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ABSTRACT

Speech language models align with human brain responses to natural language to
an impressive degree. However, current models rely heavily on low-level speech
features, indicating they lack brain-relevant semantics which limits their utility as
model organisms of semantic processing in the brain. In this work, we address this
limitation by inducing brain-relevant bias directly into the models via fine-tuning
with fMRI recordings of people listening to natural stories–a process we name
brain-tuning. After testing it on 3 different pretrained model families, we show
that brain-tuning not only improves overall alignment with new brain recordings
in semantic language regions, but also reduces the reliance on low-level speech
features for this alignment. Excitingly, we further show that brain-tuning leads to
1) consistent improvements in performance on semantic downstream tasks and 2)
a representational space with increased semantic preference. Our results provide
converging evidence, for the first time, that incorporating brain signals into the
training of language models improves the models’ semantic understanding. We
make the code available at https://github.com/bridge-ai-neuro/brain-tuning.

1 INTRODUCTION

It is an exciting time for the cognitive neuroscience of language with the rise of language models
which have been shown to align with (i.e. predict) brain activity evoked by natural language to
impressive and unprecedented degrees (Wehbe et al., 2014; Jain & Huth, 2018; Toneva & Wehbe,
2019; Schrimpf et al., 2021; Caucheteux & King, 2022; Goldstein et al., 2022; Karamolegkou et al.,
2023). Researchers aim to use language models as model organisms (Toneva, 2021) of reading
and listening in the brain to learn more about the underlying information processing that leads to
brain-like representations of language.

However, recent work has questioned whether current popular speech language models can fully
serve this role, as their alignment with semantic brain regions was shown to be mostly due to low-
level speech features, indicating that speech language models lack brain-relevant semantics (Oota
et al., 2024a). Given that most large brain recording datasets are of speech-evoked language (LeBel
et al., 2023; Nastase et al., 2021; Deniz et al., 2019; Momenian et al., 2024), having speech models
with improved brain-relevant semantics is important to provide better model organisms for auditory
language processing. The lack of brain-relevant semantics in speech models (Oota et al., 2024a)
may also be related to their incomplete downstream semantic understanding. (Choi et al., 2024).

To bridge the gap between language understanding in speech models and the human brain, we pro-
pose to augment pretrained speech model training directly with brain recordings in a process we
call brain-tuning (see Fig.1a for illustration of the training approach). We then evaluate the resulting
brain-tuned speech models in three distinct ways (see Fig.1c for an illustration of the evaluation ap-
proach): 1) alignment with new brain recordings in semantic regions of the brain, which we expect
to significantly increase if brain-tuning successfully induces brain-relevant semantics, 2) effect of
low-level features, such as Tri-Phones and Articulation, on the alignment with these semantic re-
gions, which we expect to significantly decrease if brain-tuning successfully induces brain-relevant
semantics 3) downstream performance on tasks that are helped by semantic understanding, which we
expect to significantly improve if the brain-relevant semantic understanding induced by the brain-
tuning is also useful for downstream semantic tasks.
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We brain-tune three popular speech language models using the largest available fMRI dataset,
recorded when participants listened to natural stories. Across all models, we find that brain-tuning
1) significantly improves alignment with new fMRI recordings in semantic brain regions, 2) sig-
nificantly reduces the impact of low-level features on this alignment, and 3) significantly improves
downstream performance on tasks that are helped by semantic understanding. We show that these
results hold when comparing the brain-tuned models to their pretrained counterparts, and to two
additional strong baselines (i.e. brain-tuning with block-permuted fMRI data, and fine-tuning using
representations from a larger speech model).

Our results provide converging evidence that augmenting speech models with brain signals from
listening to natural language improves semantic understanding in speech models. Excitingly, our
findings indicate for the first time that improving alignment with semantic understanding in the
brain also translates to downstream gains for the models. We will make all models and code publicly
available, and hope that the improved speech models our work provides will contribute to a better
understanding of listening in the brain.

Our main contributions can be summarized as follows:

1. We provide an approach to fine-tune pretrained speech models using fMRI recordings of
people listening to natural stories, and validate it across three popular model families.

2. We conduct extensive analyses to understand the impact of this fine-tuning on the speech
model representations and behavior.

3. For the first time, we show that improving alignment with the brain has a substantial and
significant downstream benefit for an AI model.

2 RELATED WORK

Our work is most closely related to that of Schwartz et al. (2019), who fine-tune one pretrained text-
based language model (BERT (Devlin et al., 2019)) using fMRI and MEG recordings of participants
reading a chapter of a book. We instead focus on speech models, validate our method across three
model families, and conduct comprehensive analyses to reveal that brain-tuning improves semantic
understanding in speech language models for the first time. Separately, a growing literature inves-
tigates the alignment between human brains and pretrained language models. A number of studies
have shown a degree of alignment between language-evoked brain activity with text-based language
models (Wehbe et al., 2014; Jain & Huth, 2018; Toneva & Wehbe, 2019; Caucheteux & King,
2022; Jat et al., 2019; Abdou et al., 2021; Schrimpf et al., 2021; Toneva et al., 2022a;b; Antonello
et al., 2021; Oota et al., 2022; Merlin & Toneva, 2022; Aw & Toneva, 2023; Oota et al., 2024b;
Lamarre et al., 2022; Antonello et al., 2024), and with speech-based language models (Millet et al.,
2022; Vaidya et al., 2022; Tuckute et al., 2023; Oota et al., 2023; 2024a; Chen et al., 2024). Our
approach of brain-tuning pretrained language models is complementary and can be used in addition
to previous methods for analyzing the alignment between language models and brain activity.

3 METHODS

3.1 SPEECH LANGUAGE MODELS

We build on three popular pretrained transformer-based speech language model families:
Wav2vec2.0 (Baevski et al., 2020), HuBERT (Hsu et al., 2021), and Whisper (Radford et al., 2023).
We chose versions of these models that have comparable sizes (∼90M parameters), the same num-
ber of encoder layers (12), and the same embedding size (768). Wav2vec2.0 and HuBERT are
self-supervised models that are trained to predict representations of masked portions of the input.
They both divide the input into tokens of 20ms and then use a CNN feature extractor. We use the
base architectures which are trained on ∼960 hours of audio. Whisper, unlike Wav2Vec2.0 and Hu-
BERT, is trained in a weakly supervised manner, using 680K hours of paired audio-text data and has
an encoder-decoder architecture. Contrary to HuBERT and Wav2Vec2.0, Whisper takes a fixed 30s
input and then converts it to log-mel spectrograms. We fine-tune only the Whisper encoder for two
reasons: 1) to keep the model of comparable size to the other two models, and 2) since the encoder

2



Published as a conference paper at ICLR 2025

(a) Proposed brain-tuning approach

(b) Approach to estimate brain alignment and low-
level feature impact (c) Evaluation strategy and expected outcomes

Figure 1: Training and Evaluation Approaches. (a) Brain-tuning approach for a given speech model;
(b) Evaluation of brain alignment and low-level feature impact on the brain alignment; (c) Types of
evaluation and expected outcomes if brain-tuning successfully improves semantic understanding in
speech models: increase of alignment with semantic brain regions, decrease of impact of low-level
features on this alignment, and increase in downstream performance on semantic tasks.

is expected to represent lower-level information than the decoder, it is a good testbed for whether
brain-tuning can induce semantic understanding.

3.2 NATURALISTIC BRAIN DATASET AND DATA PREPROCESSING

We use the largest public dataset of fMRI recordings (LeBel et al., 2024) for brain-tuning. The
dataset contains fMRI recordings for 8 participants listening to 27 short stories from the Moth Radio
Hour podcast for a total of 6.4 hours of audio per participant (11; 543 fMRI images (TRs) with
TR = 2 :0045s). To �ne-tune a model using fMRI recordings, we need to build a paired dataset of
fMRI recordings and the corresponding audio snippets that were presented to the participants. We
follow previously proposed approaches for this (Oota et al., 2024a; Vaidya et al., 2022; Antonello
et al., 2024; Schwartz et al., 2019). Speci�cally, we �rst partition the audio input by utilizing a
sliding window of lengthT seconds with a strideW seconds. This way, at each timet in the audio,
a window of length[t � T; t] seconds is provided as input to the speech model. We useT = 16s
andW = 0 :1s. We next align the stimulus presentation rate with the slower fMRI acquisition rate
by downsampling using a 3-lobed Lanczos �lter. Lastly, we account for the slowness of the fMRI
hemodynamic response by modeling it as a �nite response �lter with 10 seconds (5 TRs). These
steps result in an audio-fMRI paired dataset that can be used for brain-tuning or evaluation.

Estimated noise ceiling.Noise in fMRI data can impair brain-tuning and evaluation, so it is impor-
tant to estimate the “noise ceiling” of each voxel in the fMRI recordings. We estimate the voxel-wise
noise ceiling for all participants' fMRI data based on the preferred method by the original dataset pa-
per (LeBel et al., 2023), which leverages within-participant repetitions of the same story. This noise
ceiling value estimates the amount of explainable variance in the brain signal, ranging from0 to 1.
We use this estimated noise ceiling to �lter noisy voxels and to normalize the brain alignment during
evaluation. We use a �ltration threshold of0:4, in line with the �ndings of Antonello et al. (2024).
After �ltering voxels with low noise ceiling, there remain30; 000to 50; 000voxels per participant.
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The �nal brain-tuning voxel set contains voxels from late language regions and the auditory cortex.
Note that because the late language regions are much larger than the auditory cortex, the number of
included voxels from the late language regions is naturally much greater (as shown in Fig.13).

3.3 BRAIN-TUNING SPEECHMODELS

Brain-tuning approach. Given an input audio and its corresponding fMRI response, obtained via
the method in Section 3.2, we aim to �ne-tune a pretrained speech model with the fMRI responses
(i.e., brain-tune the model). Speci�cally, we �ne-tune the model to reconstruct the fMRI responses
corresponding to the voxels with high noise ceiling (> 0:4). The approach is illustrated in Fig.1a.
To this end, we add a pooling layer and a projection head on top of the output tokens. The projection
head predicts the fMRI response from the pooled model tokens. More formally, given theo1::::oN
output tokens, we have a functionH , that predicts fMRI targets such thatH (o1 : oN ) = FC (P(o1 :
oN )) , whereP is an average pooling function andFC is a linear function. The training objective is
a reconstruction loss (L 2 loss) between the outputs ofH and the fMRI voxels. We freeze the feature
extractor and backpropagate the loss to �ne-tune the projection head and the transformer layers.

Training details. We used a base learning rate of5� 10� 5 and10� 4 respectively for the transformer
layers and the linear projection head. Both had a linear decay scheduler for the learning rate with a
warmup period for10%of the epochs. The 27 fMRI stories are split into a training set (24 stories), a
validation set (2 stories), and a held-out test set (1 story). The training is stopped when the validation
loss saturates or begins to diverge. Since the number of voxels differs for each participant, this
�ne-tuning process is done separately for each fMRI participant. We apply this approach to the 3
pretrained models: Wav2vec2.0, HuBERT, and the Whisper encoder.

3.3.1 COMPARISONMODELS

In addition to comparing the brain-tuned models to the corresponding pretrained ones, we further
train several additional baselines for comparison. We brie�y summarize these baselines and their
purpose below, and provide more details about each baseline in Appendix D.2.

Random brain-tuned. This baseline aims to test how the addition of any fMRI data impacts model
performance. This baseline uses the same �ne-tuning process as in Fig.1a, but instead of using the
matched fMRI responses for the input stimulus, it uses block-permuted fMRI responses.

Big spoken language model-tuned (BigSLM-tuned).This baseline tests the importance of having
fMRI responses as the training targets. We replace the fMRI targets for the input stimuli with
representations for the same stimuli obtained from a BigSLM. We use Whisper Medium (800M
parameters) as the BigSLM and use a concatenation of all its decoder layers' representations.

Stimulus-tuned. This baseline tests whether tuning with the fMRI signal results in additional gains
over simply further tuning only using the stimulus audio. Stimulus-tuned models have been pre-
viously found to outperform pretrained models speci�cally for brain alignment (Merlin & Toneva,
2022), but their performance on downstream tasks has not been investigated.

Text language model-tuned (LM-tuned). We expect that current text LMs encode richer semantics
than current speech LMs, so this baseline tests the importance of added semantics for model perfor-
mance. For tuning, we use representations from two pretrained text LMs (GPT2 and LLama2). We
leverage LM-tuned models to detect which downstream tasks bene�t from more semantics.

In the main paper, we focus on two of these baselines–Random Brain-tuned and BigSLM-tuned–
and provide results from the remaining baselines in Appendix D.2. Brie�y, stimulus-tuned models
perform similarly to pretrained models and substantially worse than brain-tuned models on the tested
downstream tasks. LM-tuned models improve over the pretrained models on two downstream tasks,
the same ones where brain-tuning leads to the biggest gains over the pretrained models. This further
supports our conclusions that brain-tuning improves semantic understanding in speech models.

3.4 EVALUATION

We evaluate multiple aspects of the brain-tuned models and illustrate our evaluation strategy in
Fig.1c. If brain-tuning successfully improves semantic understanding in speech models, we expect
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that brain-tuned models will align better with semantic language regions in new brain recordings,
have impact of lower low-level features on the alignment with these regions, and have improved
downstream performance on semantic tasks.

3.4.1 BRAIN ALIGNMENT

To compare brain alignment for a model before (i.e., the pretrained version) and after brain-tuning,
we compute the normalized brain alignment using standard voxel-wise encoding models and report
it for language- and speech-related brain regions. For each region, we statistically test whether
brain-tuning leads to signi�cantly better alignment.

Normalized brain alignment. We estimate standard voxel-wise encoding models to evaluate the
brain alignment of a model representation (Antonello et al., 2024; Vaidya et al., 2022; Oota et al.,
2024a). We carry out this voxel-wise encoding as shown in the original alignment branch in Fig.1b.
The audio data is processed as detailed in Section 3.2, then a voxel-wise encoding functionh is
learned using ridge regression on the training portion of the dataset. The prediction performance
of this encoding function is computed over the held-out testing portion of the dataset via Pearson
correlation. For a voxelv, we de�ne � v (the alignment for voxelv) as the Pearson correlation
between the predictions ofh and the corresponding brain responses for this voxel across all held-out
data samples. Lastly, we de�ne the normalized brain alignmentB for a brain region ofV voxels as:

B =
1

jV j

X

v2 V

1
NCv

� v (1)

whereNCv is the noise ceiling for voxelv. This serves as a standardized measure for alignment
between a model and different brain regions since it is computed relative to the estimated explainable
variance in the brain region.

Parsing language and primary auditory regions.To make the normalized brain alignment com-
parison focused on language and primary auditory regions, we use FreeSurfer v7 to project the
participants' data, and then we use the human cerebral cortex parcellation atlas from (Glasser et al.,
2016) to parse the regions of interest (ROIs). We focus mainly on the late language regions (e.g., in-
ferior frontal gyrus, angular gyrus, anterior and posterior temporal lobes, and middle frontal gyrus)
and the primary auditory regions. The full ROI list and their functions is provided in Appendix A.1.

Signi�cance testing. To test whether the brain-tuned models have signi�cantly different alignment
than the pretrained ones, we use the Wilcoxon signed-rank test. We indicate signi�cant differences
(corresponding to p-value< 0:05) with an asterisk *.

3.4.2 IMPACT OF LOW-LEVEL FEATURES ONBRAIN ALIGNMENT

Previous work showed that the alignment of pretrained speech models with late language regions
is mostly due to low-level features (Oota et al., 2024a), which is undesirable. We further set out to
test the impact of low-level features on the brain-tuned models' alignment with the brain. To enable
comparisons with previous work, we estimate the low-level feature impact on brain alignment using
the same approach as in Oota et al. (2024a). Intuitively, the impact of a speci�c low-level feature
is estimated by comparing the brain alignment of a model before and after this low-level feature is
computationally removed from the model. If, after removal of the low-level feature, the alignment
is signi�cantly lower than the original one, the low-level feature is said to have high impact on the
brain alignment. We illustrate this process in Fig.1b and provide details about this method below.

Low-level features.We focus on four low-level speech features: Power Spectrum (the time-varying
power spectrum across frequency bands), Di-Phones & Tri-Phones (adjacent pairs and triples of
phonemes), and Articulation (articulatory characteristics of the phonemes). These features cover
different stages of speech and are considered to be non-semantic features. The speci�cs of obtaining
these features from the audio are detailed in (Oota et al., 2024a) and Appendix A.3.

Low-level feature impact. First, given a low-level feature of the input audio, a linear function
F learns to predict the representations of the model from this feature. Then, the predicted model
representations are subtracted from the true representations, and the brain alignment of this residual
is estimated via a standard encoding model (Section 3.4.1). We de�ne thelow-level impactR as:

R = 100 �
Bo � B r

Bo
(2)
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whereBo andB r correspond to the original and residual brain alignments.R represents the percent-
age drop in alignment due to the removed low-level feature. LargeR means that much of the original
alignment was due to the low-level feature. To test for signi�cant differences between models, we
perform the same statistical tests as described in Section 3.4.1.

3.4.3 DOWNSTREAM TASKS

To test whether improving brain-relevant semantics via brain-tuning also improves semantic under-
standing in models, we evaluate our models on a range of downstream tasks at different semantic
levels. We also test the semantic vs. phonetic preference of the models' representations.

Downstream tasks.We choose tasks with several semantic dif�culties, namely: automatic speech
recognition (ASR), phonetic sentence type prediction, sequence understanding, phonemes predic-
tion, word identity prediction, and emotion recognition. We use standard datasets for these tasks:
TIMIT (Garofolo, 1993), Crema-D (Cao et al., 2014), Speech Commands (Warden, 2018), and
SLURP (Bastianelli et al., 2020). All datasets were not seen by the model during brain-tuning.
Appendix B details further information about the datasets and the formulations for each task. We
consider emotion recognition to be the least semantic as tone and prosodic information are highly
predictive of emotions in speech (Singh & Gupta, 2023). Phonemes and word prediction are mod-
erate in semantic dif�culty, and the rest are high in semantic dif�culty as they require understanding
beyond single-word/phone decoding. Additionally, to have a more empirical guide on which task
we expect a model with improved semantic understanding to perform better on, in Appendix D.2
we provide downstream results from the text LM-tuned baselines. We observe that text LM-tuned
models bene�t two tasks in particular: phonetic sentence type prediction and phonemes prediction,
suggesting that these two tasks can bene�t most from semantics.

Downstream evaluation. To perform downstream analysis, we add a linear projection headf ,
where the input is the layer representation and the output is task-speci�c (e.g., which phonemes
were present, which word was present, etc). Each task performance is evaluated on held-out data,
provided by each dataset, and an aggregate performance metric is reported. Except for ASR, all tasks
use linear probes across layers and are evaluated using the F1-score on a held-out test set. Since
they are classi�cation tasks, we also report an additional Naive classi�er as a comparison baseline
that predicts the majority class for the given task. For ASR, we �ne-tune the whole transformer
model, calculate the Word Error Rate (WER) on the held-out test set, and report(1 � WER) as the
performance accuracy metric.

Semantic-phonetic preference.Previous work has shown that speech models' representations are
consistently more phonetic than semantic across all layers (Choi et al., 2024). They also show that
even in a seemingly semantic task such as Intent Classi�cation (IC), the models rely on phonetic not
semantic features to do the task. We further test the semantic-phonetic preference of our models,
using the same method as Choi et al. (2024), which we detail in Appendix C. Brie�y, the method
tests the representation distance between a set of words, their phonetic neighbors (e.g. “divine” and
“divide”), and their semantic neighbors (e.g. “divine” and “god”). A model for which phonetic
neighbors are closer than semantic ones is said to have a phonetic preference.

4 RESULTS

4.1 BRAIN ALIGNMENT WITH HELDOUT DATA

We estimate the normalized brain alignment described in Section 3.4.1 separately for two important
language-related areas of the brain: the late language regions and the primary auditory regions.
The late language regions are thought to support semantic language processing, while the primary
auditory regions support mostly lower-level processing related to the speech signal (Deniz et al.,
2019). For each of the three model families, we evaluate the normalized brain alignment for the
pretrained and brain-tuned versions, along with the alignments of two main comparison baselines–
BigSLM-tuned and Random Brain-tuned (see Section 3.3.1).

In Fig.2a and 2b, we show the normalized brain alignment averaged across voxels, layers, and par-
ticipants for all models. We observe that brain-tuning signi�cantly improves alignment with late
language regions for the self-supervised models (Wav2vec2.0 and HuBERT), with an increase of
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(a) Normalized alignment for late language regions (b) Normalized alignment for primary auditory

(c) Difference in brain alignment due to brain-tuning of Wav2vec2.0

Figure 2: (a), (b) Mean normalised brain alignment for different brain areas. Error bars indi-
cate the standard error across participants, with * indicating signi�cantly different alignment from
pretrained. Brain-tuning signi�cantly improves alignment with late language regions for the self-
supervised models. (c) Voxel-wise differences in brain alignment between brain-tuned and pre-
trained Wav2vec2.0 for a representative participant. Higher alignment is observed in semantic areas.

30% over the corresponding pretrained models. This gain in alignment with late language regions
can also be seen on the level of individual voxels (Fig.2c for Wav2vec2.0 and one representative par-
ticipant; the brain maps for the remaining participants are shown in Appendix F.2). In contrast, the
two comparison models–BigSLM-tuned and Random Brain-tuned (see Appendix Fig.6 for Random
Brain-tuned results)–lead to lower brain alignment than the pretrained models. This suggests that the
gain from the brain-tuned models is due to incorporating the correct fMRI signal that corresponds
to the audio input. We do not observe signi�cant gains for Whisper in the late language regions or
for any of the model families in the primary auditory regions.

The result that brain-tuning improves the alignment of two of the pretrained models with semantic
late language regions, and not with less semantic regions, such as the primary auditory cortices, sug-
gests that brain-tuning may improve the brain-relevant semantics in at least some speech language
models. We test this further in the next sections.

4.2 EFFECT OFLOW-LEVEL FEATURES ONBRAIN ALIGNMENT

We further test the dependence on low-level features of the observed gain in brain alignment due
to brain-tuning. Fig.3a and b present the impact of low-level features on the brain alignment across
model families (averaged over voxels, layers, low-level features, and participants).
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