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Abstract

Deep active learning (AL) seeks to reduce the annotation costs required for training deep
neural networks (DNNs). Often, deep AL strategies focus on instances where the predic-
tive uncertainty of a DNN is high. Furthermore, Bayesian concepts to model uncertainty
are frequently adopted. Despite considerable research, a detailed analysis of the role of
uncertainty in deep AL is still missing, especially regarding aleatoric and epistemic uncer-
tainty, both related to predictive uncertainty. This article provides an in-depth empirical
study analyzing the interplay of uncertainty and deep AL in image classification. Our
study investigates four hypotheses that provide an intuitive understanding of the effects
of accurately estimating aleatoric and epistemic uncertainty on existing uncertainty-based
AL strategies but also, in the opposite direction, the impact of uncertainty-based AL on
the quality of uncertainty estimates that are needed in many applications. By analyzing
these hypotheses on synthetic and real-world data, we find that accurate aleatoric estimates
can even impair instance selection, while accurate epistemic estimates have negligible ef-
fects. Moreover, we provide a publicly available toolbox for deep AL with various models
and strategies to facilitate further research and practical applications. Code is available at
https://github.com/dhuseljic/dal-toolbox.

1

https://openreview.net/forum?id=KLBD13bsVl
https://github.com/dhuseljic/dal-toolbox


Published in Transactions on Machine Learning Research (05/2024)

1 Introduction

While deep learning models show exceptional performance in supervised learning tasks such as image classifi-
cation (He et al., 2016), they require vast amounts of annotated data to achieve high accuracy. The instance
annotation process is typically performed by human experts, making it both time-consuming and expen-
sive (Herde et al., 2021). Active learning (AL) seeks to minimize this annotation cost by iteratively selecting
instances for annotation that are expected to improve the model’s performance significantly (Settles, 2009).
This enables the model to attain high performance with fewer annotated instances.

Many AL strategies employ an uncertainty-based instance selection and estimate the instances’ informa-
tiveness using information-theoretic criteria (Lewis, 1995; Gal et al., 2017; Beluch et al., 2018). However,
these criteria assume that the model provides accurate predictive uncertainty estimates, e.g., class proba-
bilities. Consequently, standard deep neural networks (DNNs) may not suit that scenario as they do not
properly model the two components of predictive uncertainty, i.e., aleatoric and epistemic (Fortuin et al.,
2022). While aleatoric (data) uncertainty expresses the inherent noise in the data (Hüllermeier & Waege-
man, 2021), e.g., due to noise in the annotation process, epistemic (model) uncertainty reflects the model’s
limitations in providing trustworthy predictions due to insufficient knowledge (Huseljic et al., 2021). To
address this mismatch between DNNs and uncertainty-based AL strategies, research adopts techniques such
as Bayesian neural networks (BNNs) for AL with the goal to improve the estimation of informativeness and,
consequently, AL performance (i.e., accuracy) (Gal et al., 2017; Ren et al., 2022).

Despite considerable research in that field, a detailed analysis of the role of uncertainty remains lacking.
Although many studies (Gal et al., 2017; Kirsch et al., 2019) emphasize the importance of epistemic uncer-
tainty in AL, its actual influence is often not thoroughly examined. Specifically, many works (Gal et al.,
2017; Kirsch et al., 2019; Pop & Fulop, 2018) claim that epistemic uncertainty plays a critical role in their
approaches but neglect to quantify it during AL, for instance, through out-of-distribution (OOD) detection
metrics. Moreover, the impact of aleatoric uncertainty during AL is frequently overlooked (Pop & Fulop,
2018; Chitta et al., 2018; Ranganathan et al., 2017). As it is a primary component of predictive uncer-
tainty, we would expect it to have a substantial impact in an uncertainty-based selection. Conversely, in
specific scenarios, retaining an accurate predictive uncertainty estimation after performing AL may also be
necessary, especially in safety-critical domains. However, to the best of our knowledge, this area has only
received limited attention so far. Specifically, Beluch et al. (2018) assess the predictive uncertainty through
calibration plots at various stages of the AL process, while Pop & Fulop (2018) evaluate calibration after AL.
Although both studies provide valuable insights via exemplary studies, a comprehensive numerical analysis
will contribute to an in-depth understanding of the topic.

We aim to fill this gap by conducting an extensive empirical study with a focus on image data providing
insights into the interplay of uncertainty and deep AL. Our contributions can be summarized as follows:

• We identify and motivate four hypotheses on how aleatoric and epistemic uncertainty influence AL
and how an uncertainty-based instance selection impacts their respective uncertainty estimates.

• We conduct qualitative studies that investigate AL with (approximately) optimal aleatoric and epis-
temic uncertainty estimates to analyze the interplay of uncertainty and AL in an ideal setting.

• We present an extensive quantitative study of uncertainty-based deep AL strategies using real image
data. Specifically, we analyze the effects of aleatoric and epistemic uncertainty on the instance
selection and evaluate how these strategies affect uncertainty estimates.

• We provide implementations and propose a toolbox for deep AL with several models and strategies
to streamline the research process and help practitioners.

2 Background

Notation: We consider classification problems in pool-based AL and represent an instance by x ∈ X with
input space X . In the case of image classification, X expresses the space of all images. The corresponding
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label is represented by y ∈ Y, where Y = {1, . . . , K} is the space of K possible labels. A DNN is a function
fω : X → RK , with network parameters ω, which maps instances to the logit space. Class probabilities
for a specific instance can be obtained by applying the softmax function p(y|x, ω) = [softmax(fω(x))]y.
In AL, we assume that we start with a (randomly sampled) initial labeled pool L = {(xn, yn)}N

n=1 and a
large unlabeled pool U = {xm}M

m=1, where N and M denote the number of labeled and unlabeled instances,
respectively. We begin the AL cycle by training a randomly initialized DNN on the labeled pool L using
optimization algorithms such as stochastic gradient descent. Subsequently, we estimate informativeness
scores for instances in the unlabeled pool U and query an oracle to annotate the highest-scoring instances.
Finally, we add these to the labeled pool with the annotations provided by the oracle and repeat the cycle.

Aleatoric and Epistemic Uncertainty: Aleatoric uncertainty arises through inherent noise in the
data (Hüllermeier & Waegeman, 2021), that is, by collecting labels y from an experiment multiple times
with the same instance x, we might observe different annotations. We refer to such instances as inherently
noisy instances. Meaningful aleatoric uncertainty estimation implies that the probabilistic predictions of a
DNN are well-calibrated (Fortuin et al., 2022). Vice versa, we assume that well-calibrated probabilities are
also consistent with a good estimation of aleatoric uncertainty. Thus, to improve the estimation of aleatoric
uncertainty, we utilize label smoothing (LS) (Szegedy et al., 2016; Müller et al., 2019) and mixup (Zhang
et al., 2018; Thulasidasan et al., 2019) as these techniques do not rely on a calibration dataset and can
effectively enhance the calibration of DNNs without incurring additional costs (e.g., annotation cost). We
avoid post-hoc calibration methods, such as temperature scaling, because these are impractical in AL as they
require an additional calibration dataset. Detailed descriptions of label smoothing and mixup are provided
in Appendix B.

Epistemic uncertainty arises from insufficient knowledge of the model and can be reduced by incorporat-
ing more training data (Hüllermeier & Waegeman, 2021). An accurate estimation of epistemic uncertainty
indicates a model’s ability to identify instances outside the data distribution (henceforth referred to as
OOD) (Liu et al., 2022). Conversely, we hypothesize that a model capable of identifying OOD instances
also possesses a strong ability to model epistemic uncertainty (Fortuin et al., 2022). While the probabilistic
predictions p(y|x, ω) in case of a DNN include aleatoric uncertainty, they do not model epistemic uncer-
tainty (van Amersfoort et al., 2021; Hüllermeier & Waegeman, 2021; Bengs et al., 2023). The parameters
of (deterministic) DNNs are point estimates, precluding the ability to express any uncertainty about them.
In contrast, Bayesian models estimate the posterior distributions p(ω|L) over the parameters of a DNN and
incorporate epistemic uncertainty into their predictions by marginalization

p(y|x, L) =
∫

p(y|x, ω)p(ω|L)dω. (1)

To model epistemic uncertainty, we make use of BNNs, i.e., Monte-Carlo (MC)-Dropout (Gal & Ghahra-
mani, 2016), (deep) ensembles (Beluch et al., 2018), and Spectral-normalized Neural Gaussian Processes
(SNGP) (Liu et al., 2020). Simply put, these Bayesian models draw samples from an approximation to
the posterior distribution p(ω|L) and make predictions by estimating the predictive distribution from Eq. 1
via e.g., MC-integration. Detailed descriptions of MC-Dropout, deep ensembles, and SNGP are provided in
Appendix B.

Uncertainty-based Selection Strategies: In AL, the informativeness of instances is often assessed using
a model’s output which was trained on the labeled pool L. Here, we focus on selection strategies that
utilize uncertainty-based measures as a score for informativeness. A fundamental assumption is that these
uncertainty-based measures are beneficial in AL. This implies that probabilistic predictions are required to
be better than random guesses by capturing information of the labeled pool L. We distinguish between
aleatoric and epistemic strategies based on the model employed (i.e., deterministic or Bayesian). Aleatoric
strategies are those in which predictive uncertainty is solely based on aleatoric uncertainty. That is, we use
predicted probabilities p(y|x, ω) of a deterministic DNN that lacks an epistemic component (Hüllermeier
& Waegeman, 2021). In contrast to epistemic strategies (see below), aleatoric strategies are only purely
aleatoric due to the combination of informativeness scores with predictions of a deterministic model. We
consider the informativeness scores:
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• Least confident selects instances for which the model outputs a low confidence:

LC[y|x, ω] = 1 − max
y

p(y|x, ω). (2)

• Margin sampling selects instances for which the model outputs a small difference between the two
highest predicted probabilities:

MS[y|x, ω] = 1 − (p(y1|x, ω) − p(y2|x, ω)), (3)

where y1 and y2 are the first and second most probable labels.

• Model entropy (Shannon, 1948) selects instances for which the model outputs a high expected un-
certainty of probabilistic predictions:

H[y|x, ω] = −
K∑

y=1
p(y|x, ω) ln p(y|x, ω). (4)

Epistemic strategies are those in which the predictive uncertainty includes an epistemic component. This
is the case when using a Bayesian model, where the predictive distribution takes the form of Eq. 1. We
introduce the term epistemic strategies for readability, even though they combine aleatoric and epistemic
uncertainty. In those cases, we consider the following informativeness scores commonly used in the literature:

• Bayesian model entropy (Gal et al., 2017) is an enhanced version of the predictive entropy incorpo-
rating epistemic uncertainty:

H[y|x, L] = −
K∑

y=1
p(y|x, L) ln p(y|x, L). (5)

• Bayesian active learning by disagreement (BALD) (Houlsby et al., 2011; Gal et al., 2017) selects
instances for which the model outputs high mutual information between label y and its parameters
ω. In this context, the mutual information measures the information gained about the parameters
ω by observing a particular label y:

I[y, ω|x, L] = H[y|x, L] − Ep(ω|L)[H[y|x, ω]]. (6)

To estimate the expectation, MC integration is employed here (Gal et al., 2017).

• Variation ratio (Beluch et al., 2018) selects instances for which a model outputs a diverse set of class
predictions:

VR[x] = fm/T, (7)

where fm is the number predictions that are not the modal class and T is the total number of
sampled predictions, such as the number of ensemble members.

Note that we do not examine uncertainty-based selection strategies that account for instances’ diversity in
batch selection, such as BatchBALD (Kirsch et al., 2019) or BADGE (Ash et al., 2020). We leave an in-depth
investigation of those techniques for future work.

Metrics: Recall that we assume that the calibration of a model, i.e., the calibration of its predictive
distribution, is typically used to indicate the quality of aleatoric uncertainty estimates. Accordingly, we
evaluate the calibration of DNNs with commonly used metrics (Ovadia et al., 2019; Kumar et al., 2019;
Nixon et al., 2019) to obtain numerical estimates. On the one hand, we use the proper scoring rules negative
log-likelihood (NLL) and Brier score (Brier), as they induce a calibration measure (Ovadia et al., 2019). On
the other hand, we also measure top-label and adaptive calibration errors (TCE and ACE), as these are more
intuitive to interpret (Kumar et al., 2019; Nixon et al., 2019).
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To assess epistemic uncertainty estimates, we adhere to common techniques from the literature (Fortuin
et al., 2022) and rely on metrics from OOD detection. In this context, we assume a binary classification
problem where we distinguish between in-distribution (ID) and OOD instances. In particular, we consider
the area under the precision-recall curve (AUPR) to evaluate a model’s ability to detect OOD instances (Liu
et al., 2022). Consequently, we require a separate OOD dataset in addition to the test dataset. Depending on
the model, we calculate the appropriate entropy measure from Eq. 4 or 5 for each instance of both datasets.
Subsequently, we employ the AUPR to evaluate whether instances’ entropies can be used to distinguish
between ID and OOD. Ideally, models with good epistemic estimates should produce high-entropy predictions
for all OOD instances.

In addition, we assess the generalization of models by employing the accuracy. A detailed definition of all
calibration, OOD detection, and generalization metrics can be found in Appendix A.

3 Hypotheses

We now define four hypotheses addressing the influence of aleatoric and epistemic uncertainty on AL and the
effect of AL on these uncertainties. Additionally, for each hypothesis, we provide the underlying motivations
and intuitions. The first two hypotheses investigate aleatoric uncertainty only, excluding the influence of
epistemic uncertainty. Thus, we focus on deterministic models aiming at modeling aleatoric uncertainty.
The remaining two hypotheses consider Bayesian models and, thus, mainly focus on epistemic strategies.
They address the influence of incorporating an epistemic component into the predictive distribution.

Influence of Aleatoric Uncertainty on Instance Selection: One would expect that an accurate esti-
mation of aleatoric uncertainty is an essential factor in AL, especially because the predicted probabilities of a
model are employed to determine the instances’ informativeness scores. However, we argue that an accurate
estimation does not necessarily improve instance selection when considering selection strategies that purely
focus on aleatoric uncertainty. For example, a selection based on aleatoric uncertainty, such as the one using
Eq. 4, has the property to only focus on difficult regions of the input space near the decision boundary. Im-
proving aleatoric estimates only induces a change in instance selection when there is a change in the ordering
of the informativeness scores of instances. Typically, this is not the case with most calibration methods, as
these only lead to minor changes in predicted probabilities. However, when calibration methods strongly
impact the predicted probabilities, the selection will place a stronger emphasis on inherently noisy instances
near the decision boundary. This results in a more challenging learning problem. Hence, good aleatoric
uncertainty estimates may even aggravate the learning problem, which can lead to sub-optimal optimization
of the model. In such cases, having a large initial pool is vital to ensure that only a refinement of the decision
boundary is needed. Vice versa, inaccurate estimation of aleatoric uncertainty may lead to a more diverse
selection. For example, an imprecise estimation might cause a selection of instances that are not inherently
noisy, thereby including instances helpful for the learning problem. As we assume that a well-calibrated
model reflects a good estimation of aleatoric uncertainty, we hypothesize that for AL strategies that only
consider aleatoric uncertainty in their selection, improving calibration will not lead to an improved instance
selection and can even potentially hurt AL performance. Therefore, we formulate the following hypothesis:

Hypothesis 1 (H1): A good estimation of aleatoric uncertainty does not improve the instance
selection of aleatoric strategies. Instead, it may even deteriorate the selection by biasing it towards
inherently noisy instances that are difficult to learn.

Influence of Aleatoric Strategies on Aleatoric Uncertainty Estimates: A common assumption when
training DNNs is that data is independent and identically distributed (i.i.d.). While this may be true when
randomly acquiring a dataset, this assumption is violated when selecting instances through an AL strategy.
Therefore, we hypothesize that uncertainty-based active instance selection influences the aleatoric uncertainty
estimates of a model. We argue that an AL selection focusing solely on aleatoric uncertainty can improve the
respective model estimates. Specifically, DNNs are known to output overconfident probabilistic predictions
when training with instances that are i.i.d. (Guo et al., 2017). As the selection focuses on difficult regions
with inherently noisy instances, this mimics regularization and, consequently, counteracts the overconfidence
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of DNNs. When model complexity is low – either due to the model’s limitations or increased difficulty of the
task – this form of regularization may be less beneficial. This motivation follows the theoretical work from
Farquhar et al. (2021). By focusing on difficult instances, the network becomes more uncertain, leading to
a better estimation of “true” uncertainties. From this motivation we derive the following hypothesis:

Hypothesis 2 (H2): Aleatoric selection strategies improve a model’s aleatoric uncertainty estimates
by leveraging inherently noisy instances to counteract DNNs’ overconfidence.

Influence of Incorporating Epistemic Uncertainty into AL: Epistemic uncertainty reflects the knowl-
edge of a model, and thus, it has already been argued that this kind of uncertainty is essential for AL.
Intuitively, querying instances from the input space where the model has limited knowledge may reduce
its own epistemic uncertainty more efficiently. In this regard, incorporating epistemic uncertainty into an
uncertainty-based selection strategy can be seen as introducing an explorative component. This is because
selecting the most uncertain instances is akin to focusing on OOD instances, which emphasizes the explo-
ration of regions in the input space that were not seen during training. Consequently, we hypothesize that
this is also the reason why the incorporation of epistemic uncertainty should improve AL performance. It
is important to mention that drawing conclusions based on epistemic uncertainty alone is challenging. Ap-
proaches that model epistemic uncertainty, such as BNNs, enhance the predictive uncertainty. This may
also affect the aleatoric part of the predictive distribution. Accordingly, improvements in AL might not
be attributed solely to the epistemic component but could also be due to the combination of aleatoric and
epistemic uncertainty. From this motivation, we derive the following hypothesis:

Hypothesis 3 (H3): The additional incorporation of epistemic uncertainty into AL improves per-
formance by introducing an explorative component into the selection, which helps to recognize regions
that were never seen during training.

Influence of Epistemic Strategies on the Predictive Uncertainty: Additionally incorporating epis-
temic uncertainty encourages a selection of instances in regions about which the model has limited knowledge.
Consequently, this selection should facilitate quick exploration of potential model parameters capable of effec-
tively learning the task. Accordingly, we assume that uncertainty-based AL selections considering epistemic
uncertainty improve the respective estimation, and thus predictive uncertainty. In fact, the primary goal of
many proposed AL strategies (Gal et al., 2017; Beluch et al., 2018; Kirsch et al., 2019) is to reduce epistemic
uncertainty efficiently. To validate this, we analyze the following hypothesis:

Hypothesis 4 (H4): Epistemic selection strategies improve the model’s aleatoric and epistemic
estimates, as they promote selecting instances in regions where the model has limited knowledge.

We want to emphasize that a hypothesis might correlate with another one if true. In particular, this means
that the effect between hypotheses can be contrary but also of varying severity. In the following experiments,
we aim to investigate these hypotheses independently.

4 Experiments

We analyze the proposed hypotheses using both synthetic and real-world datasets for a qualitative and
quantitative evaluation. For more detailed information on implementations, we refer to Appendix D.

4.1 Synthetic Data

We start with a simple illustrative 2D example with a linear model to gain intuitions about the impact
of aleatoric and epistemic uncertainty on AL. Following this, we investigate if these intuitions can also be
transferred to image classification by introducing a synthetic image dataset. In this context, our analysis
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(a) GT Aleatoric (b) GT Epistemic (c) Random (d) Entropy (e) Opt. Aleatoric (f) Opt. Epistemic

Figure 1: AL experiment illustrating the behavior of entropy sampling with optimal estimates for aleatoric
and epistemic uncertainty. (a) GT aleatoric uncertainty from data generating distribution p(x, y). (b) GT
epistemic uncertainty approximated by a GP. (c) Linear model trained on randomly selected instances. (d)
Linear model trained on high-entropy instances using the model’s predicted probabilities. (e) Linear model
trained on high-entropy instances using GT aleatoric probabilities. (f) Linear model trained on high-entropy
instances using GT epistemic probabilities.

focuses on convolutional neural networks, which are prevalent for computer vision tasks. Statements related
to one of the four hypotheses are indicated by (H1) – (H4) to facilitate readability.

Illustrative Example: We consider a 2D dataset consisting of two Gaussian distributions with a strong
overlap of the probability masses indicating high aleatoric uncertainty. A crucial advantage of this setup is
the precise determination of aleatoric uncertainty, as the true class probabilities p(y|x) are accessible. This
is due to the ability of controlling the data generating distribution p(x, y) = p(y|x)p(x). Since epistemic
uncertainty is model-dependent and lacks a ground truth (GT), we approximate it using a Gaussian process
as commonly done in the literature (Liu et al., 2022). Consequently, we use the knowledge of GT aleatoric
and (approximate) GT epistemic uncertainty to perform active instance selection. Further details regarding
the dataset and AL settings can be found in Appendix E. Figures 1 (a) and (b) display the dataset with
corresponding GT class probabilities p(y|x) and p(y|x, L) represented as contours. In the case of GT aleatoric
uncertainty, overlapping regions exhibit high aleatoric uncertainty (gray color), as class probabilities tend
to be close to uniform. In contrast, high GT epistemic uncertainty arises not only along the decision
boundary, but also in regions where instances are scarce or unavailable. Subsequent plots illustrate a linear
model’s decision boundary after AL, trained on the highlighted labeled instances. Random sampling, shown
in Fig. 1 (c), selects instances with equal probability, while model entropy, shown in Fig. 1 (d), selects
informative instances based on Eq. 4 using the linear model’s predicted probabilities. Opt. aleatoric and
opt. epistemic entropy, shown in Fig. 1 (e) and (f), employ model entropy (Eq. 4) and Bayesian model
entropy (Eq. 5) but leverage the optimal probabilities p(y|x) and p(y|x, L).

Notably, random sampling results in a model closely resembling the GT (cf. GT aleatoric). In contrast, model
entropy sampling leads to a decision boundary that roughly aligns with the GT, but seems to estimate
predictive probabilities with higher predictive uncertainty (cf. hypothesis H2). This is illustrated by the
contours which indicate that the model’s predicted probabilities cover a substantial region of the input
space with values between 0.25 and 0.75. The first surprising observation is that the model arising from
opt. aleatoric entropy completely fails to learn effectively which is likely due to the strong inherent noise
of selected instances with a GT probability of 0.5 (H1). Finally, opt. epistemic entropy yields a well-
performing model with instances rather evenly dispersed throughout the dataset, emphasizing exploration
(H3). Furthermore, the predicted probabilities exhibit the least amount of uncertainty, which might be
ascribed to the primary objective of rapidly reducing the epistemic uncertainty (H4).

Takeaway: This simple example emphasizes how focusing on highly noisy instances through an optimal
estimation of aleatoric uncertainty may lead to unsatisfactory models. Moreover, it demonstrates that incor-
porating different types of uncertainty with different qualities of their estimates can lead to distinct predictive
distributions, as shown by model entropy.
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Image Data: We now consider an experiment involving artificial image data to analyze our hypotheses
on a more complex model, i.e., ResNet18 (He et al., 2016). Similar to the 2D case, we focus on a binary
classification problem and construct a synthetic dataset with access to the ground truth class probabilities
p(y|x). Specifically, for each RGB image and each channel in that image, we set a random amount of pixels
at random positions to their maximum values. The corresponding labels are then drawn from a Bernoulli
distribution with the probability dependent on the relative sum of all pixel values. This data generating
procedure reflects inherent noise in data, that is, aleatoric uncertainty. The ground truth mapping of the
relative pixel sum to its probability p(y|x) is shown in Fig. 2 (a). The highest attainable accuracy is 75%.
Intuitively, the task involves distinguishing “black” from “white” images, with different “RGB noise” levels
specifying the amount of aleatoric uncertainty. An instance with low aleatoric uncertainty is depicted in
Fig. 2 (b). It has a high relative pixel sum indicating a high GT probability p(y = 1|x). In contrast, an
instance exhibiting high aleatoric uncertainty, shown in Fig. 2 (c), corresponds to an image where nearly
50% of its pixels are set to one. Even though this synthetic dataset predominantly consists of random RGB
noise, access to the GT probabilities enables us to analyze AL with true aleatoric uncertainty estimates
within the image domain. As it is infeasible to obtain GT epistemic uncertainty, we once again employ an
approximation. In particular, we use deep ensembles as they have shown to provide accurate estimates in
the context of image classification (Ovadia et al., 2019; Liu et al., 2022).
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Figure 2: Synthetic image dataset with ground truth class prob-
ability p(y|x) based on the relative pixel sum. (a) Mapping of
relative pixel sum to probabilities p(y|x). (b) Low aleatoric in-
stance with a high relative pixel sum. (c) High aleatoric instance
with about 0.5 relative pixel sum.

We start AL by randomly initializing the
labeled pool L with one instance per
class. Next, we train a randomly initial-
ized ResNet18 on the labeled pool and se-
lect two instances for annotation in each
cycle. Analogous to the 2D example, we
employ random sampling, model entropy
as per Eq. 4, and its optimal counter-
parts based on GT aleatoric and (approx-
imate) GT epistemic uncertainties. We
repeat this process until a budget of 100
instances is reached. Figure 3 reports ac-
curacy, NLL, and Brier score on an in-
dependent test split for each cycle. As
we have access to the GT probabilities,
we replace calibration errors with Brier
scores, which do not require binning.
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Figure 3: Learning curves for the synthetic image dataset, showing (a) accuracy, (b) negative log-likelihood,
and (c) Brier score. Results are averaged over 25 AL repetitions (standard errors as shaded regions).

Examining the accuracy in Fig. 3 (a), we see that random, model entropy, and opt. epistemic entropy
select instances that enable the model to learn well. Notably, model entropy attains a higher accuracy
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than random and opt. epistemic entropy, which is potentially due its goal of refining the decision boundary.
The explorative component of random and opt. epistemic entropy might contribute to this small accuracy
difference. Additionally, opt. epistemic uncertainty outperforms random towards the end, likely because
it focuses on the decision boundary once the epistemic uncertainty is sufficiently decreased. Interestingly,
both random and opt. epistemic entropy slightly outperform model entropy initially, potentially because
exploration is a critical factor in the beginning of AL. In contrast, the opt. aleatoric entropy selection struggles
to learn in this synthetic example (cf. low accuracy values). Similar to the 2D case, this issue is likely due to
the strong inherent noise of the instance’s labels making it difficult to learn (H1). When assessing the NLL
in Fig. 3 (b), all strategies seem to improve their predictive estimates throughout AL. Despite struggling to
attain competitive accuracy, opt. aleatoric entropy surprisingly yields the most accurate estimates, possibly
due to underfitting in conjunction with the NLL. Furthermore, model entropy also performs well, indicating
that an implicit regularization through noisy instances can enhance predictive uncertainties. Regarding the
Brier score in Fig. 3 (c), model entropy offers the best-calibrated model (H2). Aligning with H2, selecting
noisy instances seems to benefit calibration. However, focusing on highly noisy instances may also deteriorate
calibration, as shown by opt. aleatoric entropy. While the calibration of random and opt. epistemic entropy
are only slightly worse, incorporating epistemic uncertainty seems to be negligible within this problem.

Takeaway: We conclude that, within the context of this binary image classification problem, model entropy
based sampling demonstrates superior performance in terms of NLL, Brier score, and accuracy. Although the
instance selection of opt. epistemic entropy also yields well-working models, the incorporation of epistemic
uncertainty seems negligible. Furthermore, this experiment suggests that an enhanced estimation of aleatoric
uncertainty may not be advantageous for aleatoric strategies.

4.2 Real-World Data

We conduct several experiments on real image classification datasets to further analyze the previously stated
hypotheses. For all experiments, we adhere to recent recommendations from the literature for evaluating
AL performance (Munjal et al., 2022; Hacohen et al., 2022). Unless stated otherwise, we use a ResNet18
architecture again.

4.2.1 Setup

Datasets: We analyze our hypotheses on multiple datasets that are commonly used in the deep AL lit-
erature (Munjal et al., 2022; Hacohen et al., 2022). However, to provide a clear and extensive analysis
of each hypothesis, we primarily focus on CIFAR10 (Krizhevsky, 2009) here. The remaining experiments
can be found in Appendix C. To calculate metrics assessing epistemic uncertainty (i.e., AUPR), we require
OOD datasets for each respective ID dataset. For CIFAR10, we employ CIFAR100 (Krizhevsky, 2009) and
SVHN (Netzer et al., 2011) as OOD datasets to evaluate the model’s near- and far-OOD detection capa-
bilities (Ren et al., 2021), respectively. This approach ensures a comprehensive assessment of epistemic
uncertainty estimates. Detailed descriptions of each dataset, along with their respective preprocessing steps,
are provided in Appendix F.

AL Settings: In every cycle, we train a DNN for 200 epochs with a batch size of 32. For CIFAR10, we
start with a randomly initialized labeled pool of 128 instances and acquire 128 instances per cycle. After
38 AL cycles, we reach a budget of 4992 instances. To assess the behavior of models during AL, we report
area under the learning curves (AUC) for each metric. Additionally, we provide final metrics after AL. All
learning curves are averaged over ten repetitions.

Hyperparameters: Recently, Munjal et al. (2022) emphasized the significance of hyperparameter selection
for deep AL. Their work demonstrated that the choice of learning rate and regularization significantly
influence AL performance. We observed similar behavior in our experiments. Especially the hyperparameters
of techniques aiming to improve the predictive uncertainty (e.g., the amount of label smoothing) required
careful tuning in conjunction with learning rate and weight decay. As our objective is to examine the behavior
of uncertainty and deep AL, we aim at establishing an optimal setting by utilizing the best combination
of hyperparameters for a specific budget. To this end, we consider a randomly sampled training dataset
corresponding to the respective total budget and a separate validation dataset to optimize hyperparameters.
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Table 1: Quality of aleatoric uncer-
tainty estimates of selection models on
CIFAR10 during AL in form of AUC.

NLL (↓) Brier (↓) TCE (↓) ACE (↓)
Random

- 1.070 0.425 0.138 0.074
LS 0.926 0.395 0.073 0.032
Mixup 0.824 0.358 0.049 0.028

Least Confidence
- 1.018 0.407 0.123 0.066
LS 0.883 0.380 0.056 0.028
Mixup 0.810 0.355 0.056 0.027

Margin
- 0.998 0.398 0.124 0.068
LS 0.864 0.370 0.059 0.028
Mixup 0.786 0.342 0.050 0.025

Entropy
- 1.038 0.415 0.126 0.067
LS 0.889 0.384 0.058 0.029
Mixup 0.813 0.356 0.057 0.028

Table 2: Final / AUC accuracies (↑) of evaluation models on
CIFAR10 for different aleatoric strategies and calibration meth-
ods.

Random Least Confident Margin Entropy
- 0.849 / 0.720 0.872 / 0.731 0.873 / 0.738 0.872 / 0.726
LS 0.849 / 0.719 0.871 / 0.732 0.873 / 0.737 0.869 / 0.729
Mixup 0.851 / 0.719 0.867 / 0.717 0.869 / 0.728 0.866 / 0.717

Table 3: Final aleatoric estimates (Brier ↓ / TCE ↓ / ACE ↓)
of evaluation models on CIFAR10 for different aleatoric strategies
and calibration methods.

- Label Smoothing Mixup
Random 0.231 / 0.065 / 0.052 0.231 / 0.065 / 0.052 0.230 / 0.064 / 0.052
Least C. 0.197 / 0.048 / 0.044 0.200 / 0.050 / 0.045 0.206 / 0.055 / 0.049
Margin 0.196 / 0.052 / 0.046 0.194 / 0.051 / 0.046 0.202 / 0.055 / 0.048
Entropy 0.197 / 0.050 / 0.045 0.202 / 0.051 / 0.046 0.208 / 0.057 / 0.051

Note that this way of hyperparameter optimization is not possible when employing AL in the real world, as
neither the training nor validation datasets would be available. Hyperparameter optimization in the field of
deep AL remains an open problem and harms its practicability. We provide more details on the optimization
and model training procedure in Appendix F.

Model Comparison: In an AL setting where models employ techniques to improve uncertainty estima-
tion, comparing AL selection strategies becomes challenging. For example, mixup’s data augmentation
technique improves not only predictive uncertainty estimation, but also accuracy. To disentangle poten-
tial improvements resulting from uncertainty modeling techniques (aleatoric or epistemic) and from active
uncertainty-based instance selection, we utilize two models for evaluating AL. We will have a model solely
responsible for selecting instances while it is enhanced with techniques that improve uncertainty estimation.
We refer to this model as selection model. It is typically used in the literature and its performance serves
as a basis for comparing different selection strategies (Gal et al., 2017; Beluch et al., 2018). However, this
comparison will not reveal whether any improvements are due to the instance selection or the applied uncer-
tainty modeling techniques. For this purpose, we introduce an additional model responsible for evaluation.
We refer to this model as evaluation model. It is trained on the selected instances of the selection model
but does not use any techniques to improve its uncertainty estimates. Using an evaluation model allows us
to draw conclusions while ensuring that mainly the instance selection leads to any differences. We refer to
Sec. 5 for further discussions on that topic.

4.2.2 Results

We now present the findings of our experiments and evaluate the hypotheses outlined in Sec. 3 by delving
into a comprehensive comparison of all strategies, presented in a tabular format. Although we only report
the results of CIFAR10 here, the behavior of the models is consistent across several investigated datasets,
consolidating the inferred takeaways. Moreover, to facilitate the discussions below, we only report key results
from selection and evaluation models. Further tables on all datasets can be found in Appendix C.

H1: To evaluate H1, we first confirm that the calibration methods enhance aleatoric estimates and subse-
quently assess the evaluation model’s accuracies. Using accurate estimates for selection should enhance the
accuracy of the evaluation models. Table 1 presents the quality of aleatoric uncertainty estimates during
AL of the selection model. Based on the AUC values of NLL, Brier score, TCE, and ACE of the selection
models, we observe that predictive uncertainty and calibration of selection models are consistently enhanced
by calibration methods during AL. This implies that the instance selection is based on improved aleatoric
uncertainty estimates. An example is shown in Fig. 4 (b), where we observe improved calibration compared
to the non-calibrated model (blue) throughout AL. Following H1, we anticipate that a more accurate estima-
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tion does not improve but might even lead to a worse instance selection that can result in subpar evaluation
model results. Inspecting the final and AUC accuracies in Tab. 2, we find that this indeed occurs. There
are no noticeable accuracy improvements of evaluation models using the selection of label smoothing, even
though the informativeness scores are more accurate. Furthermore, investigating the selection of mixup,
evaluation models even perform worse compared to utilizing the non-calibrated selection. For example, en-
tropy sampling of mixup exhibits lower evaluation accuracy than entropy sampling of the non-calibrated
model, despite the enhanced aleatoric uncertainty estimates. Figure 4 presents exemplary learning curves
that depict accuracies of evaluation models and calibration errors of selection models with the random and
margin sampling strategies. Although the selection ACE indicates enhanced calibration compared to the
non-calibrated model throughout AL, we cannot observe any noticeable benefits in evaluation accuracy by
improving calibration. In fact, margin sampling using the best-calibrated model for selection appears to
perform the worst in terms of evaluation accuracy.

Takeaway: H1 is valid. Improving aleatoric uncertainty estimates using dedicated calibration methods
does not enhance instance selection in deep AL. Instead, it might lead to a worse instance selection.

H2: Table 3 shows that each aleatoric strategy leads to an enhanced Brier score, TCE, and ACE compared
to random. Further analyses in Appendix C based on the overconfidence error (Thulasidasan et al., 2019)
reveal that the resulting models are less overconfident. These findings corroborate the theoretical study
from Farquhar et al. (2021), which suggest that AL is a form of regularization. This suggests that these
strategies improve predictive uncertainty and calibration compared to random sampling, aligning with our
hypothesis. Moreover, this improvement is most prominent in the case of the non-calibrated model, where
no calibration technique is employed. In contrast, we observe a lower improvement over random sampling
when comparing mixup’s aleatoric estimates. We believe this is due to an excessive focus on highly aleatoric
instances. Additionally, it may also be caused by differences in training. Figure 4 (c) depicts exemplary
learning curves of the ACE, showing that aleatoric strategies lead to an improved calibration.

Takeaway: H2 is valid. Uncertainty-based AL strategies improve predictive uncertainty and calibration
of DNNs by incorporating inherently noisy instances that counteract overconfidence of models.

H3: We expect that incorporating (high quality) epistemic uncertainty into AL improves the selection of
instances and, therefore, evaluation accuracy. However, comparing the evaluation accuracies of the non-
epistemic model in Tab. 2 with the epistemic strategies in Tab. 5, we observe no meaningful improvement,
suggesting epistemic uncertainty hardly impacts AL selection. Even by directly comparing evaluation accu-
racies of entropy selections with and without epistemic uncertainty, we see inconsistencies. Table 4 presents
the quality of aleatoric and epistemic uncertainty estimates of Bayesian selection models during AL in form of
AUC values. We see that ensembles consistently outperform MC-Dropout and SNGP in terms of Brier score,
ACE, and CIFAR100 AUPR, indicating superior predictive and epistemic uncertainty estimates. In contrast,
MC-Dropout yields the worst epistemic uncertainty estimates of the considered models. Consequently, fol-
lowing H3, we expect that the instance selection of ensembles will be better than that of MC-Dropout and
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(c) Evaluation Model ACE

Figure 4: Learning curves on CIFAR10, averaged over 10 seeds.
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Table 4: Quality of aleatoric and epistemic
estimates of Bayesian selection models on
CIFAR10 during AL in form of AUC.

Brier (↓) ACE (↓) AUPR (↑)
CIFAR100

AUPR (↑)
SVHN

Random
MC-Dr. 0.416 0.049 0.688 0.803
SNGP 0.425 0.038 0.703 0.837
Ensemble 0.374 0.046 0.706 0.804

Bayesian Entropy
MC-Dr. 0.416 0.052 0.699 0.811
SNGP 0.423 0.041 0.713 0.848
Ensemble 0.356 0.042 0.731 0.825

BALD
MC-Dr. 0.401 0.046 0.698 0.800
SNGP 0.417 0.039 0.712 0.842
Ensemble 0.350 0.040 0.724 0.817

Variation Ratio
MC-Dr. 0.401 0.048 0.701 0.807
SNGP 0.413 0.040 0.718 0.835
Ensemble 0.343 0.039 0.732 0.828

Table 5: Final / AUC accuracies (↑) of evaluation models
on CIFAR10 for different epistemic strategies and Bayesian
methods.

Random Entropy BALD VR
MC-Dr. 0.847 / 0.720 0.873 / 0.731 0.874 / 0.735 0.876 / 0.735
Ensemble 0.848 / 0.720 0.868 / 0.725 0.874 / 0.734 0.873 / 0.736
SNGP 0.847 / 0.720 0.872 / 0.731 0.871 / 0.730 0.874 / 0.737

Table 6: Final epistemic estimates (AUPR near ↑ / AUPR far
↑) of evaluation models on CIFAR10 for different epistemic
strategies and Bayesian methods.

MC-Dropout Ensemble SNGP
Random 0.761 / 0.880 0.758 / 0.881 0.759 / 0.874
Entropy 0.784 / 0.897 0.782 / 0.900 0.784 / 0.909
BALD 0.782 / 0.885 0.778 / 0.880 0.786 / 0.895
Variation Ratio 0.786 / 0.898 0.786 / 0.901 0.788 / 0.895

Table 7: Final aleatoric estimates (Brier ↓ / TCE ↓ / ACE ↓) of evaluation models on CIFAR10 for different
epistemic strategies and calibration methods.

MC-Dropout Ensemble SNGP
Random 0.225 / 0.014 / 0.022 0.226 / 0.014 / 0.022 0.226 / 0.014 / 0.022
Entropy 0.196 / 0.017 / 0.023 0.203 / 0.018 / 0.023 0.197 / 0.018 / 0.022
BALD 0.193 / 0.016 / 0.022 0.194 / 0.021 / 0.022 0.195 / 0.014 / 0.021
Variation Ratio 0.189 / 0.017 / 0.022 0.195 / 0.018 / 0.023 0.192 / 0.015 / 0.021

SNGP. However, looking at Tab. 5, we hardly notice any changes in evaluation accuracy across different
combinations of Bayesian methods and selection strategies. This suggests that incorporating epistemic un-
certainty and the quality of its estimates do not impact instance selection in AL. This observation does
not match our motivation from H3 and the intuition from previous work with tabular data (Nguyen et al.,
2019). We believe the problem lies in the supervised representation learning process of DNNs. In AL,
where DNNs rely on a small annotated labeled pool, these representations might not correctly capture the
underlying problem. Hence, exploration does not necessarily lead to a better selection. Still, these findings
align with recent research in deep AL, showing no consistent benefits of incorporating epistemic uncertainty
into AL (Munjal et al., 2022; Zhan et al., 2022). This is particularly prominent in our study by evaluating
strategies largely independent of the selection model. For example, an ensemble of DNNs might deliver a
better learning curve than a single model regardless of the instance selection. Moreover, our experiments
highlight that the quality of epistemic estimates does not affect selection.

Takeaway: H3 is invalid. Epistemic strategies do not lead to performance improvements over aleatoric
strategies in AL. Further, the quality of epistemic uncertainty estimates seems to have negligible effects.

H4: We find an improved Brier score by looking at the aleatoric uncertainty estimates in Tab. 7. However,
unlike aleatoric strategies, we do not see an improved calibration (TCE and ACE). This discrepancy might
result from the Brier score’s broader evaluation, considering both improved generalization and calibration,
while the TCE and ACE solely address the calibration quality. Furthermore, since Bayesian models pro-
vide a stronger regularization than deterministic models, focusing on inherently noisy instances might not
yield the same benefits. This can also be seen in Appendix C with datasets that have a larger number of
classes. We can observe this also for the TCE, which appears slightly worse. Thus, we assume that the
improvement of the Brier score is insufficient to conclude improved aleatoric uncertainty estimates. Regard-
ing epistemic uncertainty, we notice that epistemic strategies mostly yield models that provide improved
epistemic uncertainty estimates, indicated by the improved AUPR values for near and far OOD detection in
Tab. 6.

12



Published in Transactions on Machine Learning Research (05/2024)

Takeaway: H4 is partially valid. Epistemic strategies lead to improved epistemic uncertainty estimates.
Additionally, they lead to a slightly worse estimation of the aleatoric uncertainty. This may be due to the
already strong regularization and good aleatoric uncertainty estimation of Bayesian models.)

5 Conclusion

We demonstrated that improving aleatoric and epistemic estimates does not necessarily improve AL strate-
gies’ instance selection, that the incorporation of epistemic uncertainty has negligible effects, and that
uncertainty-based strategies enhance predictive uncertainty. Furthermore, our proposed toolbox for deep
AL includes several AL strategies and models for uncertainty modeling to facilitate future studies.

As our study suggests that good uncertainty estimates have a small influence on uncertainty-based strategies,
we advise future research to focus on a combination with the learned feature representations of a DNN. More
recent selection strategies have shown that this has great potential (Ash et al., 2020; 2021). Orthogonal to
the topics discussed in this work, we encourage to study the effect of decoupling AL and the feature learning
process within DNNs. Especially in the early stages, AL is often ineffective because DNNs cannot efficiently
learn representations with small amounts of labeled data. We believe this poor representation is a significant
challenge hindering AL strategies’ efficacy. Recent advances in self-supervised learning offer a promising
avenue for AL strategies to be more effective (Hacohen et al., 2022).

Regarding practical applicability, a more comprehensive evaluation of uncertainty-based AL strategies is
required. On the one hand, when comparing selection strategies, it is essential to assess the instance selection
independently of the model. This enables a better understanding of selection strategies and facilitates their
practicability. In our work, we realized this through an evaluation model. However, this selection cannot be
considered fully independent since an evaluation model might have similarities to a selection model. Future
research should consider further techniques for an independent evaluation. On the other hand, we recommend
that novel strategies exploiting uncertainty include an evaluation of the uncertainty estimates of the selection
model via proper scoring rules, calibration errors, or OOD metrics. This facilitates reproducibility and easier
deployment of AL strategies by providing a requisite uncertainty estimate quality. Furthermore, practitioners
can more easily decide which models suit a particular task.

Lastly, research should also focus on AL’s impact on predictive uncertainty estimates after AL (H4). As
datasets obtained through AL are used to train models intended for deployment, ensuring that these models
provide precise predictive uncertainty estimates is vital. Consequently, AL strategies must deliver both
satisfactory performance and accurate uncertainty estimation.
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A Metrics

This appendix introduces the evaluation metrics used throughout the evaluation study. For each metric, we
compute two types of results, namely final and area under the curve (AUC). The first result type refers to
the metric score evaluated at the end of the AL process, while the second result type refers to the mean as a
proxy of the AUC metric scores evaluated during the AL process. We compute these metrics via a test set
E consisting of tuples (y, p̂) ∈ E , where y ∈ Y denotes the true label of an instance and p̂ = (p̂1, . . . , p̂|Y|)T

the estimated class probabilities.

Accuracy is a popular metric for quantifying classification performances and describes the fraction of
correctly classified instances:

Accuracy(E) = 1
|E|

∑
(y,p̂)∈E

δ(y = ŷ(p̂)), (8)

ŷ(p̂) = arg maxy∈Y(p̂y), (9)

where δ : {False, True} → {0, 1} is an indicator function returning δ(c) = 1 if a condition c is true and
δ(c) = 0 otherwise. We can interpret the function ŷ : [0, 1]|Y| → Y as a decision function since it maps the
estimated class probabilities to a decision for the class with the highest probability.

Negative log-likelihood (NLL) or cross-entropy in the case of classification is a common metric for
evaluating predictive distributions. This metric expresses how well the estimated class probabilities match
the true class label distribution. Moreover, the NLL is a proper scoring rule since its minimum score
corresponds to perfectly estimating the true class label distribution (Ovadia et al., 2019). Mathematically,
the NLL can be expressed as:

NLL(E) = − 1
|E|

∑
(y,p̂)∈E

yT ln (p̂) , (10)

where y ∈ {0, 1}|Y| denotes the one-hot encoded class label y and ln (p̂) the element-wise usage of the natural
logarithm on the vector p̂.

Brier score (Brier) is another proper scoring rule (Ovadia et al., 2019), which measures the mean squared
difference between the true labels and the estimated class:

Brier(E) = 1
|E|

∑
(y,p̂)∈E

(y − p̂)T(y − p̂). (11)

Calibration plots or reliability diagrams graphically present the quality of a model’s calibration (Guo
et al., 2017). Their idea is to show whether estimated class probabilities are meaningful. For example,
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an estimate of p̂y = 0.8 is to indicate that 80 % of all instances with such an estimate actually belong to
class y. Since the evaluation set E is finite, while the potential probability estimates in the interval [0, 1]
are uncountably infinite many, we need to resort to an approximation. Therefore, we split the probability
interval [0, 1] into G ∈ N>0 adjacent intervals of equal ranges (here, G = 10). For the g-th (g ∈ {1, . . . , G})
interval, we construct a set Bg ⊆ E to contain all tuples where the maximum class probability falls into the
g-th interval. Such a set is constructed for each interval. As a result, these sets are pairwise disjoint, and
their union equals the evaluation set, i.e., B1 ∪ · · · ∪ BG = E . For each bin Bg, we can now compute the
accuracy Accuracy(Bg) and the confidence

Conf(Bg) = 1
|Bg|

∑
(y,p̂)∈Bg

max
y∈Y

(p̂y) . (12)

The final calibration plot is obtained by plotting each tuple (Conf(Bg), Accuracy(Bg)) as a point in a carte-
sian coordinate system, where the confidences represent the values of the abscissa and the accuracies the
values of the ordinate. The connection of these points forms a calibration curve. These top-label calibration
plots consider only predictions with maximum class probability and hence neglect all other estimated class
probabilities. For this reason, we additionally consider marginal calibration plots, which visualize the mis-
match of estimated probabilities for each class. For a class y ∈ Y, the idea is to define the sets By

1 , . . . , By
G in

analogy to the top-label calibration plot with the difference that the separation depends on the probability
for class y. Accordingly, the sets are also pairwise disjoint, and their union equals the evaluation set, i.e.,
By

1 ∪ · · · ∪ By
G = E . Further, the definitions of the confidence and accuracy now depend on class y through:

Confy(By
g ) = 1

|Bg|
∑

(y′,p̂)∈By
g

p̂y, (13)

Accuracyy(By
g ) = 1

|By
g |

∑
(y′,p̂)∈By

g

δ(y = y′). (14)

Each tuple (Confy(By
g ), Accuracyy(By

g )) represents a point in the coordinate system of the marginal calibra-
tion plot. This procedure is repeated for each class y ∈ Y such that there are |Y| calibration curves in the
end.

Top-label calibration error (TCE) summarizes a top-label calibration plot in one score. Concretely, the
TCE quantifies the absolute difference between confidences and actual accuracies for each set Bg and weights
this error according to the set’s cardinality:

TCE(E) =
G∑

g=1

|Bg|
|E|

|Accuracy(Bg) − Conf(Bg)|. (15)

Adaptive calibration error (ACE) is an extension of the TCE and was proposed by Nixon et al. (2019)
as a distinct version of the general calibration error that aims to overcome some of the weaknesses of the
TCE. First, the ACE introduces an adaptive binning scheme by focusing on regions where most probabilistic
predictions lie. Thus, the bin intervals are defined so that they contain an equal number of predictions,
improving the estimation of the calibration error. Second, the ACE computes the calibration error across
all probabilistic predictions, similar to the marginal calibration plot. Nixon et al. (2019) demonstrated that
the ACE behaves more favorably and recommend it over evenly binned calibration errors by experimenting
with DNNs on image data.

Area under the precision-recall curve (AUPR) refers to a metric assessing the quality of separating
in-distribution (ID) from out-of-distribution (OOD) data as proxy for evaluating epistemic uncertainty.
Following the literature (Liu et al., 2022), we interpret this separation as a binary classification problem,
where OOD instances belong to the positive class and ID instances to the negative class. For making
predictions, we compute the entropy of a BNN’s predictive distribution, i.e., H[y|x, L], and set a threshold
τ ∈ R. An instance with an entropy above this threshold, i.e., H[y|x, L] > τ , is classified as OOD and as
ID otherwise. We evaluate such predictions by computing the precision and recall for multiple (adaptively
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determined) thresholds τ . Intuitively, precision is a BNN’s ability not to label an instance that is ID as
OOD, while recall is the BNN’s ability to find all the OOD instances. For each evaluated threshold τ , we
obtain a pair of precision and recall values which we plot in a cartesian coordinate system with the precision
as the abscissa and the recall as the ordinate. Together, the pairs of precision and recall values form a curve
under which we can calculate the area as AUPR.

B Methods Improving Uncertainty Estimation

In this appendix, we describe the methods used to improve uncertainty estimation in our experiments. We
utilize five uncertainty modeling methods to ensure that our analysis includes varying qualities of aleatoric
and epistemic uncertainty estimates. First, we explain the calibration methods label smoothing and mixup.
Afterward, we detail the Bayesian methods Monte-Carlo (MC)-Dropout and Ensembles.

B.1 Calibration Methods

Label smoothing was originally introduced by Szegedy et al. (2016) in the context of regularization. It
prevents a rapid growth of the largest logit in fω. As a result, the probabilities obtained from the softmax
function do not approach 1 or 0 so fast. Consider the cross-entropy loss function for instance xn with label
yn:

L(p(y|xn, ω), q(y|xn)) = −
K∑

k=1
q(y = k|xn) log p(y = k|xn, ω), (16)

where q(y|x) is a distribution assigning probability 1 to the correct label yn and 0 to the remaining ones.
Essentially, label smoothing modifies the distribution q(y|x) by employing a convex combination:

q(y = k|x) = (1 − ϵ)δ(y = k) + ϵu(k), (17)

where ϵ is the weight of the convex combination and u(k) is a distribution with uniform probability mass
across all classes. Using this mixture distribution instead of the original one-hot encoded one during op-
timization has regularizing effects and was shown to improve calibration by counteracting overconfidence
in DNNs (Müller et al., 2019; Thulasidasan et al., 2019). Additionally, label smoothing enhances robust-
ness against adversarial instances and leads to more discriminative features, supporting transfer learning
scenarios.

Mixup was introduced by Zhang et al. (2018) as a data augmentation technique for image classification
to improve a DNN’s generalization and reduce its sensitivity to adversarial instances. During training, it
convexly combines random image pairs and corresponding labels as follows:

x̃ = λxi + (1 − λ)xj , (18)
ỹ = λyi + (1 − λ)yj . (19)

Here, xi and xj represent randomly sampled images, while yi and yj denote their one-hot-encoded labels.
The resulting image-label pair (x̃, ỹ) is then used for training. The coefficient λ ∈ [0, 1] determines the mixing
intensity of two images and is sampled from a symmetric Beta distribution Beta(α, α), where α ∈ R>0 is
a hyperparameter. Generally, smaller values within the range of α ∈ [0.1, 0.4] lead to the most noticeable
performance enhancements. Thulasidasan et al. (2019) found that mixup not only improves classification
performance but also enhances the calibration of DNNs. Thus, DNNs trained with mixup exhibit increased
robustness against overconfident predictions.

B.2 Bayesian Methods

Ensembles are a collection of several neural networks, called members, and a popular method to obtain a
BNN (Lakshminarayanan et al., 2017). Each member is randomly initialized with identical architecture, and
member parameters are optimized by maximizing the log posterior, i.e., cross-entropy with weight decay. As
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Table 8: Final / AUC overconfidence errors (↓) of evaluation models on CIFAR10 for different aleatoric
strategies and calibration methods.

- Label Smoothing Mixup
Random 0.055 / 0.115 0.023 / 0.048 0.009 / 0.021
Least confident 0.042 / 0.104 0.011 / 0.035 0.001 / 0.015
Margin 0.045 / 0.104 0.012 / 0.036 0.002 / 0.014
Entropy 0.042 / 0.106 0.009 / 0.035 0.001 / 0.015

each optimized member can be seen as a mode of the posterior distribution, we can interpret each ensemble
member as a parameter sample of the true posterior distribution p(ω|D).

MC-Dropout, proposed by Gal & Ghahramani (2016), is a method that employs the regularization tech-
nique Dropout (Srivastava et al., 2014) during evaluation to obtain samples from the predictive distribution
p(y|x, D). Specifically, dropping out neurons during inference can be interpreted as propagating instances
through various neural network versions, which are samples of a distribution approximating the posterior
distribution (Gal et al., 2017). Due to MC-Dropout’s simplicity and efficiency, it is often used in the litera-
ture.

SNGP (Liu et al., 2020) is a BNN that uses a last-layer Laplace approximation in combination with spectral
normalization (Miyato et al., 2018) and random Fourier features (RFF) (Rahimi & Recht, 2007). With these
changes, the BNN is capable of modeling epistemic uncertainty by improving its distance-awareness. Adding
spectral normalization to the residual layers of a ResNet leads to a distance-aware feature space. Additionally,
the composition of RFF and the last-layer Laplace approximation approximates a Gaussian process with a
Gaussian kernel.

C Additional Results

This appendix presents the remaining quantitative results regarding two further image benchmark datasets,
namely SVHN (Netzer et al., 2011) and CIFAR100 (Krizhevsky, 2009). Furthermore, we present a study
investigating the influence of aleatoric strategies on the overconfidence of models on CIFAR10. We refer to
App. F for the general experimental setup (e.g., preprocessing of images, usage of OOD datasets).

C.1 Overconfidence Study

Here, we empirically verify our presumption that aleatoric strategies and their associated selection of in-
herently noisy instances lead to less overconfident DNNs. For this purpose, we investigate selection models
using the overconfidence error (OCE) and top-label calibration plots. The OCE is a variant of the TCE that
only penalizes overconfident bins and is defined by

OCE(E) =
G∑

g=1

|Bg|
|E|

(
Conf(Bg) · max

(
Conf(Bg) − Accuracy(Bg), 0

))
. (20)

The remaining setup is identical to the experiments from the main part of the paper.

Table 8 presents the results averaged over ten repetitions. We see that aleatoric strategies consistently lead
to a smaller OCE and, thus, to less overconfident DNNs. The top-label calibration plots in Fig. 5 verify
this observation. For example, when considering the mixup calibration method, we observe a considerable
reduction in high-confident predictions when comparing random selection to aleatoric strategies (cf. number
of instances in the last two bins). While the last two bins have a roughly equal number of instance when
random selection is used, many more instances have a lower confidence prediction with aleatoric strategies.

C.2 Additional Results on Real-World Data

Here, we provide further experimental results on SVHN, CIFAR100, and ImageNet100. Similar to Hacohen
et al. (2022), we used a subset of ImageNet containing 100 classes. More details can be found in our
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Figure 5: Calibration plots of evaluation models after AL for different selection strategies. We observe that
aleatoric strategies lead to less overconfident models, highlighted by the red lines being closer to the (optimal)
blue diagonal.
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Table 9: Quality of aleatoric uncertainty
estimates of selection models on SVHN
during AL in form of AUC.

NLL (↓) Brier (↓) TCE (↓) ACE (↓)
Random

- 0.828 0.296 0.074 0.053
LS 0.667 0.272 0.018 0.026
Mixup 0.664 0.268 0.010 0.030

Least Confidence
- 0.812 0.289 0.070 0.050
LS 0.654 0.266 0.016 0.027
Mixup 0.651 0.260 0.011 0.030

Margin
- 0.775 0.275 0.065 0.047
LS 0.627 0.254 0.015 0.026
Mixup 0.623 0.248 0.011 0.029

Entropy
- 0.833 0.296 0.072 0.051
LS 0.667 0.272 0.017 0.028
Mixup 0.671 0.269 0.012 0.030

Table 10: Final / AUC accuracies (↑) of evaluation models on
SVHN for different aleatoric strategies and calibration methods.

Random Least Confident Margin Entropy
- 0.914 / 0.807 0.926 / 0.812 0.929 / 0.821 0.925 / 0.808
LS 0.914 / 0.807 0.926 / 0.813 0.930 / 0.821 0.925 / 0.810
Mixup 0.913 / 0.805 0.927 / 0.810 0.928 / 0.818 0.924 / 0.804

Table 11: Final aleatoric estimates (Brier ↓ / TCE ↓ / ACE ↓) of
evaluation models on SVHN for different aleatoric strategies and
calibration methods.

- Label Smoothing Mixup
Random 0.13 / 0.02 / 0.03 0.13 / 0.02 / 0.03 0.13 / 0.02 / 0.03
Least C. 0.11 / 0.01 / 0.02 0.11 / 0.01 / 0.02 0.11 / 0.02 / 0.02
Margin 0.11 / 0.01 / 0.02 0.11 / 0.01 / 0.02 0.11 / 0.01 / 0.02
Entropy 0.12 / 0.01 / 0.02 0.12 / 0.01 / 0.02 0.12 / 0.02 / 0.03

Table 12: Quality of aleatoric and epistemic
estimates of Bayesian selection models on
SVHN during AL in form of AUC.

Brier (↓) ACE (↓) AUPR (↑)
CIFAR10

AUPR (↑)
CIFAR100

Random
MC-Dr. 0.280 0.042 0.640 0.641
SNGP 0.375 0.056 0.693 0.697
Ensemble 0.263 0.036 0.667 0.668

Bayesian Entropy
MC-Dr. 0.290 0.044 0.652 0.650
SNGP 0.389 0.049 0.678 0.682
Ensemble 0.261 0.035 0.703 0.704

BALD
MC-Dr. 0.285 0.041 0.648 0.648
SNGP 0.379 0.050 0.689 0.688
Ensemble 0.251 0.033 0.700 0.698

Variation Ratio
MC-Dr. 0.269 0.039 0.664 0.661
SNGP 0.381 0.050 0.694 0.696
Ensemble 0.246 0.033 0.714 0.712

Table 13: Final / AUC accuracies (↑) of evaluation mod-
els on SVHN for different epistemic strategies and Bayesian
methods.

Random Entropy BALD VR
MC-Dr. 0.911 / 0.807 0.922 / 0.807 0.924 / 0.809 0.928 / 0.818
Ensemble 0.911 / 0.807 0.922 / 0.802 0.927 / 0.812 0.929 / 0.815
SNGP 0.911 / 0.807 0.925 / 0.805 0.926 / 0.802 0.931 / 0.810

Table 14: Final epistemic estimates (AUPR near ↑ / AUPR
far ↑) of evaluation models on SVHN for different epistemic
strategies and Bayesian methods.

MC-Dropout Ensemble SNGP
Random 0.765 / 0.762 0.765 / 0.762 0.765 / 0.762
Entropy 0.781 / 0.775 0.799 / 0.794 0.799 / 0.795
BALD 0.781 / 0.777 0.788 / 0.781 0.798 / 0.791
Variation Ratio 0.804 / 0.796 0.811 / 0.802 0.820 / 0.813

Table 15: Final aleatoric estimates (Brier ↓ / TCE ↓ / ACE ↓) of evaluation models on SVHN for different
epistemic strategies and Bayesian methods.

MC-Dropout Ensemble SNGP
Random 0.138 / 0.044 / 0.027 0.138 / 0.044 / 0.027 0.138 / 0.044 / 0.027
Entropy 0.147 / 0.043 / 0.024 0.175 / 0.064 / 0.027 0.127 / 0.046 / 0.024
BALD 0.126 / 0.051 / 0.026 0.125 / 0.051 / 0.026 0.123 / 0.046 / 0.024
Variation Ratio 0.125 / 0.046 / 0.024 0.119 / 0.048 / 0.025 0.116 / 0.046 / 0.024

implementation. Additionally, we analyze these results in relation to the hypotheses H1 - H4 and briefly
summarize our findings. Initially, we evaluate the uncertainty estimates of selection models and examine
whether these estimates lead to different evaluation accuracies (H1 and H3) or uncertainty estimates (H2
and H4).

C.2.1 SVHN

Table 9 demonstrates that calibration methods consistently lead to models that select instances with im-
proved aleatoric estimates compared to the non-calibrated model. Examining Tab. 10, we see that this
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Table 16: Quality of aleatoric uncer-
tainty estimates of selection models on
CIFAR100 during AL in form of AUC.

NLL (↓) Brier (↓) TCE (↓) ACE (↓)
Random

- 1.685 0.533 0.030 0.034
LS 1.742 0.534 0.008 0.034
Mixup 1.656 0.523 0.001 0.033

Least Confidence
- 1.612 0.523 0.030 0.036
LS 1.675 0.525 0.005 0.035
Mixup 1.597 0.516 0.001 0.034

Margin
- 1.611 0.521 0.029 0.035
LS 1.671 0.522 0.004 0.035
Mixup 1.599 0.514 0.000 0.033

Entropy
- 1.612 0.524 0.031 0.036
LS 1.671 0.524 0.005 0.035
Mixup 1.595 0.515 0.001 0.034

Table 17: Final / AUC accuracies (↑) of evaluation models on
CIFAR100 for different aleatoric strategies and calibration meth-
ods.

Random Least Confident Margin Entropy
- 0.702 / 0.596 0.725 / 0.608 0.721 / 0.608 0.723 / 0.607
LS 0.703 / 0.595 0.725 / 0.608 0.726 / 0.608 0.726 / 0.608
Mixup 0.703 / 0.596 0.723 / 0.606 0.723 / 0.607 0.723 / 0.606

Table 18: Final aleatoric estimates (NLL ↓ / TCE ↓ / ACE ↓) of
evaluation models on CIFAR100 for different aleatoric strategies
and calibration methods.

- Label Smoothing Mixup
Random 1.20 / 0.04 / 0.04 1.19 / 0.04 / 0.04 1.20 / 0.04 / 0.04
Least C. 1.08 / 0.04 / 0.04 1.08 / 0.04 / 0.04 1.09 / 0.04 / 0.04
Margin 1.09 / 0.04 / 0.04 1.08 / 0.04 / 0.04 1.09 / 0.04 / 0.04
Entropy 1.08 / 0.04 / 0.04 1.08 / 0.04 / 0.04 1.09 / 0.04 / 0.04

improved aleatoric estimates do not lead to an improvement in evaluation accuracies (H1). Furthermore,
Tab. 11 indicates a slight improvement in aleatoric uncertainty estimates by employing aleatoric strategies
(H2). Looking at the uncertainty estimation of Bayesian models in Tab. 12, we see different qualities of
aleatoric and epistemic estimates, with the ensemble working robust across strategies. Consequently, the
instance selection of the ensemble should result in the best evaluation accuracies when employing epistemic
strategies. Examining Tab. 13, we do not see this effect. In particular, while the ensemble selects instances
by using the best uncertainty estimates, it does not lead to the best evaluation accuracy across the strategies
(H3). Considering the aleatoric uncertainty estimates in Tab. 15, we again see inconsistencies between the
Brier score and calibration error when employing epistemic strategies (H4). The improved Brier score is
potentially due to the better generalization of the model, while the calibration errors remain unchanged. In
contrast, when considering the epistemic uncertainty estimates in Tab. 14, we see that epistemic strategies
lead to enhanced epistemic uncertainty estimates for each Bayesian model.

C.2.2 CIFAR100

Table 16 shows that calibration methods lead to models that select instances with different qualities of
aleatoric estimates. In contrast to CIFAR-10 and SVHN, calibration methods do not consistently improve
all aleatoric uncertainty estimates over the non-calibrated model for CIFAR100. This is potentially due to the
more complex classification task with 100 classes. As mixup consistently provides the best aleatoric estimates
for each strategy, we investigate if its selection results in the best evaluation accuracy. Examining Tab. 17,
we observe that mixup’s selection does not lead to an improvement in evaluation accuracy (H1). Considering
the aleatoric estimates, Tab. 18 indicates an improved estimation by employing aleatoric strategies (H2).
Looking at the uncertainty estimation of Bayesian models in Tab. 19, we see varying qualities of aleatoric
and epistemic estimates. While ensemble is providing robust estimates for both aleatoric and epistemic
uncertainty, SNGP provides the best epistemic estimates in the far-OOD detection scenario. Therefore, we
assume that the instance selection of the ensemble and SNGP should result in better evaluation accuracies
compared to MC-Dropout when employing epistemic strategies. Again, examining Tab. 20, we do not see
this effect (H3). Considering the aleatoric uncertainty estimates in Tab. 22, we again see inconsistencies
between the Brier score and calibration error when employing epistemic strategies (H4). For CIFAR100, the
TCE appears to be worse and more sensitive when using epistemic strategies, which might be due to the
increased number of classes resulting in challenges of maintaining a proper calibration. When considering
the epistemic uncertainty estimates in Tab. 21, epistemic strategies lead to enhanced epistemic uncertainty
estimates in far-OOD scenarios (H4). In contrast, the results for epistemic estimates in the near-OOD
scenarios are inconsistent. Only SNGP’s selection yields improved epistemic uncertainty estimates.
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Table 19: Quality of aleatoric and epistemic
estimates of Bayesian selection models on CI-
FAR100 during AL in form of AUC.

Brier (↓) ACE (↓) AUPR (↑)
CIFAR10

AUPR (↑)
SVHN

Random
MC-Dr. 0.540 0.030 0.661 0.831
SNGP 0.627 0.032 0.654 0.867
Ensemble 0.489 0.032 0.682 0.840

Bayesian Entropy
MC-Dr. 0.538 0.031 0.668 0.844
SNGP 0.636 0.035 0.641 0.895
Ensemble 0.474 0.034 0.699 0.860

BALD
MC-Dr. 0.534 0.030 0.666 0.839
SNGP 0.621 0.034 0.658 0.876
Ensemble 0.474 0.033 0.691 0.846

Variation Ratio
MC-Dr. 0.533 0.030 0.668 0.841
SNGP 0.627 0.034 0.652 0.891
Ensemble 0.472 0.033 0.696 0.858

Table 20: Final / AUC accuracies (↑) of evaluation models
on CIFAR100 for different epistemic strategies and Bayesian
methods.

Random Entropy BALD VR
MC-Dr. 0.703 / 0.595 0.725 / 0.607 0.722 / 0.606 0.724 / 0.609
Ensemble 0.701 / 0.595 0.728 / 0.606 0.723 / 0.607 0.725 / 0.607
SNGP 0.703 / 0.595 0.724 / 0.607 0.721 / 0.606 0.721 / 0.608

Table 21: Final epistemic estimates (AUPR near ↑ / AUPR
far ↑) of evaluation models on CIFAR100 for different epis-
temic strategies and Bayesian methods.

MC-Dropout Ensemble SNGP
Random 0.706 / 0.898 0.706 / 0.899 0.706 / 0.878
Entropy 0.701 / 0.913 0.703 / 0.915 0.722 / 0.887
BALD 0.707 / 0.921 0.708 / 0.904 0.719 / 0.884
Variation Ratio 0.705 / 0.919 0.704 / 0.917 0.714 / 0.881

Table 22: Final aleatoric estimates (Brier ↓ / TCE ↓ / ACE ↓) of evaluation models on CIFAR100 for
different epistemic strategies and Bayesian methods.

MC-Dropout Ensemble SNGP
Random 0.434 / 0.124 / 0.035 0.433 / 0.124 / 0.035 0.414 / 0.053 / 0.043
Entropy 0.416 / 0.136 / 0.040 0.416 / 0.135 / 0.040 0.391 / 0.057 / 0.045
BALD 0.417 / 0.139 / 0.039 0.419 / 0.132 / 0.038 0.391 / 0.050 / 0.043
Variation Ratio 0.416 / 0.136 / 0.039 0.418 / 0.136 / 0.038 0.391 / 0.050 / 0.043

Table 23: Quality of aleatoric uncer-
tainty estimates of selection models on
ImageNet100 during AL in form of AUC.

NLL (↓) Brier (↓) TCE (↓) ACE (↓)
Random

- 1.664 0.528 0.054 0.040
LS 1.710 0.532 0.046 0.035
Mixup 1.619 0.516 0.053 0.036

Least Confidence
- 1.606 0.527 0.055 0.042
LS 1.629 0.525 0.044 0.036
Mixup 1.587 0.527 0.053 0.037

Margin
- 1.595 0.521 0.051 0.041
LS 1.633 0.523 0.047 0.036
Mixup 1.585 0.522 0.054 0.036

Entropy
- 1.610 0.527 0.055 0.042
LS 1.622 0.523 0.043 0.037
Mixup 1.586 0.527 0.052 0.037

Table 24: Final / AUC accuracies (↑) of evaluation models
on ImageNet100 for different aleatoric strategies and calibration
methods.

Random Least Confident Margin Entropy
- 0.720 / 0.597 0.723 / 0.600 0.724 / 0.604 0.713 / 0.598
LS 0.714 / 0.596 0.722 / 0.602 0.730 / 0.605 0.719 / 0.603
Mixup 0.716 / 0.596 0.721 / 0.598 0.719 / 0.599 0.719 / 0.598

Table 25: Final aleatoric estimates (NLL ↓ / TCE ↓ / ACE ↓) of
evaluation models on ImageNet100 for different aleatoric strategies
and calibration methods.

- Label Smoothing Mixup
Random 1.11 / 0.03 / 0.04 1.12 / 0.03 / 0.04 1.11 / 0.03 / 0.04
Least C. 1.04 / 0.03 / 0.04 1.04 / 0.03 / 0.04 1.04 / 0.02 / 0.04
Margin 1.05 / 0.03 / 0.04 1.03 / 0.03 / 0.04 1.06 / 0.03 / 0.04
Entropy 1.05 / 0.03 / 0.04 1.04 / 0.03 / 0.04 1.06 / 0.03 / 0.04

C.2.3 ImageNet100

Table 23 demonstrates that calibration methods during AL yield different qualities of aleatoric estimates.
Similar to CIFAR100, calibration methods do not consistently improve all aleatoric uncertainty estimates. As
mixup provides the most consistent improvements over the non-calibrated model across metrics, we assume
that this improved aleatoric estimates might enhance instance selection. However, Tab. 24 suggests that
the instance selection of mixup does not improve the evaluation accuracies (H1). When considering the
aleatoric estimates in Tab. 25 of evaluation models, we observe a slight improvement in aleatoric estimates
due to an improved NLL (H2). In the context of uncertainty estimation of Bayesian models, Tab. 26 suggests
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Table 26: Quality of aleatoric and epistemic
estimates of Bayesian selection models on Im-
ageNet100 during AL in form of AUC.

Brier (↓) ACE (↓) AUPR (↑)
CIFAR10

AUPR (↑)
CIFAR100

Random
MC-Dr. 0.564 0.034 0.924 0.911
SNGP 0.597 0.035 0.910 0.907
Ensemble 0.490 0.038 0.880 0.876

Bayesian Entropy
MC-Dr. 0.661 0.034 0.930 0.926
SNGP 0.638 0.038 0.924 0.922
Ensemble 0.490 0.039 0.917 0.911

BALD
MC-Dr. 0.571 0.035 0.931 0.926
SNGP 0.598 0.037 0.919 0.919
Ensemble 0.479 0.039 0.890 0.885

Variation Ratio
MC-Dr. 0.612 0.036 0.937 0.932
SNGP 0.612 0.037 0.914 0.916
Ensemble 0.481 0.039 0.910 0.903

Table 27: Final / AUC accuracies (↑) of evaluation models on
ImageNet100 for different epistemic strategies and Bayesian
methods.

Random Entropy BALD VR
MC-Dr. 0.722 / 0.591 0.717 / 0.587 0.734 / 0.604 0.728 / 0.598
Ensemble 0.722 / 0.592 0.715 / 0.588 0.732 / 0.598 0.725 / 0.597
SNGP 0.722 / 0.592 0.720 / 0.589 0.731 / 0.598 0.726 / 0.600

Table 28: Final epistemic estimates (AUPR near ↑ / AUPR
far ↑) of evaluation models on ImageNet100 for different epis-
temic strategies and Bayesian methods.

MC-Dropout Ensemble SNGP
Random 0.942 / 0.944 0.935 / 0.938 0.938 / 0.941
Entropy 0.942 / 0.943 0.923 / 0.928 0.935 / 0.934
BALD 0.957 / 0.958 0.956 / 0.955 0.940 / 0.942
Variation Ratio 0.950 / 0.950 0.942 / 0.939 0.932 / 0.937

Table 29: Final aleatoric estimates (Brier ↓ / TCE ↓ / ACE ↓) of evaluation models on ImageNet100 for
different epistemic strategies and Bayesian methods.

MC-Dropout Ensemble SNGP
Random 0.403 / 0.137 / 0.040 0.402 / 0.135 / 0.040 0.406 / 0.134 / 0.041
Entropy 0.440 / 0.195 / 0.046 0.480 / 0.254 / 0.045 0.464 / 0.237 / 0.045
BALD 0.390 / 0.145 / 0.043 0.423 / 0.194 / 0.045 0.405 / 0.166 / 0.044
Variation Ratio 0.413 / 0.175 / 0.045 0.446 / 0.221 / 0.045 0.428 / 0.194 / 0.045

that MC-Dropout has better epistemic estimates due to improved out-of-distribution metrics. Despite this,
Tab. 27 shows similar accuracies across models indicating that epistemic uncertainty hardly influences the
selection (H3). Looking at the aleatoric estimates in Tab. 29, we see that the aleatoric estimates become
worse when employing epistemic strategies. This is quite prominent across models and strategies. This
behavior is consistent with observations in CIFAR100, likely due to the increased complexity from a large
number of classes. Finally, considering the epistemic uncertainty estimates in Tab. 28, we see that BALD
and variation ratio mostly improve the epistemic estimates, while this is not the case for entropy sampling.
Generally, it seems that having a higher number of classes tends to reduce differences between strategies.

D Implementations and Infrastructure

All experiments were conducted using a computer cluster equipped with a combination of NVIDIA Tesla V100
and A100 GPUs. CPU models used in our experiments were Intel Xeon Gold 6252 and AMD EPYC 7662.
Each server was equipped with approximately 600 GB of RAM, and the computing infrastructure utilized
Ubuntu as an operating system. We implemented all models using Python and leveraged the PyTorch (Paszke
et al., 2019) and scikit-learn (Pedregosa et al., 2011) libraries. Additionally, Ray Tune (Liaw et al., 2018)
was employed for hyperparameter optimization.

E Synthetic Experiments

In our 2D data example with synthetic data, we sampled 100 instances each from two isotropic Gaussian
distributions with mean µ1 = (0, 0)T and µ2 = (2, 2)T. Both have a shared covariance of Σ = 2I, where I is
the identity matrix. Using this setup, we can obtain the true probabilities p(y|x) through Bayes’ theorem, as
we have access to likelihood p(x|y), prior p(y), and marginal likelihood p(x). We use the true probabilities
as our ground truth aleatoric uncertainty estimates. Considering epistemic uncertainty, obtaining ground
truth estimates is not possible, as these depend on the lack of knowledge of a model. We approximate it
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Table 30: Dataset overview and settings.

Dataset |Train| |Test| |Val| |Classes| OOD
CIFAR10 50,000 10,000 10% 10 CIFAR100, SVHN
CIFAR100 50,000 10,000 10% 100 CIFAR10, SVHN

SVHN 73,257 26,032 10% 10 CIFAR10, CIFAR100
ImageNet100 128,545 5,000 10% 100 CIFAR10, CIFAR100

using Gaussian Processes because they are often considered the gold standard for uncertainty quantification
with low-dimensional datasets (Liu et al., 2022). Consequently, the predictions of a Gaussian process trained
on the labeled pool L are our ground truth estimates for epistemic uncertainty.

F Data Preparation and Model Training

We follow the ResNet work from He et al. (2016) and apply simple data augmentations for our datasets that
include horizontal flips and random cropping with a 4x4 padding.

We perform our experiments on commonly used real-world image classification datasets, i.e., CI-
FAR10 (Krizhevsky, 2009), CIFAR100 (Krizhevsky, 2009), SVHN (Steet View House Number) (Netzer
et al., 2011), and ImageNet (Deng et al., 2009). CIFAR10 consists of 60,000 RGB images, each with a
size of 32x32, assigned to one of 10 classes. It comes with a predefined training split of 50,000 and a test
split of 10,000 instances. CIFAR100 has the same characteristics as CIFAR10, with the main difference of a
bigger class cardinality of 100 classes, resulting in fewer instances per class. SVHN consists of approximately
100,000 Google Street View images of house numbers, each with a size of 32x32, assigned to one of 10 classes.
The predefined train split contains 73,257 instances and the test split contains 26,032. Table 30 provides
an overview of all real-world dataset settings used in the experiments. ImageNet is a large-scale dataset of
over 14 million high-resolution images, each labeled with one of 20,000 possible categories. Unlike CIFAR10
and CIFAR100, ImageNet images vary in size and aspect ratio. In our experiments, we employ a subset
of ImageNet-1k following (Hacohen et al., 2022), focusing on 100 classes. It comprises a training split of
128,545 images and a test split with 5,000 images.

In every cycle, we train a DNN for 200 epochs with a batch size of 32. We optimize hyperparameters before
starting an AL experiment to establish an optimal setting and avoid bad aleatoric and epistemic uncertainty
estimates due to training problems of a model. Although this setting is not possible when employing AL
in the real world, it allows us to ensure a better estimation of aleatoric and epistemic uncertainty at the
end of the AL process. In particular, we noticed that hyperparameters of methods aiming to improve the
predictive uncertainty (e.g., the amount of label smoothing) required careful tuning in conjunction with
learning rate and weight decay. To this end, we created a separate validation split comprising 10% of the
training split (e.g., 5,000 instances for CIFAR10). After that, we randomly sampled a subset of the training
split (including instances and labels), with the number of instances corresponding to an AL experiment’s
total budget. With this setup, we performed a grid search and chose the hyperparameters that optimized
the validation NLL. All remaining instances from the training split (without validation split and training
dataset) were used to perform the experiments.

• Standard: We optimized learning rate and weight decay:

– learning rate: {0.001, 0.01, 0.1},
– weight decay: {0.0005, 0.005, 0.05}.

• Label smoothing: We optimized learning rate, weight decay, and label smoothing hyperparameter:

– learning rate: {0.001, 0.01, 0.1},
– weight decay: {0.0005, 0.005, 0.05},
– label smoothing: ϵ ∈ {0.05, 0.1, 0.15, 0.2}.

• Mixup: We optimized learning rate, weight decay, and mixup hyperparameter:
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– learning rate: {0.001, 0.01, 0.1}
– weight decay: {0.0005, 0.005, 0.05}
– mixup: α ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}.

• MC-Dropout: We optimized learning rate, weight decay, and dropout rate with 100 as the number
of dropout samples:

– learning rate: {0.001, 0.01, 0.1},
– weight decay: {0.0005, 0.005, 0.05},
– dropout rate: {0.1, 0.2, 0.3, 0.4, 0.5}.

• Ensemble: We optimized learning rate and weight decay with 10 as the number of ensemble
members:

– learning rate: {0.001, 0.01, 0.1},
– weight decay: {0.0005, 0.005, 0.05}.

• SNGP: We optimized learning rate and weight decay. The remaining hyperparameters such as
kernel scale (= 1) and mean field factor (= 20) were selected by considering the recommended
values in Liu et al. (2022).

– learning rate: {0.001, 0.01, 0.1},
– weight decay: {0.0005, 0.005, 0.05}.
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