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Position: Is Current Research on Adversarial Robustness Addressing the Right
Problem?

Anonymous Authors1

Abstract
Short answer: Yes, Long answer: No! Indeed, re-
search on adversarial robustness has led to invalu-
able insights helping us understand and explore
different aspects of the problem. Many attacks
and defenses have been proposed over the last
couple of years. The problem, however, remains
largely unsolved and poorly understood. Here, I
argue that the current formulation of the problem
serves short term goals, and needs to be revised
for us to achieve bigger gains. Specifically, the
bound on perturbation has created a somewhat
contrived setting and needs to be relaxed. This has
misled us to focus on model classes that are not
expressive enough to begin with. Instead, inspired
by human vision and the fact that we rely more
on robust features such as shape, vertices, and
foreground objects than non-robust features such
as texture, efforts should be steered towards look-
ing for significantly different classes of models.
Maybe instead of narrowing down on impercepti-
ble adversarial perturbations, we should attack a
more general problem which is finding architec-
tures that are simultaneously robust to perceptible
perturbations, geometric transformations (e.g. ro-
tation, scaling), image distortions (lighting, blur),
and more (e.g. occlusion, shadow). Only then we
may be able to solve the problem of adversarial
vulnerability.

1. Introduction

Adversarial vulnerability is the Achilles heel of deep learn-
ing. A small imperceptible perturbation is enough to fool
a neural network (Szegedy et al., 2014; Goodfellow et al.,
2015) (See Fig. 1.a). A sample x′ is said to be an adversarial

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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example for x when x′ is close to x under a specific distance
metric, while f(x′) 6= y. Formally:

x′ : D(x, x′) < ε s.t f(x′) 6= y (1)

where D(., .) is a distance metric, ε is a predefined distance
constraint (a.k.a allowed perturbation), f(.) is a neural net-
work, and y is the true label of sample x (i.e. oracle g(x)).

Significant efforts have been devoted to solving this problem
since the resurgence of neural networks. Not much progress,
however, has been made. Surprisingly, adversarial training1

or its variations thereof, proposed by those who first popu-
larized the problem (Goodfellow et al. (Goodfellow et al.,
2015)), remains the most effective solution. Here, without
going much into details, I argue that the current formulation
of the problem, while being useful, is misleading. I also dis-
cuss some aspects that are critical for solving this problem
and list what I consider might be good directions to explore.
Please note that this piece is entirely my personal take on
the topic, hoping it will spark further discussions.

Here, we criticize the prevailing focus on imperceptible
adversarial perturbations and suggest that this narrow
scope may hinder progress in developing truly robust
models.

2. Discussion
Following, I highlight some discrepancies and misconcep-
tions pertaining to adversarial examples and human visual
perception. My principal focus is on deep neural networks
(DNNs) for vision, however, a lot of the arguments also
apply to other domains.

2.1. How practical is the current formulation?

A system should be robust regardless of perturbations being
imperceptible or not. Take perturbation of a traffic sign in
the context of self-driving vehicles as an example. An ad-
versary may replace the pristine sign with a perturbed one to
mislead the vehicle. Why does the perturbed image have to
be imperceptible? A possible answer is because otherwise

1Adding adversarial examples to the training set and retraining
the model, at the cost of computational overhead and reduced
accuracy.
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Figure 1: a) An adversarial example generated for the giant panda image using the FGSM attack (Goodfellow et al., 2015).
b) Example meaningless patterns (a.k.a fooling images) that are classified as familiar objects by a DNN (Nguyen et al.,
2015). c) Examples of invisible (left) and visible (right) backdoor attacks (e.g. (Brown et al., 2017)). Placing a “sticker”
next to a banana can fool a CNN into classifying the image of the banana as a toaster.

someone will notice and report it! However, this is not a
good reason since we can not always have a person to police
the input, especially for models that are supposed to run at
scale. The adversary may always be able to find an oppor-
tunity to submit a perceptible malicious query (e.g. when
no one is watching). Thus, there is no point in assuming
imperceptibility. Further, the adversary may post a natural-
looking fooling image (e.g. in form of an Ad, or a physical
sticker (Eykholt et al., 2018; Sharif et al., 2019)) to fool the
system (Fig. 1.b). As another example, consider a system
that processes millions of images to perform face verifica-
tion. Assuming a person in the loop to check the input faces
defies the purpose of building fully automated verification
systems. On one hand, maybe the reason why we are in-
fatuated by the current formulation is that it does not feel
right when a model makes a clear mistake, while the scene
has almost not changed for us. On the other hand, errors in-
duced by perceptible perturbations are equally important as
errors induced by imperceptible perturbations, and perhaps
are more prevalent.

Nevertheless, adversarial attacks are useful in some applica-
tions and for some specific purposes (e.g. for system identi-
fication (Borji, 2020)). A type of attack, known as backdoor

or trojan attack2, seems to be more of a threat than imper-
ceptible adversarial attacks, and hence is more practical
(Fig. 1.c).

2.2. Bounded perturbation assumption is restrictive
and misleading

The current formulation of the problem is somewhat con-
trived. It has led us to fixate on the wrong, or at best, in-
complete class of models. It is possible that adversarial
vulnerability does not have any solution using existing DNN
architectures. Thus, we may have to explore a bigger hy-
pothesis space3 in which models offer robustness to larger
variations and perturbations (e.g. similar to the human visual
system). In general, x′ is an adversarial example for x if it
forces the model f(.) to make a mistake (preferably with
high confidence)4:

x′ :
[
g(x′) = g(x) ∧ f(x′) 6= g(x)

]
(2)

2Some malicious examples are planted in the training data to
fool the model.

3Current models are limited in a sense that they all use the
same building blocks. Current tools and software also exacerbate
the issue and make it harder to think out of the box.

4This formulation is for non-targeted attacks. It can be easily
modified to cover targeted attacks.

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2025

Here, we assume that the initial prediction for sample x
is correct (i.e. f(x) = g(x)). The formulation in Eq. 2
covers other types of class-preserving transformations as
well, including translation, rotation, scaling, Gaussian blur,
etc. It also subsumes Eq. 1, and considers a larger fraction
of perturbations, with some being perceptible (Fig. 2.a).
Notice that the hidden assumption in Eq. 1 is that f(x) = y,
otherwise altering the input to fool the model would not
make sense. By varying the magnitude of perturbation, here
parameterized by θ, a psychometric function5 similar to
the ones depicted in Fig. 2.b can be obtained. The model
performance drops as the perturbation grows. According to
this figure, model B is less robust than model A since its
psychometric function falls below the psychometric function
of model A.

According to Eq. 2, whether the model response agrees
with the human response is irrelevant. What matters is
the agreement with the ground truth (oracle) response,
which may be determined by human experts (or via ac-
curate physical measurements; but not the average per-
son). The goal is not to make a model behave exactly
like humans (i.e. respond the same to all inputs). How-
ever, since human vision is very robust, it can guide us to
discover robust features to strengthen our models (will
be elaborated in the next section). Since the oracle is deter-
mined by human experts, a model that is able to robustly
predict the ground-truth labels will naturally behave similar
to humans, and thus it will be insensitive to imperceptible
adversarial perturbations.

Eq. 2 does not cover fooling images or samples that simply
cause a model to fail:

x′ :
[
f(x′) 6= g(x′)

]
(3)

Therefore, in addition to testing for robustness, models
should be evaluated in terms of their accuracy over a wider
range of inputs, some of which may be nonsensical6.

The main purpose of extending the definition of robustness,
as in Eq. 2, is to intentionally make the problem harder. This
definition shrinks the space of possible models, since more
types of perturbations are considered now.

2.3. Lp−norm is not a good measure of perceptual
similarity

Even emphasizing the imperceptibility of perturbations,
there are sill problems with Eq. 1. The Lp-norm assumption
sits at the core of the current formulation. This assumption,
however, is not always valid (Sharif et al., 2018). For ex-

5A term commonly used in cognitive sciences to describe the
relationship between stimulus and response.

6Or the model should not be confident about its predictions
when the oracle is not confident either.

ample, a slight rotation or translation of an image is almost
indistinguishable to humans, but it can cause a big Lp-norm
distance (Fig. 3). Conversely, an image can be manipulated
to cause a big change in human perception with a small
Lp-norm perturbation (e.g. removing some important edges
or vertices in an image; or changing only one pixel). Further,
there might be two images from two different categories that
have very small Lp-norm distance. Although different types
of Lp-norm have been used for adversarial robustness in the
literature (e.g. L0, L2, L∞), no single Lp-norm can explain
all aspects of perceptual similarity judgments by humans.
The Lp-norm measure treats all the pixels the same, whereas
we know some pixels are more important than the others, for
example those forming the edges or salient regions (Borji &
Itti, 2012)(more on this in the next subsection).

2.4. Robust vs. non-robust features

Current DNNs do not distinguish between robust and non-
robust features7. This is also known as “shortcut learning”8

where models latch on to any feature, even spurious cor-
relations, to solve the task (Geirhos et al., 2020). Some
important robust features are shape, edges, vertices, corners,
object and surface boundaries, and Gestalt principles (Bie-
derman, 1987; Pomerantz & Portillo, 2011). Humans rely
heavily on these cues to recognize objects. Conversely,
convolution-based models9 are biased more towards tex-
ture (Geirhos et al., 2018a; Baker et al., 2018) (Fig. 4.a).
Fooling images also attest to this (Fig. 1.b). Object shape
remains largely invariant to imperceptible adversarial per-
turbations (Fig. 4.b). This is why adversarial examples
seem so bizarre to humans. The convolution operation is
biased towards capturing texture, since the number of pix-
els constituting texture far exceeds the number of pixels
that fall on the object boundary. This in part explains why
Convolutional Neural Networks (CNNs) are susceptible to
adversarial examples. I suggest focusing on sketch recog-
nition to build and test models that prioritize shape over
texture in recognition. Adding a small perturbation to a
sketch image would be easier to notice due to the lack of
background texture (Fig. 4.c). Robust features will also
help alleviate backdoor attacks. In sum, a consensus is
emerging centered around the hypothesis that adversar-
ial vulnerability is due to deep models relying more on
non-robust features that are predictive of class labels.

7“Features derived from patterns in the data distribution that
are highly predictive, yet brittle and (thus) incomprehensible to
humans” (Ilyas et al., 2019).

8“Shortcuts are decision rules that perform well on standard
benchmarks but fail to transfer to more challenging testing condi-
tions” (Geirhos et al., 2020).

9Including CNNs, Capsule Networks (Sabour et al., 2017),
Transformers (Dosovitskiy et al., 2020), and MLP-like models (Tol-
stikhin et al., 2021). Notice that the latter two types of models use
convolution to perform patch embedding!
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Figure 2: a) Illustration of adversarial robustness. a) Adversarial examples within the yellow ε-ball are imperceptible and
constitute a small fraction of possible perturbations. b) The hypothetical performance curves (a.k.a psychometric functions)
of humans versus a more robust model (B) and versus a less robust model (A). The current definition (Eq. 1), encourages the
models to be robust in the imperceptible region, and ignores the rest. A model is fully robust if it performs perfectly for all
perturbation magnitudes (i.e. Accuracy=1 for all θs). In reality, however, the performance curves look like a reverse sigmoid
function, indicating that performance drops as the perturbation grows.

Existing deep architectures are not capable of detecting
robust features and trying to fix the problem only with
ML tricks (e.g. adversarial training), rather than look-
ing for missing components or new classes of models,
will not take us far.

2.5. Adversarial robustness vs. generalization

The bulk of research on adversarial robustness has been
loyal to the formulation in Eq. 1. They have primarily em-
phasized on using ML techniques to make existing DNNs
robust. Few works have recently started to explore computa-
tions and building blocks beyond those employed in current
architectures (e.g. background subtraction (Xiao et al., 2020;
Moayeri et al., 2022; Borji, 2021)).

Some works have proposed that there is a trade-off between
robustness and standard generalization (Tsipras et al., 2018),
whereas others have argued the opposite (Stutz et al., 2019).
Human vision is the existing proof that both are achievable
at the same time. Note that almost all of our findings and
intuitions on adversarial robustness are bound to the current
class of models. Even neural architecture search methods
(See (Elsken et al., 2019) for a review) are biased in the
sense that they search in the space of models that use the
same building blocks as the existing architectures. Thus,
one path to solve the problem is to look for significantly
different, or entirely new, classes of models that are invariant
to both adversarial attacks and other variations. Overall, the
problems of adversarial robustness and generalization are
two sides of the same coin, and they should be studied
simultaneously. The latter encompasses robustness to a
wider range of variations and has deeper historical roots.
To gain some perspective, let’s recap some limitations, in

addition to sensitivity to adversarial noise, of DNNs. They,

• are sensitive to image distortions such as blur, fog,
Gaussian noise (Hendrycks & Dietterich, 2019), and
filtering in the Fourier domain (Jo & Bengio, 2017),

• fail to detect objects embedded in novel contexts or
occluded by out-of-context objects (e.g. elephant in the
living room (Rosenfeld et al., 2018)),

• are, in contrast to common belief, surprisingly limited
in terms of invariance to geometric transformations
such as translation (Azulay & Weiss, 2019), rotation,
and scaling. In fact, detection of small object in scenes
still remains a major challenge,

• show near-perfect accuracy when trained on randomly
shuffled image labels (Zhang et al., 2021), suggesting
maybe they are just memorizing the input (a.k.a rot
memorization),

• can handle specific kinds of noise when noisy images
are incorporated in the training sets. They, however,
fail to generalize to unseen noise patterns, even those
similar to training patterns (Geirhos et al., 2018b),

• show weak out-of-distribution generalization
(e.g. (Recht et al., 2019; Barbu et al., 2019; Borji,
2021)), suggesting that maybe we have overfitted
ourselves to the existing benchmarks,

• have difficulty in learning some tasks such as
same–different tasks even after being presented with
millions of training examples (Fleuret et al., 2011; Ellis
et al., 2015; Kim et al., 2018; Stabinger et al., 2021),
and
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Figure 3: Illustration of Lp-norms for different types of geometric transformations, image distortions, and adversarial
perturbations over a sample image from the MNIST dataset.

• require large amounts of training data, and are prone
to catastrophic forgetting.

2.6. Argument on visual illusions

To justify, or perhaps downplay, the problem of adversarial
vulnerability, some people argue that human vision has also
its own blind spots and can be fooled by visual illusions10,
in spite of evolution spending a lot of time optimizing it
(Fig. 5). I would like to draw your attention to a couple of
remarks opposing this argument:

1. It is true that human vision is not completely robust
(e.g. to extreme rotation, scaling, or blur), but it is much
more robust than our current systems, in particular in
object recognition,

10a.k.a optical illusions.

2. It takes a lot of skills and effort to create visual illu-
sions, whereas finding adversarial examples for many
images is strikingly easy – requiring a single step in
the direction of the gradient,

3. The nature of visual illusions is very different from
adversarial examples. Our visual system has evolved
to enable us to function with high reliability without
making deadly mistakes. It has sacrificed negligible
accuracy over a very tiny sliver of visual space in order
to gain immense robustness11. Adversarial examples,

11Just like we can not tell the exact temperature of water in
degrees by placing our finger in it, our visual system can also
not tell the exact intensity of a pixel. There has been no need
for these feats through evolution. Instead, these systems operate
by measuring relative difference and contrast. Visual system has
chosen to pay a small cost (e.g. illusions), in order to become very
robust to a large array of distortions and transformations. Also,
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Figure 4: a) Classification of a standard ResNet-50 of (left) a texture image (elephant skin: only texture cues), (middle) a
normal image of a cat (with both shape and texture cues), and (right) an image with a texture-shape cue conflict, generated by
style transfer between the first two images (Geirhos et al., 2018a). b) Adversarial attacks against ResNet152 over the giant
panda image using FGSM (Goodfellow et al., 2015), PGD-40 (Madry et al., 2017) (α=8/255), DeepFool (Moosavi-Dezfooli
et al., 2016) and Carlini-Wagner (Carlini & Wagner, 2017) attacks. Some columns in panel c show the difference (L2)
between the original image (not shown) and the adversarial one (values shifted by 128 and clamped). The edge map (using
Canny edge detector) remains almost intact at small perturbations. Notice that edges are better preserved for the PGD-40.
Figure from (Borji, 2022). c) Samples from the Sketch dataset (Eitz et al., 2012) perturbed by FGSM ε = 8/255 attack.

on the other hand, are prevalent and can cause catas-
trophic and costly mistakes. As such they are much
more critical than visual illusions, and

4. Our visual system has a complicated web of intercon-
nected regions. Different illusions target different func-
tionalities of the brain (e.g. motion processing, atten-
tion and gaze, perceptual grouping, etc). Current vision
systems are less complicated than our brains, and are
limited in terms of the tasks they can perform12. It
could well be that as models become more compli-
cated, more adversarial examples can be synthesized
for them.

A number of studies have conducted behavioral experiments
to tap into the similarities of humans and DNNs in pro-
cessing adversarial images. Elsayed et al. (Elsayed et al.,
2018) found that perceptible but class-preserving pertur-
bations that fool multiple machine learning models also
fool time-limited humans. They state “adversarial examples
are not (as is commonly misunderstood) defined to be im-

humans are bad at recognizing objects in negative images or in
images for which RGB channels have been shuffled, but are these
serious shortcomings?! Perhaps, we should do the same in deep
learning but the question is where and how to make a compromise.

12They are often built to do one task at a time.

perceptible. If this were the case, it would be impossible
by definition to make adversarial examples for humans, be-
cause changing the human’s classification would constitute
a change in what the human perceives”. Their results are in-
triguing. There are, however, some concerns. First, there is
a discrepancy between the above-mentioned definition and
the formulation of the problem used in the literature (Eq. 1).
Results are less surprising if the perturbation is allowed to
be perceptible13. Second, the effects are statistically sig-
nificant, but their size is small. Third, additional control
experiments are needed to ensure these results can not be
explained by other types of image distortions (e.g. blur).
Finally, some follow-up works have reported contradictory
results pertaining to agreement between humans and DNNs
in interpreting adversarial images (e.g. (Zhou & Firestone,
2019; Dujmović et al., 2020)). Therefore, additional repli-
cation studies are required to draw strong conclusions.

Overall, the confident classification of the adversarial im-
ages by DNNs and the fact that a very small fraction of them
can fool human subjects suggest that humans and DNNs per-
form image classification in fundamentally different ways.

13One may be able to increase the perturbation to a point where
people make the desired mistakes!
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Figure 5: Sample visual illusions. The top right image si-
multaneously depicts a portrait of a young lady or an old
lady. In this example, the artist has carefully added features
to make the portrait look like an old lady, while the new
additions will not negatively impact the look of the young
lady too much. For example, the right eyebrow of the old
lady (marked in red below) does not distort the ear of the
young lady too much. Creating images to fool the human
visual system takes a lot of effort and special skills. Deep
models are relatively much easier to fool. The middle image
in the second row is a blend of Albert Einstein with Merlin
Monroe (a hybrid image). Try to see the image from differ-
ent distances, or squint your eyes. The bottom right image
is an adversarial image generated by Elsayed et al. (Elsayed
et al., 2018) to fool time-limited humans (making a cat look
like a dog).

2.7. What can human vision offer?

Findings from visual neuroscience have contributed to ex-
panding the deep learning toolbox. Further excavation is
likely to add even more tools (Kruger et al., 2012). Some
areas to look for inspiration are discussed below. Notice
that there is much more to learn from the brain than those
mentioned here (e.g. different types of normalization such
as contrast normalization or divisive normalization (Heeger,
1992)).

The visual cortex has various types of connections including,
short- and long-range horizontal connections as well as feed-
back connections14. These connections provide information
to solve a range of tasks such as boundary ownership, figure-
ground segmentation, contour tracing, perceptual grouping,
as well as visual recognition. See (Kreiman & Serre, 2020;
Serre, 2019) for reviews. Feedback signals may be the most
critical missing piece in current DNNs.

Attention-based models, in particular Transform-
ers (Vaswani et al., 2017; Dosovitskiy et al., 2020),
have been very successful in several domains. They are
also becoming the go-to models in computer vision. The

14Feedback connections are more prevalent in the brain than
feed-forward ones.

attentional mechanisms incorporated in them, however,
remain rather limited in comparison to the rich and diverse
array of processes used by our visual system. Unlike
CNNs, humans recognize objects one at a time through
attention (Itti & Koch, 2001; Borji & Itti, 2012). Gaze and
eye movements, in addition to providing computational
efficiency via selecting and relaying the most important and
relevant information to higher cortical areas for high-level
processing, may also be crucial to gaining generalization
across different tasks.

DNNs are frequently described as the best current models
of biological vision. They have been utilized to predict the
behavior of humans and non-human primates, large-scale
activation of brain regions, as well as the firing patterns of
individual neurons (see (Cichy et al., 2016; Cadieu et al.,
2014; Kriegeskorte, 2015; Yamins & DiCarlo, 2016; Peter-
son et al., 2018; Kubilius et al., 2016)). There are, however,
stark contrasts between the two systems. Utilizing minimal
recognizable images, Ullman et al. (Ullman et al., 2016)
argued that the human visual system uses features and pro-
cesses that are not used by the current DNNs. Unlike human
vision, DNNs are hindered drastically in recognizing objects
in crowded scenes (Volokitin et al., 2017), and in detecting
out-of-context objects (Rosenfeld et al., 2018). Models that
can detect more robust features, are likely to better explain
neuro-physiological and behavioral data. However, rely-
ing only on robust features is not enough. A robust model
should also refrain from using features that are diagnos-
tic of object category but are irrelevant to human vision
(i.e. non-robust features).

3. Conclusion and path forward
Current DNNs have achieved impressive results over a wide
variety of tasks and benchmarks. They are, however, very
brittle. Current research on adversarial robustness has been
trying hard to fix the problem, but so far no major success
has been achieved. While continuing the current path, we
should also be mindful of the bigger picture, which is build-
ing models that are truly general and robust. Here, I tried to
shed some light on the problem by discussing it in a broader
context.

Instead of fixing the existing architectures, for example by
adding additional components to them, we may be better off
inventing significantly different, or entirely new, classes of
models. This may be a long and tedious path, but may yield
bigger gains in the long run. We should also learn from
human vision. One direction is to build models that are
sensitive to the features used by the human visual system,
while being insensitive to non-robust but highly predictive
features.

Adversarial vulnerability of DNNs is very puzzling espe-
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cially because it relates to our own viusal perception. This
problem is where human and computer vision are highly
entangled and as such provides a unique opportunity for
cross-collaboration between the two fields, and for under-
standing the problem of vision in general.

4. Alternative Views
While we advocate for broadening the research focus to
include perceptible perturbations and various image trans-
formations, it is essential to recognize the foundational im-
portance of addressing imperceptible adversarial attacks.
These subtle perturbations pose significant security risks,
especially in applications where inputs can be manipulated
without detection, such as digital authentication systems
or automated financial transactions. By ensuring models
are robust against these nuanced attacks, we build a crit-
ical defense layer that protects against covert adversarial
strategies.

Moreover, the study of imperceptible perturbations has led
to valuable insights into the vulnerabilities of neural net-
works, shedding light on the intricate decision boundaries
and feature sensitivities within these models. This under-
standing is crucial for the development of more resilient
architectures. While expanding research to encompass a
wider range of perturbations and transformations is bene-
ficial, it should complement rather than replace the ongo-
ing efforts to mitigate imperceptible adversarial attacks. A
balanced approach ensures comprehensive robustness in
machine learning models, addressing both subtle and overt
adversarial challenges.

While expanding the scope of adversarial research to include
perceptible attacks is vital, the value of work on impercep-
tible perturbations should not be diminished. It forms the
theoretical and practical foundation that enables progress in
tackling a broader spectrum of adversarial challenges.
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