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ABSTRACT

The structure of a protein–protein complex plays a critical role in understanding
the dynamics of binding, delineating biological mechanisms, and developing in-
tervention strategies. Rigid protein-protein docking, assuming no conformational
change within proteins, predicts the 3D structure of protein complexes from un-
bound chains. According to the number of chains, rigid docking is divided into
binary complex setting that contains only two chains, and more ubiquitous multi-
chain complex setting. Most existing docking methods are tailored for binary
complexes, and are computationally expensive or not guaranteed to find accurate
complex structures. In this paper, we propose a novel model xTrimoDock for
the docking of multi-chain complexes, which can simultaneously employ infor-
mation from both sequence modality and structure modality of involved protein
chains. Specifically, xTrimoDock leverages a cross-modal transformer to integrate
representations from protein sequences and structures, and conducts a multi-step
prediction of rotations and translations to accomplish the multi-chain docking.
Extensive experiments reflect the promising results of the proposed model in the
harder multi-chain complex setting.

1 INTRODUCTION

Protein-protein interactions (PPIs) are essential to the basic functioning of cells and larger biolog-
ical systems in all living organisms. Due to their importance, elucidating such interactions up to
atomic detail is necessary for understanding large multicomponent complexes like ribosomes and
discovering protein-based drugs, e.g., antibodies, nanobodies, and peptides. While the experimental
golden standard for determining the structure of protein complexes, such as X-ray crystallography
and cryo-EM, is extremely time-consuming.

Computational protein docking (Venkatraman et al. (2009); Biesiada et al. (2011); Weng et al.
(2019); Sunny & Jayaraj (2021)) provides an alternative route to predict the three-dimensional struc-
tures of protein complexes from unbound chains. According to the number of chains, we denote
protein docking given two chains of ligand and receptor as binary complex setting, and given mul-
tiple chains as multi-chain complex setting. In such cases, there is a rigid body assumption (Ganea
et al. (2022)) in many biological environments that no deformations occur within any protein during
docking. Therefore, all we need are some appropriate SE(3) transformations shown in Figure 1, i.e.,
rotation and translation in 3D space, that bring one protein to contact with another one.

Classical docking software (Chen et al. (2003); De Vries et al. (2010); Torchala et al. (2013); Koza-
kov et al. (2017); Yan et al. (2020)) follow a computationally expensive framework that i) randomly
samples a huge number of candidate structures, ii) employs a scoring function (Basu & Wallner
(2016); Eismann et al. (2021)) to rank them and iii) refines the top structures based on an energy
model. Recently, EquiDock (Ganea et al. (2022)) is the first to apply deep learning for direct pre-
diction of protein complex structures, and achieves a great speed-up but sometimes implausible
structures. These methods are suitable for binary complex setting, not the multi-chain complex
setting where chains of ligand and receptor are indistinguishable as in reality. As an extension of
AlphaFold2 (Jumper et al. (2021)), AlphaFold-Multimer (Evans et al. (2021)) can infer multi-chain
complex structure from its amino acid sequence but does not make use of known structures, missing
essential information of rigid docking.
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(a) binary complex setting

(b) multi-chain complex setting

transformation T = 𝑅, 𝑡
rotation matrix 𝑅 ∈ SO 3
translation vector 𝑡 ∈ ℝ!

transformation {T" = 𝑅" , 𝑡"
rotation matrix 𝑅" ∈ SO 3
translation vector 𝑡" ∈ ℝ!

Figure 1: Surface views of (a) binary complex setting and (b) multi-chain complex setting. In (a),
the number of chains in protein complexes is two. Keeping one chain in its bound location, a SE(3)
transformation T = (R, t) is predicted to place another chain at the right location and orientation.
As for (b), each chain requires a SE(3) transformation Ti = (Ri, ti) to achieve protein docking.

Contribution We propose a model named xTrimoDock that comprehensively utilizes sequence
modality and structure modality of chains to perform multi-chain protein docking. Specifically, an
elaborate cross-modal transformer learns representations from protein sequences and structures, and
generates chain-level rotation and translation transformations. Then a multi-step prediction mech-
anism repeatedly feeds the predicted structure recursively into the same cross-modal transformer
to gradually refine a highly accurate protein structure. Extensive experiments demonstrate that our
xTrimoDock shows promising results on multi-chain protein docking.

2 RELATED WORK

In line with the focus of our work, we briefly review the most related work on pocket druggability
prediction, drug-target interface prediction, and protein-protein docking.

Pocket Druggability Prediction The ability of protein pockets to bind drug-like molecules, re-
ferred as druggability, is of major interest in the first step of drug discovery. Since protein conforma-
tion changes might affect the druggability of pockets, it is necessary to utilize geometric information
beyond sequential information. Pioneer work Krasowski et al. (2011); Desaphy et al. (2012); Borrel
et al. (2015) predicts druggability based on the predefined descriptors of the rigid pocket structure.
Nowadays, an increasing number of methods (Yuan et al. (2020); Zhou et al. (2022)) take into ac-
count the conformational changes of proteins.

Drug-Target Interface Prediction Drug-target interactions characterize the binding poses and
affinity of compounds to protein targets (Rutkowska et al. (2016); Santos et al. (2017); Zitnik et al.
(2019)), playing an essential role in finding effective and safe treatments for new pathogens (Vela-
van & Meyer (2020)). Deep learning has advanced traditional computational modeling of com-
pounds (Wallach et al. (2015)) by providing increased expressive power in identifying, processing,
and extrapolating complex patterns in molecular data (Öztürk et al. (2018); Lee et al. (2019); Eber-
hardt et al. (2021); McNutt et al. (2021); Bao et al. (2021); Nguyen et al. (2021)). These methods
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are designed for molecular ligands, and often assume known binding pockets, which are not directly
applicable to our rigid docking setting.

Protein-Protein Docking Experimental methods to determine the structure of protein complexes,
such as X-ray crystallography and cryo-EM, are mostly financially restrictive and time-consuming
when there are tens of thousands of interactions yet to be resolved. Therefore, computational dock-
ing methods (Chen et al. (2003); Venkatraman et al. (2009); De Vries et al. (2010); Biesiada et al.
(2011); Torchala et al. (2013); Vakser (2014); Schindler et al. (2017); Weng et al. (2019); Yan et al.
(2020); Sunny & Jayaraj (2021); Christoffer et al. (2021)) offers an alternative route to predict pro-
tein complex structures based on a three-step framework of candidate sampling, ranking (Moal
et al. (2013); Basu & Wallner (2016); Launay et al. (2020); Eismann et al. (2021)) and refine-
ment (Verburgt & Kihara (2022)). Recently, deep learning has made a big impact on structural
biology (Laine et al. (2021); Dai & Bailey-Kellogg (2021)). AlphaFold2 (Jumper et al. (2021)) and
RoseTTAFold (Baek et al. (2021)) have been utilized to improve protein-protein interaction from
different aspects (Humphreys et al. (2021); Pei et al. (2022)), e.g., combing physics-based docking
methods (Kozakov et al. (2017)) or extending multiple-sequence alignments (Bryant et al. (2022)).
Particularly, AlphaFold-Multimer (Evans et al. (2021)) capitalizes on the success of AlphaFold2 to
fold and dock two proteins, and EquiDock (Ganea et al. (2022)) is tailored for the effective rigid
docking where the performance improvement is limited compared to traditional docking methods.

3 XTRIMODOCK

In this section, we elaborate the proposed xTrimoDock, a novel framework for multi-chain protein
docking. We begin with the overview and subsequently zoom into the details of the cross-modal
transformer and multi-step prediction. Lastly, we illustrate the optimization strategy for the model.

3.1 OVERVIEW

Sequence Modality Input The available information on sequence modality mainly contains intra-
residue and inter-residue information. For intra-residue information, we transform primary sequence
features or multiple sequence alignments (MSAs) to residue representations {zi} with zi ∈ Rd and
i ∈ {1, · · · , Nres} where d is the dimension of representations and Nres is the length of protein
sequences. In terms of inter-residue information, relative positional features and primary sequence
features form pair representations {pij} with pij ∈ Rd and i, j ∈ {1, · · · , Nres}. These represen-
tations can be obtained using existing encoders (Jumper et al. (2021); Evans et al. (2021)).

Structure Modality Input To encode structures of protein chains, complex is represented as back-
bone frames {Ti = (Ri ∈ R3×3, ti ∈ R3)} with i ∈ {1, · · · , Nres} which are SE(3) transforma-
tions constructed from the positions of tuples N-Cα-C in residues using the Gram–Schmidt process.
We also parameterize atoms of side chains as relative frames from the positions of the atom before
the torsion bond, the atom after the torsion bond, and the next atom after that. Once we have deter-
mined backbone frames, all atoms of side chains are obtained by the composition of frames (Evans
et al. (2021)). The composition of two SE(3) transformations is denoted as

(R, t) = (R1, t1) ◦ (R2, t2) = (R1R2,R1t2 + t1). (1)

Architecture Taking the rigidity of chains into account, we keep the initial backbone frames {Ti =
(Ri, ti)} fixed, and achieve multi-chain docking by optimizing chain-level frames {Tc = (Rc, tc)}
with c ∈ {1, · · · , Nchain}. Thus the complex structure is represented by the composition of frames
{Ti ◦Tci} where ci indicates the chain that residue i belongs to, and the chain-level frames {Tc} are
initialized to identity transformations {(I, 0)}.

Given residue representations {zi}, pair representations {pij} and backbone frames of complex
{Ti ◦ Tci}, xTrimoDock predicts 3D coordinates of all heavy atoms based on a cross-modal trans-
former and multi-step prediction mechanism as depicted in Figure 2. Specifically, cross-modal
transformer updates residue representations {zi} from the whole complex {Ti ◦Tci} and pair repre-
sentations {pij} with structure-aware attention, then a chain-level pooling is performed on updated
representations {ẑi} to compute frames T̂c for each chain c. Finally, multi-step prediction composes
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(a) structure-aware attention (b) chain-level pooling

cross-modal transformer
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multi-step prediction

Figure 2: Details on the architecture of xTrimoDock which is mainly composed of two modules,
cross-modal transformer and multi-step prediction. Taking the information from sequence modality
and structure modality as input, cross-modal transformer first applies (a) structure-aware at-
tention to update residue representations, and utilizes (b) chain-level pooling to compute update
frames for chains. Then multi-step prediction constructs the refined complex structure based on
these update frames, and refeeds them to the cross-modal transformer. Finally, the obtained struc-
tures and residue representations are constrained by well-designed losses to optimize the model.

update frames {T̂c} and current frames {Tc}, and feeds them into the same cross-modal transformer
to recursively refine a protein structure with more precise atomic details. It is worth noting that the
overall architecture is equivariant to the global transformation of the initial complex structure.

3.2 CROSS-MODAL TRANSFORMER

Structure-aware Attention Cross-modal transformer first updates residue representations {zi}
by applying structure-aware attention on backbone frames {Ti ◦ Tci}, and is invariant under any
global SE(3) transformation on those frames. Formally, query vectors qh

i , key vectors kh
i , and value

vectors vh
i are computed by

qh
i = ziW

h
q , k

h
i = ziW

h
k , v

h
i = ziW

h
v , h ∈ {1, · · · , Nhead}, (2)

where qh
i ,k

h
i ,v

h
i ∈ Rdt , and Nhead is the number of attention heads. To inject information of

structure modality, another set of self-attention terms is transformed into three-dimensional space,

qhp
i = ziW

hp
q , khp

i = ziW
hp
k , vhp

i = ziW
hp
v , p ∈ {1, · · · , Npoint}, (3)

where qhp
i ,khp

i ,vhp
i ∈ R3 can be taken as virtual points, and Npoint is the number of them.

When calculating the attention weights between residues, we take into account two factors. i) The
closer the residues are, the greater the interaction between them. ii) Pair representations containing
inter-residue information exert a vital part. Therefore, attention weights

αh
ij = softmaxj

(
wL

(
1√
dt
qh⊤

i kh
j +bhij−

λhwC

2

∑
p

∥∥∥Ti ◦ Tci ◦ q
hp
i −Tj ◦ Tcj ◦ k

hp
j

∥∥∥2)) , (4)

bhij = pijW
h
p , (5)

where λh is a learnable scalar, and bhij is the bias stemming from pair representations {pij}. Factors
wC =

√
1/3 and wL =

√
2/9Npoints are computed such that two sets of attention terms contribute
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equally and the resulting variance of attention weights is 1. Then, these attention weights weight
value terms and pair representations

oh
i =

∑
j

αh
ijv

h
j ,o

hp
i = T−1

ci ◦ T−1
i ◦

∑
j

αh
ij(Tj ◦ Tcj ◦ v

hp
j ), õh

i =
∑
j

αh
ijpij . (6)

The residual representations are updated by these outputs of the attention mechanism

ẑi = Linear
(
concath,p

(
õh
i ,o

h
i ,o

hp
i , ∥ohp

i ∥
))

. (7)

Please note that backbone frames are produced from a global reference such that updated represen-
tations are invariant to global transformations of the initial complex structure. Specifically, since the
l2-norm of vectors is invariant under any global transformation T ,∥∥∥(T ◦ Ti ◦ Tci) ◦ q

hp
i − (T ◦ Tj ◦ Tcj ) ◦ k

hp
j

∥∥∥2 =
∥∥∥T ◦

(
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hp
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)∥∥∥2
=
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j

∥∥∥2 , (8)

the global transformation is canceled. In the computation of output terms, it also cancels out when
mapping back

(T ◦Ti◦Tci)
−1◦

∑
j

αh
ij((T ◦Tj◦Tcj )◦v

hp
j )=T−1

ci ◦T−1
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j )
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∑
j
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ij(Tj ◦ Tcj ◦ v
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j ).

(9)

Chain-Level Pooling Chain-level pooling module in cross-modal transformer aims at generating
chain-level SE(3) transformations, refining locations of protein chains. According to a binary chain
mask Mc ∈ RNres×d that indicates which residues belong to chain c, we get chain representations
through mean pooling

ŝc = Mean-Pooling
(
Ẑ ⊙Mc

)
, c ∈ {1, · · · , Nchain} (10)

where Ẑ is matrix form of updated residue presentations {ẑi}, and Nchain is the number of chains
in the protein complex. The update frames for chains are created by predicting a rotation quaternion
and a translation vector. The first component of the rotation quaternion is fixed to 1, and the rest
defining the Euler axis are learned by a linear layer,

b̂c, ĉc, d̂c, t̂c = Linear(ŝc). (11)

The non-unit quaternion rotation (1, b̂c, ĉc, d̂c) can be converted to a rotation matrix R̂c (Evans et al.
(2021)). Thus the update frames for chains are {T̂c = (R̂c, t̂c)}.

3.3 MULTI-STEP PREDICTION

Multi-step prediction mechanism composes backbone frames and update frames of chains to com-
pute immediate structures of the protein complex. Then they are fed to the cross-modal transformer
with shared weights to replace initial backbone frames. Multi-step prediction allows the network
deeper without significantly increasing the training time or the volume of parameters, and refines
the predicted structures multiple times.

Specifically, current frames {Tc} and the update frames {T̂c} at chain level are composed as {Tc ◦
T̂c}, replacing current frames {Tc} as input to the cross-modal transformer. These intermediate
structures along with the final predicted structure are constrained by the Frame Aligned Point Error
(FAPE) loss (Jumper et al. (2021)) to accelerate and stabilize model training. Since the side chains
are rigid, the FAPE loss only operates on the backbone frames and Cα atom positions. Given
backbone frames {Ti ◦ T̂ci} and Cα position {x̂i = r̂i} of prediction, backbone frames {Ti ◦ T gt

ci }
and Cα position {xgt

i } of ground truth, the FAPE loss is defined as

x̂ij = T̂−1
ci ◦ T−1

i ◦ x̂j , x
gt
ij = T gt−1

ci ◦ T−1
i ◦ xgt

j , (12)
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Table 1: Statistics of datasets.

Chains per Protein Residues per Protein Atoms per Protein

Min Max Mean Std Min Max Mean Std Min Max Mean Std

Training Set 2 45 2.87 2.39 67 8290 759.95 689.97 354 62495 5918.64 5375.14
Validation Set 2 28 2.81 2.41 91 6368 735.90 716.65 744 49538 5701.60 5552.25
Test Set 3 3 3.00 0.00 408 650 530.52 92.55 3056 5060 4072.59 713.97

dij =

√∥∥x̂ij − xgt
ij

∥∥2 + ϵ, (13)

LFAPE =
1

Z
meani,j(minimum(dclamp, dij)), (14)

where ϵ is a small constant to ensure that gradients do not vanish, and the resulting deviations {dij}
are penalized by a clamped l1-loss with a normalization constant Z.

The final residue representations {ẑi} predict per-residue lDDT-Cα scores (Mariani et al. (2013)).
The true per-residue lDDT-Cα scores {rgti } are discretized into bins, and supervise the predicted
scores as an auxiliary loss (Evans et al. (2021)). Formally,

li = softmax(Linear(relu(LayerNorm(ẑi)))), l
gt
i = One-Hot(rgti ,vbins), (15)

Laux = meani(l
⊤
i log lgti ), (16)

where vbins = [1, 3, 5, · · · , 99]⊤ represents the vector of bins. Besides, the atom clashes need to
be avoided. Thus, we introduce a clash loss to constrain these structural violations in a way that
loss-free structures will pass the stereochemical quality checks in the lDDT metric. The clash loss
uses a one-sided flat-bottom-potential to penalize too short distances

Lclash =

Nnb∑
i=1

max
(
dliti − τ − d̂i, 0

)
, (17)

where Nnb is the number of non-bonded atom pairs, dliti is the lower bound of distances between
non-bonded atom pairs based on literature Van der Waals radii, and d̂i is the distance in the predic-
tion. The tolerance τ is set to 1.5 Å. In all, the loss of model optimization is as follows

L = λ1LFAPE + λ2Laux + λ3Lclash. (18)

Hyperparameters λ1, λ2 and λ3 balance the importance of different losses.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of xTrimoDock via extensive experiments. Particularly,
xTrimoDock is compared with the state-of-the-art methods and presents competitive performance
even under multi-chain evaluation protocol. We further analyze the performance differences for
short- and long-chain proteins. Lastly, we conduct ablation studies to investigate the effectiveness
of the multi-step prediction.

4.1 EXPERIMENTAL SETUP

Dataset We leverage Database of Interacting Protein Structures (DIPS) (Townshend et al. (2019)),
which is a protein complex benchmark mined from the Protein Data Bank (Bank (1971)) and tailored
for rigid docking. Following the experimental settings of EquiDock (Ganea et al. (2022)), we filter
DIPS to only keep proteins with at least 30 residues and at most 10K atoms. Dataset is partitioned
in train/validation splits of sizes 12136/369 based on the protein family to separate similar proteins.
For a fair comparison, the test set consists of 27 antibody-antigen complexes released after October
2021 that have not been used to train AlphaFold-Multimer (Evans et al. (2021)). Particularly, the
antibody-antigen complex is composed of three chains, i.e., the heavy/light chain of the antibody
and the one chain from the antigen. The statistics of the dataset are summarized in Table 1.
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Table 2: Quantitative results on complex prediction.

RMSD ↓ TM-score ↑ GDT-TS ↑ GDT-HA ↑

Med. Mean Std Med. Mean Std Med. Mean Std Med. Mean Std

ZDOCK 21.37 21.35 6.49 0.69 0.66 0.12 0.66 0.65 0.12 0.66 0.65 0.12
HADDOCK 22.26 21.39 5.15 0.69 0.66 0.12 0.66 0.65 0.12 0.66 0.65 0.12
ClusPro 17.01 15.94 7.21 0.69 0.70 0.13 0.68 0.67 0.12 0.68 0.66 0.12
HDOCK 13.20 10.90 10.42 0.72 0.81 0.18 0.70 0.80 0.19 0.70 0.78 0.18
EquiDock 92.67 100.57 67.44 0.66 0.65 0.12 0.66 0.65 0.12 0.66 0.65 0.12
Multimer 13.84 13.31 5.85 0.67 0.67 0.12 0.55 0.57 0.11 0.44 0.45 0.10

xTrimoDock 1.46 1.50 0.48 0.97 0.96 0.02 0.82 0.82 0.07 0.59 0.61 0.10

Baselines To evaluate the effectiveness of our proposed xTrimoDock, we compare it with two
categories of representative methods, including four docking software ZDOCK (Chen et al. (2003)),
HADDOCK (De Vries et al. (2010)), ClusPro (Kozakov et al. (2017)), HDOCK (Yan et al. (2020)),
two deep learning models EquiDock (Ganea et al. (2022)) and AlphaFold-Multimer (Multimer for
short, Evans et al. (2021)).

Metrics To measure the quality of predictions, we report universally accepted metrics Root Mean
Square Deviation (RMSD), TM-score (Template Modeling score), GDT-TS (Global Distance Test-
Total Score), and GDT-HA (Global Distance Test-High Accuracy). Given the ground truth positions
{xgt

i } and predicted positions {x̂i}, the Kabsch algorithm computes a SE(3) transformation Talign

to superimpose them, and RMSD is 1/Natom

∑
i ∥x̂i − Talign ◦ xgt

i ∥. And TM-score is defined by

TM-score = max

 1

L

L∑
i

1

1 +
(

di

d0(L)

)2
 ,

where L is the length of the amino acid sequence, di is the distance between the i-th pair of residues
in the prediction and ground truth, and d0(L) = 1.24 3

√
L− 15 − 1.8 is a distance scale that nor-

malizes distances. For a given value of cutoff, GDT-score represents the maximum proportion of
atoms that can makes RMSD less than the cutoff. GDT-scores are usually calculated w.r.t. different
cutoffs, thus GDT-TS is the mean of 1, 2, 4, 8Å, and GDT-HA corresponds to 0.5, 1, 2, 4Å. We
compute these metrics using the tool DeepAlign (Wang et al. (2013)).

Implementations ZDOCK, HADDOCK, ClusPro and HDOCK provide user-friendly local pack-
ages suitable for automatic experiments or webservers for manual submissions. For Equidock1 and
Multimer2, we use their pretrained models released on GitHub for inference. Baselines except Mut-
limer are designed for the binary complex setting, so the heavy chain and light chain of antibody are
merged during the evaluation.

In terms of xTrimoDock, we utilize the single representations and pair representations from Multi-
mer as input, and train it with crop size 128. For hyperparameters in the cross-modal transformer,
we set the number of heads Nhead = 12, the number of virtual point Npoint = 8, and embedding
dimension dt = 16. We use Adam optimizer with learning rate 10−3, β1 = 0.9, β2 = 0.999, and
the coefficients in loss are λ1 = 0.5, λ2 = 0.01 and λ3 = 0.5.

4.2 RESULTS AND ANALYSIS

Complex Prediction Based on the results shown in Table 2, xTrimoDock generally performs com-
petitive predictions under the multi-chain evaluation. This demonstrates that the usage of cross-

1https://github.com/octavian-ganea/equidock public
2https://github.com/aqlaboratory/openfold
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Figure 3: Violin plots of RMSD for (a) short-chain proteins and (b) long-chain proteins. The box
inside violin indicates 25-75 percentiles, and the median is shown by a white scatter. We also depict
(c) RMSD w.r.t. sequence length, where scatters refer to RMSD of a specific protein and dotted
lines are regression lines of scatters.

Table 3: Ablation studies on the multi-step prediction mechanism of xTrimoDock. (w/o MS: with-
out multi-step prediction)

RMSD ↓ TM-score ↑ GDT-TS ↑ GDT-HA ↑

Med. Mean Std Med. Mean Std Med. Mean Std Med. Mean Std

w/o MS 3.77 3.84 0.13 0.91 0.91 0.01 0.76 0.75 0.05 0.59 0.57 0.05
xTrimoDock 1.46 1.50 0.48 0.97 0.96 0.02 0.82 0.82 0.07 0.59 0.61 0.10

modal information and the iterative refinement of structures can characterize proteins in a more pre-
cise manner. We note that most baselines are evaluated in the binary setting where the heavy chain
and light chain of antibody are merged, giving them an advantage in the performance. Moreover,
we observe that docking software still provide reliable predictions at the expense of large computa-
tional costs, and deep learning methods sometimes have leeway in performance. For example, the
mean and standard deviation of RMSD evaluated from EquiDock are large, indicating that some
inappropriate SE(3) transformations are learned, and the ligand and receptor are even far apart.

Effects of Sequence Length We divided proteins into short- and long- chain proteins based on
the mean value 530.52 of the number of residues per protein in the test set, and chose represen-
tative baselines HDock, EquiDock and Multimer along with xTrimoDock to analyze performance
differences. Violin plots are used to display distributions of RMSD on short- and long-chain proteins
respectively, and the relationship between RMSD and sequence length is also drawn in Figure 3. It is
found that xTrimoDock performs well in structure prediction of short- and long-chain proteins, and
an interesting phenomenon is that deep learning methods is not as much sensitive to the sequence
length as docking software.

Visualization We randomly select a short-chain protein with PDB id = 7soc and a long-chain
protein with PDB id = 7sn2, visualizing their ground truth structures and predictions of competi-
tive methods in the Figure 4. We intuitively see that xTrimoDock usually exhibits high accuracy to
identify the docking pockets and docked poses.

Ablation Study for Multi-Step Prediction Recall that multi-step prediction mechanism in xT-
rimoDock refines the predicted complex structure via recursively feeding the immediate structures
into cross-modal transformer. We alter the multi-step prediction by forward propagation only once
to validate the effectiveness of this mechanism. Results of the ablation study are reported in Table 3.
We can observe that xTrimoDock is consistently better than the variant. Such observations imply
that multi-step prediction contributes markedly to accurate predictions.
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(b) long-chain 7sn2

(a) short-chain 7soc

HDOCK Multimer Ground Truth

HDOCK Multimer Ground Truth

xTrimoDock

xTrimoDock

Figure 4: Visualization of (a) short-chain and (b) long-chain protein complexes respectively.

Table 4: Total inference time of different methods. (unit: hour)

ZDOCK HADDOCK ClusPro HDOCK EquiDock Multimer xTrimoDock

Inference time 28.83 12.15 34.65 8.1 0.24 0.68 0.41

Computational Efficiency We show total inference time in Table 4. The results are in line with
our intuition that three-step framework of docking software spends lots of time sampling, ranking
and refining candidates. Fortunately, deep learning methods achieve 10-150x speed-up. This is espe-
cially important for the drug design, which need to be extremely fast to scan the vast biological and
chemical spaces for both desired and unexpected effects. For instance, the human proteome contains
up to 100,000 protein types, and a novel drug might negatively inhibit essential proteins. Therefore,
the current hope is to scan for these interactions in a computational manner before bringing a few
promising candidates to in vitro and in vivo testing.

5 CONCLUSION

In this paper, we have presented a promising approach for underexplored multi-chain rigid docking
that organically utilizes information from structure modality and sequence modality. Additionally,
our method smartly adopts multi-step prediction to refine chain-level SE(3) transformations by re-
cursively feeding them into the same modules. Various experiments show competitive results on the
harder multi-chain docking.

Limitations and Broader Impact A limitation of xTrimoDock is that the protein flexibility is not
taken into account. Flexibility is of overwhelming importance for protein function, and the changes
in protein structure during interactions with binding partners can be dramatic. Therefore, we look
forward to extending xTrimoDock for flexible docking, and apply it to more tasks in drug design.
As another interesting direction for future work, we might attempt to replace multi-step prediction
with a diffusion model to see if we can get some new insights. Last, we hope that our work can
inspire the community to pay more attention on deep learning in biological scenarios.
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Protein-protein and peptide-protein docking and refinement using attract in capri. Proteins: Struc-
ture, Function, and Bioinformatics, 85(3):391–398, 2017.

Sharon Sunny and PB Jayaraj. Fpdock: Protein–protein docking using flower pollination algorithm.
Computational Biology and Chemistry, 93:107518, 2021.

11



Under review as a conference paper at ICLR 2023

Mieczyslaw Torchala, Iain H Moal, Raphael AG Chaleil, Juan Fernandez-Recio, and Paul A Bates.
Swarmdock: a server for flexible protein–protein docking. Bioinformatics, 29(6):807–809, 2013.

Raphael Townshend, Rishi Bedi, Patricia Suriana, and Ron Dror. End-to-end learning on 3d protein
structure for interface prediction. Advances in Neural Information Processing Systems, 32, 2019.

Ilya A Vakser. Protein-protein docking: From interaction to interactome. Biophysical journal, 107
(8):1785–1793, 2014.

Thirumalaisamy P Velavan and Christian G Meyer. The covid-19 epidemic. Tropical medicine &
international health, 25(3):278, 2020.

Vishwesh Venkatraman, Yifeng D Yang, Lee Sael, and Daisuke Kihara. Protein-protein docking
using region-based 3d zernike descriptors. BMC bioinformatics, 10(1):1–21, 2009.

Jacob Verburgt and Daisuke Kihara. Benchmarking of structure refinement methods for protein
complex models. Proteins: Structure, Function, and Bioinformatics, 90(1):83–95, 2022.

Izhar Wallach, Michael Dzamba, and Abraham Heifets. Atomnet: a deep convolutional neu-
ral network for bioactivity prediction in structure-based drug discovery. arXiv preprint
arXiv:1510.02855, 2015.

Sheng Wang, Jianzhu Ma, Jian Peng, and Jinbo Xu. Protein structure alignment beyond spatial
proximity. Scientific reports, 3(1):1–7, 2013.

Gaoqi Weng, Ercheng Wang, Zhe Wang, Hui Liu, Feng Zhu, Dan Li, and Tingjun Hou. Hawkdock:
a web server to predict and analyze the protein–protein complex based on computational docking
and mm/gbsa. Nucleic acids research, 47(W1):W322–W330, 2019.

Yumeng Yan, Huanyu Tao, Jiahua He, and Sheng-You Huang. The hdock server for integrated
protein–protein docking. Nature protocols, 15(5):1829–1852, 2020.

Jui-Hung Yuan, Sungho Bosco Han, Stefan Richter, Rebecca C Wade, and Daria B Kokh. Drugga-
bility assessment in trapp using machine learning approaches. Journal of Chemical Information
and Modeling, 60(3):1685–1699, 2020.

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.
2022.

Marinka Zitnik, Francis Nguyen, Bo Wang, Jure Leskovec, Anna Goldenberg, and Michael M Hoff-
man. Machine learning for integrating data in biology and medicine: Principles, practice, and
opportunities. Information Fusion, 50:71–91, 2019.

A APPENDIX

You may include other additional sections here.
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