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Abstract

Federated Learning (FL) incurs high communication costs in both uplink and
downlink. The literature largely focuses on lossy compression of model updates in
deterministic FL. In contrast, stochastic (Bayesian) FL considers distributions over
parameters, enabling uncertainty quantification, better generalization, and, crucially,
inherent communication-regularized training through a mirror-descent structure.
In this paper, we consider both uplink and downlink communication in stochastic
FL, and propose a communication framework based on remote source generation.
Employing Minimal Random Coding (MRC) for remote generation, we allow
the server and the clients to sample from local and global posteriors (sources),
respectively, rather than transmitting locally sampled updates. The framework
encompasses communication-regularized local optimization and principled com-
pression of model updates, leveraging gradually updated prior distributions as side
information. Through extensive simulations, we show that our method achieves
5 − 32× reduction in total communication cost while preserving accuracy. We
further analyze the communication cost, refining existing MRC bounds and en-
abling precise quantification of uplink and downlink trade-offs. We also extend
our method to conventional FL via stochastic quantization and prove a contraction
property for the biased MRC compressor to facilitate convergence analysis.

1 Introduction

Federated learning (FL) enables collaborative machine learning (ML) across multiple clients orches-
trated by a central federator [McMahan et al., 2017]. Communication efficiency, privacy, security, and
data heterogeneity are well-established challenges in FL [Zhang et al., 2021, Wen et al., 2023]. As a
bi-directional process, FL requires substantial uplink and downlink communication, posing increasing
pressure on communication networks as ML models grow larger. To address this, lossy compression
techniques have been widely adopted to reduce uplink gradient transmissions and downlink model
broadcasts [Seide et al., 2014, Alistarh et al., 2017, Philippenko and Dieuleveut, 2020, Gruntkowska
et al., 2023]. However, these methods almost exclusively focus on conventional (non-stochastic) FL,
where clients train deterministic models and transmit fixed updates.

Alternatively, stochastic (Bayesian) FL offers improved generalization, robustness, and inherent
uncertainty estimation [Zhang et al., 2022, Milasheuski et al., 2025]. Rather than training deterministic
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models, clients learn local posterior distributions, aggregated by the federator to obtain a global
posterior. Recently, [Isik et al., 2024] empirically demonstrated state-of-the-art performance under
limited uplink bandwidth using stochastic compression methods, outperforming classical approaches.
This framework can be applied to a variety of Bayesian FL solutions such as QSGD Alistarh et al.
[2017], QLSD Vono et al. [2022], dithered quantization Abdi and Fekri [2019] and FedPM Isik et al.
[2023], as well as to conventional FL settings augmented with stochastic compression.

A key technique enabling stochastic FL is remote source generation, which allows the federator
to sample from the clients’ local posterior, rather than obtaining samples locally generated by the
clients. This avoids redundant transmission and enables tight, stochastic control over communication.
Such remote generation requires common randomness shared between the transmitter and receiver in
the form of a common prior Li [2024], which we also refer to as side information. If the downlink
is unlimited, this allows the server to broadcast the global posterior to all the clients, and this
posterior serves as a natural common prior. However, when both uplink and downlink are limited, the
possibility for remote source generation is restricted, which challenges the application of efficient
stochastic FL. Thus, in this paper, we explore and analyze communication-efficient stochastic FL.
The rigorous treatment of stochastic FL in this scenario is further reinforced by its two fundamental
advantages: (i) Communication-regularized training: we show that stochastic FL, as opposed to
conventional solutions, inherently integrates communication constraints into the training process,
effectively treating communication as an integral part of the optimization objective; (ii) Priors as
side information: the probabilistic structure allows principled integration of common priors as side
information, reducing communication costs to the update from prior to posterior.

Concretely, we address the following question: Can joint uplink and downlink compression signifi-
cantly reduce communication costs in stochastic FL without compromising accuracy? We answer this
question affirmatively, tightening the communication–accuracy trade-off in ways that deterministic
methods cannot, and achieving communication reductions of up to 32× without performance loss.
Below, we summarize our key contributions.

• We propose two novel bi-directional compression algorithms for stochastic FL with Minimal
Random Coding (MRC): one leveraging globally shared randomness, and one requiring private
shared randomness between each client and the federator. Both enable efficient sampling-based
communication by exploiting carefully selected side information.
• We demonstrate substantial communication savings, reducing total cost by factors of 5− 32 while
maintaining competitive accuracy across standard benchmarks. Our ablation studies analyze the
effects of shared randomness and the choice of side information.
• We extend our approach to conventional FL with stochastic quantization, proving a contraction
property of the resulting (biased) compression operator. This enables convergence guarantees in both
uni- and bi-directional settings.
• We develop a theoretical framework for communication analysis in stochastic FL, quantifying
uplink and downlink costs under MRC. Our results refine and generalize bounds from Chatterjee and
Diaconis [2018], including tight analyses for Bernoulli distributions and tools applicable to broader
distribution classes.

2 Preliminaries: Stochastic FL with Bi-Directional Compression

In this section, we shortly review the concepts of stochastic FL and compression based on MRC,
which are employed in our proposed stochastic bi-directional algorithm.

Stochastic FL. A set of n clients collaboratively and iteratively train a model, e.g., a neural network,
under the orchestration of a federator. Client i ∈ [n] := {1, . . . , n} possesses a dataset Di. We
differentiate between homogeneous data, whereDi is drawn independently from the same distribution
for all clients (i.i.d.), and heterogeneous data, where each Di may come from a different distribution
(non i.i.d.). At each training iteration t, the federator holds a model θt described by a probability
distribution. After downlink transmission, each client i has an estimate θ̂i,t of θt, and locally
optimizes θ̂i,t to obtain a local probabilistic model, called the posterior qti . Compressed versions of
the clients’ posteriors qti are transmitted back to the federator on the uplink to obtain an estimate q̂ti .
The federator aggregates the received posteriors using an aggregation rule R (·) to obtain a refined
global distribution θt+1 = R

(
{q̂ti}i∈[n]

)
. A simple aggregation rule R (·) is the average over all

2



clients’ posteriors. This process is repeated until a certain convergence criterion is met. In many
stochastic FL settings, the sent client updates q̂ti are just samples from the posterior distribution qti .

In fact, conventional FL with stochastic quantization can also be described by the procedure above,
though with the following differences: (i) the federator holds a model θt with deterministic parameters;
(ii) each client i locally optimizes θ̂i,t to obtain a local gradient gti . A stochastic compression Qs(·)
is applied on the client’s gradient to obtain a posterior distribution qti from Qs(g

t
i); (iii) samples of

qti are transmitted to the federator on the uplink to obtain an estimate of the gradient, which we still
denote by q̂ti ; and (iv) the federator updates the global model as θt+1 = θt − ηR

(
{q̂ti}i∈[n]

)
, with

learning rate η. In this paper, we will investigate both settings, with a prominent focus on the former.

Stochastic Compression by MRC. To efficiently transmit samples from the posterior qti , we employ
MRC [Havasi et al., 2019], which allows to leverage shared randomness and side information common
to the federator and the clients. MRC is a stochastic compressor Cmrc(·), whose input is a posterior
distribution Q and a prior distribution P , and its output is a sample from a distribution Q̂ close to
Q. It operates as follows: The encoder and decoder generate nIS samples {Xi}i∈[nIS] from P . The
encoder computes a categorical distribution W , with W (i) ∝ Q(Xi)/P (Xi), and transmits an index
i ∼W with log2(nIS) bits. To obtain high accuracy, it is required that nIS = Θ(exp(DKL (Q∥P ))),
where DKL (Q∥P ) is the KL-divergence between Q and P [Chatterjee and Diaconis, 2018]. For
brevity, in what follows, for two Bernoulli distributions with parameters q and p, we will use the
shorthands dKL (q||p) and Cmrc(q, p).

The choice of MRC for remote generation stems from a practicality aspect and ease of exposition.
Ordered random coding (ORC) [Theis and Ahmed, 2022] is a natural advancement, reducing the
entropy of the indices selected for transmission using the Gumbel-Max trick. The extension to ORC
can be incorporated with our methods using a minor adaption that we omit here for clarity. Theis
and Ahmed [2022] further expose an interesting connection to the Poisson functional representa-
tion, allowing exact remote generation. Such lossless sampling schemes, however, usually incur
substantially larger communication costs and sampling complexities, often rendering those methods
impractical. Thus, we herein focus on lossy remote generation schemes for efficiency.

3 BICOMPFL

We next introduce our method BICOMPFL, a bi-directional stochastic compression strategy, which
uses MRC to reduce both uplink and downlink communication costs. The scheme assumes that
shared randomness between each of the clients and the federator exists, which can be implemented
using pseudo-random sequences generated from a common seed. We distinguish two types of shared
randomness: private shared randomness (between individual clients and the federator) and global
shared common randomness (among all parties), with the latter being more challenging to achieve in
practice. We assume all clients and the federator share the same global model θ̂0 at initialization. This
does not incur any communication when global shared randomness is available, but necessitates an
initial model transmission from the federator to clients when only private shared randomness exists.

BICOMPFL: The General Algorithm. Our method serves as a general framework for stochastic
optimization procedures. We explain BICOMPFL for Bayesian FL and show in the sequel how it
can be used for conventional FL with stochastic quantization. Consider probabilistic mask training
(similar to FedPM, [Isik et al., 2023]) as an example of Bayesian FL. The models θt ∈ [0, 1]d of
dimension d are parameters of Bernoulli distributions. Those parameters determine for each weight of
a randomly initialized network with fixed weights w whether it is activated or not. During inference,
the weights w are masked with samples xt ∈ {0, 1}d ∼ θt, i.e., the network weights are w ⊙ xt. We
start with a general description, which is valid for the cases of global and private shared randomness.

At iteration t = 0, each client i ∈ [n] shares with the federator the same global model, i.e., θ̂i,0 = θ0,
for all i ∈ [n]. At iteration t, each client i locally trains model θ̂i,t in L local iterations. In our
previous example, when training Bernoulli distributions to mask a random network, the parameters
are mapped to scores in a dual space, which are then trained for L local iterations m ∈ [L] using
stochastic gradient descent. Mapping the trained scores back to the primal space, each client i obtains
a model update in terms of a posterior qti . We refer to Appendix F for details. This optimization
principle is a special instance of mirror descent, which, in the special case of optimizing over Bernoulli
distributions, leads to a point-wise minimization with respect to a KL-proximity term (as opposed to
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Algorithm 1 BICOMPFL-GR with Global Randomness

Require: Both clients and federator initialize the same global model θ0 using a shared seed
Ensure: Clients set prior pt = θ̂i,0 = θ0,∀i ∈ [n]

1: repeat
2: for Client i ∈ [n] do
3: qti ← Local training of θ̂i,t
4: Employ Cmrc(q

t
i , p

t) to sample indices Ibi,ℓ, ℓ ∈ [nUL], b ∈ [B] with prior pt, transmitted to
federator to reconstruct q̂ti

5: end for
6: Federator updates global model θt+1 = 1

n

∑n
i=1 q̂

t
i

7: Federator relays to client j the other clients’ indices {Ibi,ℓ}ℓ∈[nUL],b∈[B],i∈[n]\{j}
8: for Clients i ∈ [n] do
9: Reconstruct θ̂i,t+1 = 1

n

∑n
i=1 q̂

t
i from {Ibi,ℓ}

10: end for
11: Clients and federator set prior pt = θ̂t+1

12: t← t+ 1
13: until Convergence

the Euclidean distance in standard SGD, cf. Appendix C for details). The KL-divergence between
the updated local model and the global model directly determines the communication cost. Hence,
we regularize the minimization of the loss function by the communication cost, thereby treating
communication as an inherent optimization objective.

To convey the model update qti to the federator, each client employs Cmrc(·) in B blocks of size
d/B each (assuming for simplicity that B divides d) with a prior distribution pti,u, which is set
to p0i,u = θ̂i,0 at iteration t = 0. The choice of pti,u for t > 0 will be clarified later. For each
block b ∈ [d/B], client i conveys nUL samples {yti,ℓ}ℓ∈[nUL] of qti to the federator by transmitting
for each block b an index Ibi,ℓ with log2(nIS) bits, where nIS is the number of samples per block,
generated from the prior distribution pti,u at both the client and the federator using the available shared
randomness. The samples of all blocks are concatenated for each ℓ. Hence, the federator obtains an
estimate of client i’s posterior distribution using the empirical average q̂ti =

1
nUL

∑nUL
ℓ=1 y

t
i,ℓ.

By averaging the estimates q̂ti for all the clients’ models, the federator updates the global model as
θt+1 = 1

n

∑n
i=1 q̂

t
i . To transmit the new model to each client i, we assume the existence of a common

prior pti,d shared by the federator and the clients. With pti,d, the federator performs MRC in B blocks
of size d/B to make client i sample from, and thereby estimate, the latest global model θt+1. The
client samples nDL masks {xt

i,ℓ}ℓ∈[nDL], each incurring a communication cost of B log2(nIS) bits. An
estimate of the updated global model is obtained by concatenating the reconstructed samples for all
the blocks b ∈ [B], and averaging over all masks θ̂i,t+1 = 1

nDL

∑nDL
ℓ=1 x

t
i,ℓ.

Since the number of clients is typically large, nUL = 1 often suffices. The clients’ contributions
are averaged at the federator, effectively reducing the noise due to the MRC step. This allowed
Isik et al. [2024] to theoretically analyze the uplink communication cost for importance sampling-
based stochastic communication of model updates. We will follow a similar approach for downlink
communication; however, since downlink communication cannot benefit from the averaging effect
of multiple clients, we reduce the variance of the model estimate in the downlink by setting nDL =
n · nUL.

The choice of the priors pti,u and pti,d for MRC in the uplink and downlink channels, respectively,
crucially affects the performance and the communication cost of the algorithm. As a first-order
characterization, the communication cost of MRC is determined by DKL(q

t
i∥pti,u) in the uplink and by

DKL(θt+1∥pti,d) in the downlink. We continue the description with the easier setting in which global
shared randomness is available, before turning to the more challenging setting of private randomness.

Global Randomness. When global shared randomness is available, all clients can maintain the same
priors at each iteration t, and, thereby, obtain the same global model estimates θ̂i,t. The global model
is known to the clients and the federator from initialization, and synchronization among all clients
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Algorithm 2 BICOMPFL-PR with Private Randomness

Require: Both clients and federator initialize the same global model θ0 using a shared seed
Ensure: Clients set prior pti,u = pti,d = θ̂i,0 = θ0,∀i ∈ [n]

1: repeat
2: for Client i ∈ [n] do
3: qti ← Local training of θ̂i,t
4: Federator employs Cmrc(q

t
i , p

t
i,u) to draw nUL samples yti,ℓ ∼ qti using prior pti,u

5: Federator estimates client’s posterior q̂ti =
1

nUL

∑nUL
ℓ=1 y

t
i,ℓ

6: end for
7: Federator updates global model θt+1 = 1

n

∑n
i=1 q̂

t
i

8: for Clients i ∈ [n] do
9: Client employs Cmrc(θt+1, p

t
i,d) to draw nDL samples xt

i,ℓ ∼ θt+1 using prior pti,d
10: Client est. global model: θ̂i,t+1 = 1

nDL

∑nDL
ℓ=1 x

t
i,ℓ

11: Clients set prior pti,u = pti,d = θ̂i,t+1

12: end for
13: t← t+ 1
14: until Convergence

is ensured by choosing as prior pti,u = pti,d the latest estimate of the global model θ̂i,t. The clients
utilize the globally shared randomness to sample the exact same samples from the same prior for
uplink transmission at all iterations. Selected indices of such samples are transmitted to the federator
to convey an estimate q̂ti of the posterior qti , who reconstructs the global model θt+1. Using the same
prior in the downlink, i.e., the global model from the previous iteration, the updated model can be
transmitted to the clients through MRC. Leveraging the shared randomness, all clients i ∈ [n] sample
from the same prior, and thus obtain the exact same estimate of the global model θ̂i,t+1 = θ̂t+1, for
all i ∈ [n]. Hence, we have that pti,u = pti,d = θ̂t for all i ∈ [n].

In this version, the federator reconstructs the global model from estimates of the client posteriors q̂ti .
However, in the uplink, all clients sample from the same prior, which enables further improvements.
Naively, the federator will reconstruct the global model using the indices Ibi,ℓ for b ∈ [B], ℓ ∈ [nUL]

received by the clients i ∈ [n] through MRC, followed by an additional MRC round for downlink
transmission. Instead, and more efficiently, the federator can simply relay the indices to the respective
other clients (i.e., client j receives Ibi,ℓ for b ∈ [B], i ∈ [n] \ {j}, ℓ ∈ [nUL]), which reconstruct the
updated global model individually. This avoids additional noise by a second compression round and
allows better convergence without additional communication facilitated by global randomness. We
term this approach BICOMPFL-GR summarized in Algorithm 1.

Private Randomness. Without global randomness, maintaining the same prior among all clients
is impossible without additional communication. Instead, an additional round of MRC is needed
for the downlink transmission, and each client obtains a different estimate of the global model θ̂i,t
at each iteration. Hence, the clients’ local trainings start from different estimates of the global
model. In a non-stochastic setting, this has only been considered by Philippenko and Dieuleveut
[2021], Gruntkowska et al. [2024]. Understanding the additional cost incurred due to lack of shared
randomness in terms of both the convergence speed, communication load, and the choice of the priors
pti,u and pti,d, is then of interest.

For the uplink transmission of client i, any convex combination of θ̂i,t and q̂ti can be used as prior,
i.e., pti,u = λθ̂i,t + (1− λ)q̂ti , for some 0 ≤ λ ≤ 1 (cf. Appendix I.2 for details). This is due to the
availability of both quantities at the federator and client i. However, small λ values are not expected to
reduce the cost of communication reflected by dKL

(
qti ||pti,u

)
since the previous global model estimate

is likely to be similarly different from the posterior (in terms of the KL-divergence) than the previous
posterior estimate of the federator. Indeed, our numerical experiments have shown that the savings
from choosing λ ̸= 1, i.e., priors other than θ̂i,t, are not significant. For simplicity, we thus propose
to use pti,u = pti,d = θ̂i,t. We term this approach BICOMPFL-PR and summarize the procedure
in Algorithm 2. Choosing different priors is possible and only affects line 11 in Algorithm 2. We
mention in passing that BICOMPFL-PR allows partial client participation, which is incompatible
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with shared randomness and the method BICOMPFL-GR. We further note that our methods are
readily compatible with sparsification and pruning techniques (e.g., Wangni et al. [2018], Shi et al.
[2019]) by excluding pruned parameters from the block selection.

Block Allocation. We consider three different block allocation strategies: 1) fixed block size (referred
to as “Fixed” in the experiments), where each block b ∈ [B] is of the same size and constant across
all t; 2) adaptive block allocation (Adaptive) as proposed by Isik et al. [2024], where each block size
is separately optimized each iteration t; and 3) adaptive average allocation (Adaptive-Avg), where the
block sizes are equal but optimized at each iteration t according to the average KL-divergence per
block. We refer the reader to Appendix D for a detailed discussion on this.

Partial Client Participation. We note that BICOMPFL-PR supports partial client participation
without additional communication overhead, as it does not rely on full prior synchronization among
the clients. BICOMPFL-GR on the other hand, requires that all clients’ priors are synchronized
at each iteration. To allow partial client participation, the federator is required to transmit the
previous global model to the clients that were absent in the previous iteration. This ensures full
synchronization of the global model estimate used for efficient uplink communication. Hence,
BICOMPFL-GR’s compatibility with partial client participation comes with a potentially increased
downlink communication cost for previously passive clients.

4 Experiments

We next evaluate the performance of our proposed BICOMPFL-GR and BICOMPFL-PR schemes in
experiments, and compare against baseline FL strategies without compression (FedAvg or PSGD)
[McMahan et al., 2017] and several non-stochastic bi-directional compression schemes that employ
different combinations of compression, error-feedback, and momentum. In particular, we compare
against DOUBLESQUEEZE [Tang et al., 2019], MEM-SGD [Stich et al., 2018], NEOLITHIC [Huang
et al., 2022], CSER [Xie et al., 2020], and the recently proposed LIEC [Cheng et al., 2024]. SignSGD
[Seide et al., 2014] serves to compress the transmitted gradients for all the schemes. We further
compare with M3 [Gruntkowska et al., 2024], which partitions the model into disjoint parts for
downlink transmission and transmits to each client a different part of the model. While M3 is
focused on RandK compression for the uplink (i.e., transmitting random K entries of the gradient),
we use TopK [Wangni et al., 2018, Shi et al., 2019], which achieved much more stable results.
As mentioned above, the mirror descent approach outlined in Section 3 inherently minimizes the
communication cost as a by-product. Hence, it is a strong candidate for communication-efficient
stochastic FL. Nonetheless, we show how our method can also be used to improve the communication
efficiency in conventional FL, by using the uplink and downlink compression Cmrc(·) combined with
stochastic quantizers, e.g., [Alistarh et al., 2017]. In Section 5, we pave the way to convergence
guarantees by proving a contraction property of Cmrc(·) composed with a stochastic quantization
Qs(·) of gradients gti . To compare our method to the baselines that use SignSGD as compressor, we
evaluate BICOMPFL-GR in a conventional federated learning (CFL) task with a stochastic variant of
SignSGD. We replace mirror descent over Bernoulli masks by a standard learning procedure over
a deterministic model, which takes as input the global model estimate θ̂i,t, computes a gradient
gti (over L local epochs, using SGD and cross-entropy losses), and outputs a distribution Qs(g

t
i).
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Figure 1: Test accuracy for BICOMPFL and base-
lines on Fashion MNIST 4CNN on i.i.d. data.

In stochastic SignSGD, Qs(·) transforms each
gradient entry gti,e to a Bernoulli random
variable with parameter qti,e = 1/(1 +

exp(−gti,e/K)) for some K > 0, where the
random variable takes value +1 with probabil-
ity qti,e, and −1 otherwise. We then employ
Cmrc(q

t
i , p

t
i,u) to obtain samples yti,ℓ, where the

compression is performed element-wise. We
apply this method to BICOMPFL-GR where
Step 6 is replaced by θt+1 = θt − ηs

1
n

∑n
i=1 q̂

t
i ,

where q̂ti = 1
nUL

∑nUL
ℓ=1 y

t
i,ℓ and ηs is the feder-

ator’s learning rate. Step 9 is modified accord-
ingly. The priors pt are chosen as Bernoulli
random variables with parameter 0.5. We re-
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mark that while MRC samples are biased towards pt (as we discuss in Section 5), this particular prior
choice avoids imbalance in stochastic SignSGD, and rather acts as a regularizer, pulling the clients’
posteriors closer to maximum entropy distributions. Consequently, convergence is achieved under
bi-directional compression even without error feedback. For general prior choices, error feedback may
be needed, see Algorithm 3 and Appendix B. We will refer to this method as BICOMPFL-GR-CFL.

We study n = 10 clients (see Appendix H for additional experiments with more clients) collab-
oratively training a convolutional neural network (CNN)-based classifier for the datasets MNIST,
Fashion-MNIST and CIFAR-10 under the orchestration of a federator. For MNIST, we use two
different models, LeNet-5 [Lecun et al., 1998] and a 4-layer convolutional neural network (4CNN)
proposed by Ramanujan et al. [2020]. The latter is also used to train on Fashion MNIST. For
CIFAR-10, we use a larger neural network with 6 convolutional layers (6CNN). We train MNIST
and Fashion-MNIST for 200 global iterations and CIFAR-10 for 400 global iterations. Through
all experiments and datasets, we carry L = 3 local iterations per client. The learning rates are
carefully selected to ensure convergence and comparability across all methods. Particularly, we tune
the hyperparameters so that all algorithms achieve similar accuracies, allowing a fair comparison of
their communication costs (see Appendix I.6 for details). Our main claims are the communication
reduction of the bitrates per parameter per epoch, which are orthogonal to the choice of the learning
rates of the algorithms. The code to reproduce our experiments is included in the supplementary
material.

We evaluate the schemes in two settings: with a uniform data allocation (i.i.d.), to model homogeneous
systems, and with a non-i.i.d. allocation, to model heterogeneous systems, where data allocation for
each client is drawn from a Dirichlet distribution with parameter α = 0.1. This regime is challenging
due to extreme class imbalance. Each result shows the average across three simulation runs with
different seeds. Further details on the simulation setup and the network architectures are deferred
to Appendix E. Consistently throughout all experiments, our proposed methods provide order-wise
improvements in the communication cost, while achieving state-of-the art accuracies.

We plot in Fig. 1 the test accuracies for all the schemes as a function of the total communication
cost in bits per parameter and per global iteration. While all the schemes achieve approximately
the same maximum test accuracy, BICOMPFL-GR and BICOMPFL-PR require substantially less
communication. Hence, when the bandwidths of uplink and downlink transmissions are limited, both
variations of the proposed method achieve better test accuracies. Turning our focus to the different
variations of our scheme, it can be observed that, without partitioning the model for downlink
compression, BICOMPFL-PR converges significantly slower than BICOMPFL-GR for any block
allocation method. This highlights the intuition above that the additional MRC step in downlink
incurs further noise, which reduces the convergence speed. However, when we partition the model
in the downlink and only send disjoint parts to each client through MRC (BICOMPFL-PR-Fixed-
SplitDL), the downlink communication cost reduces by a factor of n. In the regime of Fashion
MNIST with a uniform data allocation, this comes without performance degradation, and is hence
the method of choice in this regime. We additionally simulated BICOMPFL-GR with the suboptimal
implementation (BICOMPFL-GR-Reconst-Fixed), in which the federator first reconstructs the global
model, and then performs an additional MRC step for downlink transmission. This naturally reduces
the convergence speed per iteration without gains in the communication cost. Hence, justifying the
choice of BICOMPFL-GR. We show that, in conventional FL, BICOMPFL-GR-CFL substantially
reduces the communication cost without loss in performance. In some cases, especially for non-i.i.d.
data, we even observe improved performance, which we attribute to implicit regularization. Note that
BICOMPFL-GR-CFL provides improvements even without error-feedback or momentum. However,
our method is fully compatible with such techniques and can be used as a plug-in approach to further
minimize the communication cost in many existing schemes. We study the convergence in Section 5.

We plot in Fig. 2(a) the schemes’ average bitrates over the maximum test accuracy for MNIST and
4CNN. The average bitrate is reduced by more than a factor of 1000 compared to FedAvg, and more
than a factor of 32 compared to DOUBLESQUEEZE, NEOLITHIC and LIEC, which perform best
among the conventional bi-directional compression methods. We repeat the study for non-i.i.d.data
allocation according to a Dirichlet distribution with parameter α = 0.1, and show maximum test
accuracies over average bitrates in Fig. 2(b). Partitioning the model in BICOMPFL-PR worsens the
final accuracy of the model. While the model converges faster, it does not achieve the same accuracies
as BICOMPFL-GR and BICOMPFL-PR without partitioning. This hints towards hybrid schemes for
BICOMPFL-PR, where the training begins with partitioning on the downlink, which is later switched
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Figure 2: Maximum test accuracy over total communication cost measured by bitrate per parameter.

to full transmission. In Fig. 2(c), we provide the results for CIFAR-10 and uniform data allocation.
BICOMPFL-GR and BICOMPFL-PR both achieve better results with a bitrate smaller by a factor
of 5 than the best baselines. More detailed numerical results can be found in Appendices H and I.

The adaptive block allocation (Adaptive) of Isik et al. [2024] saves communication costs in many
settings and provides better performance than the fixed block allocation (Fixed), due to more accurate
MRC tailored to the exact divergences. The proposed low complexity adaptive strategy based on
the average KL-divergence (Adaptive-Avg) per block can additionally save in communication (and
computation) with no or little performance degradation. We refer the reader to Appendix H for further
extensive experiments, graphs for accuracies over epochs, separate studies of uplink and downlink
costs, and comparisons for the case of an available broadcast channel from federator to the clients.
Finally, we refer to Appendix I for various ablation studies analyzing the sensitivity of BICOMPFL
with respect to the choices of the priors, n, nDL, nIS, the block size d/B, and the learning rate η.

5 Theoretical Results

Convergence. In stochastic FL, the exact time dynamics of the system are challenging to analyze
due to the round-dependent interplay of the learning procedure with the transmission noise. However,
when using BICOMPFL for conventional FL with stochastic quantization (cf. BICOMPFL-GR-
CFL), convergence guarantees can be given. We prove the convergence for a general and widely
used class of stochastic quantizers Qs(·), which are natively unbiased. Qs(·) takes as input the
entry ge of a gradient vector g ∈ Rd and operates as follows. Let s be the number of quantization
intervals, and let 0 ≤ τe < s be an integer such that τe

s ≤
|ge|
∥g∥ ≤

τe+1
s , then Qs(ge) outputs

∥g∥ · sign(ge)(τe+1)/s with probability s|ge|/∥g∥− τe, and ∥g∥ · sign(ge)τe/s otherwise. Qs(·) is
unbiased, i.e., E[Qs(x)] = x, and its variance satisfies E[∥Qs(x)− x∥2] ≤ min{d/s2,

√
d/s}∥x∥22

[Alistarh et al., 2017]. See Remark 2 in Appendix B for a discussion on the choice of s.

Replacing stochastic SignSGD by Qs(·) in BICOMPFL-GR-CFL, the posterior is given by a Bernoulli
distribution with parameter qti,e = s|gti,e|/∥gti∥− τe. The values ∥g∥, sign(g), and τe can be encoded
independently, e.g., using Elias coding. With a slight abuse of notation, let Cmrc(Qs(·), ·) denote
the composition of Qs(·) and MRC with nIS samples per entry. The compression Cmrc(Qs(g

t
i), ·)

takes a gradient gti and outputs samples from a distribution close to Qs(g
t
i), and falls in the class of

biased compressors. We can prove the following contraction property for Cmrc(Qs(·), ·), which will
facilitate convergence analysis for uni- and bi-directional compression. This constitutes a substantial
improvement over [Isik et al., 2024], where such guarantees were missing, and hence no convergence
guarantees were given. A prominent biased contractive compressor is TopK.

Lemma 1. For any x ∈ Rd and corresponding posterior q following Qs(x), and a prior p ∈ [0, 1]d,

let ∆̄ := maxe∈[d]
qe
pe
− 1−qe

1−pe
, ∆̄′ := maxe∈[d] qe

(
pe

qe
+ 1−pe

1−qe

)
, and p̄ := maxe∈[d] pe. The compres-

sor Cmrc(Qs(·)) satisfies the following contraction property for nIS = O(max{
√
2∆̄′, log(6p̄(∆̄ +

∆̄2))
√
6p̄(∆̄ + ∆̄2)}) and s ≥

√
2d:

E[∥Cmrc(Qs(x))− x∥2] ≤ (1− δ)∥x∥2,

for δ = 1− d
s2

(
1 + ∆̄′

n2
IS
+O

(
(∆̄ + ∆̄2)

√
6p̄ log(2nIS)

nIS

))
.
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The underlying core result is a refinement of the MRC analysis, cf. Lemma 2 (Appendix A).
Hence, for sufficiently large nIS, the compressor Cmrc(Qs(·), ·) can be used as an alternative to
common compressors such as Qs(·). The use of MRC introduces a bias into the otherwise unbiased
stochastic quantization. Based on the contraction property in Lemma 1, standard convergence results
(cf. Theorem 2) follow easily by a straightforward extension of our conventional FL algorithm
BICOMPFL-GR-CFL to error feedback (cf. Algorithm 3) as detailed in Appendix B.

Communication Cost. We analyze the communication cost in a specific iteration t and comment on
the inter-round dependency later. When the latest global model estimate θ̂i,t is chosen as a prior in
MRC, the uplink cost is determined by how far the model evolves during the client’s training, i.e.,
dKL(q

t
i ||pti,u) = dKL(q

t
i ||θ̂i,t). After communicating samples of the posteriors, the federator obtains

an estimate q̂ti for all i ∈ [n]. The cost of communication on the downlink to client i is then determined
by dKL(

1
n

∑n
i=1 q̂

t
i ||θ̂i,t). While dKL(q

t
i ||θ̂i,t) depends on the progress during client training, the core

challenge is to bound the expected KL-divergence of each model estimate dKL(q̂
t
i ||θ̂i,t) in the presence

of potentially different priors, i.e., θ̂i,t ̸= θ̂j,t, i ̸= j. For each client i, the overall communication cost
is in the order of nDLexp

(
dKL
(
1
n

∑n
i=1 q̂

t
i∥pti,d

))
+ nUL exp

(
dKL

(
qti ||pti,u

))
. We will next quantify

dKL(
1
n

∑n
i=1 q̂

t
i ||θ̂i,t) for the case pti,u = pti,d, however, the analysis can be extended to pti,u ̸= pti,d

by an additional assumption on the divergence between the two priors.

For the theoretical analysis, we focus on the scalar case for a single iteration t, where client i ∈ [n] has
a posterior Qi, and the federator and client i share a common prior Pi, both are Bernoulli distributions
with parameters qi and pi, respectively. In the context of FL, the client locally trains Pi and results
with Qi. According to Chatterjee and Diaconis [2018] and the multi-client extension of Isik et al.
[2024], the communication cost in the uplink is determined by exp(dKL (Qi||Pi)). After uplink
transmission, the federator obtains an estimate q̂i of qi; and hence, the updated global model is given
by 1

n

∑n
i=1 q̂i. The downlink cost for client i is determined by dKL

(
1
n

∑n
i=1 q̂i||pi

)
.

We derive a new high probability upper bound on this quantity, refining previous MRC analysis
for the special case of Bernoulli distributions. While a more general analysis can be conducted
for other classes of distributions (cf. Remark 1 in Appendix A), the Bernoulli-based optimization
method described earlier proves particularly efficient by enabling communication-regularized train-
ing, a unique property that renders our methods substantially more communication-efficient while
preserving state-of-the-art performance.

Let X be a Bernoulli sample obtained through MRC. As an initial step, we bound the difference
between qi and the probability Pr(X = 1) that the samples are drawn from, which vanishes when
pi = qi (and hence dKL (qi||pi) = 0). We note that the bound of Chatterjee and Diaconis [2018,
Theorem 1.1] does not satisfy this natural property. We formally state the result in Proposition 1 in
Appendix A, which, however, does not yet capture the dependency on the number of samples nIS used
in MRC to sample an index. We refine Proposition 1 with Lemma 2 (cf. Appendix A), which addi-
tionally captures this dependency, and will allow us to derive an upper bound on dKL

(
1
n

∑n
i=1 q̂i||pi

)
.

Lemma 2 is of independent interest and can be seen as a refinement of [Chatterjee and Diaconis,
2018] for Bernoulli distributions. It is required to prove Theorem 1.

For the statement of the following theorem, we assume that the progress by one local client training
is bounded by |qj − pj | ≤ ρ for all j ∈ [n]. Using Pinsker’s inequality to bound |qj − pj | ≤
1
2

√
dKL (qj ||pj) /2, this is a natural assumption given from the KL-proximity term of mirror descent

(for one local iteration), and can be strictly enforced through the projection of qj onto a KL ball
around pj of fixed divergence. We assume that the difference between the clients’ priors, i.e., their
global model estimates in our algorithms, are bounded as |pi − pj | ≤ ζ for all i, j ∈ [n].

Theorem 1. Assume pj>ζ for all j∈ [n], for ∆j :=
qj

pj−ζ −
1−qj

1−pj+ζ and ∆′
j :=qj

(pj+ζ
qj

+
1−pj+ζ
1−qj

)
,

with probability 1− δ′, the global model divergence dKL(
1
n

∑n
j=1 q̂j ||pi) is upper bounded by

n∑
j=1

2

nmin{pi, 1− pi}

(
∆′

j

n2
IS
+

√
ln(2/δ′)

2nUL
+ρ+ζ2 +O

(
(∆j +∆2

j )

√
6(pi + ζ) log (2nIS)

nIS

))
.

By Chatterjee and Diaconis [2018], this provides an immediate bound on the cost of downlink
transmission. The bound applies to both algorithms BICOMPFL-PR and BICOMPFL-GR. However,
when all priors pj are the same (such as in BICOMPFL-GR-Reconst), i.e., ζ = 0, the bound simplifies
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accordingly. The explicit dependency on the factor 1/
√
nUL reflects the interplay between uplink and

downlink cost. The parameter ζ gives rise to an inter-round dependency of the communication cost.
The more accurate the estimation of the global model in the previous iteration (given the priors are
chosen as θ̂i,t), the smaller ζ, and hence the lower the transmission cost in the subsequent iteration.
The proofs of Proposition 1, Lemma 2, and Theorem 1 can be found in Appendix A.

6 Related Work

Following the introduction of FL [McMahan et al., 2017], lossy compression of gradients or model
updates has been a long-studied narrative in FL, with prominent representatives such as SignSGD,
also known as 1-bit Stochastic Gradient Descent (SGD) [Seide et al., 2014], QSGD [Alistarh et al.,
2017], TernGrad [Wen et al., 2017], SignSGD with error feedback [Karimireddy et al., 2019], vector-
quantized SGD [Gandikota et al., 2021] and natural compression [Horvóth et al., 2022]. Such
methods retain satisfactory final model accuracy even with aggressive quantization. Sparsification-
based methods have also been considered as alternatives, e.g., TopK [Wangni et al., 2018, Shi et al.,
2019]. The importance of bi-directional gradient compression in many settings was outlined by
Philippenko and Dieuleveut [2020]. Many schemes were proposed that leverage combinations of
gradient compression in the uplink and downlink, error-feedback, and momentum, e.g., Mem-SGD
[Stich et al., 2018], DoubleSqueeze [Tang et al., 2019], block-wise SignSGD with momentum
[Zheng et al., 2019], communication-efficient SGD with error reset (Cser) [Xie et al., 2020], Artemis
[Philippenko and Dieuleveut, 2020], Neolithic [Huang et al., 2022], DOCOFL [Dorfman et al.,
2023], EF21-P and friends [Gruntkowska et al., 2023], 2Direction [Tyurin and Richtárik, 2023], M3
[Gruntkowska et al., 2024], and LIEC [Cheng et al., 2024]. With the exception of the methods MCM
[Philippenko and Dieuleveut, 2021] and M3 [Gruntkowska et al., 2024], each client receives the same
broadcast, potentially compressed, global gradient or model update. Isik et al. [2024] studied uplink
compression for stochastic FL and showed significant communication reduction with competitive
performance. Their framework, termed KLMS, applies to a variety of stochastic compressors and
to Bayesian FL settings, e.g., QLSD Vono et al. [2022]. The compression is based on importance
sampling and MRC, thoroughly studied by Chatterjee and Diaconis [2018] and Havasi et al. [2019].
Such methods, known as relative entropy coding, have been used in FL in conjunction with differential
privacy, cf. DP-REC [Triastcyn et al., 2022].

Since the lottery ticket hypothesis [Frankle and Carbin, 2019], finding sparse subnetworks of neural
networks that achieve satisfactory accuracy was investigated. Ramanujan et al. [2020] showed that
randomly weighted networks contain suitable subnetworks of large neural networks capable of
achieving competitive performance. Isik et al. [2023] formulated a probabilistic method of training
neural network masks collaboratively in an FL context.

7 Conclusion

We illuminated bi-directional compression in stochastic FL via federated probabilistic mask training,
which we showed to inherently optimize both the learning objective and the communication costs.
By leveraging side information through carefully chosen prior distributions, the total communication
costs are reduced by factors between 5−32 compared to non-stochastic FL baselines, while achieving
state-of-the-art accuracies on classification tasks, for both homogeneous and heterogeneous data. We
thus close the gap of downlink compression for stochastic FL and complement the existing literature
on bi-directional compression for standard FL. Applying our methods to stochastic quantization in
conventional FL, we paved the way to convergence analysis for MRC-based compression. Allowing
different priors among all clients, this work opens the door to studying compression under side-
information in decentralized stochastic FL, where a central coordinator is missing. Our theoretical
results are of independent interest and may be applied in various scenarios where MRC is used.

Client privacy and fairness are important directions beyond the primary focus of this work. Com-
pression methods commonly strengthen the clients’ privacy in FL. Particularly, the noise introduced
through our sampling methods dilute the individual contributions of the clients observed by the
federator, naturally enhancing the clients’ privacy and reducing the risk of privacy breaches through,
e.g., membership inference attacks. Quantifying the privacy-utility trade-off that arises in the presence
of bi-directional compression is left as an interesting direction for future work.
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A Proofs and Intermediate Results

In the following, we provide the formal statements of Proposition 1 and Lemma 2 including their
proofs. Parts of the proof of Proposition 1 will be used to prove Lemma 2. We prove Theorem 1
afterward.

Proposition 1. For a sample Xℓ transmitted by MRC with posterior and prior Bernoulli distributions
with parameters q and p, we have

|Pr(Xℓ = 1)− q| ≤ q

(
max

{
p

q
,
1− p

1− q
,
q

p
,
1− q

1− p

}
− 1

)
.

Proof of Proposition 1. Assume a party wants to sample from a Bernoulli distribution Q with pa-
rameter q, which is held by another party. Both parties share a common prior P in the form of a
Bernoulli distribution with parameter p and have access to shared randomness. Fix any sample index
ℓ for the moment (this index will be needed for the proof of Theorem 1). Both parties sample KnIS
i.i.d. samples Xℓ,i ∼ P for i ∈ [nIS] independently and identically from P . The party holding Q
constructs an auxiliary distribution

Wℓ(i) =
Q(Xℓ,i)/P (Xℓ,i)∑nIS
i=1 Q(Xℓ,i)/P (Xℓ,i)

,

from which it samples to obtain an index Iℓ. The index is transmitted to the other party, which
reconstructs the corresponding sample Xℓ,Iℓ .

To bound the difference |Pr(Xℓ = 1) − q|, i.e., the target Bernoulli parameter compared to the
parameter which the sample is drawn from, by the independence of the samples Xℓ,Iℓ for different ℓ,

13



we focus on a single sample ℓ ∈ [K], for which it holds that

Pr(Xℓ,Iℓ = 1)

=

nIS∑
i=1

∑
{x1,...,xnIS :xi=i}

Pr(Xℓ,1 = x1, . . . , Xℓ,nIS = xnIS) Pr(Iℓ = i | Xℓ,1 = x1, . . . , Xℓ,nIS = xnIS)

(a)
= nIS

∑
{x2,...,xnIS}

Pr(Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS)

· Pr(Iℓ = 1 | Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS)

(b)
= nIS

nIS−1∑
L=0

∑
{x2,...,xnIS :

∑nIS
i=2=L}

Pr(Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS)

· Pr(Iℓ = 1 | Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS),

where (a) follows from symmetry, (b) follows since by permutation invariance, the inner probability
only depends on the number of ones in {x2, . . . , xnIS}.
The inner probability is given by the distribution Wℓ(i). Given that Xℓ,1 = 1 and that

∑nIS
i=2 Xℓ,ℓ = L,

it holds that
nIS∑
i=1

Q(Xℓ,i)/P (Xℓ,i) = (L + 1) · q
p
+ (nIS − L− 1) · 1− q

1− p
.

Hence,

Pr(Iℓ = 1 | Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS) =

q
p

(L + 1) · qp + (nIS − L− 1) · 1−q
1−p

,

which is independent of the exact choice of {x2, . . . , xnIS} given their sum
∑nIS

i=2 Xℓ,i = L. Since
Pr(Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS) = pL+1(1 − p)nIS−L−1 by the Bernoulli distribution
assumption, we have

Pr(Xℓ,Iℓ = 1) = nIS

nIS−1∑
L=0

(
nIS − 1

L

)
pL+1(1− p)nIS−L−1

q
p

(L + 1) · qp + (nIS − L− 1) · 1−q
1−p

,

Defining a binary random variable M with sample space
{

q
p ,

1−q
1−p

}
, for a Bernoulli distribution

Ber
(

L+1
nIS

)
with success probability parameter L+1

nIS
, where a success refers to the outcome M = q

p ,
we can write that

Pr(Xℓ,Iℓ = 1) = q ·
nIS−1∑
L=0

(
n− 1

L

)
pL(1− p)nIS−L−1 1

L+1
nIS

q
p + nIS−L−1

nIS

1−q
1−p

= q · E

[
1

L+1
nIS

q
p + nIS−L−1

nIS

1−q
1−p

]
= qE

 1

E
Ber

(
L+1
nIS

)[M]

 (1)

(a)

≤ qE
[
E
Ber

(
L+1
nIS

) [ 1

M

]]
,

where the outer expectation is over the binomial distribution with nIS−1 trials and success probability
p, i.e., L ∼ Binomial(nIS − 1, p), and where (a) follows from Jensen’s inequality over the inner
expectation. Hence,

Pr(Xℓ,Iℓ = 1)− q = q

(
Pr(Xℓ,Iℓ = 1)

q
− 1

)
≤ q

(
E
[
E
Ber

(
L+1
nIS

) [ 1

M

]]
− 1

)
(2)
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Since 1
E
Ber

(
L+1
nIS

)[M] ≥ 2− E
Ber

(
L+1
nIS

)[M], it also follows from (1) that

Pr(Xℓ,Iℓ = 1) = q · E

[
1

L+1
nIS

q
p + nIS−L−1

nIS

1−q
1−p

]
= qE

 1

E
Ber

(
L+1
nIS

)[M]


≥ qE

[
2− E

Ber
(

L+1
nIS

)[M]

]
,

from which we have

Pr(Xℓ,Iℓ = 1)− q ≥ q

(
1− E

[
E
Ber

(
L+1
nIS

) [M]

])
. (3)

Combining the upper and lower bound in (2) and (3), respectively, we derive

|Pr(Xℓ,Iℓ = 1)− q| ≤ q

(
max

{
E
[
1− E

Ber
(

L+1
nIS

) [M]

]
,E
[
E
Ber

(
L+1
nIS

) [ 1

M

]]}
− 1

)
≤ q

(
E
[
max

{
E
Ber

(
L+1
nIS

) [M] ,E
Ber

(
L+1
nIS

) [ 1

M

]}]
− 1

)
≤ q

(
E
[
E
Ber

(
L+1
nIS

) [max

{
M,

1

M

}]]
− 1

)
≤ q

(
E
[
max

{
p

q
,
1− p

1− q
,
q

p
,
1− q

1− p

}]
− 1

)
= q

(
max

{
p

q
,
1− p

1− q
,
q

p
,
1− q

1− p

}
− 1

)
.

This concludes the proof.

Lemma 2. For a sample Xℓ transmitted via MRC with posterior and prior being Bernoulli distribu-
tions with parameters q and p, ∆ := q

p −
1−q
1−p and ∆′ := q

(
p
q + 1−p

1−q

)
, we have

|Pr(Xℓ = 1)− q| ≤ ∆′

n2
IS
+O

(∆ +∆2)

√
6p log (2nIS)

nIS

 .

Proof of Lemma 2. The proof starts with the same derivations as for the proof of Proposition 1, which
we follow until (1) to get

Pr(Xℓ,Iℓ = 1) = qE

 1

E
Ber

(
L+1
nIS

)[M]


Since L is a random quantity that follows a Binomial distribution, we bound |Pr(Xℓ,Iℓ = 1)− q|
using a concentration bound on L. The relative (multiplicative) Chernoff bound states that

Pr(|L− ε(nISp)| ≥ εnISp) = Pr(L− ε(nISp) ≥ εnISp) + Pr(L− ε(nISp) ≤ −εnISp)

≤ 2 exp

(
−ε2nISp

3

)
for any ε ∈ [0, 1]. Setting ε =

√
3 log(2/δ)

nISp
implies that

|L− nISp| ≥
√

3nISp log(2/δ)

with probability at most δ. Setting δ = 1
n2

IS
, we obtain for a concentration parameter2 ηδ :=√

6p log(2nIS)
nIS

that

E := {|L− nISp| ≥ nISηδ}
2Note that we can assume p+ ηδ ≤ 1 and p− ηδ ≥ 0, otherwise the concentration can be trivially bounded.
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with probability Pr(E) ≤ 1
n2

IS
.

Then, we can write

Pr(Xℓ,Iℓ = 1) = qE

 1

E
Ber

(
L+1
nIS

)[M]


= qE

 1

E
Ber

(
L+1
nIS

)[M]
· 1{Ec}

+ qE

 1

E
Ber

(
L+1
nIS

)[M]
· 1{E}

 (4)

Assume for now that q < p (we will later proof the opposite event), then 1
E
Ber

(
L+1
nIS

)[M] is strictly

non-increasing in L since q
p < 1−q

1−p , and hence, when Ec holds and hence L concentration around the
average that

1

E
Ber

(
L+1
nIS

)[M]
≤ 1

E
Ber

(
(L+1)·(p−ηδ)

nIS

)[M]

=
1

(nIS−1)(p−ηδ)+1
nIS

q
p + nIS−1−(nIS−1)(p−ηδ)

nIS

1−q
1−p

=
1(

p− p
nIS

+ ηδ

nIS
− ηδ +

1
nIS

)
q
p +

(
1− p− 1

nIS
+ p

nIS
+ ηδ − ηδ

nIS

)
1−q
1−p

=
1

1 +
(

q
p −

1−q
1−p

)(
1−p+ηδ−nηδ

nIS

)
= 1 +

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ

,

where the last step is by Taylor expansion. Using (4) and the monotonicity of 1
E
Ber

(
L+1
nIS

)[M] , we write

Pr(Xℓ,Iℓ = 1) = qE

 1

E
Ber

(
L+1
nIS

)[M]


≤ q

(
1 +

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ
)

+ qδ
p

q
,

and hence

Pr(Xℓ,Iℓ = 1)− q ≤ δp+ (1− δ)

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ

Similarly, we get by bounding 1
E
Ber

(
L+1
nIS

)[M] ≥
1

E
Ber

(
(L+1)·(p+ηδ)

nIS

)[M] and using (4) that

Pr(Xℓ,Iℓ = 1)− q ≥ δq
1− p

1− q
+ (1− δ)

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p− ηδ + nηδ

nIS

)κ

⇔

q − Pr(Xℓ,Iℓ = 1) ≤ −δq 1− p

1− q
+ (1− δ)

∞∑
κ=1

(−1)κ+1

(
q

p
− 1− q

1− p

)κ(
1− p− ηδ + nηδ

nIS

)κ

.

When p ≤ q, then 1
E
Ber

(
L+1
nIS

)[M] is strictly non-decreasing, hence, under E , we have

1

E
Ber

(
L+1
nIS

)[M]
≤ 1

E
Ber

(
(L+1)·(p+ηδ)

nIS

)[M]
= 1+

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p− ηδ + nηδ

nIS

)κ

,
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and thus from (4) that

Pr(Xℓ,Iℓ = 1)− q ≤ qδ
1− p

1− q
+ (1− δ)

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p− ηδ + nηδ

nIS

)κ

.

Similarly, we bound 1
E
Ber

(
L+1
nIS

)[M] ≤
1

E
Ber

(
(L+1)·(p+ηδ)

nIS

)[M] to obtain

Pr(Xℓ,Iℓ = 1)− q ≥ qδ
p

q
+ (1− δ)

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ

⇔

q − Pr(Xℓ,Iℓ = 1) ≤ −qδ p
q
+ (1− δ)

∞∑
κ=1

(−1)κ+1

(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ

Since 0 ≤ p+ ηδ ≤ 1 and 1 ≥ p− ηδ ≥ 0 by an appropriate choice of the concentration intervals,
we have by approximations up to second order terms that

|Pr(Xℓ,Iℓ = 1)− q| ≤ qδmax

{
p

q
,
1− p

1− q

}
+ ηδ

(
q

p
− 1− q

1− p

)
+

(
q

p
− 1− q

1− p

)2

O
(

1

n2
IS

+ η2δ

)

=
q

n2
IS

(
p

q
+

1− p

1− q

)
+O

[(q

p
− 1− q

1− p

)
+

(
q

p
− 1− q

1− p

)2
]√

6p log (2nIS)

nIS

.
This concludes the proof.

Proof of Lemma 1. Using Lemma 2, we can show the following. Recall the following probability
law of the stochastic quantizer Qs(·) [Alistarh et al., 2017] using s > 0 quantization intervals, which
takes as input the entry xe of a gradient x ∈ Rd vector. Let 0 ≤ τe < s be an integer such that τe

s ≤
|xe|
∥x∥ ≤

τe+1
s , then Qs(xe) is defined as Ber

(
|xe|
∥x∥s− τe

)
, which outputs ∥x∥ · sign(xe)(τe + 1)/s

in case of success, and ∥x∥ · sign(xe)τe/s otherwise.

Focusing on an entry xe, we prove a contraction property for MRC with stochastic quantization with
posterior qe =

|xe|
∥x∥s− τe, and an arbitrary prior pe. In fact, the MRC methodology Cmrc(·) leads to

sampling from an approximate distribution with parameter q̃e. To be more specific, Cmrc(xe) outputs
∥x∥ · sign(xe)(τe + 1)/s with probability q̃e, and ∥x∥ · sign(xe)τe/s with probability 1 − q̃e. We
established in Lemma 2 an upper bound on |qe − q̃e|, which will be useful in the following.

To prove a contraction property of the kind

E[∥Cmrc(x)− x∥22] ≤ (1− δ)∥x∥2,

we can write

E[∥Cmrc(x)− x∥2] = E

[
d∑

e=1

(Cmrc(xe)− xe)
2

]

= ∥x∥2
d∑

e=1

E

[(
Cmrc(xe)

∥x∥
− xe

∥x∥

)2
]

= ∥x∥2
d∑

e=1

[
q̃e

(
sign(xe)(τe + 1)

s
− xe

∥x∥

)2

+ (1− q̃e)

(
sign(xe)τe

s
− xe

∥x∥

)2
]

= ∥x∥2
d∑

e=1

[
(q̃e − qe + qe)

(
τe + 1

s
− |xe|
∥x∥

)2

+ (1− q̃e − qe + qe)

(
τe
s
− |xe|
∥x∥

)2
]

= ∥x∥2
d∑

e=1

[
(qe + q̃e − qe)

((
τe
s
− |xe|
∥x∥

)2

+
1

s2
+

1

s

(
τe
s
− |xe|
∥x∥

))
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+ (1− qe + qe − q̃e)

(
τe
s
− |xe|
∥x∥

)2
]

= ∥x∥2
d∑

e=1

[
(q̃e − q)

(
1

s2
+

1

s

(
τe
s
− |xe|
∥x∥

))
+qe

(
1

s2
+

1

s

(
τe
s
− |xe|
∥x∥

))
+

(
τe
s
− |xe|
∥x∥

)2
]
,

(5)

where

qe

(
1

s2
+

1

s

(
τe
s
− |xe|
∥x∥

))
=

(
|xe|
∥x∥

s− τe

)(
1

s2
+

1

s

(
τe
s
− |xe|
∥x∥

))
= −s

(
τe
s
− |xe|
∥x∥

)
1

s

(
1

s
+

(
τe
s
− |xe|
∥x∥

))
= −

(
τe
s
− |xe|
∥x∥

)2

− 1

s

(
τe
s
− |xe|
∥x∥

)
.

Substituting the result in (5), obtain

E[∥Cmrc(x)− x∥∥2] = E

[
d∑

e=1

(Cmrc(xe)− xe)
2

]

= ∥x∥2
d∑

e=1

[
(q̃e − qe)

(
1

s2
+

1

s

(
τe
s
− |xe|
∥x∥

))
− 1

s

(
τe
s
− |xe|
∥x∥

)]

= ∥x∥2
d∑

e=1

[
(q̃e − qe)

1

s

(
τe + 1

s
− |xe|
∥x∥

)
− 1

s

(
τe
s
− |xe|
∥x∥

)]

≤ ∥x∥2
d∑

e=1

[
|q̃e − qe|

1

s

(
τe + 1

s
− |xe|
∥x∥

)
+

1

s

(
|xe|
∥x∥
− τe

s

)]

≤ ∥x∥2(|q̃e − qe|
d

s2
+

d

s2
),

where, by Lemma 2, we have for ∆e :=
qe
pe
− 1−qe

1−pe
and ∆′

e := qe

(
pe

qe
+ 1−pe

1−qe

)
that

|q̃e − qe| ≤
∆′

e

n2
IS

+O

(∆e +∆2
e)

√
6pe log (2nIS)

nIS

 .

Let ∆̄ := maxe∈[d]
qe
pe
− 1−qe

1−pe
, ∆̄′ := maxe∈[d] qe

(
pe

qe
+ 1−pe

1−qe

)
, and p̄ := maxe∈[d] pe. We will

ensure that ∆̄′

n2
IS
+ O

(
(∆̄ + ∆̄2)

√
6p̄ log(2nIS)

nIS

)
≤ 1 by making each of the individual terms ≤ 1

2 .

By choosing nIS ≥
√
2∆̄′, we have ∆̄′

n2
IS
≤ 1

2 . To ensure that (∆̄ + ∆̄2)
√

6p̄ log(2nIS)
nIS

≤ 1
2 , we

require log(2nIS)
nIS

≤ 1√
6p̄(∆̄+∆̄2)

. By Weinberger and Yemini [2023, Lemma 15], this holds when

nIS = O(log(6p̄(∆̄ + ∆̄2))
√
6p̄(∆̄ + ∆̄2)). Hence, choosing nIS = O(max{

√
2∆̄′, log(6p̄(∆̄ +

∆̄2))
√
6p̄(∆̄ + ∆̄2)}), we have ∆̄′

n2
IS
+O

(
(∆̄ + ∆̄2)

√
6p̄ log(2nIS)

nIS

)
≤ 1. Thus, we have 0 ≤ δ ≤ 1

if 2d
s2 ≤ 1, and hence s ≥

√
2d. This concludes the proof.
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Proof of Theorem 1. Assume a party estimates the Bernoulli distributions Qj with parameters qj
held by parties j ∈ [n]. The estimating party shares with each of the other parties a common prior Pj

in the form of a Bernoulli distribution with parameter pj and access to unlimited shared randomness.
To help estimate Qj , the j-th party sends K samples to the estimator through MRC. Therefore, both
parties sample KnIS i.i.d. samples Xℓ,i ∼ Pj for ℓ ∈ [K], i ∈ [nIS], independently and identically
from Pj . The party holding Qj constructs for each ℓ ∈ [K] an auxiliary distribution

Wℓ(i) =
Qj(Xℓ,i)/Pj(Xℓ,i)∑nIS
i=1 Qj(Xℓ,i)/Pj(Xℓ,i)

,

from which it samples to obtain an index Iℓ. The index is transmitted to the estimating party, which
reconstructs the corresponding sample Xℓ,Iℓ . Averaging the samples for all ℓ ∈ [K] gives an estimate
q̂j of qj , i.e., q̂j = 1

K

∑K
ℓ=1 Xℓ,Iℓ . This process is repeated for all j ∈ [n].

We assume that |qj − pj | ≤ ρ for all i, j ∈ [n], and that the difference between the priors, is bounded

as |pi − pj | ≤ ζ for all i, j ∈ [n]. The goal is to bound dKL

(
1
n

∑n
j=1 q̂j ||pi

)
from above for any

i ∈ [n].

By the convexity of KL-divergence, we have

dKL

 1

n

n∑
j=1

q̂j ||pi

 ≤ 1

n

n∑
i=1

dKL (q̂j ||pi) .

To bound dKL (q̂j ||pi) for any i, j ∈ [n], by the triangle inequality, we can write
|q̂j − pi| ≤ |q̂j − Pr(Xℓ = 1)|+ |Pr(Xℓ = 1)− qj |+ |qj − pj |+ |pj − pi|,

where |q̂j − Pr(Xℓ = 1)| is bounded by Lemma 2. By Hoeffding’s inequality, we have with
probability at least 1− δ′ that

|q̂ − Pr(Xℓ = 1)| ≤

√
− ln(δ′/2)

2nIS
.

Thus, with probability at least 1− δ′, since pj ≤ pi + ζ, we have with ∆j :=
qj

pj−ζ −
1−qj

1−pj+ζ and

∆′
j := qj

(
pj+ζ
qj

+
1−pj+ζ
1−qj

)
that

|q̂j − pi| ≤
∆′

j

n2
IS

+O

(∆j +∆2
j )

√
6(pi + ζ) log (2nIS)

nIS

+

√
− ln(δ′/2)

2nIS
+ ρ+ ζ.

This holds under the assumption that pj > ζ for all j ∈ [n]. By the reversed Pinsker’s inequality, we
obtain

DKL (q̂j∥pi) ≤
2

min{pi, 1− pi}

∆′
j

n2
IS

+O

(∆j +∆2
j )

√
6(pi + ζ) log (2nIS)

nIS


+

√
− ln(δ′/2)

2nIS
+ ρ+ ζ

2

.

The statement of the theorem follows by the convexity of KL-divergence.

Remark 1. Note that our analysis can be extended to other parametric distributions, such as
multi-variate Gaussians. The key ingredient is to replace the specific upper bound on the bias
in Lemma 2 with the generic results from Chatterjee and Diaconis [2018], which holds for all
classes of distributions. Using this upper bound, one can follow our derivations to prove the
communication costs in Theorem 1, i.e., using the convexity of KL divergence and decomposing
the error in parameter estimation into a bias term and a concentration term to bound the sampling
error. Standard concentration results can be utilized to bound the latter from above, e.g., Hoeffding’s
inequality for sub-Gaussian random variables. The remaining steps follow analogously to our proof.
Similar adaptations apply to the contraction property in Lemma 1 necessary to establish convergence
guarantees for conventional FL.
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B Convergence Analysis

Using the contraction property derived in Lemma 1, we can show that a straightforward extension
of BICOMPFL-GR-CFL to error-feedback as used in [Richtárik et al., 2021] leads to the following
convergence guarantee. The algorithmic details of the extension can be found in Algorithm 3.
Therefore, assume that for all for x,y ∈ Rd and i ∈ [n], the following Lipschitz property holds:

∥∇F (x,Di)−∇F (y,Di)∥ ≤ Li∥x− y∥

Let F (θ) := 1
n

∑n
i=1∇F (θ,Di) be the global loss function and L′ :=

√
1
n

∑n
i=1 Li.

Theorem 2. If F ⋆ := infθ∈Rd{F (θ)} > −∞ and E[∥gt − ∇F (θt)∥2] ≤ σ2, then with η ≤(
L+ L′

√
1−δ

(1−
√
1−δ)2

)−1

, L = 1, s ≥
√
2d, and nIS satisfying Lemma 1 in every iteration t, we have

for Algorithm 3 that

T∑
t=1

E
[
∥F (θt)∥2

]
≤ 2(F (θ0)− F ⋆

ηT
+

σ2

(1−
√
1− δ)T

.

Similarly, guarantees can be derived for other algorithms, such as modified versions of BICOMPFL-
PR with error-feedback and momentum, using Lemma 1. However, we emphasize the generality
of BICOMPFL, reaching beyond conventional FL with stochastic compression to pure stochastic
narratives.

Remark 2. The choice of s depends on the model architecture and dataset complexities, affecting the
number of iterations required until convergence. The simpler the learning task, the fewer quantization
intervals are sufficient for convergence. Beyond generic arguments, we particularly highlight that s
should be carefully selected, respecting the expected variance of the gradients. If gradients exhibit
inherently large variance, e.g., through small mini-batch sizes, large variance of the local datasets,
or substantially over-parameterized networks, fewer quantization intervals might be efficient, and
increasing that number would only negligibly improve the performance. We also note that one-bit
quantization has been shown to be often remarkably effective despite its simplicity [Seide et al., 2014,
Karimireddy et al., 2019].

C Gradient Descent with a KL-Proximity

Mirror descent employs point-wise optimization in the form of a first-order approximation of
F (θ̂t,Di) with proximity term DF (p, q), where DF is the Bregman divergence associated with
function F (·). When F (x) = ∥x∥2, and hence the Bregman divergence is the Euclidean distance,
this is known as gradient descent. Let now p and q be vectors with the entries corresponding to
independent Bernoulli parameters. When we choose F (x) = x log(x) + (1 − x) log(1 − x), the
Bregman divergence becomes DF (p, q) =

∑d
k=1 DKL (pk∥qk). Hence, we are optimizing with

respect to a KL-proximity constraint. The mapping between dual and primal spaces is then given by
∇F (x) = log(x)− log(1− x) and (∇F (x))

−1
= 1

e−x+1 , respectively; also known as the inverse
sigmoid and the sigmoid functions.

D Block Allocation

The simplest yet effective strategy for block allocation is to partition the model into equally-sized
blocks of size d/B for MRC (Fixed). The partitioning into blocks is required to make MRC practically
feasible in this setting. It is known that for vanishing MRC error, the number of samples nIS from a
block pti,u,b of the prior is supposed to be in the order of exp

(
DKL

(
qti,b∥pti,u,b

))
, where qti,b is the

b-th block of posterior qti . It was observed by Isik et al. [2024] that the KL-divergence decreases as
the training progresses with the global model used as a prior, which is intuitive since the local training
will change the posterior less and less as training converges. To adapt the block size according to the
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Algorithm 3 BICOMPFL-GR-CFL with stochastic quantization Qs(·) and EF21 from Richtárik et al.
[2021]
Require: Both clients and federator initialize the same global model θ0 using a shared seed
Ensure: Set t = 0, clients set prior pt = θ̂0 = θ0,∀i ∈ [n], clients compute and broadcast

v0
i = Cmrc(Qs(g

t
i), p

t), with gti the local gradient for θ0; hence, v0 = 1
n

∑n
i=1 v

0
i public

1: Update ∀i : θ̂t+1 = θ̂t − ηvt+1

2: repeat
3: for Client i ∈ [n] do
4: Compute gradient gti by local training over L local iterations
5: Stochastic compression qti ← Qs(g

t
i − vt

i)
6: Sample indices Ibi,ℓ, ℓ ∈ [nUL], b ∈ [B] from qti with prior pt and transmit to federator to

reconstruct q̂ti = Cmrc(q
t
i , p

t)
7: Update vt+1

i = vt
i + q̂ti

8: end for
9: Federator reconstructs and computes vt+1 = vt + 1

n

∑n
j=1 q̂

t
j from {Ibi,ℓ}

10: Federator updates θt+1 = θt − ηvt+1

11: Federator relays to client j the other clients’ indices {Ibi,ℓ}ℓ∈[nUL],b∈[B],i∈[n]\{j}
12: for Clients i ∈ [n] do
13: Reconstruct and compute vt+1 = vt + 1

n

∑n
j=1 q̂

t
j from {Ibi,ℓ}

14: Update θ̂t+1 = θ̂t − ηvt+1 from {Ibi,ℓ}
15: end for
16: Clients and federator set prior pt = θ̂t+1

17: t← t+ 1
18: until Convergence

divergence from the posterior with respect to the prior, Isik et al. [2024] proposed an adaptive block
allocation strategy (Adaptive), where upon realizing a large deviation from the target KL-divergence
per block, clients partition their model into blocks with equal sums of parameter-wise KL-divergences
and transmit the block intervals to the federator. The federator aggregates the indices of all the clients,
and broadcasts the updated block allocation.

We propose in this work a low complexity solution that adapts the block size according to the average
KL-divergence per block (Adaptive-Avg). This alleviates the cost of computing and transmitting
the exact block partitions, where the transmission of each block size requires log2(bmax) bits, with
bmax the maximum pre-defined block size. Instead, the transmission of one size is enough in our
solution. If the average KL per block DKL

(
qti,b∥pti,u,b

)
deviates more than a given factor, the clients

request to update the blocks. In the next iteration, each client proposes a block size, and the federator
averages and broadcasts an updated size.

E Additional Experimental Details

We use the cross-entropy loss and a batch size of 128 in all our experiments. We use Adam [Kingma
and Ba, 2015] as an optimizer with learning rate η = 0.0003 for all non-stochastic methods, and
η = 0.1 for probabilistic mask training. For non-stochastic FL, we use a federator (server) learning
rate of 0.1, i.e., the clients’ gradients are averaged, and the federator updates the global model with
learning rate 0.1, and with a learning rate of 0.005 for BICOMPFL-GR with SignSGD. For M3, we
use a federator learning rate of 0.02 to obtain reliable results. For LIEC and CSER, we use an average
period of 50 global iterations (cf. [Cheng et al., 2024, Xie et al., 2020]). For M3, we use TopK with
K = ⌊d/n⌋. To run the simulations, we use a cluster of different architectures, which we list in the
following table.
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Table 1: System specifications of our simulation cluster.
CPU(s) RAM GPU(s) VRAM
2x Intel Xeon Platinum 8176 (56 cores) 256 GB 2x NVIDIA GeForce GTX 1080 Ti 11 GB
2x AMD EPYC 7282 (32 cores) 512 GB NVIDIA GeForce RTX 4090 24 GB
2x AMD EPYC 7282 (32 cores) 640 GB NVIDIA GeForce RTX 4090 24 GB
2x AMD EPYC 7282 (32 cores) 448 GB NVIDIA GeForce RTX 4080 16 GB
2x AMD EPYC 7282 (32 cores) 256 GB NVIDIA GeForce RTX 4080 16 GB
HGX-A100 (96 cores) 1 TB 4x NVIDIA A100 80 GB
DGX-A100 (252 cores) 2 TB 8x NVIDIA Tesla A100 80 GB
DGX-1-V100 (76 cores) 512 GB 8x NVIDIA Tesla V100 16 GB
DGX-1-P100 (76 cores) 512 GB 8x NVIDIA Tesla P100 16 GB
HPE-P100 (28 cores) 256 GB 4x NVIDIA Tesla P100 16 GB

The details of the CNN architectures used in our experiments are summarized in the following. The
parameter count is 61706 for LeNet5, 1933258 for 4CNN, and 2262602 for 6CNN.

Table 2: LeNet5 Architecture Overview
Layer Specification Activation
5x5 Conv 6 filters, stride 1 ReLU, AvgPool (2x2)
5x5 Conv 16 filters, stride 1 ReLU, AvgPool (2x2)
Linear 120 units ReLU
Linear 84 units ReLU
Linear 10 units Softmax

Table 3: 4-layer CNN (4CNN) Architecture Overview
Layer Specification Activation
3x3 Conv 64 filters, stride 1 ReLU
3x3 Conv 64 filters, stride 1 ReLU, MaxPool (2x2)
3x3 Conv 128 filters, stride 1 ReLU
3x3 Conv 128 filters, stride 1 ReLU, MaxPool (2x2)
Linear 256 units ReLU
Linear 256 units ReLU
Linear 10 units Softmax

Table 4: 6-layer CNN (6CNN) Architecture Overview
Layer Specification Activation
3x3 Conv 64 filters, stride 1 ReLU
3x3 Conv 64 filters, stride 1 ReLU, MaxPool (2x2)
3x3 Conv 128 filters, stride 1 ReLU
3x3 Conv 128 filters, stride 1 ReLU, MaxPool (2x2)
3x3 Conv 256 filters, stride 1 ReLU
3x3 Conv 256 filters, stride 1 ReLU, MaxPool (2x2)
Linear 256 units ReLU
Linear 256 units ReLU
Linear 10 units Softmax

For the sake of clarity, in the paper we restrict the analysis to a fixed number of importance samples
nIS, block sizes B, and choice of priors pti,u, p

t
i,d. Our experiments have shown that, while increasing

nIS beyond the ones used in our algorithms slightly improves the convergence over the number of
epochs, the convergence with respect to the communication cost did not significantly improve. The
block size is mainly limited by the system resources at hand, and one would choose the largest
possible for best efficiency while complying with memory resources. We investigated many different
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Algorithm 4 Local Training at Client i

Require: Model θ̂i,t
1: Map model to scores in the dual space: s(0)i,t = σ−1(θ̂i,t) = log

(
θ̂i,t

1−θ̂i,t

)
2: for Local iterations m ∈ [L] do
3: s

(m)
i,t = s

(m−1)
i,t − η∇

s
(m−1)
i,t

F (θ̂
(m−1)
i,t ,Di), where θ̂

(m−1)
i,t = σ(s

(m−1)
i,t )

4: end for
5: Map back to primal space: qti = σ(s

(L)
i,t )

prior choices and found the former global model to be reasonably good in almost all cases. With
high heterogeneity, it might be beneficial to use different convex combinations as priors, which
mix the former global model with the latest posterior estimate of a certain client, but the gains we
experienced were minor. Hence, we settled on the former global estimate for simplicity in presenting
the algorithm.

F Federated Probabilistic Mask Training

The idea in federated probabilistic mask training (FedPM) Isik et al. [2023] is to collaboratively train
a probabilistic mask that determines which weights to maintain from a randomly initialized network.
The motivation stems from the lottery-ticket hypothesis [Frankle and Carbin, 2019], which claims
that randomly initialized networks contain sub-networks capable of reaching accuracy comparable
to that of the full network. The weights w of the network are randomly initialized at the start of
training, and remain fixed. The federator and clients only train a mask, which determines for each
parameter whether it is activated or not, i.e., identifying an efficient subnetwork within the given
fixed network. The probabilistic masks θt are described by Bernoulli distributions, i.e., θt ∈ [0, 1]d

contains a Bernoulli parameter to be trained for each weight of the network. These parameters
determine the probability of retaining the corresponding weights. During inference, the weights w are
masked with samples xt ∈ {0, 1}d ∼ θt from the distribution θt, i.e., the inference is conducted on a
network with weights w ⊙ xt. In FedPM, clients sample from their locally trained models, and send
these samples to the federator, which, in turn, updates the global model by averaging these samples.
The communication cost of this scheme is fixed for all iterations, even though the communication
cost can be reduced since the KL-divergence between the global model and the locally trained models
diminishes as the training progresses.

We adopt the following federated learning procedure for collaboratively learning network masks,
and highlight in the following the parallels to mirror descent by referring to primal and dual spaces.
Starting from a common model θ0, at iteration t, each client i locally trains the model θ̂i,t in L

local iterations. To enable gradient descent, the model θ̂i,t is mapped to scores s(0)i,t in a dual space

by the inverse Sigmoid function s
(0)
i,t = σ−1(θ̂i,t) = log(θ̂i,t)− log(1− θ̂i,t). The scores are then

trained for L local iterations m ∈ [L] by computing the gradient ∇
s
(ℓ−1)
i,t

F (θ̂
(m−1)
i,t ,Di), where

the straight-through estimator is used to compute the gradient of the non-differentiable Bernoulli
sampling operation based on the distribution θ̂

(m−1)
i,t = σ(s

(ℓ−1)
i,t ), i.e., the gradient equals the

Bernoulli parameter. By mapping the model back to the primal space, each client i obtains a model
update in terms of a posterior qti = σ(s

(L)
i,t ). The client training process is summarized in Algorithm 4.

G Minimal Random Coding (MRC)

Isik et al. [2024] proposed a method, called KL minimization with side information (KLMS), to
reduce the cost of transmitting the local models qti to the federator. Consequently, the communication
cost depends on the KL-divergence between the desired distribution and the common prior. This
method utilizes the common side information available at both the clients and the federator, as well
as shared randomness. The idea is that instead of sampling locally and sending the samples to the
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federator, the federator in the KLMS method samples from the desired distribution through MRC.
In a nutshell, MRC [Havasi et al., 2019] is based on importance sampling [Srinivasan, 2002] and
makes use of a common prior to sample from a desired distribution. Consider two distributions
P and Q, where P is known to both parties, and Q is only known to the client. To make the
federator sample from Q, both parties sample nIS samples {Xi}i∈[nIS] from P . The client forms
an auxiliary distribution W (i) = Q(Xi)/P (Xi)∑nIS

i=1 Q(Xi)/P (Xi)
capturing the importance of the samples. A

sample from W is fully described by its index i, which can be transmitted with log2(nIS) bits, and
approximates a sample from Q. Chatterjee and Diaconis [2018] shown that importance sampling with
posterior Q and prior P requires nIS to be in the order of Θ(exp(DKL (Q∥P ))) , where DKL (Q∥P )
denotes the KL-divergence between distributions Q and P . In what follows, we will also denote the
KL-divergence between two Bernoulli distributions Q and P with parameters q and p by dKL (q||p).

H Additional Experiments

We provide in the following experiments for both uniform (i.i.d.) and heterogeneous (non-i.i.d.)
data distributions for training LeNet5 and a 4-layer CNN on MNIST, a 4-layer CNN on Fashion
MNIST, and a 6-layer CNN on CIFAR-10. The details of the neural networks can be found in
Tables 2 to 4. For each setting and method depicted, we show the average of three simulation runs
with different seeds. We plot for each setting the test accuracies over the communication cost in
bits, and the maximum test accuracy over the bitrate. We provide tables summarizing the maximum
test accuracies with their standard deviation over multiple runs, the total bitrates and the bitrates
split into uplink and downlink. The overall bitrates per parameter (bpp) are computed assuming
point-to-point links between all participants, i.e., uplink and downlink costs have equal weight. For
the case when a broadcast (BC) link between the federator and the clients is available, the bitrate
per parameter for all baseline schemes reduces by a factor of n. BICOMPFL-GRprofits similarly
from the broadcast link, but BICOMPFL-PRcannot profit due to the absence of shared randomness,
giving the same overall bitrate compared to the point-to-point link scenario. We highlight for each of
the measures the scheme with the best result. Consistently throughout all experiments, BICOMPFL
achieves order-wise savings in the bitrates per parameter while reaching state-of-the-art accuracies
in the classification task. While the sampling can introduce an additional computational overhead
depending on the implementation, the storage cost is similar to the baselines. Since we leverage as
priors the former global model, the additional storage cost incurred is limited to storing until the next
iteration the estimate of the former global model at each client, i.e., where the training started, which
is usually not a bottleneck. This can be cheaper than some baselines, which require storing data for
momentum and error-feedback.
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Figure 3: MNIST LeNet i.i.d.

For LeNet5 on MNIST, it can be observed that all our proposed methods converge significantly faster
to satisfying accuracies with respect to the communication cost, while achieving higher maximum
accuracies after 200 epochs than the non-stochastic baselines. Partitioning the model on the downlink
can help to further reduce the communication cost with only a minor loss in performance, especially
in the i.i.d. setting. For non-i.i.d. data distribution, the loss in performance is larger than for i.i.d.
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distribution. However, at the beginning of the training, the model improves faster with respect to the
communication cost than all other schemes. The bitrates are comparable for all our methods, with
the exception of BICOMPFL-PR-Fixed-SplitDL. Further, BICOMPFL-GR-Reconst-Fixed does not
suffer notable performance degradation from employing an additional MRC step (especially for i.i.d.
data allocation).

Table 5: MNIST LeNet i.i.d.
Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.978 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.981 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.977 ± 0.1 33.0 4.2 1.0 32.0
Liec 0.983 ± 0.1 4.5 2.5 2.3 2.3
Cser 0.982 ± 0.09 34.0 4.3 1.0 33.0
Neolithic 0.982 ± 0.1 4.0 2.2 2.0 2.0
M3 0.925 ± 0.2 15.0 2.2 8.0 7.1
BiCompFL-GR-Adaptive 0.992 ± 0.0006 0.36 0.068 0.036 0.32
BiCompFL-GR-Adaptive-Avg 0.992 ± 0.0003 0.29 0.055 0.029 0.26
BiCompFL-GR-Fixed 0.992 ± 0.0002 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.99 ± 0.0002 0.34 0.063 0.031 0.31
BiCompFL-PR-Fixed 0.99 ± 0.0004 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.988 ± 0.0009 0.063 0.063 0.031 0.031
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Figure 4: MNIST LeNet non-i.i.d.

Table 6: MNIST LeNet non-i.i.d.
Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.911 ± 0.2 64.0 35.0 32.0 32.0
Doublesqueeze 0.899 ± 0.2 2.0 1.1 1.0 1.0
Memsgd 0.906 ± 0.2 33.0 4.2 1.0 32.0
Liec 0.866 ± 0.2 4.5 2.5 2.3 2.3
Cser 0.744 ± 0.2 34.0 4.3 1.0 33.0
Neolithic 0.904 ± 0.2 4.0 2.2 2.0 2.0
M3 0.697 ± 0.2 15.0 2.2 7.3 7.2
BiCompFL-GR-Adaptive 0.965 ± 0.02 0.42 0.079 0.042 0.37
BiCompFL-GR-Adaptive-Avg 0.966 ± 0.02 0.29 0.056 0.029 0.26
BiCompFL-GR-Fixed 0.96 ± 0.03 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.949 ± 0.03 0.34 0.063 0.031 0.31
BiCompFL-PR-Fixed 0.966 ± 0.02 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.926 ± 0.04 0.063 0.063 0.031 0.031
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For 4CNN trained on MNIST, the differences between the proposed approaches become more visible.
In the i.i.d. setting, we can observe that the adaptive block allocations (both Adaptive and Adaptive-
Avg) can drastically reduce the average bitrate in BICOMPFL-GR. Partitioning the model in the
downlink (BICOMPFL-PR-Fixed-SplitDL) improves the accuracy over bitrate significantly compared
to BICOMPFL-PR-Fixed.
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Figure 5: MNIST 4CNN i.i.d.

Table 7: MNIST 4CNN i.i.d.
Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.994 ± 0.06 64.0 35.0 32.0 32.0
Doublesqueeze 0.994 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.994 ± 0.08 33.0 4.2 1.0 32.0
Liec 0.993 ± 0.07 3.7 2.0 1.8 1.8
Cser 0.993 ± 0.06 33.0 4.3 1.0 32.0
Neolithic 0.994 ± 0.08 4.0 2.2 2.0 2.0
M3 0.989 ± 0.2 16.0 2.2 8.4 7.4
BiCompFL-GR-Adaptive 0.996 ± 0.0001 0.18 0.034 0.018 0.16
BiCompFL-GR-Adaptive-Avg 0.995 ± 0.0001 0.15 0.029 0.015 0.14
BiCompFL-GR-Fixed 0.995 ± 0.0002 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.995 ± 0.0001 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.995 ± 0.0002 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.995 ± 0.0002 0.062 0.062 0.031 0.031
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Figure 6: MNIST 4CNN non-i.i.d.
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In the non-i.i.d. case of 4CNN on MNIST, the adaptive average allocation strategy provides a
significant reduction in the bitrate for BICOMPFL-GR, with similar loss in the accuracy as SplitDL
for BICOMPFL-PR. In this setting, it is also apparent that the reconstruction in BICOMPFL-GR
degrades the performance without gains in the bitrate compared to the proposed Algorithm 1.

Table 8: MNIST 4CNN non-i.i.d.
Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.983 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.982 ± 0.2 2.0 1.1 1.0 1.0
Memsgd 0.982 ± 0.2 33.0 4.2 1.0 32.0
Liec 0.963 ± 0.2 4.5 2.5 2.3 2.3
Cser 0.915 ± 0.1 34.0 4.3 1.0 33.0
Neolithic 0.983 ± 0.2 4.0 2.2 2.0 2.0
M3 0.929 ± 0.3 15.0 2.2 7.8 7.1
BiCompFL-GR-Adaptive 0.984 ± 0.009 0.27 0.051 0.026 0.24
BiCompFL-GR-Adaptive-Avg 0.974 ± 0.02 0.067 0.013 0.0068 0.061
BiCompFL-GR-Fixed 0.985 ± 0.008 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.977 ± 0.01 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.984 ± 0.009 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.971 ± 0.02 0.062 0.062 0.031 0.031
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Figure 7: Fashion MNIST 4CNN i.i.d.

Table 9: Fashion MNIST 4CNN i.i.d.
Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.927 ± 0.07 64.0 35.0 32.0 32.0
Doublesqueeze 0.928 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.928 ± 0.09 33.0 4.2 1.0 32.0
Liec 0.923 ± 0.08 4.5 2.5 2.3 2.3
Cser 0.92 ± 0.08 34.0 4.3 1.0 33.0
Neolithic 0.928 ± 0.09 4.0 2.2 2.0 2.0
M3 0.892 ± 0.2 16.0 2.2 8.3 7.6
BiCompFL-GR-Adaptive 0.925 ± 0.001 0.31 0.059 0.031 0.28
BiCompFL-GR-Adaptive-Avg 0.927 ± 0.0007 0.31 0.059 0.031 0.28
BiCompFL-GR-Fixed 0.925 ± 0.0007 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.922 ± 0.001 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.924 ± 0.002 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.921 ± 0.002 0.062 0.062 0.031 0.031
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Figure 8: Fashion MNIST 4CNN non-i.i.d.

The results for Fashion MNIST are similar compared to the MNIST case. However, it becomes clear
that BICOMPFL-PR can significantly suffer from the unavailability of shared randomness in terms
of the achieved accuracy when data is highly heterogeneous.

Table 10: Fashion MNIST 4CNN non-i.i.d.
Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.867 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.861 ± 0.2 2.0 1.1 1.0 1.0
Memsgd 0.863 ± 0.2 33.0 4.2 1.0 32.0
Liec 0.853 ± 0.1 4.5 2.5 2.3 2.3
Cser 0.781 ± 0.1 34.0 4.3 1.0 33.0
Neolithic 0.864 ± 0.2 4.0 2.2 2.0 2.0
M3 0.782 ± 0.2 15.0 2.2 8.0 6.9
BiCompFL-GR-Adaptive 0.866 ± 0.03 0.21 0.04 0.021 0.19
BiCompFL-GR-Adaptive-Avg 0.853 ± 0.04 0.11 0.021 0.011 0.1
BiCompFL-GR-Fixed 0.868 ± 0.03 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.86 ± 0.02 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.869 ± 0.03 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.831 ± 0.03 0.062 0.062 0.031 0.031

For 6CNN trained on CIFAR-10, the negative effects of missing global shared randomness and
reconstructing in the case of BICOMPFL-GR are prominent. For non-i.i.d. data distributions, the
adaptive average allocation shows improvements over the fixed or the average block allocation.
Partitioning the model is not a viable option in this setting, especially under non-i.i.d. data.
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Figure 9: CIFAR-10 6CNN i.i.d.
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Table 11: CIFAR-10 6CNN i.i.d.
Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.742 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.723 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.727 ± 0.1 33.0 4.2 1.0 32.0
Liec 0.684 ± 0.09 4.5 2.5 2.3 2.3
Cser 0.663 ± 0.08 34.0 4.3 1.0 33.0
Neolithic 0.73 ± 0.1 4.0 2.2 2.0 2.0
M3 0.614 ± 0.1 16.0 2.2 8.3 7.5
BiCompFL-GR-Adaptive 0.793 ± 0.002 0.3 0.057 0.03 0.27
BiCompFL-GR-Adaptive-Avg 0.793 ± 0.002 0.32 0.061 0.032 0.29
BiCompFL-GR-Fixed 0.793 ± 0.004 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.777 ± 0.002 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.751 ± 0.003 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.732 ± 0.02 0.062 0.062 0.031 0.031
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Figure 10: CIFAR-10 6CNN non-i.i.d.

Table 12: CIFAR-10 6CNN non-i.i.d.
Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.599 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.575 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.589 ± 0.1 33.0 4.2 1.0 32.0
Liec 0.589 ± 0.2 4.5 2.5 2.3 2.3
Cser 0.419 ± 0.09 34.0 4.3 1.0 33.0
Neolithic 0.587 ± 0.1 4.0 2.2 2.0 2.0
M3 0.385 ± 0.1 15.0 2.2 8.3 6.7
BiCompFL-GR-Adaptive 0.655 ± 0.04 0.18 0.034 0.018 0.16
BiCompFL-GR-Adaptive-Avg 0.636 ± 0.05 0.15 0.028 0.015 0.13
BiCompFL-GR-Fixed 0.665 ± 0.03 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.606 ± 0.05 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.626 ± 0.03 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.47 ± 0.07 0.062 0.062 0.031 0.031

For completeness, we present in Fig. 11 the test accuracies over the number of trained epochs for all
scenarios considered above. The setting of interest to this work is that of limited communication cost,
and in particular, which performance is achievable given a fixed communication budget. Nonetheless,
we can find that our proposed methods are not inferior in convergence speed over epochs compared
to the baselines.
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(a) MNIST LeNet i.i.d.
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(b) MNIST LeNet non-i.i.d.
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(c) MNIST 4CNN i.i.d.
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(d) MNIST 4CNN non-i.i.d.
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(e) Fashion MNIST 4CNN i.i.d.
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(f) Fashion MNIST 4CNN non-i.i.d.
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(g) Cifar-10 6CNN i.i.d.
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(h) Cifar-10 6CNN non-i.i.d.

Figure 11: Test Accuracy over Epochs
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I Ablation Studies

I.1 Number of Clients

We study in what follows the sensitivity to various hyperparameters of our algorithms. For compara-
bility, we conduct all experiments on the model 4CNN, Fashion MNIST, and i.i.d.data. We plot for
all experiments the accuracies over the number of epochs, and over the communication cost in bits.
We first evaluate in Fig. 12 the effectiveness of BICOMPFL-PR and BICOMPFL-PR for different
numbers of clients. It can be found that both algorithms exhibit satisfying performance even for
n = 50, given that the same data is now distributed on more clients. The overall communication
cost increases by roughly the factor of the increase in the number of n. To illustrate this further, we
additionally plot in Fig. 13 the bitrates per parameter.
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Figure 12: BICOMPFL-GR and BICOMPFL-GR With Different Number of Clients
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Figure 13: Bitrates for BICOMPFL-GR and BICOMPFL-GR With Different Number of Clients

I.2 Optimization of the Prior

As described in the main body of the paper, BICOMPFL-PR allows for optimizing the choice of the
prior at the clients by optimizing the convexity parameter λ that mixes the global model estimate with
the posterior transmitted by the client an iteration ahead, i.e., pti,u = λθ̂i,t + (1− λ)q̂ti to reduce the
communication cost. To evaluate the potential of this method, we optimize λ so that it minimized the
KL-divergence between the current posterior qti (to be transmitted) and the prior pti,u, representative
for the uplink communication cost. The KL-minimizing λ is transmitted to the federator, which is
necessary for the federator to reconstruct the importance samples. This optimization is conducted
at each iteration individually at the clients. We present in Fig. 14 the performance of this method
compared with the algorithms that use as priors exclusively the global model estimates of the clients.
Note that optimizing the prior individually at the clients is only possible for BICOMPFL-PRẆe plot
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the performance of BICOMPFL-GR for reference only. To assess the potential, we ignore for the
moment the cost of transmitting λ, which could be reduced by further compression techniques and
leveraging the inter-round dependencies of the choice of λ.
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Figure 14: BICOMPFL-PR With and Without Optimization over the Prior. Optimization over the
Priors is denoted by OP.

It can be found that, while optimizing the prior improves the accuracy over epochs and with respect
to the communication cost compared to BICOMPFL-PR the improvements are rather insignificant.
We therefore present for clarity the algorithm with a fixed choice of the prior as the former global
model estimate, which additionally reduce the computation overhead at the clients by avoiding the
optimization over λ. Nonetheless, we note that in certain edge cases, there can be merit in the
optimization approach, for instance when the number nDL of samples on the downlink is very small,
and hence the global model estimate is inaccurate.

I.3 Number of Samples

We continue to assess the impact of the number nDL of samples on the downlink. We therefore
evaluate the performance of BICOMPFL-PR for nDL ∈ {5, 10, 20}. We evaluate the differences on
BICOMPFL-PRṪhe results in Fig. 15 reflect the obvious: the larger nDL, the better the accuracy when
plotted over the number of epochs. On the contrary, the larger nDL, the larger the communication cost
per epoch. The final accuracies do not show substantial differences, and hence, nDL = 5 is sufficient
in this setting. To avoid assessing our method overly optimistic and provide a fair comparison to other
methods, we choose nDL = 10 in all our experiments, noting that the communication can further be
reduced in certain scenarios by lowering nDL without notable performance loss.
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Figure 15: BICOMPFL-PR for Different Number of Downlink Samples and a Single Uplink Sample.
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I.4 Block Size

We compare in Fig. 16 the performance of BICOMPFL-GR for different block sizes BS = d/B ∈
{128, 256, 512}. As expected, fixing nIS, larger block sizes worsen the performance of the algorithm
when evaluated over the number of epochs. However, larger block sizes simultaneously reduce the
communication cost, and can hence be beneficial in many scenarios. However, we also note that
larger block sizes comes at the expense of increases sampling complexities, and hence, the maximum
block sizes are also dominated by the resources of the clients and the federator.
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Figure 16: BICOMPFL-GR With Fixed Block Allocation for Varying Block Sizes (BS) d/B.

I.5 Number of Importance Samples

In Fig. 17, we study the sensitivity of our algorithms with respect to the number of importance samples
nIS at the example of BICOMPFL-GR. While larger number of nIS slightly improves the performance
as of the epoch number, the improvements do not outweigh the additional communication costs.
Overall, our algorithm proves rather stable within reasonable ranges for nIS. We fix in all our
experiments nIS = 256, presenting a good trade-off between performance and efficiency.
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Figure 17: BICOMPFL-GR with Varying Number of Importance Samples nIS per Block.

I.6 Learning Rate

Our main claims are centered around the per-client bitrates per parameter, rendering the choices of
learning rate secondary to our reasoning. Nonetheless, we tune the learning rates of all methods
so that the baselines and BICOMPFL achieve roughly the same final accuracies, allowing a fair
comparison of resulting communication costs. We analyze the impact of the learning rate choice
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Figure 18: BICOMPFL-GR with Varying Number of Importance Samples nIS per Block.

on BICOMPFL in Fig. 18, for η ∈ {0.01, 0.05, 0.1, 0.2, 0.5}. It is particularly noteworthy that
BICOMPFL exhibits stable performance across most learning rates we study, which we attribute to
the regularization effects that occur in stochastic FL, detailed in the main body of the paper. Only for
η = 0.01, the final performance is decreased, indicating that BICOMPFL is not able to escape local
optima in this setting. Although η = 0.05 provides the best communication efficiency, we choose a
moderate learning rate of η = 0.1 not to overestimate our method compared to other approaches.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and the introduction are later justified in
detail by the introduction of the schemes in Section 4 together with additional details in
Appendices C and D, the various experiments in Section 4 and Appendix H, the formal
theoretical guarantees (cf. Section 5), and the proofs provided in Appendix A.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The theoretical and experimental limitations are discussed in the paper. For
instance, we discuss in Sections 3 and 4 how the availability of shared randomness affects
our protocols. Further, we discuss in Section 5 the assumptions required for our main
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used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The source code required to reproduce our experiments is included in the sup-
plementary material, including parameter files for the various experiments and instructions
on how to use the provided code and how to prepare the publicly available datasets. We also
provide the Python environment used to generate the results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all training and test details necessary to understand the
results in Section 4 and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Each experiment is repeated for multiple runs to provide statistical confidence.
The depicted results are averaged performance measures, consistently shown together with
their respective standard deviations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The exact details of our simulation clusters are provided in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics. The research does not
involve any human subjects or participants, and all datasets used are standard and available
to the public.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This paper presents a method for bi-directional compression in stochastic
(Bayesian) FL, with the aim of reducing communication overhead and improving scalability.
The contribution is methodological and does not target a specific downstream application.
While the work does not explicitly discuss societal impacts, such efficiency improvements
may enable more practical and energy-efficient deployment of machine learning systems
in resource-constrained environments, such as edge devices, or indirectly support privacy-
preserving machine learning in settings such as medical healthcare. We do not foresee any
immediate negative societal impacts arising from the work as presented.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets are properly credited in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Alongside the paper, we introduce new source code that we provide as supple-
mentary material. This material is well documented with particular instructions on how to
use the provided framework.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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