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ABSTRACT

Knowledge graph completion (KGC) aims to alleviate the inherent incomplete-
ness of knowledge graphs (KGs), a crucial task for numerous applications such
as recommendation systems and drug repurposing. The success of knowledge
graph embedding (KGE) models provokes the question about the explainability:
“Which the patterns of the input KG are most determinant to the prediction?”
Particularly, path-based explainers prevail in existing methods because of their
strong capability for human understanding. In this paper, based on the observa-
tion that a fact is usually determined by the synergy of multiple reasoning chains,
we propose a novel explainable framework, called KGExplainer, to explore syn-
ergistic pathways. KGExplainer is a model-agnostic approach that employs a
perturbation-based greedy search algorithm to identify the most crucial syner-
gistic paths as explanations within the local structure of target predictions. To
evaluate the quality of these explanations, KGExplainer distills an evaluator from
the target KGE model, allowing for the examination of their fidelity. We exper-
imentally demonstrate that the distilled evaluator has comparable predictive per-
formance to the target KGE. Experimental results on benchmark datasets demon-
strate the effectiveness of KGExplainer, achieving a human evaluation accuracy of
83.3% and showing promising improvements in explainability. Code is available
at https://anonymous.4open.science/r/KGExplainer-33A0.

1 INTRODUCTION

Knowledge graph completion (KGC) aims to infer missing facts and tackles the incompleteness
of knowledge graphs (KGs) (Akrami et al., 2020), which has been widely used to support various
applications including recommendation (Wang et al., 2019a; Yang et al., 2022; Wang et al., 2022),
sponsored search (Lin et al., 2022), and drug discovery (Ma et al., 2023; Bang et al., 2023; Pan et al.,
2022). Most KGC models utilize knowledge graph embedding (KGE) methods to map KG elements
into multi-dimensional vectors (Nguyen et al., 2023; Song et al., 2023). These vectors are commonly
used as features for downstream tasks and input into scoring functions for predicting missing links.
KGE methods have been shown to achieve more powerful predictive performance than traditional
models and can be easily scaled to large graphs (Ali et al., 2021; Zheng et al., 2020). However,
current KGE methods make black-box predictions without providing explanations, hindering their
deployment in risk-sensitive scenarios (Wang et al., 2022; Zhang et al., 2023).

To address the aforementioned limitation, the idea of adversarial modifications is adopted to find the
key facts, which identify the facts to include or exclude from the KG and monitor their prediction
score change in the perturbed KG (Pezeshkpour et al., 2018; Rossi et al., 2022; Betz et al., 2022).
These methods can provide discrete evidence, which is insufficient to completely explain why the
model makes such a prediction (Zhang et al., 2023). To capture the coherent reasoning chains for
target predictions, some researchers extract possible logical rules by leveraging the known facts
within the KG (Zhang et al., 2019; Sadeghian et al., 2019; Arakelyan et al., 2021). The mined rules
are usually represented as paths, which can give the basis of decision-making and enhance the trans-
parency of the prediction model. Besides, a line of work adopts reinforcement learning to identify
the next node step-by-step and form a reasoning chain by designing a reward model (Xian et al.,
2019; Bhowmik & de Melo, 2020; Jiang et al., 2023). Apart from them, more recent approaches
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prefer relying on graph neural networks and introducing pruning mechanisms, learning an edge
scorer to search for valid paths as explanations (Zhang et al., 2023; Chang et al., 2024).

Despite the fruitful progress and the popular trend toward path-based explainers, generat-
ing multiple synergistic paths for complex queries has not been discussed. For example,
as shown in Figure 1a, Alibaba can be identified as a competitor of JD.com over a com-
plex KG1 when given the synergistic facts: both Alibaba and JD.com invest in retail in
China. In addition, for the prediction that the drug Acetaminophen decreases the serum con-
centration of drug Warfarin (Figure 1b), the explainers need to provide multiple synergistic
paths simultaneously to describe the facts: Acetaminophen inhibits the activity of the enzymes
that metabolize Warfarin, thus bringing a decrease in the serum concentration of Warfarin.
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Figure 1: (a) Multiple paths (blue) explain the competition relation-
ship between Alibaba and JD.com; (b) Identifying the adverse reac-
tions between Warfarin and Acetaminophen needs the synergy of mul-
tiple paths to explain the interaction mechanism.

Additionally, for the
identified explanations,
we cannot directly verify
their rationality due to the
ground truth is unavailable.
Previous methods focused
more on model faithful-
ness (Pezeshkpour et al.,
2018; Xian et al., 2019)
or manual verification of
small-scale facts case by
case (Zhang et al., 2021),
ignoring the quantitative
assessment of model
explainability.

Based on the above obser-
vations, we propose KGEx-
plainer to explore synergis-
tic path-based explanations
for KGC tasks and provide
an effective evaluation. KGExplainer is a post-hoc explainable model performed on the trained
KGEs, which searches for single or multiple path-based reasoning chains. We first perform a model-
agnostic greedy search approach to identify important paths and distill an explanation evaluator from
target KGEs to measure the correlation between explanations and predictions. Then we evaluate the
fidelity (Wu et al., 2023) of the identified synergistic paths by measuring whether the original pre-
diction can be maintained based on the explored explanations.

To the best of our knowledge, we are the first to approach the explanations of KGE-based KGC
models from a novel perspective by emphasizing and evaluating synergistic paths. Besides, we
propose an evaluation strategy to quantitatively assess the effectiveness of synergistic path-based
explanations by distilling an evaluator to examine their fidelity. Extensive experiments and human
evaluation on benchmarks demonstrate the effectiveness and efficiency of KGExplainer.

2 RELATED WORKS

Knowledge Graph Completion. KGC aims to address the invariable incompleteness of knowl-
edge graphs (KGs) by identifying missing interactions between entities. Previous rule-based meth-
ods (Sadeghian et al., 2019; Arakelyan et al., 2021) mine logical rules iteratively based on pre-
trained embeddings of KGEs during the training process. These methods provide reasoning chains
for prediction, which enhance the model’s transparency. Knowledge graph embedding (KGE) mod-
els map KG elements to multi-dimensional vectors and define a scoring function to infer new
facts, showing superior performance and scalability over rule-based methods for predicting miss-
ing links (Zhang et al., 2022; Wang et al., 2023; Gregucci et al., 2023). Specifically, the translational
models, TransE (Bordes et al., 2013a) and its extensions (Wang et al., 2014; Lin et al., 2015), rep-
resent relations and entities as embedding vectors and treat the relation as the translation from head
entities to tail entities. In another aspect, the bilinear models, RESCAL (Nickel et al., 2011) and its

1Alibaba and JD.com are online retail companies in China.
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variants (Trouillon et al., 2016; Yang et al., 2015), represent relations with matrices and combine the
head and tail entities by sequentially multiplying head embedding, relation matrix, and tail embed-
ding. To effectively infer various relation patterns or properties (e.g., symmetry and inversion) over
complex KGs, RotatE (Sun et al., 2019) represents each relation as a rotation operation from the
source entity to the target entity in the complex vector space. Although these KGE models are suc-
cessful in predicting unknown facts, they are limited in lacking transparency, blocking researchers
from developing trustworthy models. To address the above limitations, we propose KGExplainer to
enhance the explainability of KGE-based KGC models.

Explainability in KGC. To increase the transparency of models in KGC tasks, researchers have
developed various explainable models (Wang et al., 2022; Huang et al., 2022; Zhang et al., 2023; Yao
et al., 2023). Learning rules as the explanations from KGs has been studied extensively in inductive
logic programming (Galárraga et al., 2013; Qu et al., 2021). RuLES (Ho et al., 2018) extended rule
learning by exploiting probabilistic representations of missing facts computed by a pre-trained KGE
model. DRUM (Sadeghian et al., 2019) proposed a scalable and differentiable approach to mine
first-order logical rules from KGs for unseen entities. The mining rules are human-understandable,
which can be used to deduce predicted facts and provide logical explanations (Zhang et al., 2019).
To improve the explainability of KGE methods, CRIAGE (Pezeshkpour et al., 2018), Kelpie (Rossi
et al., 2022), and KE-X (Zhao et al., 2023) search for the isolated key edges to explain the target
prediction by approximately evaluating the impact of removing an existing fact from the KG on
prediction score. However, discrete edges can not form a complete reasoning chain. To explore path-
based explanations, PGPR (Xian et al., 2019) and ELEP (Bhowmik & de Melo, 2020) have adopted a
reinforcement learning approach to predict tail entities and take the reasoning path between the head
and tail entities as the evidence. PaGE-Link (Zhang et al., 2023) proposed a path-based explainable
method for the graph neural network-based KGC tasks, providing valid reasoning chains. To provide
enough evidence for the decision-making complex scenario, we propose KGExplainer to explore
synergistic paths and form a connected subgraph as an explanation.

3 PRELIMINARY

KGE-based KGC. We define a knowledge graph (KG) as a labeled directed graph G = (V,R, E) =
{⟨h, r, t⟩ |h, t ∈ V, r ∈ R, (h, t) ∈ E} where each triple represents a relation r between the head
entity h and tail entity t. Most KGs are incomplete. Knowledge graph completion (KGC) leverages
existing facts in the KG to infer missing ones. Currently, the KGC method adopts deep learning
techniques to learn the embeddings of KG elements. Intuitively, knowledge graph embeddings
(KGEs) contain the semantic information of the original KG and can be used to predict new links.
Generally, the KGE-based models define a score function ϕ to estimate the plausibility of triples and
optimize the vectorized embeddings by maximizing the scores of existing facts. For the incomplete
triple ⟨h, r, ?⟩, the KGE models find the missing tail entity t with best scores as follows:

t = argmax
v∈V

ϕ(h, r, v). (1)

The head entity prediction for the unknown links like ⟨?, r, t⟩ can be defined analogously. In the
following sections, we mostly refer to tail entity prediction for simplicity. All our methods can be
applied to head entity prediction.

Enclosing Subgraph. Based on GraIL (Teru et al., 2020), when given a KG G and a link ⟨h, r, t⟩
for tail prediction, we extract an enclosing subgraph surrounding the target link to represent the
relevant patterns for model’s decision. Initially, we obtain the k-hop neighboring entities Nk(h) =
{s|d(h, s) ≤ k} and Nk(t) = {s|d(t, s) ≤ k} for both h and t, where d(·, ·) is the shortest path
distance between the entity pair on G. We then obtain the set of entities V = {s|s ∈ Nk(h)∩Nk(t)}
as vertices of the enclosing subgraph. Finally, we extract the edges E linked by the set of entities V
from G as the k-hop enclosing subgraph g = (V,E).

4 THE KGEXPLAINER FRAMEWORK

Problem Formulation. Given a fact ⟨h, r, t⟩, KGExplainer investigates the explanation that in-
tuitively consists of the most critical synergistic path patterns featuring h that allow KGE mod-
els to predict tail t. For instance, when explaining why the top ranking tail for the missing fact

3
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Figure 2: The KGExplainer framework comprises three modules: (a) Pre-training KGE models on
the target KG ; (b) Exploring synergistic path-based explanations for pre-trained KGE models by
greedy search ; (c) Distilling an evaluator from pre-trained KGE to assess the fidelity of explored
explanations quantitatively.

⟨Donald Trump, nationality, ?⟩ is USA, KGExplainer searches for the smallest key paths be-
tween Donald Trump and USA, allowing the model to predict the same ranking of USA. Specifically,
KGExplainer aims to find a connected subgraph (i.e., multiple synergistic paths) gkey that is most
influential to the target prediction ⟨h, r, t⟩, and removing the other irrelevant facts do not affect the
model’s prediction. We can define this process as follows:

gkey = argmax
g̃∈gsub

D(g, g̃) (2)

subject to ∆(f(g), f(g̃)) = min
ĝ∈gsub

∆(f(g), f ′(ĝ)) (3)

where g is the original enclosing subgraph , gsub denotes the all possible connected subgraphs from h
to t within g. f(·) and f ′(·) represent the original and retrained KGE models. D(g, g̃) represents the
structure similarity between g and g̃, and also indicates the sparsity of explanations (see Section 5.4).

4.1 PRE-TRAINING KGE.

In this paper, we developed the KGExplainer as a post-hoc explanation method for KGE-based
KGC models by exploring synergistic paths (i.e., connected subgraph). To effectively learn seman-
tic knowledge within the complex KG, we adopt the state-of-the-art RotatE (Sun et al., 2019) as
the target KGE. Specifically, given a triple ⟨h, r, t⟩, we adopt a score function and expect that the
embedding of head entity h is similar to the embedding of tail entity t by rotating it over the relation
r. By maximizing the scores of positive triples and minimizing the scores of negative ones, we can
obtain the pre-trained entity and relation embeddings (Figure 2a). Theoretically, KGExplainer is
model-agnostic and can be applied to any KGE-based model with a score function. We designed
experiments to verify the effectiveness of KGExplainer on various KGE models, the details can be
found in Section 5.3.

4.2 EXPLANATION EXPLORATION.

Greedy Search for Key Synergistic Paths. As shown in Figure 2b, given a predicted link ⟨h, r, t⟩
for the prediction of tail entity t, we developed a greedy search algorithm based on a perturbation
mechanism to search for crucial paths as the explanations. We first extract the enclosing subgraph g
around the target link, which contains informative interactions for such prediction. To identify the
most important paths influencing the prediction within g, we search all entities in g and measure
their importance to capture key ones. Specifically, we remove each entity and its adjacent from g
and retrain2 the target KGE on the perturbed subgraph g′. Then we measure the score change of
the target link using the original and retrained embedding as the entity importance. The more the

2Retraining KGE over the entire KG is way too costly and we discuss an efficient strategy to tackle this
issue in Section 4.2

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

score changes, the more critical an entity is. To ensure that the key entities obtained from the k-
hop enclosing subgraph g lead to a single connected component, we search the key entities from
the head h and tail t hop by hop. We first remove each 1-hop neighbor entity of h and measure
their importance to identify the top important entities. After getting the top-n important entities vn1
from 1-hop neighbor entities, we then search the one-hop neighboring entities of vn1 analogously
for important two-hop neighbors vn2 . We repeat this one-hop search process until reaching the tail
entity t of the target link. As a result, we capture a set of the k-hop key neighboring entities vn =
{vn1 , · · · , vnk} and construct a connected subgraph for multiple synergistic paths as the explanation.
We provide a detailed Algorithm in Appendix A.1.

Retraining Strategy for Importance Assessment. To effectively obtain the score changes of target
facts based on the KGE models, we designed a retraining strategy to capture the new embedding
on the perturbed KG. Since each entity perturbation only makes minor changes over the entire KG,
retraining the embeddings over the revised KG is infeasible when G has millions of entities and
facts. To focus on the relevant patterns and reduce the overhead of the retraining, we introduce a
subgraph-based retraining strategy. We extract the enclosing subgraph g of the target fact ⟨h, r, t⟩
and expand g by including the 1-hop neighbors Nextend of the existing entities, which constructs
a new subgraph gextend. Then we retrain the embeddings of the KG elements on gextend to make
the calculation of score changes effective. To keep the overall entity and relation embeddings of g
within the same representation space of G, we alleviate the following constraints: (1) We initialize
the embeddings of the entities in gextend with the pre-trained embeddings from G; (2) We fix the
relation embeddings in gextend as the same as those in G; (3) We fix the embeddings of entities
v ∈ Nextend. By using the retraining strategy, KGExplainer can effectively capture the target fact’s
score change and efficiently search for key subgraphs. More details can be found in Appendix A.2.

4.3 EVALUATOR DISTILLATION

Why Subgraph Evaluator? Evaluating the quality of identified synergistic paths is essential. How-
ever, the ground truth explanations are unavailable, making it difficult to achieve that objective. To
evaluate the quality of explanations, we introduce a hypothesis that a perfect explanation should
retain the key context of target prediction and can still maintain the predicted score (Wu et al.,
2023). Thus, an effective idea is to verify that the explored explanations can still obtain the target
prediction. However, the base KGEs implicitly have access to the entire graph and only score one
triple, which can not compute the prediction based on multiple synergistic paths. To address this
limitation, we design a subgraph evaluator by distilling a relational graph neural network (GNN)
from pre-trained KGEs for KGC. Given a pre-trained KGE-based KGC model ϕ(h, r, t), we aim to
train a subgraph evaluator to replicate the predictive performance of the target KGE and evaluate
the subgraph structures of explanations. During training, the GNN is optimized to predict the facts
from their complete enclosing subgraphs. Once trained, the explored explanations as connected sub-
graphs can be fed into the evaluator and evaluate the fidelity of multiple synergistic paths (i.e., the
connected subgraph).

How to get Subgraph Evaluator? Given a link ⟨h, r, t⟩, we develop a score function Z(h, r, t) with
a L-layer relational graph attention neural network (R-GAT) on its enclosing subgraph g to score it
based on the local substructure representation. The update function of the entities in the l-th layer is
defined as:

xl
i =

∑
r∈R

∑
j∈Nr(i)

α(i,r,j)W
l
rΦ(e

l−1
r ,xl−1

j ),

α(i,r,j) = sigmoid
(
W1

[
xl−1
i ⊕ xl−1

j ⊕ el−1
r

])
,

(4)

where elr and xl
i represent the l-th layer embeddings of relation r and entity i. α(i,r,j) and Nr(i)

denote the weight and neighbors of entity i under the relation r, respectively. ⊕ is the concatenation
operation. Wl

r represents the transformation matrix of relation r, and Φ is the aggregation operation
to fuse the hidden features of entities and relations. Finally, we obtain the global representation
Xsub of the subgraph g as follows:

Xsub =
1

|V |
∑
i∈V

f(xL
i ), (5)
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where V is the entity set of the enclosing subgraph g. After obtaining the global representation
Xsub, we define a linear layer to score the target link as follows:

Z(h, r, t) = WTXsub, (6)
where WT is a transform matrix.

To optimize the subgraph evaluator, inspired by Gou et al. (2021), we adopt the insights of knowl-
edge distillation and consider the predictions of the pre-trained KGE-based KGC model as soft
labels. Meanwhile, to enhance the model’s ability to rank candidate entities, we introduce a regu-
larization term that encourages maximizing the margin between the scores for positive and negative
samples. The objective for the optimization of this evaluator is defined as follows:

min
∑

(h,r,t)∈G

∥ϕ(h, r, t)− Z(h, r, t)∥2 + λL(h, r, t), (7)

where the first term is a score alignment objective. The second term is a pair-wise loss , which is
defined by negative sampling:

L(h, r, t) = −Z(h, r, t) +
1

N

N∑
n=1

Z(h, r, vn), (8)

where N denotes the number of negative samples and vn is uniformly drawn from V . By minimizing
the above optimization objective, we can obtain an effective subgraph scoring function with powerful
predictive performance and evaluation capabilities for synergistic path-based explanations.

4.4 SCALABILITY OF KGEXPLAINER

The computation complexity of finding explanations using KGExplainer is related to two parts: 1)
the size of enclosing subgraph g and 2) the number of entities that require importance evaluation.

Proposition 1 Given G = (V,R, E), a predicted fact ⟨h, r, t⟩, the maximum length of paths L, and
the number of paths N , the size of g is O(LN |V|

|E| ) and the size of Nextend is O(LN).

Given h and t, the maximum number of edges within paths is L ∗ N . The probability of an entity
v ∈ V in an edge e ∈ E is 2|V|

|E| . Thus, the size of g is bounded by LN ∗ 2|V|
|E| , i.e., O(LN |V|

|E| ). The

number of entities in Nextend is 2LN |V|
|E| ∗ 2|E|

|V| , i.e., O(LN).

Proposition 2 Given G = (V,R, E), a predicted fact ⟨h, r, t⟩, the maximum length of paths L and
the maximum number of entities per hop in an explanation K. The maximum number of entities to
evaluate is (1 + (L− 2)K)( 2|E||V| ).

Following Algorithm 1 in Appendix A.1, the average number of entities to evaluate is d in the first
hop, 0 in the last hop, and K ∗ d in the intermediate hops, where d = 2|E|

|V| is the average degree of

an entity. Thus, the total number of entities to evaluate is (1 + (L− 2)K)( 2|E||V| ).

Here, we conclude that the average computation complexity of finding the explanation for a pre-
dicted fact ⟨h, r, t⟩ is only related to the maximum length of paths L, the maximum number of
paths N , and the average degree of an entity in KG, which is not related to the size of G. Thus, in
theory, KGExplainer can balance the computational complexity by adjusting the size of enclosing
subgraphs. Besides, KGExplainer can scale to large KGs with a small average degree. More details
refer to Appendix A.3.

5 EXPERIMENT

In this section, we evaluate the proposed KGExplainer by considering the following key research
questions: Q1 Can KGExplainer perform comparable faithfulness and explore informative expla-
nations? Q2 Can KGExplainer work well with different sizable explainable subgraphs and various
KGE methods? Q3 Is KGExplainer efficient in exploring explanations? We provide more imple-
mentation details of KGExplainer and baselines in Appendix B. More additional experiments are
shown in Appendix C.
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5.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments on three widely used datasets for the KGC task. Specifically,
OGB-biokg is a large-scale KG from OGB project (Hu et al., 2021), which contains millions of facts
and is created from a large number of biomedical data repositories. The Family-rr (Sadeghian et al.,
2019) is a dataset that contains the bloodline relationships between individuals of various families.
FB15k-237 (Bordes et al., 2013b) is a subset of Freebase (Bollacker et al., 2008), which is a large-
scale knowledge graph containing general facts. For every dataset, we split it into training and test
subsets for the following evaluations of faithfulness and explainability. The detailed statistics of all
datasets are shown in Appendix B.1.1.

Faithful Metrics. The evaluation of KGC models is performed by running head and tail predictions
on each triple in the test set. For each prediction, the ground truth is ranked against all the other
entities V . Without loss of generality, for tail prediction, this corresponds to:

tailRank(h, r, t) = |{v ∈ V|ϕ(h, r, v) >= ϕ(h, r, t)}|. (9)

Following Kadlec et al. (2017), we adopt Hits@N to quantify the predictive performance of KGE
and distilled models. Hits@N is the fraction of ranks Srank with value ≤ N :

Hits@N =
|{si ∈ Sr : si ≤ N}|

|Sr|
, (10)

where si is the ranking of i-th candidate entity and Sr is a set of rankings for all candidate entities.
Following the method proposed by Kadlec et al. (2017), we focus on the Hits@1 metric to better
highlight model differences. Based on the designed metrics, we report the mean and variance for
five runs.

Explainable Metrics. As the ground truth explanations of KGC tasks are usually missing, it is not
easy to quantitatively evaluate the quality of explanations. We consider explanations to be suffi-
cient if they allow preserving the KGC performance (Akrami et al., 2020; Wang et al., 2021; Wu
et al., 2023). Thus we define the Recall@N and F1@N as the metrics to evaluate the effectiveness
of explored explanations. Specifically, Recall@N measures the fidelity of explanatory subgraphs
by feeding them into the distilled model and examining how well they recover the target predic-
tive rankings. Given the rankings of tested facts by forwarding their explanations to the distilled
evaluator, we calculate the Recall@N as follows:

Recall@N =
|{si ∈ Sr : si ≤ N} ∩ {sj ∈ Sexp

r : sj ≤ N}|
|{si ∈ Sr : si ≤ N}|

, (11)

where Sexp
r is the ranking set of explanations and Sr denotes the original predictive rankings of

them. We can assess the trustworthiness of explanations by calculating the recovery rate of the
rankings Sr. Meanwhile, the synergistic path-based explanations are critical in the precision of
rankings (i.e., Hits@N ), to comprehensively evaluate the explainability of KGExplainer, we define
F1@N to balance the recall and precision of the explored explanations:

Hits@N =
|{sj ∈ Sexp

r : sj ≤ N}|
|Sexp

r |
, F1@N =

2 ·Recall@N ·Hits@N

Recall@N +Hits@N
. (12)

Finally, we consider N ∈ {1, 3, 10} for the qualitative metrics to emphasize the performance dis-
crepancy.

Table 1: The predictive performance of KGE and
the distilled models on Hits@1(%) metric.

Methods OGB-biokg Family-rr FB15k-237
TransE 11.32 (0.22) 12.63 (0.09) 41.86 (0.43)
KGExp-TransE 10.40 (0.25) 15.77 (0.11) 40.99 (0.31)

DistMult 16.11 (0.06) 8.680 (0.27) 10.26 (0.21)
KGExp-DistMult 14.04 (0.11) 9.881 (0.14) 13.09 (0.32)

RotatE 17.12 (0.19) 39.08 (0.45) 42.10 (0.51)
KGExp-RotatE 17.33 (0.12) 35.79 (0.06) 39.28 (0.29)

Baselines. To verify the performance of KG-
Explainer in exploring explanations, we com-
pare it against subgraph-based (i.e., a batch of
discrete facts) methods CRIAGE (Pezeshkpour
et al., 2018) and Kelpie (Rossi et al., 2022), and
path-based DRUM (Sadeghian et al., 2019),
ELEP (Bhowmik & de Melo, 2020), and
PaGE-Link (Zhang et al., 2023). The sources
of subgraph-based models KGEx (Baltatzis &
Costabello, 2024) and KE-X (Zhao et al., 2023)
are unavailable now, so we exclude them as our
baselines.
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Furthermore, we design variants of KGExplainer: KGExp-Rand randomly selected some connec-
tive paths between head and tail entities to construct an explainable subgraph, which allows an
ablation study. KGExp-TransE, KGExp-DistMult, and KGExp-RotatE are variants of KGEx-
plainer that consider TransE (Bordes et al., 2013b), DistMult (Yang et al., 2015), and RotatE(Sun
et al., 2019) as the base KGE, respectively. For convenience, we denote KGExplainer as KGExp.

5.2 PERFORMANCE OF FAITHFULNESS AND EXPLAINABILITY

In response to Q1, we analyze the performance of KGExplainer from faithfulness and explainability.
Besides, we provide a human evaluation on Family-rr dataset.

Table 2: The F1@1(%) performance of explana-
tions over various datasets. The boldface denotes
the highest score and the underline indicates the
best baseline.

Methods OGB-biokg Family-rr FB15k-237
CRIAGE 50.03 (0.09) 20.75 (0.32) 40.99 (0.21)
Kelpie 49.32 (0.16) 20.33 (0.23) 36.64 (0.13)

DRUM 62.56 (0.23) 21.26 (0.09) 65.53 (0.19)
ELEP 63.44 (0.21) 22.75 (0.17) 70.11 (0.21)
PaGE-Link 68.29 (0.19) 21.89 (0.13) 66.12 (0.14)

KGExp-Rand 54.32 (0.43) 19.16 (0.26) 55.17 (0.23)
KGExp-TransE 81.97 (0.13) 30.47 (0.25) 82.04 (0.33)
KGExp-DistMult 82.33 (0.03) 30.49 (0.24) 84.29 (0.17)
KGExp-RotatE 85.21 (0.11) 29.52 (0.12) 83.65 (0.14)

Table 3: The Recall@1(%) performance of expla-
nations over various datasets. We mark the best
score with bold font and mark the best baseline
with underline.

Methods OGB-biokg Family-rr FB15k-237
CRIAGE 58.75 (0.07) 28.57 (0.33) 68.23 (0.43)
Kelpie 60.32 (0.22) 27.62 (0.39) 60.01 (0.27)

DRUM 69.87 (0.14) 16.20 (0.21) 87.88 (0.22)
ELEP 76.23 (0.25) 29.84 (0.18) 85.58 (0.29)
PaGE-Link 77.69 (0.15) 27.14 (0.31) 85.13 (0.09)

KGExp-Rand 54.61 (0.55) 26.98 (0.49) 50.37 (0.19)
KGExp-TransE 88.37 (0.21) 34.61 (0.43) 92.07 (0.33)
KGExp-DistMult 89.77 (0.11) 34.60 (0.13) 91.67 (0.11)
KGExp-RotatE 88.65 (0.08) 33.02 (0.11) 91.45 (0.09)

Faithfulness Evaluation. An important goal
of explainability models is to accurately and
comprehensively represent the local decision-
making structure of the target model. Specif-
ically, in the context of KGE models, KGEx-
plainer should strive to replicate their behav-
ior as closely as possible (Zhang et al., 2021).
Thus, to answer Q1, we compare the predic-
tive performance of KGExplainer and the target
KGE models. As shown in Table 1, we observe
that KGExplainer achieves nearly the same
performance on the KGC task compared with
the target KGE models (e.g., the performance
of KGExp-TransE and TransE on FB15k-237
dataset). Furthermore, we observe that RotatE
overall achieves the best performance for KGC
and similarly KGExp-RotatE shows superior
predictive performance and the best recovery
rate among the distilled models, which brings
greater credibility than others, supporting that
KGExplainer is faithful to target KGE and is
reliable in replicating the target KGE. Thus, we
chose the RotatE as the target KGE model and
distilled a powerful evaluator based on the sub-
graph substructure around the target link to as-
sess the explainability. In Table 1, we can see
that KGExplainer benefits the base model for
some datasets. We observe the same behav-
ior in (Deng & Zhang, 2020; Jiao et al., 2019).
From their insights, we think the KGExplainer
distilled from KGEs may remove some noise and irrelevant information to the KGC task, making
KGExplainer more robust and having better generalization ability, which leads to KGExplainer per-
forming better than base KGEs to some extent. Based on these observations, the effectiveness of the
distilled evaluator is demonstrated empirically.

Explainability Evaluation. It is essential to assess objectively how good an explanation is for
KGExplainer. Unfortunately, similar to other explanation methods, evaluating explanations is made
difficult by the impossibility of collecting ground truth explanations. To fairly evaluate explanations
without ground truth and answer Q1, we distill an evaluator and design two metrics F1@1 and
Recall@1 to quantify how trusty an explanation is. As shown in Table 2 and Table 3, we reported
the F1@1 and Recall@1 results compared with baselines on three wide-used datasets (F1@[3, 10]
and Recall@[3, 10] are reported in Appendix C.2). Specifically, KGExplainer improves the F1@1
and Recall@1 by at least 16.92% and 12.08% respectively on the OGB-biokg dataset and achieves
7.74% and 4.77% absolute increase over the best baseline on the Family-rr dataset. Meanwhile,
the performance of KGExplainer on the FB15k-237 dataset has yielded 13.54% and 4.19% gains in
F1@1 and Recall@1 compared with the baselines.

Furthermore, we have the following observations: (1) Compared with the subgraph-based meth-
ods CRIAGE and Kelpie, the path-based explainability methods DRUM, ELEP, and PaGE-link that
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utilize reasonable paths between source and target entities achieve better performance, which in-
dicates that the connecting paths are important for the model explanation. (2) Compared with
the path-based explainability models ELEP and PaGE-Link, synergistic path-based KGExplainer
(e.g., KGExp-RotatE) performs better than them on all datasets, demonstrating that the multi-
ple synergistic path-based patterns are more effective than paths and multiple disconnected facts.
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Figure 3: The explanations explored by Kelpie,
DRUM, PaGE-Link, and KGExplainer on the fact
⟨id : 2, isFather, id : 5⟩.
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Figure 4: The explainable performance of KG-
Explainer with different hyper-parameters over
Family-rr dataset.

(3) For an ablation study, KGExp-Rand, which
adopts randomly sampled subgraphs connected
to the source and target entities as the ex-
planations, yields significantly inferior perfor-
mance compared with other KGExplainer vari-
ants. This demonstrates that KGExplainer in-
deed identifies semantically meaningful con-
nected subgraph explanations for model pre-
dictions, which are superior to randomly sam-
pled subgraphs by a large margin. This may
be because the KGExplainer based on target
KGEs can explore synergistic reasonable paths
that are crucial to predicting the corresponding
facts, and the randomly sampled subgraph may
contain irrelevant information with missing key
patterns to the predicted facts. The overall per-
formance compared with the baselines demon-
strates that KGExplainer effectively explores
and evaluates informative explanations.

Human Evaluation Following Zhang et al.
(2023), we conduct a human evaluation by ran-
domly picking 20 predicted links from the test
set of Family-rr and generating explanations for
each link using a subgraph-based model (i.e.,
Kelpie), two path-based methods (i.e., DRUM
and PaGE-Link), and KGExplainer. We de-
signed a survey with single-choice questions.
In each question, we represent the predicted
link and those four explanations with both the
graph structure and the node/edge type infor-
mation, similarly as in Figure 3 but excluding
method names. We sent the survey to peo-
ple across graduate students, PhD students, and
professors, including people with and without
background knowledge about KGs. We ask re-
spondents to “please select the best explanation
of Why the model predicts this relationship between source and target nodes?”. At least three
answers from different people are collected for each question. In total 78 evaluations were collected
and 83.3% (65/78) of them selected explanations by KGExplainer as the best. The survey demon-
strates that KGExplainer is more effective in searching for human-understandable explanations than
other methods. More details refer to Appendix B.2.

5.3 ROBUSTNESS OF KGEXPLAINER (Q2)

In this section, to answer Q2, we conduct the robustness analysis on the Family-rr dataset to study
the impact of different sizable explored subgraphs and various KGE-based KGC models.

Size of Synergistic Path-based explanations. To investigate the influence of different sizable path-
based explanations, we conduct experiments based on KGExp-RotatE by varying n to 1, 2, and 3.
The KGExplainer explored synergistic paths with n = 1 is equal to exploring a single explainable
path. As illustrated in the left of Figure 4, we observe the best performance on F1@1 and Recall@1
metrics when utilizing the explainable paths with n = 2. Meanwhile, the performance across dif-
ferent sizes collapsed into a hunchback shape. The reason could be that the explored synergistic
paths with n = 1 are inefficient in recovering the original predictions and the subgraph patterns
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with n = 3 may contain many irrelevant facts, which introduce much noise and reduce the perfor-
mance of KGExplainer. This suggests that KGExplainer maintains comparable performance under
different sizable synergistic paths.

KGExplainer over various KGE-based KGC models. We investigate the impact of different tar-
get KGEs, including TransE, DistMult, and RotatE. As shown on the right side of Figure 4, the
results indicate that KGExplainer achieves similar levels of explanation performance across F1@1
and Recall@1 for different variants. This is because KGExplainer selects key entities by perturbing
neighboring entities and evaluating their influence on the prediction score, which is independent of
the KGE-based KGC models. Our findings show that KGExplainer is effective in searching ex-
planations for embedding-based models and is model-agnostic, as demonstrated by its performance
across various KGEs.

5.4 EFFICIENCY ANALYSIS (Q3)

Inference Time. We trained KGExplainer and baselines using a server with 12 virtual Intel(R)
Xeon(R) Platinum 8255C CPU and one RTX 2080 Ti GPU. To verify the effectiveness of KG-
Explainer in searching for explanations, we designed an experiment to evaluate KGExplainer. As
illustrated in Table 4, we show the average cost time of exploring explanations over the test sets of
all datasets from different methods. We find that KGExplainer has a similar cost to CRIAGE and
is more efficient than PaGE-Link and Kelpie, which indicates that KGExplainer can be effectively
extended to complex KGs in searching synergistic path-based explanations. This is because KGEx-
plainer searches explanations within the enclosing subgraph and the number of calculations for each
hop is only related to the average degree, which reduces the computational complexity of the explor-
ing process. Overall, KGExplainer has superiority in exploring synergistic path-based explanations
with complex patterns, which can scale to large knowledge graphs.

Table 4: The average cost time (s) of exploring expla-
nations for various methods. Ours shows comparable
efficiency.

CRIAGE Kelpie PaGE-Link Ours
Family-rr 1.65 4.84 1.74 1.32
OGB-biokg 121.67 183.24 257.35 157.28
FB15k-237 15.13 28.51 16.93 16.81

Table 5: The sparsity and corresponding performance
of different explainers. Ours indicates KGExplainer
shows superior sparsity.

Family-rr OGB-biokg FB15k-237Methods #edge F1@1 #edge F1@1 #edge F1@1

Keplie 8.297 20.33 37.58 49.32 11.19 36.64
PaGE-Link 3.085 21.89 12.87 68.29 4.993 66.12

Ours (n = 1) 3.182 28.77 9.751 79.28 5.142 75.67
Ours (n = 2) 9.782 30.47 45.27 81.97 13.66 82.04
Ours (n = 3) 15.13 30.49 112.3 80.33 26.14 83.21

Sparsity of Explanations

We discuss the sparsity of the explanations
from various explainers. For KGExplainer
and baseline methods, we adopt the aver-
age number of edges (i.e., #edge) as the
size of explanations. For KGExplainer, the
users can adjust the sparsity of explana-
tion subgraphs by selecting different top-
n nodes per hop (Refer to Section 4.2). As
shown in Table 5, we observe that the path-
based method (e.g., PaGE-Link) explor-
ing a coherent reasoning chain with fewer
facts is more efficient than the subgraph-
based method (e.g., Keplie). Additionally,
KGExplainer exploring multiple synergis-
tic paths can achieve superior performance
on comparable sparse explanations than
the path-based method. The phenomenon
in Table 5 shows that KGExplainer can
yield better explainability on explanations
with low information density.

6 CONCLUSION

In this work, we proposed a KGExplainer to identify synergistic paths as explanations over com-
plex KGs and design two quantitative metrics for evaluating them. Specifically, KGExplainer used
a greedy search algorithm and distilled an evaluator to find and assess key paths. Extensive ex-
periments demonstrate that KGExplainer is effective in providing meaningful explanations. In the
future, we will generalize our framework into multiple domains, including but not limited to AI for
chemical and biological applications.
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plex embeddings for simple link prediction. In International Conference on Machine Learning,
pp. 2071–2080, 2016.

Chenxu Wang, Xin Wang, Zhao Li, Zirui Chen, and Jianxin Li. Hyconve: A novel embedding model
for knowledge hypergraph link prediction with convolutional neural networks. In Proceedings of
the ACM Web Conference 2023, pp. 188–198, 2023.

Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, and Minyi Guo. Knowledge graph convolutional
networks for recommender systems. In The World Wide Web Conference, pp. 3307–3313, 2019a.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019b.

Peng Wang, Renqin Cai, and Hongning Wang. Graph-based extractive explainer for recommenda-
tions. In Proceedings of the ACM Web Conference 2022, pp. 2163–2171, 2022.

Xiang Wang, Yingxin Wu, An Zhang, Xiangnan He, and Tat-Seng Chua. Towards multi-grained
explainability for graph neural networks. Advances in Neural Information Processing Systems,
34:18446–18458, 2021.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 28, pp. 1112–1119, 2014.

Fang Wu, Siyuan Li, Lirong Wu, Dragomir Radev, Yinghui Jiang, Xurui Jin, Zhangming Niu, and
Stan Z Li. Explaining graph neural networks via non-parametric subgraph matching. Interna-
tional Conference on Machine Learning, pp. 1–13, 2023.

Yikun Xian, Zuohui Fu, Shan Muthukrishnan, Gerard De Melo, and Yongfeng Zhang. Reinforce-
ment knowledge graph reasoning for explainable recommendation. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 285–294, 2019.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. International Conference on Learning
Representations, pp. 1–12, 2015.

Yuhao Yang, Chao Huang, Lianghao Xia, and Chenliang Li. Knowledge graph contrastive learn-
ing for recommendation. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 1434–1443, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Liuyi Yao, Yaliang Li, Bolin Ding, Jingren Zhou, Jinduo Liu, Mengdi Huai, and Jing Gao. Path-
specific causal fair prediction via auxiliary graph structure learning. In Proceedings of the ACM
Web Conference 2023, pp. 3680–3688, 2023.

Shichang Zhang, Jiani Zhang, Xiang Song, Soji Adeshina, Da Zheng, Christos Faloutsos, and
Yizhou Sun. Page-link: Path-based graph neural network explanation for heterogeneous link
prediction. In Proceedings of the ACM Web Conference 2023, pp. 3784–3793, 2023.

Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen, Hai Zhu, Wei Zhang, Abraham Bernstein,
and Huajun Chen. Iteratively learning embeddings and rules for knowledge graph reasoning. In
The World Wide Web Conference, pp. 2366–2377, 2019.

Wen Zhang, Mingyang Chen, Zezhong Xu, Yushan Zhu, and Huajun Chen. Explaining knowledge
graph embedding via latent rule learning. OpenReview.Net, 26:1–14, 2021.

Zhanqiu Zhang, Jie Wang, Jieping Ye, and Feng Wu. Rethinking graph convolutional networks in
knowledge graph completion. In Proceedings of the ACM Web Conference 2022, pp. 798–807,
2022.

Dong Zhao, Guojia Wan, Yibing Zhan, Zengmao Wang, Liang Ding, Zhigao Zheng, and Bo Du.
Ke-x: Towards subgraph explanations of knowledge graph embedding based on knowledge infor-
mation gain. Knowledge-Based Systems, 278:110772, 2023.

Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang,
and George Karypis. Dgl-ke: Training knowledge graph embeddings at scale. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 739–748, 2020.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 1: Greedy search for subgraph explanation
Input : Target prediction ⟨h, r, t⟩; Enclosing subgraph g; Prediction score s; Subgraph

extracting function Fsub; Score function ϕ; Number of entities retrieved per hop n;
Output: A key subgraph gkey that is most critical to the target prediction ⟨h, r, t⟩.
Initialize a set of visited entities Svisit as {h};
Initialize a set of key entities Skey as {h};
Initialize a queue of searching entities Ssearch as {h};
while Ssearch is not empty do

Initialize H as an empty max-Heap;
esearching ← Ssearch.pop();
if t ∈ N (esearching) then

Skey ← Skey ∪ {t} ;
break;

for v ∈ N (esearching) do
if u /∈ Svisit then

Svisit ← Svisit ∪ {u} ;
Create g′ by removing u from g and finetune the KG embeddings of g′;
Get new embeddings of h, r, t as h′, r′, t′;
s′ ← ϕ(h′, r′, t′);
δv ← s− s′;
Put v into H with its corresponding value δv;

for i← 1 to n do
Pop v with the maximum δv from H and put it into Skey and Ssearch;

gkey ← Fsub(g, Skey);
return gkey;

Table 6: The statistics of datasets.
Dataset #entity #relation #train #test
WN-18 40,943 18 35,354 2,250
Family-rr 3,007 12 5,868 2,835
FB15k-237 14,541 237 68,028 9,209
OGB-biokg 93,773 51 4,762,678 3000

A KGEXPLAINER

A.1 THE ALGORITHM OF GREEDY SEARCH

For easier understanding, we show a detailed algorithm to describe how KGExplainer provides key
explanations in Algorithm 1.

A.2 RETRAINING STRATEGY

Retraing the embeddings over the entire KG G is infeasible due to removing one entity and its facts
have little impact on the embedding of KG elements. To reduce the overhead of retraining, we de-
veloped a subgraph-based retraining strategy as shown in Figure 5. We extract a 2-hop enclosing
subgraph g around the target fact ⟨h, r, t⟩. We argue that the subgraph g contains the key informa-
tion that leads to the target prediction. Thus the retraining process is only visible to the subgraph.
Figure 5 shows an example of how g is extracted. Meanwhile, to ensure that the retrained entity
representation space is consistent with the original knowledge graph, we expand g by including the
1-hop neighbors Nextend of the existing entities and fixed their embeddings. In Figure 5, we show
the learnable and fixed entities in the fine-tuning process. Specifically, we adopt the following con-
straints: (a) we use the embeddings of the entities in G to initialize the embeddings of g; (b) we
fixed the relation embeddings in g as the same as those in G; and (c) we fixed the embedding of
v ∈ Nextend.
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fixed

learnable

K-hop 
Sampling

Pre-trained KG Subgraph

Figure 5: An example of creating a subgraph from G. On the left, two entities (the orange vertices)
were predicted to be connected. A subgraph was created on the right. We first initialized g with all
the entities (the orange and green vertices) within G. Then it was expanded by including the 1-hop
neighbors Nextend of existing entities (the gray vertices).
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Figure 6: The F1@1 performance of KGExplainer on Family-rr and WN-18 over various sizable
enclosing subgraphs.

A.3 THE COMPUTATIONAL EFFICIENCY

The computational complexity of KGExplainer primarily arises from two factors: (1) the greedy
search within g, and (2) the re-training cost associated with g. As discussed in Section 4.4, the
complexity of the greedy search is largely determined by local parameters. The re-training cost,
on the other hand, depends on the underlying KGE model The computational complexity of the re-
training stage for different base KGEs, which is dominated by the size of subgraph g (i.e., O(LN |V|

|E| )

discussed in Section 4.4), the embedding dimension d, and the size of negative samples n. Thus we
can analyze the efficiency of base KGEs as follows:

• In TransE, DistMult, and RotatE, the computational efficiency of each fact within g is
O((n + 1)d). Therefore, the overall complexity is O(LN |V|

|E| (n + 1)d), where L is the
maximum path length, N denotes the path number.

In conclusion, the practical runtime largely depends on the local parameters of the knowledge
graphs. The results in Table 7 show a strong positive correlation between the number of paths and
computation time, which aligns closely with our theoretical analysis. Therefore, we can improve the
scalability of large knowledge graphs by adjusting these local parameters.

Table 7: The distribution of degree, path length, and path number over various KGs. Note that the
analysis is conducted within local subgraphs (2-hop) of test set.

Datasets avg. degree avg. path length avg. path number avg. time

Family-rr 3.902 2.828 4.1 1.32
FB15k-237 9.357 4.195 50.054 16.81
OGB-biokg 101.579 3.982 457.234 157.28
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A.4 FORMALIZING THE CONCEPT OF PATH SYNERGY

We can formalize the concept of synergistic paths from an information-theoretic perspective.

Let:

• (G = (V,R,E)) be a KG with entities V , relations R, and edges E.

• < h, r, t > denote the head entity, relation, and tail entity, respectively, forming the target
prediction.

• P = {p1, p2, . . . , pn} be a set of paths between h and t, where each pi represents a se-
quence of edges from h to t.

We aim to quantify the synergy among paths in P by evaluating how much additional information
these paths provide collectively toward the prediction t, compared to the information provided by
each path individually.

1. Mutual Information of Individual Paths: Define I(t; pi) as the mutual information between
the target prediction t and a path pi from h to t. This quantifies the amount of information that pi
alone contributes to the prediction of t:

I(t; pi) = H(t)−H(t|pi),

where H(t) is the entropy of the target prediction t, and H(t|pi) is the conditional entropy of t given
the information from path pi.

2. Joint Mutual Information of Path Set: Let I(t;Psynergy) represent the mutual information
between t and the subset of paths Psynergy ⊂ P , which includes multiple paths that contribute to
the prediction. This joint mutual information measures the information provided by the paths in
Psynergy when considered together:

I(t;Psynergy) = H(t)−H(t|Psynergy).

3. Synergy Condition: The paths in Psynergy are considered synergistic if the joint mutual infor-
mation I(t;Psynergy) is greater than the sum of individual mutual informations I(t; pi) for each
pi ∈ Psynergy:

I(t;Psynergy) >
∑

pi∈Psynergy

I(t; pi).

This inequality implies that the paths in Psynergy provide *additional predictive information* about
t when considered together, beyond what each path contributes individually. This excess information
captures the synergy among paths.

4. Interpretation and Optimization:

• The set Psynergy can be identified as the subset of paths P from h to t that maximizes the
synergistic mutual information I(t;Psynergy)−

∑
pi∈Psynergy

I(t; pi).

• Formally, we can define the optimal synergistic path set P∗
synergy as:

P∗
synergy = arg max

P′⊆P

I(t;P ′)−
∑

pi∈P′

I(t; pi)

 .

B EXPERIMENTAL SETTINGS

B.1 IMPLEMENTATION DETAILS

B.1.1 DATASETS

We show detailed statistics of all datasets in Table 6. #train and #test are the number of triples on
the training and testing sets.
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Table 8: The hyperparameters of KGExplainer during distillation phase.
Family-rr WN-18 FB15k-237 OGB-biokg

embedding dim 64 64 64 64
learning rate 0.0015 0.001 0.001 0.001
weight of pair-wise loss 0.5 0.5 0.5 0.5
Epochs 50 50 50 100
R-GAT layers 2 3 3 3
Optimizer Adam Adam Adam Adam
Batch size 1024 4096 4096 4096
#entity per hop n 2 2 2 2
enclosing subgraph size k 2 2 1 2
target KGE TransE RotatE RotatE RotatE

B.1.2 DETAILS OF KGEXPLAINER

The experiments contain (1) Generating subgraph-based explanations, and (2) Distilling the sub-
graph evaluator for assessment.

In the explanation phase, we extract key subgraphs from the 2-hop enclosing subgraph surrounding
the target prediction. We set n = 2 to determine the number of selected entities per hop during
greedy searching. To achieve the best evaluation capability, we distill an evaluator from RotatE Sun
et al. (2019) to assess explainability (See Section 5.2). More settings of hyperparameters are shown
in Table 8. In the distilling phase, to ensure sufficient expressive power for the model to distill,
we tune the hyperparameters to get the optimal distilled model. The details of hyperparameters are
depicted in Table 8.

B.1.3 DETAILS OF BASELINES

We implement our KGExplainer and baseline models in Pytorch Paszke et al. (2017) and DGL Wang
et al. (2019b) library on an RTX 2080Ti GPU with 11GB memory. For the implementation of
baselines, we use the source code of Kelpie Rossi et al. (2022) to reproduce the faithful results and
explore explanations of fact-based methods CRIAGE Pezeshkpour et al. (2018) and Kelpie. For
other baselines, we adopt the source code reported by their original paper and use their pre-defined
parameters to produce explanations. In addition to comparing against baselines with no parameter
settings for certain datasets, we also examine the parameters used in a similar scale dataset. We
report the average results and their standard deviation by five runs in Section 5.

B.2 DETAILS OF HUMAN EVALUATION

For valuable human evaluations, we consider the following guidance for participants:

• We give two bases for judgment as a guide when asking participants questions. 1. In
Family-rr, for predicting the kinship between two individuals, the explanation should be
based on the known family memberships, marital relationships, etc. reasonably derived.
2. Encourage testers to choose more concise and clear explanations, while maintaining
completeness. Avoid overly complex explanations so that key information can be presented
clearly.

• The results from different models are presented to the participants simultaneously
• We randomly selected 20 samples from the test set of Family-rr for participants to evaluate.

C ADDITIONAL EXPERIMENTS

C.1 PERFORMANCE ON VARIOUS SIZABLE ENCLOSING SUBGRAPHS

Similar to the experiments in Section 5.3 (i.e., Hyper-parameter Sensitivity Analysis), we conduct
another experiment to study the model’s explainability on various sizable enclosing subgraphs. We
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Table 9: The F1@N (%) performance of explanations over various datasets. The boldface denotes
the highest score.

Family-rr WN-18 FB15k-237 OGB-biokg
F1@3 F1@10 F1@3 F1@10 F1@3 F1@10 F1@3 F1@10

CRIAGE 27.22 36.44 72.91 77.78 48.81 53.26 54.27 61.62
Keplie 27.18 36.25 73.58 79.39 40.77 48.01 52.59 61.21

DRUM 25.23 30.73 75.58 77.80 67.34 71.03 65.87 72.54
ELPE 75.69 79.27 78.35 83.21 29.71 40.40 67.41 71.65
PaGE-Link 28.42 38.49 70.99 75.21 70.77 76.51 71.32 77.58

KGExp-rand 27.55 41.48 37.43 40.46 61.03 66.58 56.47 59.39
KGExp-TransE 45.89 62.96 98.57 99.58 85.41 89.97 84.22 88.37
KGExp-DistMult 44.08 57.47 97.89 99.41 86.74 90.17 84.35 89.73
KGExp-RotatE 39.56 57.25 98.58 99.57 87.41 92.97 86.97 90.04

Table 10: The Recall@N (%) performance of explanations over various datasets. The boldface
denotes the highest score.

Family-rr WN-18 FB15k-237 OGB-biokg
Recall@3 Recall@10 Recall@3 Recall@10 Recall@3 Recall@10 Recall@3 Recall@10

CRIAGE 32.02 36.95 95.45 99.34 76.87 82.11 65.95 70.44
Keplie 31.87 36.55 93.69 99.51 66.91 75.52 67.26 75.34

DRUM 22.09 30.92 93.69 94.93 89.01 91.12 76.23 81.07
ELPE 35.17 41.34 93.11 95.23 89.76 93.21 80.21 83.15
PaGE-Link 31.77 38.13 88.32 92.20 87.32 89.04 78.65 83.26

KGExp-rand 33.44 43.97 92.47 94.61 57.12 64.31 58.37 62.59
KGExp-TransE 46.85 61.61 99.47 99.84 93.41 94.57 90.48 93.51
KGExp-DistMult 43.05 56.26 99.31 99.71 92.01 93.89 91.66 93.05
KGExp-RotatE 41.48 56.26 99.47 99.84 93.01 94.69 90.89 92.31

select top-n = 2 entities per hop and vary the size of k-hop enclosing subgraph to k = 1, 2, 3.
The F1@1 performance of KGExplainer over various sizable subgraphs is depicted in Figure 6.
Theoretically, the larger the subgraph to be searched, the more sufficient key information it contains,
so that more effective explanatory subgraphs can be retrieved. We can observe that KGExp-RotatE
performs better as the size of subgraphs increases on both Family-rr and WN-18 datasets, which
indicates that KGExplainer based on RotatE has generalization and stability. However, KGExplainer
over TransE and DistMult only fits this phenomenon on one of the datasets, showing they are limited
in generalizing to other data distributions. Thus to achieve a fair comparison, we consider the
KGExp-RotatE as the subgraph evaluator and assess other baseline methods.

C.2 THE FULL RESULTS OF EXPLANATIONS

The full results (i.e., F1@[3, 10] and Recall@[3, 10]) of the explanations are shown in Table 9 and
Table 10. We can observe that KGExplainer is also the best.

C.3 SPARISITY OF EXPLAINERS

We discuss the sparsity of the explanations from various explainers. For subgraph- and path-based
methods, we directly adopt the edges and paths for further evaluation. Therefore the size of ex-
planations depends on the number of edges and path lengths they explore. For KGExplainer, the
users can adjust the sparsity of multiple synergistic paths by selecting different top-n nodes per hop
(See Section 4.4.1). Once the model is trained, the user can directly adjust the value of n without
retraining. For various explainers, We present the average number of edges (i.e., Avg. #edges) and
corresponding F1@1 performance on all datasets in Table 11. We see that the path-based method
(e.g., PaGE-Link) with a complete reasoning chain is more effective than the fact-based method
(e.g., Keplie) on fewer visible facts. Moreover, we observe that KGExplainer can dynamically ad-
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Table 11: The sparsity and corresponding performance of different explainers.

Methods Family-rr WN-18 FB15k-237 OGB-biokg
Avg. #edges F1@1 Avg. #edges F1@1 Avg. #edges F1@1 Avg. #edges F1@1

Keplie 8.297 20.33 4.794 66.37 11.19 36.64 37.58 49.32
Page-Link 3.085 21.89 3.64 67.7 4.993 66.12 12.87 68.29

KGExp-TransE (n=1) 3.182 28.77 2.263 96.4 5.142 75.67 9.75 79.28
KGExp-TransE (n=2) 9.782 30.47 4.772 97.1 13.661 82.04 45.27 81.97
KGExp-TransE (n=3) 15.132 30.49 9.223 96.91 26.146 83.21 112.37 80.33

just the size of the explanations and achieve superior performance compared with subgraph- and
path-based methods.

C.4 PERFORMANCE OF KGEXPLAINER ON VARIOUS ARCHITECTURES

The evaluators built on different architectures demonstrate robustness. The evaluation results of
evaluators distilled from different base KGEs have minor differences. Specifically, we evaluate
KGExplainer’s performance using different evaluator architectures across various KGEs. We use
RotatE as the base KGE to generate explanations for the Family-rr dataset, and then assess these
explanations using evaluators distilled from different teacher KGEs. Table 12 reveals two key find-
ings:

• The evaluator distilled from RotatE achieves the best performance, with differences among
evaluators due to variations in their predictive abilities.

• Evaluators based on R-GAT and GraiL Teru et al. (2020) (which applies R-GCN on sub-
graphs) show similar performance across different KGEs. This may be because that the
architectural differences between R-GAT and R-GCN are minor.

These results highlight that an evaluator with strong predictive capability is essential for high-quality
evaluations. Accordingly, we primarily select RotatE as the teacher KGE for distilling evaluators.

Table 12: The explainable performance of various evaluators on the Family-rr dataset.
teacher KGEs KGExplainer (R-GAT) KGExplainer (GraiL)

TransE 27.39 28.51
DistMult 23.43 21.15
RotatE 30.47 28.26

C.5 COMPUTATIONAL TIME OF KGEXPLAINER ON DIFFERENT LOCAL PARAMETERS

To improve scalability for larger KGs, we can adjust the local enclosing subgraph size (e.g., reduc-
ing from a 2-hop to a 1-hop subgraph) to decrease path length and path count. Table 13 presents the
distribution of node degree, path length, path number, and computation time across different sub-
graph scales over OGB-biokg, revealing a strong positive correlation between them, consistent with
our theoretical analysis. In conclusion, the complexity of KGExplainer is driven primarily by local
parameters—such as path length L, path number N , and average degree—rather than the overall
size of the knowledge graph (KG).

Table 13: The distribution of average degree, path length, path number, and computation time over
various subgraph scales.

Scale avg. degree avg. path length avg. path number avg. time

1-hop 97.265 2.573 346.331 103.245
2-hop 101.579 3.982 457.234 157.28
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D DISCUSSION

D.1 NOVELTY

Some related works Han et al. (2020); Joshi & Urbani (2020) mainly focus on pruning subgraphs
to eliminate irrelevant facts and to improve the performance of link prediction on either temporal or
static KGs. To some extent, the pruned subgraphs can be considered key information for predicted
links. However, the pruned subgraphs are not connected but rather a collection of facts, which
are fact-based explainable methods. Similarly, KE-X Zhao et al. (2023) and KGEx Baltatzis &
Costabello (2024) are post-hoc explainable methods that identify key triples as explanations. The
identified key triples are discrete facts and can not form a reasoning chain. Additionally, PaGE-
Link Zhang et al. (2023) and Power-Link Chang et al. (2024) are path-based explainable methods
that focus on exploring a single path and rely on selecting multiple discrete paths manually for
complex scenes. In contrast, KGExplainer emphasizes exploring multiple synergistic paths globally
to form connected subgraphs, which is novel and more expressive than previous models.

D.2 DISCUSSION OF DISTILLED RESULTS

In Table 1, we can see that KGExplainer benefits the base model for some datasets. We observe
the same behavior in Deng & Zhang (2020); Jiao et al. (2019). From their insights, we think the
KGExplainer distilled from KGEs may remove some noise and irrelevant information to the KGC
task, making KGExplainer more robust and having better generalization ability, which leads to KG-
Explainer performing better than base KGEs to some extent.
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