ensured that
the selected samples only have the timbral adjective in consideration– and no other qualities
related to spectral content– listed in the metadata. Since the same timbral adjective can
be associated with varying spectral qualities when used across different instruments, the
selected samples are distributed evenly across instruments to ensure that the resulting
direction does not strongly encode any instrument over another. The expression for the
resulting matrix is given as:

Xa ∈ RNa×d (1)

where Na is the number of rows and is equal to the number of audio embeddings, and
d = 512 (dimensionality of each CLAP embedding). The embeddings are mean-centered
before performing the SVD. Singular values were normalized and used to weight the top-k
right-singular vectors capturing ≥60% variance. To determine whether each component
vector must be positive or negative, for each quality, a small set of audio embeddings is
perturbed using one vector and one sign at a time. The sign that results in higher cosine
similarity with the text embedding of the corresponding adjective is derived as the correct
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orientation for each component vector. The audio perturbation vector for each timbral
quality is then computed as the signed linear combination of the scaled singular vectors:

P =
k∑

i=1

ziVti (2)

2.3. Identifying timbre directions in the text embedding space

Our approach to identifying a direction for a given timbral adjective in the text embedding
space is inspired by the work presented in (Mikolov et al., 2013), where regularities in linear
offsets between word embeddings were first observed. We create captions for each adjective
in a Likert scale format:

t1 This recording of a musical instrument does not sound [adjective]
t2 This recording of a musical instrument sounds a little [adjective]
t3 This recording of a musical instrument sounds [adjective]
t4 This recording of a musical instrument sounds very [adjective]
t5 This recording of a musical instrument sounds extremely [adjective]

Based on the property of regularities in linear offsets between word embeddings, for a
given timbral adjective, the difference vectors between adjacent prompts on the Likert scale
should encode incremental changes in the timbral quality. To ensure that only consistent
directional changes contribute to the final vector, we compute cosine similarities between all
adjacent offsets and retain those that point most coherently in the same direction. For the
“bright” prompts, it is observed that only the difference vectors (t3−t2) and (t4−t3) have a
moderately higher cosine similarity with each other as compared to all other pairs. Thus, a
mean of these two difference vectors is computed and chosen as the text perturbation vector
for this adjective. For the “dark” and “distorted” prompts, there is no pair of difference
vectors that has considerably higher cosine similarity than the others, so a mean of all five
difference vectors is computed as the text perturbation vector for these adjectives.

3. DOWNSTREAM TASKS

The identified text and audio directions perturbation vectors are used in two downstream
tasks – Text-to-Music Retrieval and Text-to-Music generation.

3.1. Text-to-Music Retrieval

Audio and text pairs from the Nsynth test set are used for this task. It should be noted
that there is no overlap of samples with the train set that was used in the matrix SVD
computations. Samples are chosen in a manner similar to Section 2.1. The task is set up
as a cosine similarity-based ranking problem. Given a text query, the algorithm extracts
CLAP text embeddings for it and computes its cosine similarity with the audio embeddings
of all the audio files in the database. The top k audio files with the highest ranking
cosine similarities are then returned. The system is evaluated using four evaluation metrics:
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Precision, Recall, Mean Reciprocal Rank (MRR) and Mean Average Precision (MAP), all
computed at K=100. A larger value of K is chosen, rather than a small pool of only the
top 5 or 10 items, to ensure that the evaluation results reflect the global alignment between
the text and audio embeddings.

The retrieval process is conducted using two query templates for each adjective. The
query templates are: “A [adjective] sound” and “a musical instrument that sounds [adjec-
tive]”. Evaluation metrics are computed separately for each adjective, and averaged across
the two queries. The retrieval system without embedding perturbations of any kind serves
as the baseline for each adjective. The retrieval process is then repeated by performing two
types of perturbation procedures: unimodal perturbation, where the audio perturbation
vector is applied to audio embeddings (AA), and the text perturbation vector is applied to
text embeddings (TT); and cross-modal perturbation, where the audio perturbation vector
is applied to text embeddings (TA) and the text perturbation vector is applied to audio
embeddings (AT). In both settings where audio embeddings are perturbed, only those audio
embeddings corresponding to the adjective in consideration are perturbed, while the rest re-
main unchanged. Similarly, for text perturbation experiments, all audio embeddings remain
fixed and only the query embedding is perturbed. The perturbation vectors are derived as
described in Sections 2.2 and 2.3 , and are scaled by a range of α values to examine the
effect of increasing perturbation strength. The expression for the perturbed embeddings is
given as:

Eperturbed = E + αiP (3)

where Eperturbed is the perturbed text or audio embedding, E is the original text or
audio embedding, αi is the scaling variable, and P is the text or audio perturbation vector.

3.2. Text-to-Music Generation

To quantitatively assess whether the identified audio and text directions correspond to
perceptual timbre attributes, we generate audio using AudioLDM (Liu et al., 2023), since
perturbed embeddings cannot be directly converted to sound and retrieval results alone
do not provide numerical measures of timbral change. The model leverages CLAP’s cross-
modal alignment by using CLAP text embeddings as a conditioning signal and generating
audio in CLAP’s audio latent space. The CLAP text encoder is modified such that a
perturbation vector can be added to the embedding of the input text prompt. We modify
the encode prompt function in the Hugging Face AudioLDMPipeline to append a custom
perturbation vector to the original CLAP text embedding before it enters the diffusion
pipeline. Thus, perturbation vectors are patched to the text encoder, which allows direct
control over how much the conditioning prompt is perturbed. Two sets of experiments
are performed for each adjective– one where the text encoder is modified using the text
perturbation vector (uni-modal or TT) and another using the audio perturbation vector
(cross-modal or TA). The perturbation vectors are scaled by a range of α values as expressed
in Equation (1)

For each adjective, two prompt templates are used for generation tests. For every prompt
and each perturbation vector scaled across different values, a fixed seed ensures that changes
in spectral features reflect only the perturbation and not diffusion randomness. Three
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distinct seeds are used per prompt, and the resulting 10-second audio clips are averaged
across seeds and prompts.

4. RESULTS

4.1. Text-to-Music Retrieval

Figure 1: From left to right: Precision, Recall, MRR, and MAP vs Perturbation Strength
(α) for AA (top) and TT (bottom).

In the case of AA, there is a continuous rise in metrics as perturbation strength increases
up to a certain threshold, beyond which performance either stagnates or declines gradually.
For the timbral quality “bright”, precision, recall and MAP rise sharply from all the way
up to α = 1.75 or 2, while MRR reaches its peak value of 1 early on at α = 0.25 (Table 1)
(Figure 1). These trends are also evident in the UMAP plots in Figure 1 that depict the
clustering of audio embeddings around the text query as perturbation strength is increased.
As α increases, a larger number of audio embeddings labeled as “bright” cluster closer to
the query, and replace the incorrectly retrieved “dark” and “distorted” audio embeddings.

Comparable trends are observed for dark and distorted, with slightly lower optimal α
thresholds (1–1.5) and steeper early rises in MAP. These observations collectively reinforce
the two key implications:

I] Applying the identified audio perturbation vector to audio embeddings labeled as a
given timbral adjective steers them further towards the adjective query, i.e., the embeddings
move monotonically in this direction up to a certain threshold. This suggests that there is
a well defined direction for this timbral quality in CLAP’s audio embedding space.

II] The identified audio perturbation vector successfully encodes this direction.

In the case of TT, the changes in metric values across perturbation strengths are less
consistent as compared to those in AA— bright and distorted showed slight, uneven gains
in precision and recall, while dark declined beyond α = 1 MAP rose modestly overall, and
MRR reached 1 for all adjectives across several α values. These observations imply that
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while there is a direction for each timbral adjective in CLAP’s text embedding space, they
may not be as well defined as their counterparts in the audio embedding space and do not
move as monotonically. The magnitude of the directions may also vary from one adjective
to another in the text embedding space.

Figure 2: UMAP plots for AA perturbation of “bright” across increasing perturbation
strength α. The black point marks the text-query embedding; green, blue, and
red indicate audio embeddings for “bright”, “dark”, and “distorted” samples,
respectively.

Figure 3: From left to right: Precision, Recall, MRR, and MAP vs Perturbation Strength
(α) for AT (top) and TA (bottom).
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The results for AT in Figure 3 and Table 2 show that text perturbation vectors have a
much stronger effect on the audio embeddings than they did on the text query embeddings
in the case of TT. When the same text perturbation vectors are applied to the corresponding
audio embeddings, an increase in α results in a much sharper rise in both precision and
MAP for all three adjectives as compared to those in TT. This is especially evident for the
“dark” adjective, where both precision and MAP reach a peak of 1. This suggests that,
for the same scalings, text perturbation vectors are more effective in steering the audio
embeddings in the desired timbral direction, than they are in steering the text embeddings.
The MRR values also remain at 1 for many more values of α , indicating that there is a
higher threshold for over-steering in this case. In the case of TA, there is a rise in precision,
recall and MAP for all three adjectives, but especially for “distorted”, are extremely sharp.
This trend is similar to what was seen in AA, however, the curves are slightly steeper in TA
as compared to AA. This implies that for the same scalings, the audio perturbation vectors
are equally, or even slightly more effective in steering text embeddings in the desired timbral
direction.

These observations have two further implications:

III] Cross-modal perturbations reveal a shared timbre subspace: Cross-modal perturba-
tions reveal that the timbre directions identified in each modality are not just modality-specific
artefacts, but constitute a geometrically aligned sub-space across CLAP’s audio and text
encoders.

IV] Steering the audio embeddings along the text direction by even a small amount,
results in higher cosine similarities, as compared to when the text embeddings are steered
along the same direction. This implies that timbre variance may be more linearly spaced–
and therefore, more exploitable, in CLAP’s audio space as compared to the text space.

4.2. Text-to-Music Generation

For the timbral adjective “bright”, spectral centroid is measured for each generated audio
clip, where higher values correlate with greater brightness. Figure 5 shows spectral centroid
values (across two “bright” text prompts and all seed values) for TA (Figure 5a) and TT
(Figure 5e). In both cases, spectral centroid increases almost linearly with perturbation
strengths. This is also reflected in Figure 4, where spectrograms for one set of audio
generations are shown. High frequencies are visibly enhanced and low frequencies reduced
as perturbation strength increases. The TA generations exhibit a slightly steeper slope and
higher overall centroid range as compared to TT, suggesting that audio-side perturbations
produce stronger perceptual changes in brightness.

Similarly, spectral centroid is also measured for “dark”, where lower values indicate more
darkness. Figure 5b and Figure 5f, respectively, show spectral centroid changes for TT and
TA. In both cases, spectral centroid decreases almost linearly with increasing perturbation
strength, with TT resulting in more gradual and subtle acoustic shifts again.

Distortion is less straightforward to quantify than “bright” or “dark,” so we measure
both the High-Frequency Energy ratio (HF ratio) and Crest factor. A higher HF ratio gen-
erally indicates more spectral saturation or distortion, while a lower Crest factor is expected
under strong clipping. In the current results, the HF ratio increases almost linearly with
perturbation strength for all conditions, suggesting a progressive rise in high-frequency har-
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(a) α = 0 (b) α = 1 (c) α = 2

(d) α = 3 (e) α = 4 (f) α = 5

Figure 4: Spectrograms for one set of audio clips generated from AA perturbations for
“bright” across increasing Perturbation strengths (α values).

(a) TA – Bright
(Spectral Centroid)

(b) TA – Dark
(Spectral Centroid)

(c) TA – Distorted
(HF Ratio)

(d) TA – Distorted
(Crest Factor)

(e) TT – Bright
(Spectral Centroid)

(f) TT – Dark
(Spectral Centroid)

(g) TT – Distorted
(HF Ratio)

(h) TT – Distorted
(Crest Factor)

Figure 5: Psychoacoustic feature variation with perturbation strength (α). Each subplot
shows mean (line) and individual sample values (points) for a given adjective
(‘bright’, ‘dark’, or ‘distorted’) and perturbation type (TA or TT). Shaded regions
represent standard deviation across samples.
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monic content consistent with increased distortion. On the contrary, the Crest factor shows
a gradual increase that plateaus at higher perturbations for AA—indicating that while the
signal’s high-frequency energy increases, its dynamic range does not compress as it would
under hard clipping. For TT and TA, both HF ratio and Crest factor increase only very
slightly, implying subtler spectral changes. Overall, movement along the “distorted” direc-
tions appears to capture the buildup of high-frequency content characteristic of distortion,
but not the amplitude flattening typical of physically clipped signals, suggesting that the
embeddings emphasize harmonic density more than waveform nonlinearity.

5. CONCLUSIONS AND FUTURE WORK

By following the SVD based pipeline presented in the methodology, we have been able to
identify potential timbral directions in CLAP’s audio embedding space. Potential directions
for the same timbral adjectives were also discovered in the text embedding space. On
applying these vectors as perturbations in a unimodal setting and using the perturbed
embeddings in a downstream retrieval task, we are able to confirm that audio embeddings
move monotonically in each timbral direction, and that the computed perturbation vectors
successfully encode these directions. On performing cross-modal retrieval, we have also
confirmed that CLAP has a shared timbal subspace– i.e., timbre directions in the audio
encoder and text encoder constitute a geometrically aligned sub-space. Further, cross-
modal retrieval reveals that timbre variance may be more linearly spaced– and therefore,
more exploitable, in CLAP’s audio space as compared to the text space.

The perturbation vectors are also used in a TTM generation task in order to numerically
quantify the correlations between each timbral direction and perceptually relevant spectral
features that are associated with the timbral quality in consideration. We observe that
CLAP’s representations of brightness and darkness align well with perceptual cues, whereas
its representation of distortion appears to rely more on high-frequency harmonic content
than on amplitude clipping.

The generation task also reveals that by perturbing the text encoder with timbre direc-
tions, it is possible to have direct control over not just the presence of the timbral quality
in the generated audio, but also the amount of the timbral quality. Essentially, the im-
plemented method allows direct and fine-grained control of timbre via natural language.
This method could therefore have powerful uses in AI tools for music production and sound
design, such as text-based sample generation or text-based SFX generation. The pipelines
for identifying timbre directions in this study can also be applied to the latent spaces of
any pre-trained audio and language models, respectively. In the future, this pipeline can
be extended to a wider range of timbral qualities and descriptors and used as a frame-
work for analyzing how multimodal models encode perceptual concepts like timbre, thereby
advancing interpretability research in audio-language modeling.
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7. APPENDIX A.

The following tables show evaluation results for Text-to-Music Retrieval using baseline vs
perturbed CLAP embeddings. Each row reports performance for a given timbral adjective
(“bright”, “dark”, or “distorted”) across four metrics — Precision@K, Recall@K, MRR@K,
and MAP@K. The Baseline row corresponds to unmodified embeddings, while subsequent
rows (AA, TT, AT, TA) show the best scores obtained using perturbations along the learned
timbre directions. The associated perturbation strength (α) at which each metric achieved
its maximum value is indicated in parentheses.

Table 1: Baseline vs. AA and TT.

Prec@K Rec@K MRR@K MAP@K

“Bright”
Baseline 0.345 0.204 0.750 0.128
AA 0.795 (α=1.75) 0.470 (α=1.75) 1.0 (α=0.25) 0.720 (α=1.5)
TT 0.400 (α=3) 0.237 (α=3) 1.0 (α=0.5) 0.303 (α=4)

“Dark”
Baseline 0.635 0.145 0.375 0.349
AA 0.790 (α=1.25) 0.180 (α=1.25) 0.750 (α=1.25) 0.666 (α=1.25)
TT 0.610 (α=0.5) 0.139 (α=0.5) 1.0 (α=1) 0.384 (α=1)

“Distorted”
Baseline 0.365 0.098 0.6 0.154
AA 0.980 (α=0.75) 0.263 (α=0.75) 1.0 (α=0.25) 0.977 (α=0.75)
TT 0.485 (α=3.5) 0.130 (α=3.5) 1.0 (α=1) 0.285 (α=2.5)

Table 2: Baseline vs. AT and TA.

Prec@K Rec@K MRR@K MAP@K

“Bright”
Baseline 0.345 0.204 0.750 0.128
AT 0.925 (α=4) 0.547 (α=4) 1.0 (α=0.5) 0.917 (α=4)
TA 0.745 (α=1) 0.441 (α=1) 1.0 (α=0.25) 0.696 (α=0.75)

“Dark”
Baseline 0.635 0.145 0.375 0.349
AT 1.0 (α=4) 0.288 (α=4) 1.0 (α=4) 1.0 (α=4)
TA 0.900 (α=2) 0.205 (α=2) 1.0 (α=2) 0.876 (α=2)

“Distorted”
Baseline 0.365 0.098 0.6 0.154
AT 0.790 (α=3) 0.212 (α=3) 1.0 (α=3) 0.727 (α=3)
TA 0.950 (α=0.5) 0.255 (α=0.5) 1.0 (α=0.5) 0.930 (α=0.5)
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